if.c revision 1.480 1 /* $NetBSD: if.c,v 1.480 2020/09/26 11:57:05 roy Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.480 2020/09/26 11:57:05 roy Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_atalk.h"
99 #include "opt_wlan.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mrouting.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122 #include <sys/module_hook.h>
123 #include <sys/compat_stub.h>
124 #include <sys/msan.h>
125
126 #include <net/if.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net80211/ieee80211.h>
131 #include <net80211/ieee80211_ioctl.h>
132 #include <net/if_types.h>
133 #include <net/route.h>
134 #include <net/netisr.h>
135 #include <sys/module.h>
136 #ifdef NETATALK
137 #include <netatalk/at_extern.h>
138 #include <netatalk/at.h>
139 #endif
140 #include <net/pfil.h>
141 #include <netinet/in.h>
142 #include <netinet/in_var.h>
143 #include <netinet/ip_encap.h>
144 #include <net/bpf.h>
145
146 #ifdef INET6
147 #include <netinet6/in6_var.h>
148 #include <netinet6/nd6.h>
149 #endif
150
151 #include "ether.h"
152
153 #include "bridge.h"
154 #if NBRIDGE > 0
155 #include <net/if_bridgevar.h>
156 #endif
157
158 #include "carp.h"
159 #if NCARP > 0
160 #include <netinet/ip_carp.h>
161 #endif
162
163 #include <compat/sys/sockio.h>
164
165 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
166 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
167
168 /*
169 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
170 * for each ifnet. It doesn't matter because:
171 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
172 * ifq_lock don't happen
173 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
174 * because if_snd, if_link_state_change and if_link_state_change_process
175 * are all called with KERNEL_LOCK
176 */
177 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \
178 mutex_enter((ifp)->if_snd.ifq_lock)
179 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \
180 mutex_exit((ifp)->if_snd.ifq_lock)
181
182 /*
183 * Global list of interfaces.
184 */
185 /* DEPRECATED. Remove it once kvm(3) users disappeared */
186 struct ifnet_head ifnet_list;
187
188 struct pslist_head ifnet_pslist;
189 static ifnet_t ** ifindex2ifnet = NULL;
190 static u_int if_index = 1;
191 static size_t if_indexlim = 0;
192 static uint64_t index_gen;
193 /* Mutex to protect the above objects. */
194 kmutex_t ifnet_mtx __cacheline_aligned;
195 static struct psref_class *ifnet_psref_class __read_mostly;
196 static pserialize_t ifnet_psz;
197 static struct workqueue *ifnet_link_state_wq __read_mostly;
198
199 static kmutex_t if_clone_mtx;
200
201 struct ifnet *lo0ifp;
202 int ifqmaxlen = IFQ_MAXLEN;
203
204 struct psref_class *ifa_psref_class __read_mostly;
205
206 static int if_delroute_matcher(struct rtentry *, void *);
207
208 static bool if_is_unit(const char *);
209 static struct if_clone *if_clone_lookup(const char *, int *);
210
211 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
212 static int if_cloners_count;
213
214 /* Packet filtering hook for interfaces. */
215 pfil_head_t * if_pfil __read_mostly;
216
217 static kauth_listener_t if_listener;
218
219 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
220 static void if_detach_queues(struct ifnet *, struct ifqueue *);
221 static void sysctl_sndq_setup(struct sysctllog **, const char *,
222 struct ifaltq *);
223 static void if_slowtimo(void *);
224 static void if_attachdomain1(struct ifnet *);
225 static int ifconf(u_long, void *);
226 static int if_transmit(struct ifnet *, struct mbuf *);
227 static int if_clone_create(const char *);
228 static int if_clone_destroy(const char *);
229 static void if_link_state_change_work(struct work *, void *);
230 static void if_up_locked(struct ifnet *);
231 static void _if_down(struct ifnet *);
232 static void if_down_deactivated(struct ifnet *);
233
234 struct if_percpuq {
235 struct ifnet *ipq_ifp;
236 void *ipq_si;
237 struct percpu *ipq_ifqs; /* struct ifqueue */
238 };
239
240 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
241
242 static void if_percpuq_drops(void *, void *, struct cpu_info *);
243 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
244 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
245 struct if_percpuq *);
246
247 struct if_deferred_start {
248 struct ifnet *ids_ifp;
249 void (*ids_if_start)(struct ifnet *);
250 void *ids_si;
251 };
252
253 static void if_deferred_start_softint(void *);
254 static void if_deferred_start_common(struct ifnet *);
255 static void if_deferred_start_destroy(struct ifnet *);
256
257 #if defined(INET) || defined(INET6)
258 static void sysctl_net_pktq_setup(struct sysctllog **, int);
259 #endif
260
261 /*
262 * Hook for if_vlan - needed by if_agr
263 */
264 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook;
265
266 static void if_sysctl_setup(struct sysctllog **);
267
268 static int
269 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
270 void *arg0, void *arg1, void *arg2, void *arg3)
271 {
272 int result;
273 enum kauth_network_req req;
274
275 result = KAUTH_RESULT_DEFER;
276 req = (enum kauth_network_req)(uintptr_t)arg1;
277
278 if (action != KAUTH_NETWORK_INTERFACE)
279 return result;
280
281 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
282 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
283 result = KAUTH_RESULT_ALLOW;
284
285 return result;
286 }
287
288 /*
289 * Network interface utility routines.
290 *
291 * Routines with ifa_ifwith* names take sockaddr *'s as
292 * parameters.
293 */
294 void
295 ifinit(void)
296 {
297
298 #if (defined(INET) || defined(INET6))
299 encapinit();
300 #endif
301
302 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
303 if_listener_cb, NULL);
304
305 /* interfaces are available, inform socket code */
306 ifioctl = doifioctl;
307 }
308
309 /*
310 * XXX Initialization before configure().
311 * XXX hack to get pfil_add_hook working in autoconf.
312 */
313 void
314 ifinit1(void)
315 {
316 int error __diagused;
317
318 #ifdef NET_MPSAFE
319 printf("NET_MPSAFE enabled\n");
320 #endif
321
322 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
323
324 TAILQ_INIT(&ifnet_list);
325 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
326 ifnet_psz = pserialize_create();
327 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
328 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
329 error = workqueue_create(&ifnet_link_state_wq, "iflnkst",
330 if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET,
331 WQ_MPSAFE);
332 KASSERT(error == 0);
333 PSLIST_INIT(&ifnet_pslist);
334
335 if_indexlim = 8;
336
337 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
338 KASSERT(if_pfil != NULL);
339
340 #if NETHER > 0 || defined(NETATALK) || defined(WLAN)
341 etherinit();
342 #endif
343 }
344
345 /* XXX must be after domaininit() */
346 void
347 ifinit_post(void)
348 {
349
350 if_sysctl_setup(NULL);
351 }
352
353 ifnet_t *
354 if_alloc(u_char type)
355 {
356 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
357 }
358
359 void
360 if_free(ifnet_t *ifp)
361 {
362 kmem_free(ifp, sizeof(ifnet_t));
363 }
364
365 void
366 if_initname(struct ifnet *ifp, const char *name, int unit)
367 {
368 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
369 "%s%d", name, unit);
370 }
371
372 /*
373 * Null routines used while an interface is going away. These routines
374 * just return an error.
375 */
376
377 int
378 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
379 const struct sockaddr *so, const struct rtentry *rt)
380 {
381
382 return ENXIO;
383 }
384
385 void
386 if_nullinput(struct ifnet *ifp, struct mbuf *m)
387 {
388
389 /* Nothing. */
390 }
391
392 void
393 if_nullstart(struct ifnet *ifp)
394 {
395
396 /* Nothing. */
397 }
398
399 int
400 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
401 {
402
403 m_freem(m);
404 return ENXIO;
405 }
406
407 int
408 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
409 {
410
411 return ENXIO;
412 }
413
414 int
415 if_nullinit(struct ifnet *ifp)
416 {
417
418 return ENXIO;
419 }
420
421 void
422 if_nullstop(struct ifnet *ifp, int disable)
423 {
424
425 /* Nothing. */
426 }
427
428 void
429 if_nullslowtimo(struct ifnet *ifp)
430 {
431
432 /* Nothing. */
433 }
434
435 void
436 if_nulldrain(struct ifnet *ifp)
437 {
438
439 /* Nothing. */
440 }
441
442 void
443 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
444 {
445 struct ifaddr *ifa;
446 struct sockaddr_dl *sdl;
447
448 ifp->if_addrlen = addrlen;
449 if_alloc_sadl(ifp);
450 ifa = ifp->if_dl;
451 sdl = satosdl(ifa->ifa_addr);
452
453 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
454 if (factory) {
455 KASSERT(ifp->if_hwdl == NULL);
456 ifp->if_hwdl = ifp->if_dl;
457 ifaref(ifp->if_hwdl);
458 }
459 /* TBD routing socket */
460 }
461
462 struct ifaddr *
463 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
464 {
465 unsigned socksize, ifasize;
466 int addrlen, namelen;
467 struct sockaddr_dl *mask, *sdl;
468 struct ifaddr *ifa;
469
470 namelen = strlen(ifp->if_xname);
471 addrlen = ifp->if_addrlen;
472 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
473 ifasize = sizeof(*ifa) + 2 * socksize;
474 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
475
476 sdl = (struct sockaddr_dl *)(ifa + 1);
477 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
478
479 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
480 ifp->if_xname, namelen, NULL, addrlen);
481 mask->sdl_family = AF_LINK;
482 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
483 memset(&mask->sdl_data[0], 0xff, namelen);
484 ifa->ifa_rtrequest = link_rtrequest;
485 ifa->ifa_addr = (struct sockaddr *)sdl;
486 ifa->ifa_netmask = (struct sockaddr *)mask;
487 ifa_psref_init(ifa);
488
489 *sdlp = sdl;
490
491 return ifa;
492 }
493
494 static void
495 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
496 {
497 const struct sockaddr_dl *sdl;
498
499 ifp->if_dl = ifa;
500 ifaref(ifa);
501 sdl = satosdl(ifa->ifa_addr);
502 ifp->if_sadl = sdl;
503 }
504
505 /*
506 * Allocate the link level name for the specified interface. This
507 * is an attachment helper. It must be called after ifp->if_addrlen
508 * is initialized, which may not be the case when if_attach() is
509 * called.
510 */
511 void
512 if_alloc_sadl(struct ifnet *ifp)
513 {
514 struct ifaddr *ifa;
515 const struct sockaddr_dl *sdl;
516
517 /*
518 * If the interface already has a link name, release it
519 * now. This is useful for interfaces that can change
520 * link types, and thus switch link names often.
521 */
522 if (ifp->if_sadl != NULL)
523 if_free_sadl(ifp, 0);
524
525 ifa = if_dl_create(ifp, &sdl);
526
527 ifa_insert(ifp, ifa);
528 if_sadl_setrefs(ifp, ifa);
529 }
530
531 static void
532 if_deactivate_sadl(struct ifnet *ifp)
533 {
534 struct ifaddr *ifa;
535
536 KASSERT(ifp->if_dl != NULL);
537
538 ifa = ifp->if_dl;
539
540 ifp->if_sadl = NULL;
541
542 ifp->if_dl = NULL;
543 ifafree(ifa);
544 }
545
546 static void
547 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
548 {
549 struct ifaddr *old;
550
551 KASSERT(ifp->if_dl != NULL);
552
553 old = ifp->if_dl;
554
555 ifaref(ifa);
556 /* XXX Update if_dl and if_sadl atomically */
557 ifp->if_dl = ifa;
558 ifp->if_sadl = satosdl(ifa->ifa_addr);
559
560 ifafree(old);
561 }
562
563 void
564 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
565 const struct sockaddr_dl *sdl)
566 {
567 int s, ss;
568 struct ifaddr *ifa;
569 int bound = curlwp_bind();
570
571 KASSERT(ifa_held(ifa0));
572
573 s = splsoftnet();
574
575 if_replace_sadl(ifp, ifa0);
576
577 ss = pserialize_read_enter();
578 IFADDR_READER_FOREACH(ifa, ifp) {
579 struct psref psref;
580 ifa_acquire(ifa, &psref);
581 pserialize_read_exit(ss);
582
583 rtinit(ifa, RTM_LLINFO_UPD, 0);
584
585 ss = pserialize_read_enter();
586 ifa_release(ifa, &psref);
587 }
588 pserialize_read_exit(ss);
589
590 splx(s);
591 curlwp_bindx(bound);
592 }
593
594 /*
595 * Free the link level name for the specified interface. This is
596 * a detach helper. This is called from if_detach().
597 */
598 void
599 if_free_sadl(struct ifnet *ifp, int factory)
600 {
601 struct ifaddr *ifa;
602 int s;
603
604 if (factory && ifp->if_hwdl != NULL) {
605 ifa = ifp->if_hwdl;
606 ifp->if_hwdl = NULL;
607 ifafree(ifa);
608 }
609
610 ifa = ifp->if_dl;
611 if (ifa == NULL) {
612 KASSERT(ifp->if_sadl == NULL);
613 return;
614 }
615
616 KASSERT(ifp->if_sadl != NULL);
617
618 s = splsoftnet();
619 KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
620 ifa_remove(ifp, ifa);
621 if_deactivate_sadl(ifp);
622 splx(s);
623 }
624
625 static void
626 if_getindex(ifnet_t *ifp)
627 {
628 bool hitlimit = false;
629
630 ifp->if_index_gen = index_gen++;
631
632 ifp->if_index = if_index;
633 if (ifindex2ifnet == NULL) {
634 if_index++;
635 goto skip;
636 }
637 while (if_byindex(ifp->if_index)) {
638 /*
639 * If we hit USHRT_MAX, we skip back to 0 since
640 * there are a number of places where the value
641 * of if_index or if_index itself is compared
642 * to or stored in an unsigned short. By
643 * jumping back, we won't botch those assignments
644 * or comparisons.
645 */
646 if (++if_index == 0) {
647 if_index = 1;
648 } else if (if_index == USHRT_MAX) {
649 /*
650 * However, if we have to jump back to
651 * zero *twice* without finding an empty
652 * slot in ifindex2ifnet[], then there
653 * there are too many (>65535) interfaces.
654 */
655 if (hitlimit) {
656 panic("too many interfaces");
657 }
658 hitlimit = true;
659 if_index = 1;
660 }
661 ifp->if_index = if_index;
662 }
663 skip:
664 /*
665 * ifindex2ifnet is indexed by if_index. Since if_index will
666 * grow dynamically, it should grow too.
667 */
668 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
669 size_t m, n, oldlim;
670 void *q;
671
672 oldlim = if_indexlim;
673 while (ifp->if_index >= if_indexlim)
674 if_indexlim <<= 1;
675
676 /* grow ifindex2ifnet */
677 m = oldlim * sizeof(struct ifnet *);
678 n = if_indexlim * sizeof(struct ifnet *);
679 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO);
680 if (ifindex2ifnet != NULL) {
681 memcpy(q, ifindex2ifnet, m);
682 free(ifindex2ifnet, M_IFADDR);
683 }
684 ifindex2ifnet = (struct ifnet **)q;
685 }
686 ifindex2ifnet[ifp->if_index] = ifp;
687 }
688
689 /*
690 * Initialize an interface and assign an index for it.
691 *
692 * It must be called prior to a device specific attach routine
693 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
694 * and be followed by if_register:
695 *
696 * if_initialize(ifp);
697 * ether_ifattach(ifp, enaddr);
698 * if_register(ifp);
699 */
700 int
701 if_initialize(ifnet_t *ifp)
702 {
703 int rv = 0;
704
705 KASSERT(if_indexlim > 0);
706 TAILQ_INIT(&ifp->if_addrlist);
707
708 /*
709 * Link level name is allocated later by a separate call to
710 * if_alloc_sadl().
711 */
712
713 if (ifp->if_snd.ifq_maxlen == 0)
714 ifp->if_snd.ifq_maxlen = ifqmaxlen;
715
716 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
717
718 ifp->if_link_state = LINK_STATE_UNKNOWN;
719 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
720 ifp->if_link_scheduled = false;
721
722 ifp->if_capenable = 0;
723 ifp->if_csum_flags_tx = 0;
724 ifp->if_csum_flags_rx = 0;
725
726 #ifdef ALTQ
727 ifp->if_snd.altq_type = 0;
728 ifp->if_snd.altq_disc = NULL;
729 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
730 ifp->if_snd.altq_tbr = NULL;
731 ifp->if_snd.altq_ifp = ifp;
732 #endif
733
734 IFQ_LOCK_INIT(&ifp->if_snd);
735
736 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
737 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
738
739 IF_AFDATA_LOCK_INIT(ifp);
740
741 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
742 PSLIST_INIT(&ifp->if_addr_pslist);
743 psref_target_init(&ifp->if_psref, ifnet_psref_class);
744 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
745 LIST_INIT(&ifp->if_multiaddrs);
746 if ((rv = if_stats_init(ifp)) != 0) {
747 goto fail;
748 }
749
750 IFNET_GLOBAL_LOCK();
751 if_getindex(ifp);
752 IFNET_GLOBAL_UNLOCK();
753
754 return 0;
755
756 fail:
757 IF_AFDATA_LOCK_DESTROY(ifp);
758
759 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
760 (void)pfil_head_destroy(ifp->if_pfil);
761
762 IFQ_LOCK_DESTROY(&ifp->if_snd);
763
764 return rv;
765 }
766
767 /*
768 * Register an interface to the list of "active" interfaces.
769 */
770 void
771 if_register(ifnet_t *ifp)
772 {
773 /*
774 * If the driver has not supplied its own if_ioctl, then
775 * supply the default.
776 */
777 if (ifp->if_ioctl == NULL)
778 ifp->if_ioctl = ifioctl_common;
779
780 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
781
782 if (!STAILQ_EMPTY(&domains))
783 if_attachdomain1(ifp);
784
785 /* Announce the interface. */
786 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
787
788 if (ifp->if_slowtimo != NULL) {
789 ifp->if_slowtimo_ch =
790 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
791 callout_init(ifp->if_slowtimo_ch, 0);
792 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
793 if_slowtimo(ifp);
794 }
795
796 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
797 ifp->if_transmit = if_transmit;
798
799 IFNET_GLOBAL_LOCK();
800 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
801 IFNET_WRITER_INSERT_TAIL(ifp);
802 IFNET_GLOBAL_UNLOCK();
803 }
804
805 /*
806 * The if_percpuq framework
807 *
808 * It allows network device drivers to execute the network stack
809 * in softint (so called softint-based if_input). It utilizes
810 * softint and percpu ifqueue. It doesn't distribute any packets
811 * between CPUs, unlike pktqueue(9).
812 *
813 * Currently we support two options for device drivers to apply the framework:
814 * - Use it implicitly with less changes
815 * - If you use if_attach in driver's _attach function and if_input in
816 * driver's Rx interrupt handler, a packet is queued and a softint handles
817 * the packet implicitly
818 * - Use it explicitly in each driver (recommended)
819 * - You can use if_percpuq_* directly in your driver
820 * - In this case, you need to allocate struct if_percpuq in driver's softc
821 * - See wm(4) as a reference implementation
822 */
823
824 static void
825 if_percpuq_softint(void *arg)
826 {
827 struct if_percpuq *ipq = arg;
828 struct ifnet *ifp = ipq->ipq_ifp;
829 struct mbuf *m;
830
831 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
832 if_statinc(ifp, if_ipackets);
833 bpf_mtap(ifp, m, BPF_D_IN);
834
835 ifp->_if_input(ifp, m);
836 }
837 }
838
839 static void
840 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
841 {
842 struct ifqueue *const ifq = p;
843
844 memset(ifq, 0, sizeof(*ifq));
845 ifq->ifq_maxlen = IFQ_MAXLEN;
846 }
847
848 struct if_percpuq *
849 if_percpuq_create(struct ifnet *ifp)
850 {
851 struct if_percpuq *ipq;
852 u_int flags = SOFTINT_NET;
853
854 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
855
856 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
857 ipq->ipq_ifp = ifp;
858 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
859 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
860 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
861
862 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
863
864 return ipq;
865 }
866
867 static struct mbuf *
868 if_percpuq_dequeue(struct if_percpuq *ipq)
869 {
870 struct mbuf *m;
871 struct ifqueue *ifq;
872 int s;
873
874 s = splnet();
875 ifq = percpu_getref(ipq->ipq_ifqs);
876 IF_DEQUEUE(ifq, m);
877 percpu_putref(ipq->ipq_ifqs);
878 splx(s);
879
880 return m;
881 }
882
883 static void
884 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
885 {
886 struct ifqueue *const ifq = p;
887
888 IF_PURGE(ifq);
889 }
890
891 void
892 if_percpuq_destroy(struct if_percpuq *ipq)
893 {
894
895 /* if_detach may already destroy it */
896 if (ipq == NULL)
897 return;
898
899 softint_disestablish(ipq->ipq_si);
900 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
901 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
902 kmem_free(ipq, sizeof(*ipq));
903 }
904
905 void
906 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
907 {
908 struct ifqueue *ifq;
909 int s;
910
911 KASSERT(ipq != NULL);
912
913 s = splnet();
914 ifq = percpu_getref(ipq->ipq_ifqs);
915 if (IF_QFULL(ifq)) {
916 IF_DROP(ifq);
917 percpu_putref(ipq->ipq_ifqs);
918 m_freem(m);
919 goto out;
920 }
921 IF_ENQUEUE(ifq, m);
922 percpu_putref(ipq->ipq_ifqs);
923
924 softint_schedule(ipq->ipq_si);
925 out:
926 splx(s);
927 }
928
929 static void
930 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
931 {
932 struct ifqueue *const ifq = p;
933 int *sum = arg;
934
935 *sum += ifq->ifq_drops;
936 }
937
938 static int
939 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
940 {
941 struct sysctlnode node;
942 struct if_percpuq *ipq;
943 int sum = 0;
944 int error;
945
946 node = *rnode;
947 ipq = node.sysctl_data;
948
949 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
950
951 node.sysctl_data = ∑
952 error = sysctl_lookup(SYSCTLFN_CALL(&node));
953 if (error != 0 || newp == NULL)
954 return error;
955
956 return 0;
957 }
958
959 static void
960 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
961 struct if_percpuq *ipq)
962 {
963 const struct sysctlnode *cnode, *rnode;
964
965 if (sysctl_createv(clog, 0, NULL, &rnode,
966 CTLFLAG_PERMANENT,
967 CTLTYPE_NODE, "interfaces",
968 SYSCTL_DESCR("Per-interface controls"),
969 NULL, 0, NULL, 0,
970 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
971 goto bad;
972
973 if (sysctl_createv(clog, 0, &rnode, &rnode,
974 CTLFLAG_PERMANENT,
975 CTLTYPE_NODE, ifname,
976 SYSCTL_DESCR("Interface controls"),
977 NULL, 0, NULL, 0,
978 CTL_CREATE, CTL_EOL) != 0)
979 goto bad;
980
981 if (sysctl_createv(clog, 0, &rnode, &rnode,
982 CTLFLAG_PERMANENT,
983 CTLTYPE_NODE, "rcvq",
984 SYSCTL_DESCR("Interface input queue controls"),
985 NULL, 0, NULL, 0,
986 CTL_CREATE, CTL_EOL) != 0)
987 goto bad;
988
989 #ifdef NOTYET
990 /* XXX Should show each per-CPU queue length? */
991 if (sysctl_createv(clog, 0, &rnode, &rnode,
992 CTLFLAG_PERMANENT,
993 CTLTYPE_INT, "len",
994 SYSCTL_DESCR("Current input queue length"),
995 sysctl_percpuq_len, 0, NULL, 0,
996 CTL_CREATE, CTL_EOL) != 0)
997 goto bad;
998
999 if (sysctl_createv(clog, 0, &rnode, &cnode,
1000 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1001 CTLTYPE_INT, "maxlen",
1002 SYSCTL_DESCR("Maximum allowed input queue length"),
1003 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
1004 CTL_CREATE, CTL_EOL) != 0)
1005 goto bad;
1006 #endif
1007
1008 if (sysctl_createv(clog, 0, &rnode, &cnode,
1009 CTLFLAG_PERMANENT,
1010 CTLTYPE_INT, "drops",
1011 SYSCTL_DESCR("Total packets dropped due to full input queue"),
1012 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
1013 CTL_CREATE, CTL_EOL) != 0)
1014 goto bad;
1015
1016 return;
1017 bad:
1018 printf("%s: could not attach sysctl nodes\n", ifname);
1019 return;
1020 }
1021
1022 /*
1023 * The deferred if_start framework
1024 *
1025 * The common APIs to defer if_start to softint when if_start is requested
1026 * from a device driver running in hardware interrupt context.
1027 */
1028 /*
1029 * Call ifp->if_start (or equivalent) in a dedicated softint for
1030 * deferred if_start.
1031 */
1032 static void
1033 if_deferred_start_softint(void *arg)
1034 {
1035 struct if_deferred_start *ids = arg;
1036 struct ifnet *ifp = ids->ids_ifp;
1037
1038 ids->ids_if_start(ifp);
1039 }
1040
1041 /*
1042 * The default callback function for deferred if_start.
1043 */
1044 static void
1045 if_deferred_start_common(struct ifnet *ifp)
1046 {
1047 int s;
1048
1049 s = splnet();
1050 if_start_lock(ifp);
1051 splx(s);
1052 }
1053
1054 static inline bool
1055 if_snd_is_used(struct ifnet *ifp)
1056 {
1057
1058 return ALTQ_IS_ENABLED(&ifp->if_snd) ||
1059 ifp->if_transmit == if_transmit ||
1060 ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit;
1061 }
1062
1063 /*
1064 * Schedule deferred if_start.
1065 */
1066 void
1067 if_schedule_deferred_start(struct ifnet *ifp)
1068 {
1069
1070 KASSERT(ifp->if_deferred_start != NULL);
1071
1072 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1073 return;
1074
1075 softint_schedule(ifp->if_deferred_start->ids_si);
1076 }
1077
1078 /*
1079 * Create an instance of deferred if_start. A driver should call the function
1080 * only if the driver needs deferred if_start. Drivers can setup their own
1081 * deferred if_start function via 2nd argument.
1082 */
1083 void
1084 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1085 {
1086 struct if_deferred_start *ids;
1087 u_int flags = SOFTINT_NET;
1088
1089 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
1090
1091 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1092 ids->ids_ifp = ifp;
1093 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
1094 if (func != NULL)
1095 ids->ids_if_start = func;
1096 else
1097 ids->ids_if_start = if_deferred_start_common;
1098
1099 ifp->if_deferred_start = ids;
1100 }
1101
1102 static void
1103 if_deferred_start_destroy(struct ifnet *ifp)
1104 {
1105
1106 if (ifp->if_deferred_start == NULL)
1107 return;
1108
1109 softint_disestablish(ifp->if_deferred_start->ids_si);
1110 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1111 ifp->if_deferred_start = NULL;
1112 }
1113
1114 /*
1115 * The common interface input routine that is called by device drivers,
1116 * which should be used only when the driver's rx handler already runs
1117 * in softint.
1118 */
1119 void
1120 if_input(struct ifnet *ifp, struct mbuf *m)
1121 {
1122
1123 KASSERT(ifp->if_percpuq == NULL);
1124 KASSERT(!cpu_intr_p());
1125
1126 if_statinc(ifp, if_ipackets);
1127 bpf_mtap(ifp, m, BPF_D_IN);
1128
1129 ifp->_if_input(ifp, m);
1130 }
1131
1132 /*
1133 * DEPRECATED. Use if_initialize and if_register instead.
1134 * See the above comment of if_initialize.
1135 *
1136 * Note that it implicitly enables if_percpuq to make drivers easy to
1137 * migrate softint-based if_input without much changes. If you don't
1138 * want to enable it, use if_initialize instead.
1139 */
1140 int
1141 if_attach(ifnet_t *ifp)
1142 {
1143 int rv;
1144
1145 rv = if_initialize(ifp);
1146 if (rv != 0)
1147 return rv;
1148
1149 ifp->if_percpuq = if_percpuq_create(ifp);
1150 if_register(ifp);
1151
1152 return 0;
1153 }
1154
1155 void
1156 if_attachdomain(void)
1157 {
1158 struct ifnet *ifp;
1159 int s;
1160 int bound = curlwp_bind();
1161
1162 s = pserialize_read_enter();
1163 IFNET_READER_FOREACH(ifp) {
1164 struct psref psref;
1165 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1166 pserialize_read_exit(s);
1167 if_attachdomain1(ifp);
1168 s = pserialize_read_enter();
1169 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1170 }
1171 pserialize_read_exit(s);
1172 curlwp_bindx(bound);
1173 }
1174
1175 static void
1176 if_attachdomain1(struct ifnet *ifp)
1177 {
1178 struct domain *dp;
1179 int s;
1180
1181 s = splsoftnet();
1182
1183 /* address family dependent data region */
1184 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1185 DOMAIN_FOREACH(dp) {
1186 if (dp->dom_ifattach != NULL)
1187 ifp->if_afdata[dp->dom_family] =
1188 (*dp->dom_ifattach)(ifp);
1189 }
1190
1191 splx(s);
1192 }
1193
1194 /*
1195 * Deactivate an interface. This points all of the procedure
1196 * handles at error stubs. May be called from interrupt context.
1197 */
1198 void
1199 if_deactivate(struct ifnet *ifp)
1200 {
1201 int s;
1202
1203 s = splsoftnet();
1204
1205 ifp->if_output = if_nulloutput;
1206 ifp->_if_input = if_nullinput;
1207 ifp->if_start = if_nullstart;
1208 ifp->if_transmit = if_nulltransmit;
1209 ifp->if_ioctl = if_nullioctl;
1210 ifp->if_init = if_nullinit;
1211 ifp->if_stop = if_nullstop;
1212 ifp->if_slowtimo = if_nullslowtimo;
1213 ifp->if_drain = if_nulldrain;
1214
1215 /* No more packets may be enqueued. */
1216 ifp->if_snd.ifq_maxlen = 0;
1217
1218 splx(s);
1219 }
1220
1221 bool
1222 if_is_deactivated(const struct ifnet *ifp)
1223 {
1224
1225 return ifp->if_output == if_nulloutput;
1226 }
1227
1228 void
1229 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1230 {
1231 struct ifaddr *ifa, *nifa;
1232 int s;
1233
1234 s = pserialize_read_enter();
1235 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1236 nifa = IFADDR_READER_NEXT(ifa);
1237 if (ifa->ifa_addr->sa_family != family)
1238 continue;
1239 pserialize_read_exit(s);
1240
1241 (*purgeaddr)(ifa);
1242
1243 s = pserialize_read_enter();
1244 }
1245 pserialize_read_exit(s);
1246 }
1247
1248 #ifdef IFAREF_DEBUG
1249 static struct ifaddr **ifa_list;
1250 static int ifa_list_size;
1251
1252 /* Depends on only one if_attach runs at once */
1253 static void
1254 if_build_ifa_list(struct ifnet *ifp)
1255 {
1256 struct ifaddr *ifa;
1257 int i;
1258
1259 KASSERT(ifa_list == NULL);
1260 KASSERT(ifa_list_size == 0);
1261
1262 IFADDR_READER_FOREACH(ifa, ifp)
1263 ifa_list_size++;
1264
1265 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1266 i = 0;
1267 IFADDR_READER_FOREACH(ifa, ifp) {
1268 ifa_list[i++] = ifa;
1269 ifaref(ifa);
1270 }
1271 }
1272
1273 static void
1274 if_check_and_free_ifa_list(struct ifnet *ifp)
1275 {
1276 int i;
1277 struct ifaddr *ifa;
1278
1279 if (ifa_list == NULL)
1280 return;
1281
1282 for (i = 0; i < ifa_list_size; i++) {
1283 char buf[64];
1284
1285 ifa = ifa_list[i];
1286 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1287 if (ifa->ifa_refcnt > 1) {
1288 log(LOG_WARNING,
1289 "ifa(%s) still referenced (refcnt=%d)\n",
1290 buf, ifa->ifa_refcnt - 1);
1291 } else
1292 log(LOG_DEBUG,
1293 "ifa(%s) not referenced (refcnt=%d)\n",
1294 buf, ifa->ifa_refcnt - 1);
1295 ifafree(ifa);
1296 }
1297
1298 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1299 ifa_list = NULL;
1300 ifa_list_size = 0;
1301 }
1302 #endif
1303
1304 /*
1305 * Detach an interface from the list of "active" interfaces,
1306 * freeing any resources as we go along.
1307 *
1308 * NOTE: This routine must be called with a valid thread context,
1309 * as it may block.
1310 */
1311 void
1312 if_detach(struct ifnet *ifp)
1313 {
1314 struct socket so;
1315 struct ifaddr *ifa;
1316 #ifdef IFAREF_DEBUG
1317 struct ifaddr *last_ifa = NULL;
1318 #endif
1319 struct domain *dp;
1320 const struct protosw *pr;
1321 int s, i, family, purged;
1322
1323 #ifdef IFAREF_DEBUG
1324 if_build_ifa_list(ifp);
1325 #endif
1326 /*
1327 * XXX It's kind of lame that we have to have the
1328 * XXX socket structure...
1329 */
1330 memset(&so, 0, sizeof(so));
1331
1332 s = splnet();
1333
1334 sysctl_teardown(&ifp->if_sysctl_log);
1335
1336 IFNET_LOCK(ifp);
1337
1338 /*
1339 * Unset all queued link states and pretend a
1340 * link state change is scheduled.
1341 * This stops any more link state changes occuring for this
1342 * interface while it's being detached so it's safe
1343 * to drain the workqueue.
1344 */
1345 IF_LINK_STATE_CHANGE_LOCK(ifp);
1346 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
1347 ifp->if_link_scheduled = true;
1348 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
1349 workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work);
1350
1351 if_deactivate(ifp);
1352 IFNET_UNLOCK(ifp);
1353
1354 /*
1355 * Unlink from the list and wait for all readers to leave
1356 * from pserialize read sections. Note that we can't do
1357 * psref_target_destroy here. See below.
1358 */
1359 IFNET_GLOBAL_LOCK();
1360 ifindex2ifnet[ifp->if_index] = NULL;
1361 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1362 IFNET_WRITER_REMOVE(ifp);
1363 pserialize_perform(ifnet_psz);
1364 IFNET_GLOBAL_UNLOCK();
1365
1366 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1367 ifp->if_slowtimo = NULL;
1368 callout_halt(ifp->if_slowtimo_ch, NULL);
1369 callout_destroy(ifp->if_slowtimo_ch);
1370 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1371 }
1372 if_deferred_start_destroy(ifp);
1373
1374 /*
1375 * Do an if_down() to give protocols a chance to do something.
1376 */
1377 if_down_deactivated(ifp);
1378
1379 #ifdef ALTQ
1380 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1381 altq_disable(&ifp->if_snd);
1382 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1383 altq_detach(&ifp->if_snd);
1384 #endif
1385
1386 #if NCARP > 0
1387 /* Remove the interface from any carp group it is a part of. */
1388 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1389 carp_ifdetach(ifp);
1390 #endif
1391
1392 /*
1393 * Rip all the addresses off the interface. This should make
1394 * all of the routes go away.
1395 *
1396 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1397 * from the list, including our "cursor", ifa. For safety,
1398 * and to honor the TAILQ abstraction, I just restart the
1399 * loop after each removal. Note that the loop will exit
1400 * when all of the remaining ifaddrs belong to the AF_LINK
1401 * family. I am counting on the historical fact that at
1402 * least one pr_usrreq in each address domain removes at
1403 * least one ifaddr.
1404 */
1405 again:
1406 /*
1407 * At this point, no other one tries to remove ifa in the list,
1408 * so we don't need to take a lock or psref. Avoid using
1409 * IFADDR_READER_FOREACH to pass over an inspection of contract
1410 * violations of pserialize.
1411 */
1412 IFADDR_WRITER_FOREACH(ifa, ifp) {
1413 family = ifa->ifa_addr->sa_family;
1414 #ifdef IFAREF_DEBUG
1415 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1416 ifa, family, ifa->ifa_refcnt);
1417 if (last_ifa != NULL && ifa == last_ifa)
1418 panic("if_detach: loop detected");
1419 last_ifa = ifa;
1420 #endif
1421 if (family == AF_LINK)
1422 continue;
1423 dp = pffinddomain(family);
1424 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1425 /*
1426 * XXX These PURGEIF calls are redundant with the
1427 * purge-all-families calls below, but are left in for
1428 * now both to make a smaller change, and to avoid
1429 * unplanned interactions with clearing of
1430 * ifp->if_addrlist.
1431 */
1432 purged = 0;
1433 for (pr = dp->dom_protosw;
1434 pr < dp->dom_protoswNPROTOSW; pr++) {
1435 so.so_proto = pr;
1436 if (pr->pr_usrreqs) {
1437 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1438 purged = 1;
1439 }
1440 }
1441 if (purged == 0) {
1442 /*
1443 * XXX What's really the best thing to do
1444 * XXX here? --thorpej (at) NetBSD.org
1445 */
1446 printf("if_detach: WARNING: AF %d not purged\n",
1447 family);
1448 ifa_remove(ifp, ifa);
1449 }
1450 goto again;
1451 }
1452
1453 if_free_sadl(ifp, 1);
1454
1455 restart:
1456 IFADDR_WRITER_FOREACH(ifa, ifp) {
1457 family = ifa->ifa_addr->sa_family;
1458 KASSERT(family == AF_LINK);
1459 ifa_remove(ifp, ifa);
1460 goto restart;
1461 }
1462
1463 /* Delete stray routes from the routing table. */
1464 for (i = 0; i <= AF_MAX; i++)
1465 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1466
1467 DOMAIN_FOREACH(dp) {
1468 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1469 {
1470 void *p = ifp->if_afdata[dp->dom_family];
1471 if (p) {
1472 ifp->if_afdata[dp->dom_family] = NULL;
1473 (*dp->dom_ifdetach)(ifp, p);
1474 }
1475 }
1476
1477 /*
1478 * One would expect multicast memberships (INET and
1479 * INET6) on UDP sockets to be purged by the PURGEIF
1480 * calls above, but if all addresses were removed from
1481 * the interface prior to destruction, the calls will
1482 * not be made (e.g. ppp, for which pppd(8) generally
1483 * removes addresses before destroying the interface).
1484 * Because there is no invariant that multicast
1485 * memberships only exist for interfaces with IPv4
1486 * addresses, we must call PURGEIF regardless of
1487 * addresses. (Protocols which might store ifnet
1488 * pointers are marked with PR_PURGEIF.)
1489 */
1490 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1491 so.so_proto = pr;
1492 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1493 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1494 }
1495 }
1496
1497 /*
1498 * Must be done after the above pr_purgeif because if_psref may be
1499 * still used in pr_purgeif.
1500 */
1501 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1502 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1503
1504 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1505 (void)pfil_head_destroy(ifp->if_pfil);
1506
1507 /* Announce that the interface is gone. */
1508 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1509
1510 IF_AFDATA_LOCK_DESTROY(ifp);
1511
1512 /*
1513 * remove packets that came from ifp, from software interrupt queues.
1514 */
1515 DOMAIN_FOREACH(dp) {
1516 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1517 struct ifqueue *iq = dp->dom_ifqueues[i];
1518 if (iq == NULL)
1519 break;
1520 dp->dom_ifqueues[i] = NULL;
1521 if_detach_queues(ifp, iq);
1522 }
1523 }
1524
1525 /*
1526 * IP queues have to be processed separately: net-queue barrier
1527 * ensures that the packets are dequeued while a cross-call will
1528 * ensure that the interrupts have completed. FIXME: not quite..
1529 */
1530 #ifdef INET
1531 pktq_barrier(ip_pktq);
1532 #endif
1533 #ifdef INET6
1534 if (in6_present)
1535 pktq_barrier(ip6_pktq);
1536 #endif
1537 xc_barrier(0);
1538
1539 if (ifp->if_percpuq != NULL) {
1540 if_percpuq_destroy(ifp->if_percpuq);
1541 ifp->if_percpuq = NULL;
1542 }
1543
1544 mutex_obj_free(ifp->if_ioctl_lock);
1545 ifp->if_ioctl_lock = NULL;
1546 mutex_obj_free(ifp->if_snd.ifq_lock);
1547 if_stats_fini(ifp);
1548
1549 splx(s);
1550
1551 #ifdef IFAREF_DEBUG
1552 if_check_and_free_ifa_list(ifp);
1553 #endif
1554 }
1555
1556 static void
1557 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1558 {
1559 struct mbuf *m, *prev, *next;
1560
1561 prev = NULL;
1562 for (m = q->ifq_head; m != NULL; m = next) {
1563 KASSERT((m->m_flags & M_PKTHDR) != 0);
1564
1565 next = m->m_nextpkt;
1566 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1567 prev = m;
1568 continue;
1569 }
1570
1571 if (prev != NULL)
1572 prev->m_nextpkt = m->m_nextpkt;
1573 else
1574 q->ifq_head = m->m_nextpkt;
1575 if (q->ifq_tail == m)
1576 q->ifq_tail = prev;
1577 q->ifq_len--;
1578
1579 m->m_nextpkt = NULL;
1580 m_freem(m);
1581 IF_DROP(q);
1582 }
1583 }
1584
1585 /*
1586 * Callback for a radix tree walk to delete all references to an
1587 * ifnet.
1588 */
1589 static int
1590 if_delroute_matcher(struct rtentry *rt, void *v)
1591 {
1592 struct ifnet *ifp = (struct ifnet *)v;
1593
1594 if (rt->rt_ifp == ifp)
1595 return 1;
1596 else
1597 return 0;
1598 }
1599
1600 /*
1601 * Create a clone network interface.
1602 */
1603 static int
1604 if_clone_create(const char *name)
1605 {
1606 struct if_clone *ifc;
1607 int unit;
1608 struct ifnet *ifp;
1609 struct psref psref;
1610
1611 KASSERT(mutex_owned(&if_clone_mtx));
1612
1613 ifc = if_clone_lookup(name, &unit);
1614 if (ifc == NULL)
1615 return EINVAL;
1616
1617 ifp = if_get(name, &psref);
1618 if (ifp != NULL) {
1619 if_put(ifp, &psref);
1620 return EEXIST;
1621 }
1622
1623 return (*ifc->ifc_create)(ifc, unit);
1624 }
1625
1626 /*
1627 * Destroy a clone network interface.
1628 */
1629 static int
1630 if_clone_destroy(const char *name)
1631 {
1632 struct if_clone *ifc;
1633 struct ifnet *ifp;
1634 struct psref psref;
1635 int error;
1636 int (*if_ioctl)(struct ifnet *, u_long, void *);
1637
1638 KASSERT(mutex_owned(&if_clone_mtx));
1639
1640 ifc = if_clone_lookup(name, NULL);
1641 if (ifc == NULL)
1642 return EINVAL;
1643
1644 if (ifc->ifc_destroy == NULL)
1645 return EOPNOTSUPP;
1646
1647 ifp = if_get(name, &psref);
1648 if (ifp == NULL)
1649 return ENXIO;
1650
1651 /* We have to disable ioctls here */
1652 IFNET_LOCK(ifp);
1653 if_ioctl = ifp->if_ioctl;
1654 ifp->if_ioctl = if_nullioctl;
1655 IFNET_UNLOCK(ifp);
1656
1657 /*
1658 * We cannot call ifc_destroy with holding ifp.
1659 * Releasing ifp here is safe thanks to if_clone_mtx.
1660 */
1661 if_put(ifp, &psref);
1662
1663 error = (*ifc->ifc_destroy)(ifp);
1664
1665 if (error != 0) {
1666 /* We have to restore if_ioctl on error */
1667 IFNET_LOCK(ifp);
1668 ifp->if_ioctl = if_ioctl;
1669 IFNET_UNLOCK(ifp);
1670 }
1671
1672 return error;
1673 }
1674
1675 static bool
1676 if_is_unit(const char *name)
1677 {
1678
1679 while (*name != '\0') {
1680 if (*name < '0' || *name > '9')
1681 return false;
1682 name++;
1683 }
1684
1685 return true;
1686 }
1687
1688 /*
1689 * Look up a network interface cloner.
1690 */
1691 static struct if_clone *
1692 if_clone_lookup(const char *name, int *unitp)
1693 {
1694 struct if_clone *ifc;
1695 const char *cp;
1696 char *dp, ifname[IFNAMSIZ + 3];
1697 int unit;
1698
1699 KASSERT(mutex_owned(&if_clone_mtx));
1700
1701 strcpy(ifname, "if_");
1702 /* separate interface name from unit */
1703 /* TODO: search unit number from backward */
1704 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1705 *cp && !if_is_unit(cp);)
1706 *dp++ = *cp++;
1707
1708 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1709 return NULL; /* No name or unit number */
1710 *dp++ = '\0';
1711
1712 again:
1713 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1714 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1715 break;
1716 }
1717
1718 if (ifc == NULL) {
1719 int error;
1720 if (*ifname == '\0')
1721 return NULL;
1722 mutex_exit(&if_clone_mtx);
1723 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1724 mutex_enter(&if_clone_mtx);
1725 if (error)
1726 return NULL;
1727 *ifname = '\0';
1728 goto again;
1729 }
1730
1731 unit = 0;
1732 while (cp - name < IFNAMSIZ && *cp) {
1733 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1734 /* Bogus unit number. */
1735 return NULL;
1736 }
1737 unit = (unit * 10) + (*cp++ - '0');
1738 }
1739
1740 if (unitp != NULL)
1741 *unitp = unit;
1742 return ifc;
1743 }
1744
1745 /*
1746 * Register a network interface cloner.
1747 */
1748 void
1749 if_clone_attach(struct if_clone *ifc)
1750 {
1751
1752 mutex_enter(&if_clone_mtx);
1753 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1754 if_cloners_count++;
1755 mutex_exit(&if_clone_mtx);
1756 }
1757
1758 /*
1759 * Unregister a network interface cloner.
1760 */
1761 void
1762 if_clone_detach(struct if_clone *ifc)
1763 {
1764
1765 mutex_enter(&if_clone_mtx);
1766 LIST_REMOVE(ifc, ifc_list);
1767 if_cloners_count--;
1768 mutex_exit(&if_clone_mtx);
1769 }
1770
1771 /*
1772 * Provide list of interface cloners to userspace.
1773 */
1774 int
1775 if_clone_list(int buf_count, char *buffer, int *total)
1776 {
1777 char outbuf[IFNAMSIZ], *dst;
1778 struct if_clone *ifc;
1779 int count, error = 0;
1780
1781 mutex_enter(&if_clone_mtx);
1782 *total = if_cloners_count;
1783 if ((dst = buffer) == NULL) {
1784 /* Just asking how many there are. */
1785 goto out;
1786 }
1787
1788 if (buf_count < 0) {
1789 error = EINVAL;
1790 goto out;
1791 }
1792
1793 count = (if_cloners_count < buf_count) ?
1794 if_cloners_count : buf_count;
1795
1796 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1797 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1798 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1799 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1800 error = ENAMETOOLONG;
1801 goto out;
1802 }
1803 error = copyout(outbuf, dst, sizeof(outbuf));
1804 if (error != 0)
1805 break;
1806 }
1807
1808 out:
1809 mutex_exit(&if_clone_mtx);
1810 return error;
1811 }
1812
1813 void
1814 ifa_psref_init(struct ifaddr *ifa)
1815 {
1816
1817 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1818 }
1819
1820 void
1821 ifaref(struct ifaddr *ifa)
1822 {
1823
1824 atomic_inc_uint(&ifa->ifa_refcnt);
1825 }
1826
1827 void
1828 ifafree(struct ifaddr *ifa)
1829 {
1830 KASSERT(ifa != NULL);
1831 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt);
1832
1833 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) {
1834 free(ifa, M_IFADDR);
1835 }
1836 }
1837
1838 bool
1839 ifa_is_destroying(struct ifaddr *ifa)
1840 {
1841
1842 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1843 }
1844
1845 void
1846 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1847 {
1848
1849 ifa->ifa_ifp = ifp;
1850
1851 /*
1852 * Check MP-safety for IFEF_MPSAFE drivers.
1853 * Check !IFF_RUNNING for initialization routines that normally don't
1854 * take IFNET_LOCK but it's safe because there is no competitor.
1855 * XXX there are false positive cases because IFF_RUNNING can be off on
1856 * if_stop.
1857 */
1858 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
1859 IFNET_LOCKED(ifp));
1860
1861 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1862 IFADDR_ENTRY_INIT(ifa);
1863 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1864
1865 ifaref(ifa);
1866 }
1867
1868 void
1869 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1870 {
1871
1872 KASSERT(ifa->ifa_ifp == ifp);
1873 /*
1874 * Check MP-safety for IFEF_MPSAFE drivers.
1875 * if_is_deactivated indicates ifa_remove is called form if_detach
1876 * where is safe even if IFNET_LOCK isn't held.
1877 */
1878 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
1879
1880 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1881 IFADDR_WRITER_REMOVE(ifa);
1882 #ifdef NET_MPSAFE
1883 IFNET_GLOBAL_LOCK();
1884 pserialize_perform(ifnet_psz);
1885 IFNET_GLOBAL_UNLOCK();
1886 #endif
1887
1888 #ifdef NET_MPSAFE
1889 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1890 #endif
1891 IFADDR_ENTRY_DESTROY(ifa);
1892 ifafree(ifa);
1893 }
1894
1895 void
1896 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1897 {
1898
1899 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
1900 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1901 }
1902
1903 void
1904 ifa_release(struct ifaddr *ifa, struct psref *psref)
1905 {
1906
1907 if (ifa == NULL)
1908 return;
1909
1910 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1911 }
1912
1913 bool
1914 ifa_held(struct ifaddr *ifa)
1915 {
1916
1917 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1918 }
1919
1920 static inline int
1921 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1922 {
1923 return sockaddr_cmp(sa1, sa2) == 0;
1924 }
1925
1926 /*
1927 * Locate an interface based on a complete address.
1928 */
1929 /*ARGSUSED*/
1930 struct ifaddr *
1931 ifa_ifwithaddr(const struct sockaddr *addr)
1932 {
1933 struct ifnet *ifp;
1934 struct ifaddr *ifa;
1935
1936 IFNET_READER_FOREACH(ifp) {
1937 if (if_is_deactivated(ifp))
1938 continue;
1939 IFADDR_READER_FOREACH(ifa, ifp) {
1940 if (ifa->ifa_addr->sa_family != addr->sa_family)
1941 continue;
1942 if (equal(addr, ifa->ifa_addr))
1943 return ifa;
1944 if ((ifp->if_flags & IFF_BROADCAST) &&
1945 ifa->ifa_broadaddr &&
1946 /* IP6 doesn't have broadcast */
1947 ifa->ifa_broadaddr->sa_len != 0 &&
1948 equal(ifa->ifa_broadaddr, addr))
1949 return ifa;
1950 }
1951 }
1952 return NULL;
1953 }
1954
1955 struct ifaddr *
1956 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1957 {
1958 struct ifaddr *ifa;
1959 int s = pserialize_read_enter();
1960
1961 ifa = ifa_ifwithaddr(addr);
1962 if (ifa != NULL)
1963 ifa_acquire(ifa, psref);
1964 pserialize_read_exit(s);
1965
1966 return ifa;
1967 }
1968
1969 /*
1970 * Locate the point to point interface with a given destination address.
1971 */
1972 /*ARGSUSED*/
1973 struct ifaddr *
1974 ifa_ifwithdstaddr(const struct sockaddr *addr)
1975 {
1976 struct ifnet *ifp;
1977 struct ifaddr *ifa;
1978
1979 IFNET_READER_FOREACH(ifp) {
1980 if (if_is_deactivated(ifp))
1981 continue;
1982 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1983 continue;
1984 IFADDR_READER_FOREACH(ifa, ifp) {
1985 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1986 ifa->ifa_dstaddr == NULL)
1987 continue;
1988 if (equal(addr, ifa->ifa_dstaddr))
1989 return ifa;
1990 }
1991 }
1992
1993 return NULL;
1994 }
1995
1996 struct ifaddr *
1997 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1998 {
1999 struct ifaddr *ifa;
2000 int s;
2001
2002 s = pserialize_read_enter();
2003 ifa = ifa_ifwithdstaddr(addr);
2004 if (ifa != NULL)
2005 ifa_acquire(ifa, psref);
2006 pserialize_read_exit(s);
2007
2008 return ifa;
2009 }
2010
2011 /*
2012 * Find an interface on a specific network. If many, choice
2013 * is most specific found.
2014 */
2015 struct ifaddr *
2016 ifa_ifwithnet(const struct sockaddr *addr)
2017 {
2018 struct ifnet *ifp;
2019 struct ifaddr *ifa, *ifa_maybe = NULL;
2020 const struct sockaddr_dl *sdl;
2021 u_int af = addr->sa_family;
2022 const char *addr_data = addr->sa_data, *cplim;
2023
2024 if (af == AF_LINK) {
2025 sdl = satocsdl(addr);
2026 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
2027 ifindex2ifnet[sdl->sdl_index] &&
2028 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
2029 return ifindex2ifnet[sdl->sdl_index]->if_dl;
2030 }
2031 }
2032 #ifdef NETATALK
2033 if (af == AF_APPLETALK) {
2034 const struct sockaddr_at *sat, *sat2;
2035 sat = (const struct sockaddr_at *)addr;
2036 IFNET_READER_FOREACH(ifp) {
2037 if (if_is_deactivated(ifp))
2038 continue;
2039 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
2040 if (ifa == NULL)
2041 continue;
2042 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
2043 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
2044 return ifa; /* exact match */
2045 if (ifa_maybe == NULL) {
2046 /* else keep the if with the right range */
2047 ifa_maybe = ifa;
2048 }
2049 }
2050 return ifa_maybe;
2051 }
2052 #endif
2053 IFNET_READER_FOREACH(ifp) {
2054 if (if_is_deactivated(ifp))
2055 continue;
2056 IFADDR_READER_FOREACH(ifa, ifp) {
2057 const char *cp, *cp2, *cp3;
2058
2059 if (ifa->ifa_addr->sa_family != af ||
2060 ifa->ifa_netmask == NULL)
2061 next: continue;
2062 cp = addr_data;
2063 cp2 = ifa->ifa_addr->sa_data;
2064 cp3 = ifa->ifa_netmask->sa_data;
2065 cplim = (const char *)ifa->ifa_netmask +
2066 ifa->ifa_netmask->sa_len;
2067 while (cp3 < cplim) {
2068 if ((*cp++ ^ *cp2++) & *cp3++) {
2069 /* want to continue for() loop */
2070 goto next;
2071 }
2072 }
2073 if (ifa_maybe == NULL ||
2074 rt_refines(ifa->ifa_netmask,
2075 ifa_maybe->ifa_netmask))
2076 ifa_maybe = ifa;
2077 }
2078 }
2079 return ifa_maybe;
2080 }
2081
2082 struct ifaddr *
2083 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2084 {
2085 struct ifaddr *ifa;
2086 int s;
2087
2088 s = pserialize_read_enter();
2089 ifa = ifa_ifwithnet(addr);
2090 if (ifa != NULL)
2091 ifa_acquire(ifa, psref);
2092 pserialize_read_exit(s);
2093
2094 return ifa;
2095 }
2096
2097 /*
2098 * Find the interface of the addresss.
2099 */
2100 struct ifaddr *
2101 ifa_ifwithladdr(const struct sockaddr *addr)
2102 {
2103 struct ifaddr *ia;
2104
2105 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2106 (ia = ifa_ifwithnet(addr)))
2107 return ia;
2108 return NULL;
2109 }
2110
2111 struct ifaddr *
2112 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2113 {
2114 struct ifaddr *ifa;
2115 int s;
2116
2117 s = pserialize_read_enter();
2118 ifa = ifa_ifwithladdr(addr);
2119 if (ifa != NULL)
2120 ifa_acquire(ifa, psref);
2121 pserialize_read_exit(s);
2122
2123 return ifa;
2124 }
2125
2126 /*
2127 * Find an interface using a specific address family
2128 */
2129 struct ifaddr *
2130 ifa_ifwithaf(int af)
2131 {
2132 struct ifnet *ifp;
2133 struct ifaddr *ifa = NULL;
2134 int s;
2135
2136 s = pserialize_read_enter();
2137 IFNET_READER_FOREACH(ifp) {
2138 if (if_is_deactivated(ifp))
2139 continue;
2140 IFADDR_READER_FOREACH(ifa, ifp) {
2141 if (ifa->ifa_addr->sa_family == af)
2142 goto out;
2143 }
2144 }
2145 out:
2146 pserialize_read_exit(s);
2147 return ifa;
2148 }
2149
2150 /*
2151 * Find an interface address specific to an interface best matching
2152 * a given address.
2153 */
2154 struct ifaddr *
2155 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2156 {
2157 struct ifaddr *ifa;
2158 const char *cp, *cp2, *cp3;
2159 const char *cplim;
2160 struct ifaddr *ifa_maybe = 0;
2161 u_int af = addr->sa_family;
2162
2163 if (if_is_deactivated(ifp))
2164 return NULL;
2165
2166 if (af >= AF_MAX)
2167 return NULL;
2168
2169 IFADDR_READER_FOREACH(ifa, ifp) {
2170 if (ifa->ifa_addr->sa_family != af)
2171 continue;
2172 ifa_maybe = ifa;
2173 if (ifa->ifa_netmask == NULL) {
2174 if (equal(addr, ifa->ifa_addr) ||
2175 (ifa->ifa_dstaddr &&
2176 equal(addr, ifa->ifa_dstaddr)))
2177 return ifa;
2178 continue;
2179 }
2180 cp = addr->sa_data;
2181 cp2 = ifa->ifa_addr->sa_data;
2182 cp3 = ifa->ifa_netmask->sa_data;
2183 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2184 for (; cp3 < cplim; cp3++) {
2185 if ((*cp++ ^ *cp2++) & *cp3)
2186 break;
2187 }
2188 if (cp3 == cplim)
2189 return ifa;
2190 }
2191 return ifa_maybe;
2192 }
2193
2194 struct ifaddr *
2195 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2196 struct psref *psref)
2197 {
2198 struct ifaddr *ifa;
2199 int s;
2200
2201 s = pserialize_read_enter();
2202 ifa = ifaof_ifpforaddr(addr, ifp);
2203 if (ifa != NULL)
2204 ifa_acquire(ifa, psref);
2205 pserialize_read_exit(s);
2206
2207 return ifa;
2208 }
2209
2210 /*
2211 * Default action when installing a route with a Link Level gateway.
2212 * Lookup an appropriate real ifa to point to.
2213 * This should be moved to /sys/net/link.c eventually.
2214 */
2215 void
2216 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2217 {
2218 struct ifaddr *ifa;
2219 const struct sockaddr *dst;
2220 struct ifnet *ifp;
2221 struct psref psref;
2222
2223 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2224 return;
2225 ifp = rt->rt_ifa->ifa_ifp;
2226 dst = rt_getkey(rt);
2227 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2228 rt_replace_ifa(rt, ifa);
2229 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2230 ifa->ifa_rtrequest(cmd, rt, info);
2231 ifa_release(ifa, &psref);
2232 }
2233 }
2234
2235 /*
2236 * bitmask macros to manage a densely packed link_state change queue.
2237 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2238 * LINK_STATE_UP(2) we need 2 bits for each state change.
2239 * As a state change to store is 0, treat all bits set as an unset item.
2240 */
2241 #define LQ_ITEM_BITS 2
2242 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2243 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2244 #define LINK_STATE_UNSET LQ_ITEM_MASK
2245 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2246 #define LQ_STORE(q, i, v) \
2247 do { \
2248 (q) &= ~LQ_MASK((i)); \
2249 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2250 } while (0 /* CONSTCOND */)
2251 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2252 #define LQ_POP(q, v) \
2253 do { \
2254 (v) = LQ_ITEM((q), 0); \
2255 (q) >>= LQ_ITEM_BITS; \
2256 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2257 } while (0 /* CONSTCOND */)
2258 #define LQ_PUSH(q, v) \
2259 do { \
2260 (q) >>= LQ_ITEM_BITS; \
2261 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2262 } while (0 /* CONSTCOND */)
2263 #define LQ_FIND_UNSET(q, i) \
2264 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2265 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2266 break; \
2267 }
2268
2269 /*
2270 * Handle a change in the interface link state and
2271 * queue notifications.
2272 */
2273 void
2274 if_link_state_change(struct ifnet *ifp, int link_state)
2275 {
2276 int idx;
2277
2278 KASSERTMSG(if_is_link_state_changeable(ifp),
2279 "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
2280 ifp->if_xname, ifp->if_extflags);
2281
2282 /* Ensure change is to a valid state */
2283 switch (link_state) {
2284 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2285 case LINK_STATE_DOWN: /* FALLTHROUGH */
2286 case LINK_STATE_UP:
2287 break;
2288 default:
2289 #ifdef DEBUG
2290 printf("%s: invalid link state %d\n",
2291 ifp->if_xname, link_state);
2292 #endif
2293 return;
2294 }
2295
2296 IF_LINK_STATE_CHANGE_LOCK(ifp);
2297
2298 /* Find the last unset event in the queue. */
2299 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2300
2301 if (idx == 0) {
2302 /*
2303 * There is no queue of link state changes.
2304 * As we have the lock we can safely compare against the
2305 * current link state and return if the same.
2306 * Otherwise, if scheduled is true then the interface is being
2307 * detached and the queue is being drained so we need
2308 * to avoid queuing more work.
2309 */
2310 if (ifp->if_link_state == link_state || ifp->if_link_scheduled)
2311 goto out;
2312 } else {
2313 /* Ensure link_state doesn't match the last queued state. */
2314 if (LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2315 goto out;
2316 }
2317
2318 /* Handle queue overflow. */
2319 if (idx == LQ_MAX(ifp->if_link_queue)) {
2320 uint8_t lost;
2321
2322 /*
2323 * The DOWN state must be protected from being pushed off
2324 * the queue to ensure that userland will always be
2325 * in a sane state.
2326 * Because DOWN is protected, there is no need to protect
2327 * UNKNOWN.
2328 * It should be invalid to change from any other state to
2329 * UNKNOWN anyway ...
2330 */
2331 lost = LQ_ITEM(ifp->if_link_queue, 0);
2332 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2333 if (lost == LINK_STATE_DOWN) {
2334 lost = LQ_ITEM(ifp->if_link_queue, 0);
2335 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2336 }
2337 printf("%s: lost link state change %s\n",
2338 ifp->if_xname,
2339 lost == LINK_STATE_UP ? "UP" :
2340 lost == LINK_STATE_DOWN ? "DOWN" :
2341 "UNKNOWN");
2342 } else
2343 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2344
2345 if (ifp->if_link_scheduled)
2346 goto out;
2347
2348 ifp->if_link_scheduled = true;
2349 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
2350
2351 out:
2352 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2353 }
2354
2355 /*
2356 * Handle interface link state change notifications.
2357 */
2358 static void
2359 if_link_state_change_process(struct ifnet *ifp, int link_state)
2360 {
2361 struct domain *dp;
2362 int s = splnet();
2363 bool notify;
2364
2365 KASSERT(!cpu_intr_p());
2366
2367 IF_LINK_STATE_CHANGE_LOCK(ifp);
2368
2369 /* Ensure the change is still valid. */
2370 if (ifp->if_link_state == link_state) {
2371 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2372 splx(s);
2373 return;
2374 }
2375
2376 #ifdef DEBUG
2377 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2378 link_state == LINK_STATE_UP ? "UP" :
2379 link_state == LINK_STATE_DOWN ? "DOWN" :
2380 "UNKNOWN",
2381 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2382 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2383 "UNKNOWN");
2384 #endif
2385
2386 /*
2387 * When going from UNKNOWN to UP, we need to mark existing
2388 * addresses as tentative and restart DAD as we may have
2389 * erroneously not found a duplicate.
2390 *
2391 * This needs to happen before rt_ifmsg to avoid a race where
2392 * listeners would have an address and expect it to work right
2393 * away.
2394 */
2395 notify = (link_state == LINK_STATE_UP &&
2396 ifp->if_link_state == LINK_STATE_UNKNOWN);
2397 ifp->if_link_state = link_state;
2398 /* The following routines may sleep so release the spin mutex */
2399 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2400
2401 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2402 if (notify) {
2403 DOMAIN_FOREACH(dp) {
2404 if (dp->dom_if_link_state_change != NULL)
2405 dp->dom_if_link_state_change(ifp,
2406 LINK_STATE_DOWN);
2407 }
2408 }
2409
2410 /* Notify that the link state has changed. */
2411 rt_ifmsg(ifp);
2412
2413 #if NCARP > 0
2414 if (ifp->if_carp)
2415 carp_carpdev_state(ifp);
2416 #endif
2417
2418 DOMAIN_FOREACH(dp) {
2419 if (dp->dom_if_link_state_change != NULL)
2420 dp->dom_if_link_state_change(ifp, link_state);
2421 }
2422 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2423 splx(s);
2424 }
2425
2426 /*
2427 * Process the interface link state change queue.
2428 */
2429 static void
2430 if_link_state_change_work(struct work *work, void *arg)
2431 {
2432 struct ifnet *ifp = container_of(work, struct ifnet, if_link_work);
2433 int s;
2434 uint8_t state;
2435
2436 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2437 s = splnet();
2438
2439 /* Pop a link state change from the queue and process it.
2440 * If there is nothing to process then if_detach() has been called.
2441 * We keep if_link_scheduled = true so the queue can safely drain
2442 * without more work being queued. */
2443 IF_LINK_STATE_CHANGE_LOCK(ifp);
2444 LQ_POP(ifp->if_link_queue, state);
2445 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2446 if (state == LINK_STATE_UNSET)
2447 goto out;
2448
2449 if_link_state_change_process(ifp, state);
2450
2451 /* If there is a link state change to come, schedule it. */
2452 IF_LINK_STATE_CHANGE_LOCK(ifp);
2453 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) {
2454 ifp->if_link_scheduled = true;
2455 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
2456 } else
2457 ifp->if_link_scheduled = false;
2458 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2459
2460 out:
2461 splx(s);
2462 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2463 }
2464
2465 /*
2466 * Default action when installing a local route on a point-to-point
2467 * interface.
2468 */
2469 void
2470 p2p_rtrequest(int req, struct rtentry *rt,
2471 __unused const struct rt_addrinfo *info)
2472 {
2473 struct ifnet *ifp = rt->rt_ifp;
2474 struct ifaddr *ifa, *lo0ifa;
2475 int s = pserialize_read_enter();
2476
2477 switch (req) {
2478 case RTM_ADD:
2479 if ((rt->rt_flags & RTF_LOCAL) == 0)
2480 break;
2481
2482 rt->rt_ifp = lo0ifp;
2483
2484 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2485 break;
2486
2487 IFADDR_READER_FOREACH(ifa, ifp) {
2488 if (equal(rt_getkey(rt), ifa->ifa_addr))
2489 break;
2490 }
2491 if (ifa == NULL)
2492 break;
2493
2494 /*
2495 * Ensure lo0 has an address of the same family.
2496 */
2497 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2498 if (lo0ifa->ifa_addr->sa_family ==
2499 ifa->ifa_addr->sa_family)
2500 break;
2501 }
2502 if (lo0ifa == NULL)
2503 break;
2504
2505 /*
2506 * Make sure to set rt->rt_ifa to the interface
2507 * address we are using, otherwise we will have trouble
2508 * with source address selection.
2509 */
2510 if (ifa != rt->rt_ifa)
2511 rt_replace_ifa(rt, ifa);
2512 break;
2513 case RTM_DELETE:
2514 default:
2515 break;
2516 }
2517 pserialize_read_exit(s);
2518 }
2519
2520 static void
2521 _if_down(struct ifnet *ifp)
2522 {
2523 struct ifaddr *ifa;
2524 struct domain *dp;
2525 int s, bound;
2526 struct psref psref;
2527
2528 ifp->if_flags &= ~IFF_UP;
2529 nanotime(&ifp->if_lastchange);
2530
2531 bound = curlwp_bind();
2532 s = pserialize_read_enter();
2533 IFADDR_READER_FOREACH(ifa, ifp) {
2534 ifa_acquire(ifa, &psref);
2535 pserialize_read_exit(s);
2536
2537 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2538
2539 s = pserialize_read_enter();
2540 ifa_release(ifa, &psref);
2541 }
2542 pserialize_read_exit(s);
2543 curlwp_bindx(bound);
2544
2545 IFQ_PURGE(&ifp->if_snd);
2546 #if NCARP > 0
2547 if (ifp->if_carp)
2548 carp_carpdev_state(ifp);
2549 #endif
2550 rt_ifmsg(ifp);
2551 DOMAIN_FOREACH(dp) {
2552 if (dp->dom_if_down)
2553 dp->dom_if_down(ifp);
2554 }
2555 }
2556
2557 static void
2558 if_down_deactivated(struct ifnet *ifp)
2559 {
2560
2561 KASSERT(if_is_deactivated(ifp));
2562 _if_down(ifp);
2563 }
2564
2565 void
2566 if_down_locked(struct ifnet *ifp)
2567 {
2568
2569 KASSERT(IFNET_LOCKED(ifp));
2570 _if_down(ifp);
2571 }
2572
2573 /*
2574 * Mark an interface down and notify protocols of
2575 * the transition.
2576 * NOTE: must be called at splsoftnet or equivalent.
2577 */
2578 void
2579 if_down(struct ifnet *ifp)
2580 {
2581
2582 IFNET_LOCK(ifp);
2583 if_down_locked(ifp);
2584 IFNET_UNLOCK(ifp);
2585 }
2586
2587 /*
2588 * Must be called with holding if_ioctl_lock.
2589 */
2590 static void
2591 if_up_locked(struct ifnet *ifp)
2592 {
2593 #ifdef notyet
2594 struct ifaddr *ifa;
2595 #endif
2596 struct domain *dp;
2597
2598 KASSERT(IFNET_LOCKED(ifp));
2599
2600 KASSERT(!if_is_deactivated(ifp));
2601 ifp->if_flags |= IFF_UP;
2602 nanotime(&ifp->if_lastchange);
2603 #ifdef notyet
2604 /* this has no effect on IP, and will kill all ISO connections XXX */
2605 IFADDR_READER_FOREACH(ifa, ifp)
2606 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2607 #endif
2608 #if NCARP > 0
2609 if (ifp->if_carp)
2610 carp_carpdev_state(ifp);
2611 #endif
2612 rt_ifmsg(ifp);
2613 DOMAIN_FOREACH(dp) {
2614 if (dp->dom_if_up)
2615 dp->dom_if_up(ifp);
2616 }
2617 }
2618
2619 /*
2620 * Handle interface slowtimo timer routine. Called
2621 * from softclock, we decrement timer (if set) and
2622 * call the appropriate interface routine on expiration.
2623 */
2624 static void
2625 if_slowtimo(void *arg)
2626 {
2627 void (*slowtimo)(struct ifnet *);
2628 struct ifnet *ifp = arg;
2629 int s;
2630
2631 slowtimo = ifp->if_slowtimo;
2632 if (__predict_false(slowtimo == NULL))
2633 return;
2634
2635 s = splnet();
2636 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2637 (*slowtimo)(ifp);
2638
2639 splx(s);
2640
2641 if (__predict_true(ifp->if_slowtimo != NULL))
2642 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2643 }
2644
2645 /*
2646 * Mark an interface up and notify protocols of
2647 * the transition.
2648 * NOTE: must be called at splsoftnet or equivalent.
2649 */
2650 void
2651 if_up(struct ifnet *ifp)
2652 {
2653
2654 IFNET_LOCK(ifp);
2655 if_up_locked(ifp);
2656 IFNET_UNLOCK(ifp);
2657 }
2658
2659 /*
2660 * Set/clear promiscuous mode on interface ifp based on the truth value
2661 * of pswitch. The calls are reference counted so that only the first
2662 * "on" request actually has an effect, as does the final "off" request.
2663 * Results are undefined if the "off" and "on" requests are not matched.
2664 */
2665 int
2666 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2667 {
2668 int pcount, ret = 0;
2669 u_short nflags;
2670
2671 KASSERT(IFNET_LOCKED(ifp));
2672
2673 pcount = ifp->if_pcount;
2674 if (pswitch) {
2675 /*
2676 * Allow the device to be "placed" into promiscuous
2677 * mode even if it is not configured up. It will
2678 * consult IFF_PROMISC when it is brought up.
2679 */
2680 if (ifp->if_pcount++ != 0)
2681 goto out;
2682 nflags = ifp->if_flags | IFF_PROMISC;
2683 } else {
2684 if (--ifp->if_pcount > 0)
2685 goto out;
2686 nflags = ifp->if_flags & ~IFF_PROMISC;
2687 }
2688 ret = if_flags_set(ifp, nflags);
2689 /* Restore interface state if not successful. */
2690 if (ret != 0) {
2691 ifp->if_pcount = pcount;
2692 }
2693 out:
2694 return ret;
2695 }
2696
2697 int
2698 ifpromisc(struct ifnet *ifp, int pswitch)
2699 {
2700 int e;
2701
2702 IFNET_LOCK(ifp);
2703 e = ifpromisc_locked(ifp, pswitch);
2704 IFNET_UNLOCK(ifp);
2705
2706 return e;
2707 }
2708
2709 /*
2710 * Map interface name to
2711 * interface structure pointer.
2712 */
2713 struct ifnet *
2714 ifunit(const char *name)
2715 {
2716 struct ifnet *ifp;
2717 const char *cp = name;
2718 u_int unit = 0;
2719 u_int i;
2720 int s;
2721
2722 /*
2723 * If the entire name is a number, treat it as an ifindex.
2724 */
2725 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2726 unit = unit * 10 + (*cp - '0');
2727 }
2728
2729 /*
2730 * If the number took all of the name, then it's a valid ifindex.
2731 */
2732 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2733 return if_byindex(unit);
2734
2735 ifp = NULL;
2736 s = pserialize_read_enter();
2737 IFNET_READER_FOREACH(ifp) {
2738 if (if_is_deactivated(ifp))
2739 continue;
2740 if (strcmp(ifp->if_xname, name) == 0)
2741 goto out;
2742 }
2743 out:
2744 pserialize_read_exit(s);
2745 return ifp;
2746 }
2747
2748 /*
2749 * Get a reference of an ifnet object by an interface name.
2750 * The returned reference is protected by psref(9). The caller
2751 * must release a returned reference by if_put after use.
2752 */
2753 struct ifnet *
2754 if_get(const char *name, struct psref *psref)
2755 {
2756 struct ifnet *ifp;
2757 const char *cp = name;
2758 u_int unit = 0;
2759 u_int i;
2760 int s;
2761
2762 /*
2763 * If the entire name is a number, treat it as an ifindex.
2764 */
2765 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2766 unit = unit * 10 + (*cp - '0');
2767 }
2768
2769 /*
2770 * If the number took all of the name, then it's a valid ifindex.
2771 */
2772 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2773 return if_get_byindex(unit, psref);
2774
2775 ifp = NULL;
2776 s = pserialize_read_enter();
2777 IFNET_READER_FOREACH(ifp) {
2778 if (if_is_deactivated(ifp))
2779 continue;
2780 if (strcmp(ifp->if_xname, name) == 0) {
2781 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2782 psref_acquire(psref, &ifp->if_psref,
2783 ifnet_psref_class);
2784 goto out;
2785 }
2786 }
2787 out:
2788 pserialize_read_exit(s);
2789 return ifp;
2790 }
2791
2792 /*
2793 * Release a reference of an ifnet object given by if_get, if_get_byindex
2794 * or if_get_bylla.
2795 */
2796 void
2797 if_put(const struct ifnet *ifp, struct psref *psref)
2798 {
2799
2800 if (ifp == NULL)
2801 return;
2802
2803 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2804 }
2805
2806 /*
2807 * Return ifp having idx. Return NULL if not found. Normally if_byindex
2808 * should be used.
2809 */
2810 ifnet_t *
2811 _if_byindex(u_int idx)
2812 {
2813
2814 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2815 }
2816
2817 /*
2818 * Return ifp having idx. Return NULL if not found or the found ifp is
2819 * already deactivated.
2820 */
2821 ifnet_t *
2822 if_byindex(u_int idx)
2823 {
2824 ifnet_t *ifp;
2825
2826 ifp = _if_byindex(idx);
2827 if (ifp != NULL && if_is_deactivated(ifp))
2828 ifp = NULL;
2829 return ifp;
2830 }
2831
2832 /*
2833 * Get a reference of an ifnet object by an interface index.
2834 * The returned reference is protected by psref(9). The caller
2835 * must release a returned reference by if_put after use.
2836 */
2837 ifnet_t *
2838 if_get_byindex(u_int idx, struct psref *psref)
2839 {
2840 ifnet_t *ifp;
2841 int s;
2842
2843 s = pserialize_read_enter();
2844 ifp = if_byindex(idx);
2845 if (__predict_true(ifp != NULL)) {
2846 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2847 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2848 }
2849 pserialize_read_exit(s);
2850
2851 return ifp;
2852 }
2853
2854 ifnet_t *
2855 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2856 {
2857 ifnet_t *ifp;
2858 int s;
2859
2860 s = pserialize_read_enter();
2861 IFNET_READER_FOREACH(ifp) {
2862 if (if_is_deactivated(ifp))
2863 continue;
2864 if (ifp->if_addrlen != lla_len)
2865 continue;
2866 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2867 psref_acquire(psref, &ifp->if_psref,
2868 ifnet_psref_class);
2869 break;
2870 }
2871 }
2872 pserialize_read_exit(s);
2873
2874 return ifp;
2875 }
2876
2877 /*
2878 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2879 * for example using pserialize or the ifp is already held or some other
2880 * object is held which guarantes the ifp to not be freed indirectly.
2881 */
2882 void
2883 if_acquire(struct ifnet *ifp, struct psref *psref)
2884 {
2885
2886 KASSERT(ifp->if_index != 0);
2887 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2888 }
2889
2890 bool
2891 if_held(struct ifnet *ifp)
2892 {
2893
2894 return psref_held(&ifp->if_psref, ifnet_psref_class);
2895 }
2896
2897 /*
2898 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
2899 * Check the tunnel nesting count.
2900 * Return > 0, if tunnel nesting count is more than limit.
2901 * Return 0, if tunnel nesting count is equal or less than limit.
2902 */
2903 int
2904 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
2905 {
2906 struct m_tag *mtag;
2907 int *count;
2908
2909 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO);
2910 if (mtag != NULL) {
2911 count = (int *)(mtag + 1);
2912 if (++(*count) > limit) {
2913 log(LOG_NOTICE,
2914 "%s: recursively called too many times(%d)\n",
2915 ifp->if_xname, *count);
2916 return EIO;
2917 }
2918 } else {
2919 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
2920 M_NOWAIT);
2921 if (mtag != NULL) {
2922 m_tag_prepend(m, mtag);
2923 count = (int *)(mtag + 1);
2924 *count = 0;
2925 } else {
2926 log(LOG_DEBUG,
2927 "%s: m_tag_get() failed, recursion calls are not prevented.\n",
2928 ifp->if_xname);
2929 }
2930 }
2931
2932 return 0;
2933 }
2934
2935 static void
2936 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
2937 {
2938 struct tunnel_ro *tro = p;
2939
2940 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP);
2941 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2942 }
2943
2944 static void
2945 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
2946 {
2947 struct tunnel_ro *tro = p;
2948
2949 rtcache_free(tro->tr_ro);
2950 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro));
2951
2952 mutex_obj_free(tro->tr_lock);
2953 }
2954
2955 percpu_t *
2956 if_tunnel_alloc_ro_percpu(void)
2957 {
2958
2959 return percpu_create(sizeof(struct tunnel_ro),
2960 if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL);
2961 }
2962
2963 void
2964 if_tunnel_free_ro_percpu(percpu_t *ro_percpu)
2965 {
2966
2967 percpu_free(ro_percpu, sizeof(struct tunnel_ro));
2968 }
2969
2970
2971 static void
2972 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
2973 {
2974 struct tunnel_ro *tro = p;
2975
2976 mutex_enter(tro->tr_lock);
2977 rtcache_free(tro->tr_ro);
2978 mutex_exit(tro->tr_lock);
2979 }
2980
2981 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu)
2982 {
2983
2984 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL);
2985 }
2986
2987 void
2988 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats)
2989 {
2990
2991 /* Collet the volatile stats first; this zeros *ifi. */
2992 if_stats_to_if_data(ifp, ifi, zero_stats);
2993
2994 ifi->ifi_type = ifp->if_type;
2995 ifi->ifi_addrlen = ifp->if_addrlen;
2996 ifi->ifi_hdrlen = ifp->if_hdrlen;
2997 ifi->ifi_link_state = ifp->if_link_state;
2998 ifi->ifi_mtu = ifp->if_mtu;
2999 ifi->ifi_metric = ifp->if_metric;
3000 ifi->ifi_baudrate = ifp->if_baudrate;
3001 ifi->ifi_lastchange = ifp->if_lastchange;
3002 }
3003
3004 /* common */
3005 int
3006 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
3007 {
3008 int s;
3009 struct ifreq *ifr;
3010 struct ifcapreq *ifcr;
3011 struct ifdatareq *ifdr;
3012 unsigned short flags;
3013 char *descr;
3014 int error;
3015
3016 switch (cmd) {
3017 case SIOCSIFCAP:
3018 ifcr = data;
3019 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
3020 return EINVAL;
3021
3022 if (ifcr->ifcr_capenable == ifp->if_capenable)
3023 return 0;
3024
3025 ifp->if_capenable = ifcr->ifcr_capenable;
3026
3027 /* Pre-compute the checksum flags mask. */
3028 ifp->if_csum_flags_tx = 0;
3029 ifp->if_csum_flags_rx = 0;
3030 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
3031 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
3032 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3033 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
3034
3035 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx)
3036 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
3037 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
3038 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
3039
3040 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx)
3041 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
3042 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
3043 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
3044
3045 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx)
3046 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
3047 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx)
3048 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
3049
3050 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx)
3051 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
3052 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx)
3053 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
3054
3055 if (ifp->if_capenable & IFCAP_TSOv4)
3056 ifp->if_csum_flags_tx |= M_CSUM_TSOv4;
3057 if (ifp->if_capenable & IFCAP_TSOv6)
3058 ifp->if_csum_flags_tx |= M_CSUM_TSOv6;
3059
3060 #if NBRIDGE > 0
3061 if (ifp->if_bridge != NULL)
3062 bridge_calc_csum_flags(ifp->if_bridge);
3063 #endif
3064
3065 if (ifp->if_flags & IFF_UP)
3066 return ENETRESET;
3067 return 0;
3068 case SIOCSIFFLAGS:
3069 ifr = data;
3070 /*
3071 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
3072 * and if_down aren't MP-safe yet, so we must hold the lock.
3073 */
3074 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3075 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
3076 s = splsoftnet();
3077 if_down_locked(ifp);
3078 splx(s);
3079 }
3080 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
3081 s = splsoftnet();
3082 if_up_locked(ifp);
3083 splx(s);
3084 }
3085 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3086 flags = (ifp->if_flags & IFF_CANTCHANGE) |
3087 (ifr->ifr_flags &~ IFF_CANTCHANGE);
3088 if (ifp->if_flags != flags) {
3089 ifp->if_flags = flags;
3090 /* Notify that the flags have changed. */
3091 rt_ifmsg(ifp);
3092 }
3093 break;
3094 case SIOCGIFFLAGS:
3095 ifr = data;
3096 ifr->ifr_flags = ifp->if_flags;
3097 break;
3098
3099 case SIOCGIFMETRIC:
3100 ifr = data;
3101 ifr->ifr_metric = ifp->if_metric;
3102 break;
3103
3104 case SIOCGIFMTU:
3105 ifr = data;
3106 ifr->ifr_mtu = ifp->if_mtu;
3107 break;
3108
3109 case SIOCGIFDLT:
3110 ifr = data;
3111 ifr->ifr_dlt = ifp->if_dlt;
3112 break;
3113
3114 case SIOCGIFCAP:
3115 ifcr = data;
3116 ifcr->ifcr_capabilities = ifp->if_capabilities;
3117 ifcr->ifcr_capenable = ifp->if_capenable;
3118 break;
3119
3120 case SIOCSIFMETRIC:
3121 ifr = data;
3122 ifp->if_metric = ifr->ifr_metric;
3123 break;
3124
3125 case SIOCGIFDATA:
3126 ifdr = data;
3127 if_export_if_data(ifp, &ifdr->ifdr_data, false);
3128 break;
3129
3130 case SIOCGIFINDEX:
3131 ifr = data;
3132 ifr->ifr_index = ifp->if_index;
3133 break;
3134
3135 case SIOCZIFDATA:
3136 ifdr = data;
3137 if_export_if_data(ifp, &ifdr->ifdr_data, true);
3138 getnanotime(&ifp->if_lastchange);
3139 break;
3140 case SIOCSIFMTU:
3141 ifr = data;
3142 if (ifp->if_mtu == ifr->ifr_mtu)
3143 break;
3144 ifp->if_mtu = ifr->ifr_mtu;
3145 return ENETRESET;
3146 case SIOCSIFDESCR:
3147 error = kauth_authorize_network(curlwp->l_cred,
3148 KAUTH_NETWORK_INTERFACE,
3149 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
3150 NULL);
3151 if (error)
3152 return error;
3153
3154 ifr = data;
3155
3156 if (ifr->ifr_buflen > IFDESCRSIZE)
3157 return ENAMETOOLONG;
3158
3159 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) {
3160 /* unset description */
3161 descr = NULL;
3162 } else {
3163 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP);
3164 /*
3165 * copy (IFDESCRSIZE - 1) bytes to ensure
3166 * terminating nul
3167 */
3168 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1);
3169 if (error) {
3170 kmem_free(descr, IFDESCRSIZE);
3171 return error;
3172 }
3173 }
3174
3175 if (ifp->if_description != NULL)
3176 kmem_free(ifp->if_description, IFDESCRSIZE);
3177
3178 ifp->if_description = descr;
3179 break;
3180
3181 case SIOCGIFDESCR:
3182 ifr = data;
3183 descr = ifp->if_description;
3184
3185 if (descr == NULL)
3186 return ENOMSG;
3187
3188 if (ifr->ifr_buflen < IFDESCRSIZE)
3189 return EINVAL;
3190
3191 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE);
3192 if (error)
3193 return error;
3194 break;
3195
3196 default:
3197 return ENOTTY;
3198 }
3199 return 0;
3200 }
3201
3202 int
3203 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3204 {
3205 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3206 struct ifaddr *ifa;
3207 const struct sockaddr *any, *sa;
3208 union {
3209 struct sockaddr sa;
3210 struct sockaddr_storage ss;
3211 } u, v;
3212 int s, error = 0;
3213
3214 switch (cmd) {
3215 case SIOCSIFADDRPREF:
3216 error = kauth_authorize_network(curlwp->l_cred,
3217 KAUTH_NETWORK_INTERFACE,
3218 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
3219 NULL);
3220 if (error)
3221 return error;
3222 break;
3223 case SIOCGIFADDRPREF:
3224 break;
3225 default:
3226 return EOPNOTSUPP;
3227 }
3228
3229 /* sanity checks */
3230 if (data == NULL || ifp == NULL) {
3231 panic("invalid argument to %s", __func__);
3232 /*NOTREACHED*/
3233 }
3234
3235 /* address must be specified on ADD and DELETE */
3236 sa = sstocsa(&ifap->ifap_addr);
3237 if (sa->sa_family != sofamily(so))
3238 return EINVAL;
3239 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3240 return EINVAL;
3241
3242 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3243
3244 s = pserialize_read_enter();
3245 IFADDR_READER_FOREACH(ifa, ifp) {
3246 if (ifa->ifa_addr->sa_family != sa->sa_family)
3247 continue;
3248 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3249 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3250 break;
3251 }
3252 if (ifa == NULL) {
3253 error = EADDRNOTAVAIL;
3254 goto out;
3255 }
3256
3257 switch (cmd) {
3258 case SIOCSIFADDRPREF:
3259 ifa->ifa_preference = ifap->ifap_preference;
3260 goto out;
3261 case SIOCGIFADDRPREF:
3262 /* fill in the if_laddrreq structure */
3263 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3264 sizeof(ifap->ifap_addr), ifa->ifa_addr);
3265 ifap->ifap_preference = ifa->ifa_preference;
3266 goto out;
3267 default:
3268 error = EOPNOTSUPP;
3269 }
3270 out:
3271 pserialize_read_exit(s);
3272 return error;
3273 }
3274
3275 /*
3276 * Interface ioctls.
3277 */
3278 static int
3279 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3280 {
3281 struct ifnet *ifp;
3282 struct ifreq *ifr;
3283 int error = 0;
3284 u_long ocmd = cmd;
3285 u_short oif_flags;
3286 struct ifreq ifrb;
3287 struct oifreq *oifr = NULL;
3288 int r;
3289 struct psref psref;
3290 int bound;
3291 bool do_if43_post = false;
3292 bool do_ifm80_post = false;
3293
3294 switch (cmd) {
3295 case SIOCGIFCONF:
3296 return ifconf(cmd, data);
3297 case SIOCINITIFADDR:
3298 return EPERM;
3299 default:
3300 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(),
3301 error);
3302 if (error != ENOSYS)
3303 return error;
3304 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data),
3305 enosys(), error);
3306 if (error != ENOSYS)
3307 return error;
3308 error = 0;
3309 break;
3310 }
3311
3312 ifr = data;
3313 /* Pre-conversion */
3314 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error);
3315 if (cmd != ocmd) {
3316 oifr = data;
3317 data = ifr = &ifrb;
3318 IFREQO2N_43(oifr, ifr);
3319 do_if43_post = true;
3320 }
3321 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post),
3322 enosys(), error);
3323
3324 switch (cmd) {
3325 case SIOCIFCREATE:
3326 case SIOCIFDESTROY:
3327 bound = curlwp_bind();
3328 if (l != NULL) {
3329 ifp = if_get(ifr->ifr_name, &psref);
3330 error = kauth_authorize_network(l->l_cred,
3331 KAUTH_NETWORK_INTERFACE,
3332 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3333 KAUTH_ARG(cmd), NULL);
3334 if (ifp != NULL)
3335 if_put(ifp, &psref);
3336 if (error != 0) {
3337 curlwp_bindx(bound);
3338 return error;
3339 }
3340 }
3341 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3342 mutex_enter(&if_clone_mtx);
3343 r = (cmd == SIOCIFCREATE) ?
3344 if_clone_create(ifr->ifr_name) :
3345 if_clone_destroy(ifr->ifr_name);
3346 mutex_exit(&if_clone_mtx);
3347 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3348 curlwp_bindx(bound);
3349 return r;
3350
3351 case SIOCIFGCLONERS:
3352 {
3353 struct if_clonereq *req = (struct if_clonereq *)data;
3354 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3355 &req->ifcr_total);
3356 }
3357 }
3358
3359 bound = curlwp_bind();
3360 ifp = if_get(ifr->ifr_name, &psref);
3361 if (ifp == NULL) {
3362 curlwp_bindx(bound);
3363 return ENXIO;
3364 }
3365
3366 switch (cmd) {
3367 case SIOCALIFADDR:
3368 case SIOCDLIFADDR:
3369 case SIOCSIFADDRPREF:
3370 case SIOCSIFFLAGS:
3371 case SIOCSIFCAP:
3372 case SIOCSIFMETRIC:
3373 case SIOCZIFDATA:
3374 case SIOCSIFMTU:
3375 case SIOCSIFPHYADDR:
3376 case SIOCDIFPHYADDR:
3377 #ifdef INET6
3378 case SIOCSIFPHYADDR_IN6:
3379 #endif
3380 case SIOCSLIFPHYADDR:
3381 case SIOCADDMULTI:
3382 case SIOCDELMULTI:
3383 case SIOCSETHERCAP:
3384 case SIOCSIFMEDIA:
3385 case SIOCSDRVSPEC:
3386 case SIOCG80211:
3387 case SIOCS80211:
3388 case SIOCS80211NWID:
3389 case SIOCS80211NWKEY:
3390 case SIOCS80211POWER:
3391 case SIOCS80211BSSID:
3392 case SIOCS80211CHANNEL:
3393 case SIOCSLINKSTR:
3394 if (l != NULL) {
3395 error = kauth_authorize_network(l->l_cred,
3396 KAUTH_NETWORK_INTERFACE,
3397 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3398 KAUTH_ARG(cmd), NULL);
3399 if (error != 0)
3400 goto out;
3401 }
3402 }
3403
3404 oif_flags = ifp->if_flags;
3405
3406 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3407 IFNET_LOCK(ifp);
3408
3409 error = (*ifp->if_ioctl)(ifp, cmd, data);
3410 if (error != ENOTTY)
3411 ;
3412 else if (so->so_proto == NULL)
3413 error = EOPNOTSUPP;
3414 else {
3415 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3416 MODULE_HOOK_CALL(if_ifioctl_43_hook,
3417 (so, ocmd, cmd, data, l), enosys(), error);
3418 if (error == ENOSYS)
3419 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3420 cmd, data, ifp);
3421 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3422 }
3423
3424 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3425 if ((ifp->if_flags & IFF_UP) != 0) {
3426 int s = splsoftnet();
3427 if_up_locked(ifp);
3428 splx(s);
3429 }
3430 }
3431
3432 /* Post-conversion */
3433 if (do_ifm80_post && (error == 0))
3434 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd),
3435 enosys(), error);
3436 if (do_if43_post)
3437 IFREQN2O_43(oifr, ifr);
3438
3439 IFNET_UNLOCK(ifp);
3440 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3441 out:
3442 if_put(ifp, &psref);
3443 curlwp_bindx(bound);
3444 return error;
3445 }
3446
3447 /*
3448 * Return interface configuration
3449 * of system. List may be used
3450 * in later ioctl's (above) to get
3451 * other information.
3452 *
3453 * Each record is a struct ifreq. Before the addition of
3454 * sockaddr_storage, the API rule was that sockaddr flavors that did
3455 * not fit would extend beyond the struct ifreq, with the next struct
3456 * ifreq starting sa_len beyond the struct sockaddr. Because the
3457 * union in struct ifreq includes struct sockaddr_storage, every kind
3458 * of sockaddr must fit. Thus, there are no longer any overlength
3459 * records.
3460 *
3461 * Records are added to the user buffer if they fit, and ifc_len is
3462 * adjusted to the length that was written. Thus, the user is only
3463 * assured of getting the complete list if ifc_len on return is at
3464 * least sizeof(struct ifreq) less than it was on entry.
3465 *
3466 * If the user buffer pointer is NULL, this routine copies no data and
3467 * returns the amount of space that would be needed.
3468 *
3469 * Invariants:
3470 * ifrp points to the next part of the user's buffer to be used. If
3471 * ifrp != NULL, space holds the number of bytes remaining that we may
3472 * write at ifrp. Otherwise, space holds the number of bytes that
3473 * would have been written had there been adequate space.
3474 */
3475 /*ARGSUSED*/
3476 static int
3477 ifconf(u_long cmd, void *data)
3478 {
3479 struct ifconf *ifc = (struct ifconf *)data;
3480 struct ifnet *ifp;
3481 struct ifaddr *ifa;
3482 struct ifreq ifr, *ifrp = NULL;
3483 int space = 0, error = 0;
3484 const int sz = (int)sizeof(struct ifreq);
3485 const bool docopy = ifc->ifc_req != NULL;
3486 int s;
3487 int bound;
3488 struct psref psref;
3489
3490 if (docopy) {
3491 if (ifc->ifc_len < 0)
3492 return EINVAL;
3493
3494 space = ifc->ifc_len;
3495 ifrp = ifc->ifc_req;
3496 }
3497 memset(&ifr, 0, sizeof(ifr));
3498
3499 bound = curlwp_bind();
3500 s = pserialize_read_enter();
3501 IFNET_READER_FOREACH(ifp) {
3502 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3503 pserialize_read_exit(s);
3504
3505 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3506 sizeof(ifr.ifr_name));
3507 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3508 error = ENAMETOOLONG;
3509 goto release_exit;
3510 }
3511 if (IFADDR_READER_EMPTY(ifp)) {
3512 /* Interface with no addresses - send zero sockaddr. */
3513 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3514 if (!docopy) {
3515 space += sz;
3516 goto next;
3517 }
3518 if (space >= sz) {
3519 error = copyout(&ifr, ifrp, sz);
3520 if (error != 0)
3521 goto release_exit;
3522 ifrp++;
3523 space -= sz;
3524 }
3525 }
3526
3527 s = pserialize_read_enter();
3528 IFADDR_READER_FOREACH(ifa, ifp) {
3529 struct sockaddr *sa = ifa->ifa_addr;
3530 /* all sockaddrs must fit in sockaddr_storage */
3531 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3532
3533 if (!docopy) {
3534 space += sz;
3535 continue;
3536 }
3537 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3538 pserialize_read_exit(s);
3539
3540 if (space >= sz) {
3541 error = copyout(&ifr, ifrp, sz);
3542 if (error != 0)
3543 goto release_exit;
3544 ifrp++; space -= sz;
3545 }
3546 s = pserialize_read_enter();
3547 }
3548 pserialize_read_exit(s);
3549
3550 next:
3551 s = pserialize_read_enter();
3552 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3553 }
3554 pserialize_read_exit(s);
3555 curlwp_bindx(bound);
3556
3557 if (docopy) {
3558 KASSERT(0 <= space && space <= ifc->ifc_len);
3559 ifc->ifc_len -= space;
3560 } else {
3561 KASSERT(space >= 0);
3562 ifc->ifc_len = space;
3563 }
3564 return (0);
3565
3566 release_exit:
3567 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3568 curlwp_bindx(bound);
3569 return error;
3570 }
3571
3572 int
3573 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3574 {
3575 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
3576 struct ifreq ifrb;
3577 struct oifreq *oifr = NULL;
3578 u_long ocmd = cmd;
3579 int hook;
3580
3581 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
3582 if (hook != ENOSYS) {
3583 if (cmd != ocmd) {
3584 oifr = (struct oifreq *)(void *)ifr;
3585 ifr = &ifrb;
3586 IFREQO2N_43(oifr, ifr);
3587 len = sizeof(oifr->ifr_addr);
3588 }
3589 }
3590
3591 if (len < sa->sa_len)
3592 return EFBIG;
3593
3594 memset(&ifr->ifr_addr, 0, len);
3595 sockaddr_copy(&ifr->ifr_addr, len, sa);
3596
3597 if (cmd != ocmd)
3598 IFREQN2O_43(oifr, ifr);
3599 return 0;
3600 }
3601
3602 /*
3603 * wrapper function for the drivers which doesn't have if_transmit().
3604 */
3605 static int
3606 if_transmit(struct ifnet *ifp, struct mbuf *m)
3607 {
3608 int s, error;
3609 size_t pktlen = m->m_pkthdr.len;
3610 bool mcast = (m->m_flags & M_MCAST) != 0;
3611
3612 s = splnet();
3613
3614 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3615 if (error != 0) {
3616 /* mbuf is already freed */
3617 goto out;
3618 }
3619
3620 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
3621 if_statadd_ref(nsr, if_obytes, pktlen);
3622 if (mcast)
3623 if_statinc_ref(nsr, if_omcasts);
3624 IF_STAT_PUTREF(ifp);
3625
3626 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3627 if_start_lock(ifp);
3628 out:
3629 splx(s);
3630
3631 return error;
3632 }
3633
3634 int
3635 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3636 {
3637 int error;
3638
3639 kmsan_check_mbuf(m);
3640
3641 #ifdef ALTQ
3642 KERNEL_LOCK(1, NULL);
3643 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3644 error = if_transmit(ifp, m);
3645 KERNEL_UNLOCK_ONE(NULL);
3646 } else {
3647 KERNEL_UNLOCK_ONE(NULL);
3648 error = (*ifp->if_transmit)(ifp, m);
3649 /* mbuf is alredy freed */
3650 }
3651 #else /* !ALTQ */
3652 error = (*ifp->if_transmit)(ifp, m);
3653 /* mbuf is alredy freed */
3654 #endif /* !ALTQ */
3655
3656 return error;
3657 }
3658
3659 /*
3660 * Queue message on interface, and start output if interface
3661 * not yet active.
3662 */
3663 int
3664 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3665 {
3666
3667 return if_transmit_lock(ifp, m);
3668 }
3669
3670 /*
3671 * Queue message on interface, possibly using a second fast queue
3672 */
3673 int
3674 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3675 {
3676 int error = 0;
3677
3678 if (ifq != NULL
3679 #ifdef ALTQ
3680 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3681 #endif
3682 ) {
3683 if (IF_QFULL(ifq)) {
3684 IF_DROP(&ifp->if_snd);
3685 m_freem(m);
3686 if (error == 0)
3687 error = ENOBUFS;
3688 } else
3689 IF_ENQUEUE(ifq, m);
3690 } else
3691 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3692 if (error != 0) {
3693 if_statinc(ifp, if_oerrors);
3694 return error;
3695 }
3696 return 0;
3697 }
3698
3699 int
3700 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3701 {
3702 int rc;
3703
3704 KASSERT(IFNET_LOCKED(ifp));
3705 if (ifp->if_initaddr != NULL)
3706 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3707 else if (src ||
3708 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3709 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3710
3711 return rc;
3712 }
3713
3714 int
3715 if_do_dad(struct ifnet *ifp)
3716 {
3717 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3718 return 0;
3719
3720 switch (ifp->if_type) {
3721 case IFT_FAITH:
3722 /*
3723 * These interfaces do not have the IFF_LOOPBACK flag,
3724 * but loop packets back. We do not have to do DAD on such
3725 * interfaces. We should even omit it, because loop-backed
3726 * responses would confuse the DAD procedure.
3727 */
3728 return 0;
3729 default:
3730 /*
3731 * Our DAD routine requires the interface up and running.
3732 * However, some interfaces can be up before the RUNNING
3733 * status. Additionaly, users may try to assign addresses
3734 * before the interface becomes up (or running).
3735 * We simply skip DAD in such a case as a work around.
3736 * XXX: we should rather mark "tentative" on such addresses,
3737 * and do DAD after the interface becomes ready.
3738 */
3739 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
3740 (IFF_UP | IFF_RUNNING))
3741 return 0;
3742
3743 return 1;
3744 }
3745 }
3746
3747 int
3748 if_flags_set(ifnet_t *ifp, const u_short flags)
3749 {
3750 int rc;
3751
3752 KASSERT(IFNET_LOCKED(ifp));
3753
3754 if (ifp->if_setflags != NULL)
3755 rc = (*ifp->if_setflags)(ifp, flags);
3756 else {
3757 u_short cantflags, chgdflags;
3758 struct ifreq ifr;
3759
3760 chgdflags = ifp->if_flags ^ flags;
3761 cantflags = chgdflags & IFF_CANTCHANGE;
3762
3763 if (cantflags != 0)
3764 ifp->if_flags ^= cantflags;
3765
3766 /* Traditionally, we do not call if_ioctl after
3767 * setting/clearing only IFF_PROMISC if the interface
3768 * isn't IFF_UP. Uphold that tradition.
3769 */
3770 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3771 return 0;
3772
3773 memset(&ifr, 0, sizeof(ifr));
3774
3775 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3776 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3777
3778 if (rc != 0 && cantflags != 0)
3779 ifp->if_flags ^= cantflags;
3780 }
3781
3782 return rc;
3783 }
3784
3785 int
3786 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3787 {
3788 int rc;
3789 struct ifreq ifr;
3790
3791 /*
3792 * XXX NOMPSAFE - this calls if_ioctl without holding IFNET_LOCK()
3793 * in some cases - e.g. when called from vlan/netinet/netinet6 code
3794 * directly rather than via doifoictl()
3795 */
3796 ifreq_setaddr(cmd, &ifr, sa);
3797 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3798
3799 return rc;
3800 }
3801
3802 static void
3803 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3804 struct ifaltq *ifq)
3805 {
3806 const struct sysctlnode *cnode, *rnode;
3807
3808 if (sysctl_createv(clog, 0, NULL, &rnode,
3809 CTLFLAG_PERMANENT,
3810 CTLTYPE_NODE, "interfaces",
3811 SYSCTL_DESCR("Per-interface controls"),
3812 NULL, 0, NULL, 0,
3813 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3814 goto bad;
3815
3816 if (sysctl_createv(clog, 0, &rnode, &rnode,
3817 CTLFLAG_PERMANENT,
3818 CTLTYPE_NODE, ifname,
3819 SYSCTL_DESCR("Interface controls"),
3820 NULL, 0, NULL, 0,
3821 CTL_CREATE, CTL_EOL) != 0)
3822 goto bad;
3823
3824 if (sysctl_createv(clog, 0, &rnode, &rnode,
3825 CTLFLAG_PERMANENT,
3826 CTLTYPE_NODE, "sndq",
3827 SYSCTL_DESCR("Interface output queue controls"),
3828 NULL, 0, NULL, 0,
3829 CTL_CREATE, CTL_EOL) != 0)
3830 goto bad;
3831
3832 if (sysctl_createv(clog, 0, &rnode, &cnode,
3833 CTLFLAG_PERMANENT,
3834 CTLTYPE_INT, "len",
3835 SYSCTL_DESCR("Current output queue length"),
3836 NULL, 0, &ifq->ifq_len, 0,
3837 CTL_CREATE, CTL_EOL) != 0)
3838 goto bad;
3839
3840 if (sysctl_createv(clog, 0, &rnode, &cnode,
3841 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3842 CTLTYPE_INT, "maxlen",
3843 SYSCTL_DESCR("Maximum allowed output queue length"),
3844 NULL, 0, &ifq->ifq_maxlen, 0,
3845 CTL_CREATE, CTL_EOL) != 0)
3846 goto bad;
3847
3848 if (sysctl_createv(clog, 0, &rnode, &cnode,
3849 CTLFLAG_PERMANENT,
3850 CTLTYPE_INT, "drops",
3851 SYSCTL_DESCR("Packets dropped due to full output queue"),
3852 NULL, 0, &ifq->ifq_drops, 0,
3853 CTL_CREATE, CTL_EOL) != 0)
3854 goto bad;
3855
3856 return;
3857 bad:
3858 printf("%s: could not attach sysctl nodes\n", ifname);
3859 return;
3860 }
3861
3862 #if defined(INET) || defined(INET6)
3863
3864 #define SYSCTL_NET_PKTQ(q, cn, c) \
3865 static int \
3866 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3867 { \
3868 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3869 }
3870
3871 #if defined(INET)
3872 static int
3873 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3874 {
3875 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3876 }
3877 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3878 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3879 #endif
3880
3881 #if defined(INET6)
3882 static int
3883 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3884 {
3885 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3886 }
3887 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3888 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3889 #endif
3890
3891 static void
3892 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3893 {
3894 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3895 const char *pfname = NULL, *ipname = NULL;
3896 int ipn = 0, qid = 0;
3897
3898 switch (pf) {
3899 #if defined(INET)
3900 case PF_INET:
3901 len_func = sysctl_net_ip_pktq_items;
3902 maxlen_func = sysctl_net_ip_pktq_maxlen;
3903 drops_func = sysctl_net_ip_pktq_drops;
3904 pfname = "inet", ipn = IPPROTO_IP;
3905 ipname = "ip", qid = IPCTL_IFQ;
3906 break;
3907 #endif
3908 #if defined(INET6)
3909 case PF_INET6:
3910 len_func = sysctl_net_ip6_pktq_items;
3911 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3912 drops_func = sysctl_net_ip6_pktq_drops;
3913 pfname = "inet6", ipn = IPPROTO_IPV6;
3914 ipname = "ip6", qid = IPV6CTL_IFQ;
3915 break;
3916 #endif
3917 default:
3918 KASSERT(false);
3919 }
3920
3921 sysctl_createv(clog, 0, NULL, NULL,
3922 CTLFLAG_PERMANENT,
3923 CTLTYPE_NODE, pfname, NULL,
3924 NULL, 0, NULL, 0,
3925 CTL_NET, pf, CTL_EOL);
3926 sysctl_createv(clog, 0, NULL, NULL,
3927 CTLFLAG_PERMANENT,
3928 CTLTYPE_NODE, ipname, NULL,
3929 NULL, 0, NULL, 0,
3930 CTL_NET, pf, ipn, CTL_EOL);
3931 sysctl_createv(clog, 0, NULL, NULL,
3932 CTLFLAG_PERMANENT,
3933 CTLTYPE_NODE, "ifq",
3934 SYSCTL_DESCR("Protocol input queue controls"),
3935 NULL, 0, NULL, 0,
3936 CTL_NET, pf, ipn, qid, CTL_EOL);
3937
3938 sysctl_createv(clog, 0, NULL, NULL,
3939 CTLFLAG_PERMANENT,
3940 CTLTYPE_QUAD, "len",
3941 SYSCTL_DESCR("Current input queue length"),
3942 len_func, 0, NULL, 0,
3943 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3944 sysctl_createv(clog, 0, NULL, NULL,
3945 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3946 CTLTYPE_INT, "maxlen",
3947 SYSCTL_DESCR("Maximum allowed input queue length"),
3948 maxlen_func, 0, NULL, 0,
3949 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3950 sysctl_createv(clog, 0, NULL, NULL,
3951 CTLFLAG_PERMANENT,
3952 CTLTYPE_QUAD, "drops",
3953 SYSCTL_DESCR("Packets dropped due to full input queue"),
3954 drops_func, 0, NULL, 0,
3955 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3956 }
3957 #endif /* INET || INET6 */
3958
3959 static int
3960 if_sdl_sysctl(SYSCTLFN_ARGS)
3961 {
3962 struct ifnet *ifp;
3963 const struct sockaddr_dl *sdl;
3964 struct psref psref;
3965 int error = 0;
3966 int bound;
3967
3968 if (namelen != 1)
3969 return EINVAL;
3970
3971 bound = curlwp_bind();
3972 ifp = if_get_byindex(name[0], &psref);
3973 if (ifp == NULL) {
3974 error = ENODEV;
3975 goto out0;
3976 }
3977
3978 sdl = ifp->if_sadl;
3979 if (sdl == NULL) {
3980 *oldlenp = 0;
3981 goto out1;
3982 }
3983
3984 if (oldp == NULL) {
3985 *oldlenp = sdl->sdl_alen;
3986 goto out1;
3987 }
3988
3989 if (*oldlenp >= sdl->sdl_alen)
3990 *oldlenp = sdl->sdl_alen;
3991 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
3992 out1:
3993 if_put(ifp, &psref);
3994 out0:
3995 curlwp_bindx(bound);
3996 return error;
3997 }
3998
3999 static void
4000 if_sysctl_setup(struct sysctllog **clog)
4001 {
4002 const struct sysctlnode *rnode = NULL;
4003
4004 sysctl_createv(clog, 0, NULL, &rnode,
4005 CTLFLAG_PERMANENT,
4006 CTLTYPE_NODE, "sdl",
4007 SYSCTL_DESCR("Get active link-layer address"),
4008 if_sdl_sysctl, 0, NULL, 0,
4009 CTL_NET, CTL_CREATE, CTL_EOL);
4010
4011 #if defined(INET)
4012 sysctl_net_pktq_setup(NULL, PF_INET);
4013 #endif
4014 #ifdef INET6
4015 if (in6_present)
4016 sysctl_net_pktq_setup(NULL, PF_INET6);
4017 #endif
4018 }
4019