Home | History | Annotate | Line # | Download | only in net
if.c revision 1.483
      1 /*	$NetBSD: if.c,v 1.483 2020/09/27 19:16:28 roy Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by William Studenmund and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the project nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Copyright (c) 1980, 1986, 1993
     63  *	The Regents of the University of California.  All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. Neither the name of the University nor the names of its contributors
     74  *    may be used to endorse or promote products derived from this software
     75  *    without specific prior written permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     87  * SUCH DAMAGE.
     88  *
     89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.483 2020/09/27 19:16:28 roy Exp $");
     94 
     95 #if defined(_KERNEL_OPT)
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_atalk.h"
     99 #include "opt_wlan.h"
    100 #include "opt_net_mpsafe.h"
    101 #include "opt_mrouting.h"
    102 #endif
    103 
    104 #include <sys/param.h>
    105 #include <sys/mbuf.h>
    106 #include <sys/systm.h>
    107 #include <sys/callout.h>
    108 #include <sys/proc.h>
    109 #include <sys/socket.h>
    110 #include <sys/socketvar.h>
    111 #include <sys/domain.h>
    112 #include <sys/protosw.h>
    113 #include <sys/kernel.h>
    114 #include <sys/ioctl.h>
    115 #include <sys/sysctl.h>
    116 #include <sys/syslog.h>
    117 #include <sys/kauth.h>
    118 #include <sys/kmem.h>
    119 #include <sys/xcall.h>
    120 #include <sys/cpu.h>
    121 #include <sys/intr.h>
    122 #include <sys/module_hook.h>
    123 #include <sys/compat_stub.h>
    124 #include <sys/msan.h>
    125 
    126 #include <net/if.h>
    127 #include <net/if_dl.h>
    128 #include <net/if_ether.h>
    129 #include <net/if_media.h>
    130 #include <net80211/ieee80211.h>
    131 #include <net80211/ieee80211_ioctl.h>
    132 #include <net/if_types.h>
    133 #include <net/route.h>
    134 #include <net/netisr.h>
    135 #include <sys/module.h>
    136 #ifdef NETATALK
    137 #include <netatalk/at_extern.h>
    138 #include <netatalk/at.h>
    139 #endif
    140 #include <net/pfil.h>
    141 #include <netinet/in.h>
    142 #include <netinet/in_var.h>
    143 #include <netinet/ip_encap.h>
    144 #include <net/bpf.h>
    145 
    146 #ifdef INET6
    147 #include <netinet6/in6_var.h>
    148 #include <netinet6/nd6.h>
    149 #endif
    150 
    151 #include "ether.h"
    152 
    153 #include "bridge.h"
    154 #if NBRIDGE > 0
    155 #include <net/if_bridgevar.h>
    156 #endif
    157 
    158 #include "carp.h"
    159 #if NCARP > 0
    160 #include <netinet/ip_carp.h>
    161 #endif
    162 
    163 #include <compat/sys/sockio.h>
    164 
    165 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
    166 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
    167 
    168 /*
    169  * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
    170  * for each ifnet.  It doesn't matter because:
    171  * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
    172  *   ifq_lock don't happen
    173  * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
    174  *   because if_snd, if_link_state_change and if_link_state_change_process
    175  *   are all called with KERNEL_LOCK
    176  */
    177 #define IF_LINK_STATE_CHANGE_LOCK(ifp)		\
    178 	mutex_enter((ifp)->if_snd.ifq_lock)
    179 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp)	\
    180 	mutex_exit((ifp)->if_snd.ifq_lock)
    181 
    182 /*
    183  * Global list of interfaces.
    184  */
    185 /* DEPRECATED. Remove it once kvm(3) users disappeared */
    186 struct ifnet_head		ifnet_list;
    187 
    188 struct pslist_head		ifnet_pslist;
    189 static ifnet_t **		ifindex2ifnet = NULL;
    190 static u_int			if_index = 1;
    191 static size_t			if_indexlim = 0;
    192 static uint64_t			index_gen;
    193 /* Mutex to protect the above objects. */
    194 kmutex_t			ifnet_mtx __cacheline_aligned;
    195 static struct psref_class	*ifnet_psref_class __read_mostly;
    196 static pserialize_t		ifnet_psz;
    197 static struct workqueue		*ifnet_link_state_wq __read_mostly;
    198 
    199 static kmutex_t			if_clone_mtx;
    200 
    201 struct ifnet *lo0ifp;
    202 int	ifqmaxlen = IFQ_MAXLEN;
    203 
    204 struct psref_class		*ifa_psref_class __read_mostly;
    205 
    206 static int	if_delroute_matcher(struct rtentry *, void *);
    207 
    208 static bool if_is_unit(const char *);
    209 static struct if_clone *if_clone_lookup(const char *, int *);
    210 
    211 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
    212 static int if_cloners_count;
    213 
    214 /* Packet filtering hook for interfaces. */
    215 pfil_head_t *			if_pfil __read_mostly;
    216 
    217 static kauth_listener_t if_listener;
    218 
    219 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
    220 static void if_detach_queues(struct ifnet *, struct ifqueue *);
    221 static void sysctl_sndq_setup(struct sysctllog **, const char *,
    222     struct ifaltq *);
    223 static void if_slowtimo(void *);
    224 static void if_attachdomain1(struct ifnet *);
    225 static int ifconf(u_long, void *);
    226 static int if_transmit(struct ifnet *, struct mbuf *);
    227 static int if_clone_create(const char *);
    228 static int if_clone_destroy(const char *);
    229 static void if_link_state_change_work(struct work *, void *);
    230 static void if_up_locked(struct ifnet *);
    231 static void _if_down(struct ifnet *);
    232 static void if_down_deactivated(struct ifnet *);
    233 
    234 struct if_percpuq {
    235 	struct ifnet	*ipq_ifp;
    236 	void		*ipq_si;
    237 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
    238 };
    239 
    240 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
    241 
    242 static void if_percpuq_drops(void *, void *, struct cpu_info *);
    243 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
    244 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
    245     struct if_percpuq *);
    246 
    247 struct if_deferred_start {
    248 	struct ifnet	*ids_ifp;
    249 	void		(*ids_if_start)(struct ifnet *);
    250 	void		*ids_si;
    251 };
    252 
    253 static void if_deferred_start_softint(void *);
    254 static void if_deferred_start_common(struct ifnet *);
    255 static void if_deferred_start_destroy(struct ifnet *);
    256 
    257 #if defined(INET) || defined(INET6)
    258 static void sysctl_net_pktq_setup(struct sysctllog **, int);
    259 #endif
    260 
    261 /*
    262  * Hook for if_vlan - needed by if_agr
    263  */
    264 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook;
    265 
    266 static void if_sysctl_setup(struct sysctllog **);
    267 
    268 static int
    269 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    270     void *arg0, void *arg1, void *arg2, void *arg3)
    271 {
    272 	int result;
    273 	enum kauth_network_req req;
    274 
    275 	result = KAUTH_RESULT_DEFER;
    276 	req = (enum kauth_network_req)(uintptr_t)arg1;
    277 
    278 	if (action != KAUTH_NETWORK_INTERFACE)
    279 		return result;
    280 
    281 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
    282 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
    283 		result = KAUTH_RESULT_ALLOW;
    284 
    285 	return result;
    286 }
    287 
    288 /*
    289  * Network interface utility routines.
    290  *
    291  * Routines with ifa_ifwith* names take sockaddr *'s as
    292  * parameters.
    293  */
    294 void
    295 ifinit(void)
    296 {
    297 
    298 #if (defined(INET) || defined(INET6))
    299 	encapinit();
    300 #endif
    301 
    302 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    303 	    if_listener_cb, NULL);
    304 
    305 	/* interfaces are available, inform socket code */
    306 	ifioctl = doifioctl;
    307 }
    308 
    309 /*
    310  * XXX Initialization before configure().
    311  * XXX hack to get pfil_add_hook working in autoconf.
    312  */
    313 void
    314 ifinit1(void)
    315 {
    316 	int error __diagused;
    317 
    318 #ifdef NET_MPSAFE
    319 	printf("NET_MPSAFE enabled\n");
    320 #endif
    321 
    322 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
    323 
    324 	TAILQ_INIT(&ifnet_list);
    325 	mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
    326 	ifnet_psz = pserialize_create();
    327 	ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
    328 	ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
    329 	error = workqueue_create(&ifnet_link_state_wq, "iflnkst",
    330 	    if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET,
    331 	    WQ_MPSAFE);
    332 	KASSERT(error == 0);
    333 	PSLIST_INIT(&ifnet_pslist);
    334 
    335 	if_indexlim = 8;
    336 
    337 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
    338 	KASSERT(if_pfil != NULL);
    339 
    340 #if NETHER > 0 || defined(NETATALK) || defined(WLAN)
    341 	etherinit();
    342 #endif
    343 }
    344 
    345 /* XXX must be after domaininit() */
    346 void
    347 ifinit_post(void)
    348 {
    349 
    350 	if_sysctl_setup(NULL);
    351 }
    352 
    353 ifnet_t *
    354 if_alloc(u_char type)
    355 {
    356 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
    357 }
    358 
    359 void
    360 if_free(ifnet_t *ifp)
    361 {
    362 	kmem_free(ifp, sizeof(ifnet_t));
    363 }
    364 
    365 void
    366 if_initname(struct ifnet *ifp, const char *name, int unit)
    367 {
    368 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    369 	    "%s%d", name, unit);
    370 }
    371 
    372 /*
    373  * Null routines used while an interface is going away.  These routines
    374  * just return an error.
    375  */
    376 
    377 int
    378 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
    379     const struct sockaddr *so, const struct rtentry *rt)
    380 {
    381 
    382 	return ENXIO;
    383 }
    384 
    385 void
    386 if_nullinput(struct ifnet *ifp, struct mbuf *m)
    387 {
    388 
    389 	/* Nothing. */
    390 }
    391 
    392 void
    393 if_nullstart(struct ifnet *ifp)
    394 {
    395 
    396 	/* Nothing. */
    397 }
    398 
    399 int
    400 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
    401 {
    402 
    403 	m_freem(m);
    404 	return ENXIO;
    405 }
    406 
    407 int
    408 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
    409 {
    410 
    411 	return ENXIO;
    412 }
    413 
    414 int
    415 if_nullinit(struct ifnet *ifp)
    416 {
    417 
    418 	return ENXIO;
    419 }
    420 
    421 void
    422 if_nullstop(struct ifnet *ifp, int disable)
    423 {
    424 
    425 	/* Nothing. */
    426 }
    427 
    428 void
    429 if_nullslowtimo(struct ifnet *ifp)
    430 {
    431 
    432 	/* Nothing. */
    433 }
    434 
    435 void
    436 if_nulldrain(struct ifnet *ifp)
    437 {
    438 
    439 	/* Nothing. */
    440 }
    441 
    442 void
    443 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
    444 {
    445 	struct ifaddr *ifa;
    446 	struct sockaddr_dl *sdl;
    447 
    448 	ifp->if_addrlen = addrlen;
    449 	if_alloc_sadl(ifp);
    450 	ifa = ifp->if_dl;
    451 	sdl = satosdl(ifa->ifa_addr);
    452 
    453 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
    454 	if (factory) {
    455 		KASSERT(ifp->if_hwdl == NULL);
    456 		ifp->if_hwdl = ifp->if_dl;
    457 		ifaref(ifp->if_hwdl);
    458 	}
    459 	/* TBD routing socket */
    460 }
    461 
    462 struct ifaddr *
    463 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
    464 {
    465 	unsigned socksize, ifasize;
    466 	int addrlen, namelen;
    467 	struct sockaddr_dl *mask, *sdl;
    468 	struct ifaddr *ifa;
    469 
    470 	namelen = strlen(ifp->if_xname);
    471 	addrlen = ifp->if_addrlen;
    472 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
    473 	ifasize = sizeof(*ifa) + 2 * socksize;
    474 	ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
    475 
    476 	sdl = (struct sockaddr_dl *)(ifa + 1);
    477 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
    478 
    479 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
    480 	    ifp->if_xname, namelen, NULL, addrlen);
    481 	mask->sdl_family = AF_LINK;
    482 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
    483 	memset(&mask->sdl_data[0], 0xff, namelen);
    484 	ifa->ifa_rtrequest = link_rtrequest;
    485 	ifa->ifa_addr = (struct sockaddr *)sdl;
    486 	ifa->ifa_netmask = (struct sockaddr *)mask;
    487 	ifa_psref_init(ifa);
    488 
    489 	*sdlp = sdl;
    490 
    491 	return ifa;
    492 }
    493 
    494 static void
    495 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
    496 {
    497 	const struct sockaddr_dl *sdl;
    498 
    499 	ifp->if_dl = ifa;
    500 	ifaref(ifa);
    501 	sdl = satosdl(ifa->ifa_addr);
    502 	ifp->if_sadl = sdl;
    503 }
    504 
    505 /*
    506  * Allocate the link level name for the specified interface.  This
    507  * is an attachment helper.  It must be called after ifp->if_addrlen
    508  * is initialized, which may not be the case when if_attach() is
    509  * called.
    510  */
    511 void
    512 if_alloc_sadl(struct ifnet *ifp)
    513 {
    514 	struct ifaddr *ifa;
    515 	const struct sockaddr_dl *sdl;
    516 
    517 	/*
    518 	 * If the interface already has a link name, release it
    519 	 * now.  This is useful for interfaces that can change
    520 	 * link types, and thus switch link names often.
    521 	 */
    522 	if (ifp->if_sadl != NULL)
    523 		if_free_sadl(ifp, 0);
    524 
    525 	ifa = if_dl_create(ifp, &sdl);
    526 
    527 	ifa_insert(ifp, ifa);
    528 	if_sadl_setrefs(ifp, ifa);
    529 }
    530 
    531 static void
    532 if_deactivate_sadl(struct ifnet *ifp)
    533 {
    534 	struct ifaddr *ifa;
    535 
    536 	KASSERT(ifp->if_dl != NULL);
    537 
    538 	ifa = ifp->if_dl;
    539 
    540 	ifp->if_sadl = NULL;
    541 
    542 	ifp->if_dl = NULL;
    543 	ifafree(ifa);
    544 }
    545 
    546 static void
    547 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
    548 {
    549 	struct ifaddr *old;
    550 
    551 	KASSERT(ifp->if_dl != NULL);
    552 
    553 	old = ifp->if_dl;
    554 
    555 	ifaref(ifa);
    556 	/* XXX Update if_dl and if_sadl atomically */
    557 	ifp->if_dl = ifa;
    558 	ifp->if_sadl = satosdl(ifa->ifa_addr);
    559 
    560 	ifafree(old);
    561 }
    562 
    563 void
    564 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
    565     const struct sockaddr_dl *sdl)
    566 {
    567 	int s, ss;
    568 	struct ifaddr *ifa;
    569 	int bound = curlwp_bind();
    570 
    571 	KASSERT(ifa_held(ifa0));
    572 
    573 	s = splsoftnet();
    574 
    575 	if_replace_sadl(ifp, ifa0);
    576 
    577 	ss = pserialize_read_enter();
    578 	IFADDR_READER_FOREACH(ifa, ifp) {
    579 		struct psref psref;
    580 		ifa_acquire(ifa, &psref);
    581 		pserialize_read_exit(ss);
    582 
    583 		rtinit(ifa, RTM_LLINFO_UPD, 0);
    584 
    585 		ss = pserialize_read_enter();
    586 		ifa_release(ifa, &psref);
    587 	}
    588 	pserialize_read_exit(ss);
    589 
    590 	splx(s);
    591 	curlwp_bindx(bound);
    592 }
    593 
    594 /*
    595  * Free the link level name for the specified interface.  This is
    596  * a detach helper.  This is called from if_detach().
    597  */
    598 void
    599 if_free_sadl(struct ifnet *ifp, int factory)
    600 {
    601 	struct ifaddr *ifa;
    602 	int s;
    603 
    604 	if (factory && ifp->if_hwdl != NULL) {
    605 		ifa = ifp->if_hwdl;
    606 		ifp->if_hwdl = NULL;
    607 		ifafree(ifa);
    608 	}
    609 
    610 	ifa = ifp->if_dl;
    611 	if (ifa == NULL) {
    612 		KASSERT(ifp->if_sadl == NULL);
    613 		return;
    614 	}
    615 
    616 	KASSERT(ifp->if_sadl != NULL);
    617 
    618 	s = splsoftnet();
    619 	KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
    620 	ifa_remove(ifp, ifa);
    621 	if_deactivate_sadl(ifp);
    622 	splx(s);
    623 }
    624 
    625 static void
    626 if_getindex(ifnet_t *ifp)
    627 {
    628 	bool hitlimit = false;
    629 
    630 	ifp->if_index_gen = index_gen++;
    631 
    632 	ifp->if_index = if_index;
    633 	if (ifindex2ifnet == NULL) {
    634 		if_index++;
    635 		goto skip;
    636 	}
    637 	while (if_byindex(ifp->if_index)) {
    638 		/*
    639 		 * If we hit USHRT_MAX, we skip back to 0 since
    640 		 * there are a number of places where the value
    641 		 * of if_index or if_index itself is compared
    642 		 * to or stored in an unsigned short.  By
    643 		 * jumping back, we won't botch those assignments
    644 		 * or comparisons.
    645 		 */
    646 		if (++if_index == 0) {
    647 			if_index = 1;
    648 		} else if (if_index == USHRT_MAX) {
    649 			/*
    650 			 * However, if we have to jump back to
    651 			 * zero *twice* without finding an empty
    652 			 * slot in ifindex2ifnet[], then there
    653 			 * there are too many (>65535) interfaces.
    654 			 */
    655 			if (hitlimit) {
    656 				panic("too many interfaces");
    657 			}
    658 			hitlimit = true;
    659 			if_index = 1;
    660 		}
    661 		ifp->if_index = if_index;
    662 	}
    663 skip:
    664 	/*
    665 	 * ifindex2ifnet is indexed by if_index. Since if_index will
    666 	 * grow dynamically, it should grow too.
    667 	 */
    668 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
    669 		size_t m, n, oldlim;
    670 		void *q;
    671 
    672 		oldlim = if_indexlim;
    673 		while (ifp->if_index >= if_indexlim)
    674 			if_indexlim <<= 1;
    675 
    676 		/* grow ifindex2ifnet */
    677 		m = oldlim * sizeof(struct ifnet *);
    678 		n = if_indexlim * sizeof(struct ifnet *);
    679 		q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO);
    680 		if (ifindex2ifnet != NULL) {
    681 			memcpy(q, ifindex2ifnet, m);
    682 			free(ifindex2ifnet, M_IFADDR);
    683 		}
    684 		ifindex2ifnet = (struct ifnet **)q;
    685 	}
    686 	ifindex2ifnet[ifp->if_index] = ifp;
    687 }
    688 
    689 /*
    690  * Initialize an interface and assign an index for it.
    691  *
    692  * It must be called prior to a device specific attach routine
    693  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
    694  * and be followed by if_register:
    695  *
    696  *     if_initialize(ifp);
    697  *     ether_ifattach(ifp, enaddr);
    698  *     if_register(ifp);
    699  */
    700 int
    701 if_initialize(ifnet_t *ifp)
    702 {
    703 	int rv = 0;
    704 
    705 	KASSERT(if_indexlim > 0);
    706 	TAILQ_INIT(&ifp->if_addrlist);
    707 
    708 	/*
    709 	 * Link level name is allocated later by a separate call to
    710 	 * if_alloc_sadl().
    711 	 */
    712 
    713 	if (ifp->if_snd.ifq_maxlen == 0)
    714 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
    715 
    716 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
    717 
    718 	ifp->if_link_state = LINK_STATE_UNKNOWN;
    719 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
    720 	ifp->if_link_scheduled = false;
    721 
    722 	ifp->if_capenable = 0;
    723 	ifp->if_csum_flags_tx = 0;
    724 	ifp->if_csum_flags_rx = 0;
    725 
    726 #ifdef ALTQ
    727 	ifp->if_snd.altq_type = 0;
    728 	ifp->if_snd.altq_disc = NULL;
    729 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
    730 	ifp->if_snd.altq_tbr  = NULL;
    731 	ifp->if_snd.altq_ifp  = ifp;
    732 #endif
    733 
    734 	IFQ_LOCK_INIT(&ifp->if_snd);
    735 
    736 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
    737 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
    738 
    739 	IF_AFDATA_LOCK_INIT(ifp);
    740 
    741 	PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
    742 	PSLIST_INIT(&ifp->if_addr_pslist);
    743 	psref_target_init(&ifp->if_psref, ifnet_psref_class);
    744 	ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    745 	LIST_INIT(&ifp->if_multiaddrs);
    746 	if ((rv = if_stats_init(ifp)) != 0) {
    747 		goto fail;
    748 	}
    749 
    750 	IFNET_GLOBAL_LOCK();
    751 	if_getindex(ifp);
    752 	IFNET_GLOBAL_UNLOCK();
    753 
    754 	return 0;
    755 
    756 fail:
    757 	IF_AFDATA_LOCK_DESTROY(ifp);
    758 
    759 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
    760 	(void)pfil_head_destroy(ifp->if_pfil);
    761 
    762 	IFQ_LOCK_DESTROY(&ifp->if_snd);
    763 
    764 	return rv;
    765 }
    766 
    767 /*
    768  * Register an interface to the list of "active" interfaces.
    769  */
    770 void
    771 if_register(ifnet_t *ifp)
    772 {
    773 	/*
    774 	 * If the driver has not supplied its own if_ioctl, then
    775 	 * supply the default.
    776 	 */
    777 	if (ifp->if_ioctl == NULL)
    778 		ifp->if_ioctl = ifioctl_common;
    779 
    780 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
    781 
    782 	if (!STAILQ_EMPTY(&domains))
    783 		if_attachdomain1(ifp);
    784 
    785 	/* Announce the interface. */
    786 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
    787 
    788 	if (ifp->if_slowtimo != NULL) {
    789 		ifp->if_slowtimo_ch =
    790 		    kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
    791 		callout_init(ifp->if_slowtimo_ch, 0);
    792 		callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
    793 		if_slowtimo(ifp);
    794 	}
    795 
    796 	if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
    797 		ifp->if_transmit = if_transmit;
    798 
    799 	IFNET_GLOBAL_LOCK();
    800 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
    801 	IFNET_WRITER_INSERT_TAIL(ifp);
    802 	IFNET_GLOBAL_UNLOCK();
    803 }
    804 
    805 /*
    806  * The if_percpuq framework
    807  *
    808  * It allows network device drivers to execute the network stack
    809  * in softint (so called softint-based if_input). It utilizes
    810  * softint and percpu ifqueue. It doesn't distribute any packets
    811  * between CPUs, unlike pktqueue(9).
    812  *
    813  * Currently we support two options for device drivers to apply the framework:
    814  * - Use it implicitly with less changes
    815  *   - If you use if_attach in driver's _attach function and if_input in
    816  *     driver's Rx interrupt handler, a packet is queued and a softint handles
    817  *     the packet implicitly
    818  * - Use it explicitly in each driver (recommended)
    819  *   - You can use if_percpuq_* directly in your driver
    820  *   - In this case, you need to allocate struct if_percpuq in driver's softc
    821  *   - See wm(4) as a reference implementation
    822  */
    823 
    824 static void
    825 if_percpuq_softint(void *arg)
    826 {
    827 	struct if_percpuq *ipq = arg;
    828 	struct ifnet *ifp = ipq->ipq_ifp;
    829 	struct mbuf *m;
    830 
    831 	while ((m = if_percpuq_dequeue(ipq)) != NULL) {
    832 		if_statinc(ifp, if_ipackets);
    833 		bpf_mtap(ifp, m, BPF_D_IN);
    834 
    835 		ifp->_if_input(ifp, m);
    836 	}
    837 }
    838 
    839 static void
    840 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    841 {
    842 	struct ifqueue *const ifq = p;
    843 
    844 	memset(ifq, 0, sizeof(*ifq));
    845 	ifq->ifq_maxlen = IFQ_MAXLEN;
    846 }
    847 
    848 struct if_percpuq *
    849 if_percpuq_create(struct ifnet *ifp)
    850 {
    851 	struct if_percpuq *ipq;
    852 	u_int flags = SOFTINT_NET;
    853 
    854 	flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
    855 
    856 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
    857 	ipq->ipq_ifp = ifp;
    858 	ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
    859 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
    860 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
    861 
    862 	sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
    863 
    864 	return ipq;
    865 }
    866 
    867 static struct mbuf *
    868 if_percpuq_dequeue(struct if_percpuq *ipq)
    869 {
    870 	struct mbuf *m;
    871 	struct ifqueue *ifq;
    872 	int s;
    873 
    874 	s = splnet();
    875 	ifq = percpu_getref(ipq->ipq_ifqs);
    876 	IF_DEQUEUE(ifq, m);
    877 	percpu_putref(ipq->ipq_ifqs);
    878 	splx(s);
    879 
    880 	return m;
    881 }
    882 
    883 static void
    884 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    885 {
    886 	struct ifqueue *const ifq = p;
    887 
    888 	IF_PURGE(ifq);
    889 }
    890 
    891 void
    892 if_percpuq_destroy(struct if_percpuq *ipq)
    893 {
    894 
    895 	/* if_detach may already destroy it */
    896 	if (ipq == NULL)
    897 		return;
    898 
    899 	softint_disestablish(ipq->ipq_si);
    900 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
    901 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
    902 	kmem_free(ipq, sizeof(*ipq));
    903 }
    904 
    905 void
    906 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
    907 {
    908 	struct ifqueue *ifq;
    909 	int s;
    910 
    911 	KASSERT(ipq != NULL);
    912 
    913 	s = splnet();
    914 	ifq = percpu_getref(ipq->ipq_ifqs);
    915 	if (IF_QFULL(ifq)) {
    916 		IF_DROP(ifq);
    917 		percpu_putref(ipq->ipq_ifqs);
    918 		m_freem(m);
    919 		goto out;
    920 	}
    921 	IF_ENQUEUE(ifq, m);
    922 	percpu_putref(ipq->ipq_ifqs);
    923 
    924 	softint_schedule(ipq->ipq_si);
    925 out:
    926 	splx(s);
    927 }
    928 
    929 static void
    930 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
    931 {
    932 	struct ifqueue *const ifq = p;
    933 	int *sum = arg;
    934 
    935 	*sum += ifq->ifq_drops;
    936 }
    937 
    938 static int
    939 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
    940 {
    941 	struct sysctlnode node;
    942 	struct if_percpuq *ipq;
    943 	int sum = 0;
    944 	int error;
    945 
    946 	node = *rnode;
    947 	ipq = node.sysctl_data;
    948 
    949 	percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
    950 
    951 	node.sysctl_data = &sum;
    952 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    953 	if (error != 0 || newp == NULL)
    954 		return error;
    955 
    956 	return 0;
    957 }
    958 
    959 static void
    960 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
    961     struct if_percpuq *ipq)
    962 {
    963 	const struct sysctlnode *cnode, *rnode;
    964 
    965 	if (sysctl_createv(clog, 0, NULL, &rnode,
    966 		       CTLFLAG_PERMANENT,
    967 		       CTLTYPE_NODE, "interfaces",
    968 		       SYSCTL_DESCR("Per-interface controls"),
    969 		       NULL, 0, NULL, 0,
    970 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
    971 		goto bad;
    972 
    973 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    974 		       CTLFLAG_PERMANENT,
    975 		       CTLTYPE_NODE, ifname,
    976 		       SYSCTL_DESCR("Interface controls"),
    977 		       NULL, 0, NULL, 0,
    978 		       CTL_CREATE, CTL_EOL) != 0)
    979 		goto bad;
    980 
    981 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    982 		       CTLFLAG_PERMANENT,
    983 		       CTLTYPE_NODE, "rcvq",
    984 		       SYSCTL_DESCR("Interface input queue controls"),
    985 		       NULL, 0, NULL, 0,
    986 		       CTL_CREATE, CTL_EOL) != 0)
    987 		goto bad;
    988 
    989 #ifdef NOTYET
    990 	/* XXX Should show each per-CPU queue length? */
    991 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    992 		       CTLFLAG_PERMANENT,
    993 		       CTLTYPE_INT, "len",
    994 		       SYSCTL_DESCR("Current input queue length"),
    995 		       sysctl_percpuq_len, 0, NULL, 0,
    996 		       CTL_CREATE, CTL_EOL) != 0)
    997 		goto bad;
    998 
    999 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   1000 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1001 		       CTLTYPE_INT, "maxlen",
   1002 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   1003 		       sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
   1004 		       CTL_CREATE, CTL_EOL) != 0)
   1005 		goto bad;
   1006 #endif
   1007 
   1008 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   1009 		       CTLFLAG_PERMANENT,
   1010 		       CTLTYPE_INT, "drops",
   1011 		       SYSCTL_DESCR("Total packets dropped due to full input queue"),
   1012 		       sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
   1013 		       CTL_CREATE, CTL_EOL) != 0)
   1014 		goto bad;
   1015 
   1016 	return;
   1017 bad:
   1018 	printf("%s: could not attach sysctl nodes\n", ifname);
   1019 	return;
   1020 }
   1021 
   1022 /*
   1023  * The deferred if_start framework
   1024  *
   1025  * The common APIs to defer if_start to softint when if_start is requested
   1026  * from a device driver running in hardware interrupt context.
   1027  */
   1028 /*
   1029  * Call ifp->if_start (or equivalent) in a dedicated softint for
   1030  * deferred if_start.
   1031  */
   1032 static void
   1033 if_deferred_start_softint(void *arg)
   1034 {
   1035 	struct if_deferred_start *ids = arg;
   1036 	struct ifnet *ifp = ids->ids_ifp;
   1037 
   1038 	ids->ids_if_start(ifp);
   1039 }
   1040 
   1041 /*
   1042  * The default callback function for deferred if_start.
   1043  */
   1044 static void
   1045 if_deferred_start_common(struct ifnet *ifp)
   1046 {
   1047 	int s;
   1048 
   1049 	s = splnet();
   1050 	if_start_lock(ifp);
   1051 	splx(s);
   1052 }
   1053 
   1054 static inline bool
   1055 if_snd_is_used(struct ifnet *ifp)
   1056 {
   1057 
   1058 	return ALTQ_IS_ENABLED(&ifp->if_snd) ||
   1059 		ifp->if_transmit == if_transmit ||
   1060 		ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit;
   1061 }
   1062 
   1063 /*
   1064  * Schedule deferred if_start.
   1065  */
   1066 void
   1067 if_schedule_deferred_start(struct ifnet *ifp)
   1068 {
   1069 
   1070 	KASSERT(ifp->if_deferred_start != NULL);
   1071 
   1072 	if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
   1073 		return;
   1074 
   1075 	softint_schedule(ifp->if_deferred_start->ids_si);
   1076 }
   1077 
   1078 /*
   1079  * Create an instance of deferred if_start. A driver should call the function
   1080  * only if the driver needs deferred if_start. Drivers can setup their own
   1081  * deferred if_start function via 2nd argument.
   1082  */
   1083 void
   1084 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
   1085 {
   1086 	struct if_deferred_start *ids;
   1087 	u_int flags = SOFTINT_NET;
   1088 
   1089 	flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
   1090 
   1091 	ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
   1092 	ids->ids_ifp = ifp;
   1093 	ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
   1094 	if (func != NULL)
   1095 		ids->ids_if_start = func;
   1096 	else
   1097 		ids->ids_if_start = if_deferred_start_common;
   1098 
   1099 	ifp->if_deferred_start = ids;
   1100 }
   1101 
   1102 static void
   1103 if_deferred_start_destroy(struct ifnet *ifp)
   1104 {
   1105 
   1106 	if (ifp->if_deferred_start == NULL)
   1107 		return;
   1108 
   1109 	softint_disestablish(ifp->if_deferred_start->ids_si);
   1110 	kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
   1111 	ifp->if_deferred_start = NULL;
   1112 }
   1113 
   1114 /*
   1115  * The common interface input routine that is called by device drivers,
   1116  * which should be used only when the driver's rx handler already runs
   1117  * in softint.
   1118  */
   1119 void
   1120 if_input(struct ifnet *ifp, struct mbuf *m)
   1121 {
   1122 
   1123 	KASSERT(ifp->if_percpuq == NULL);
   1124 	KASSERT(!cpu_intr_p());
   1125 
   1126 	if_statinc(ifp, if_ipackets);
   1127 	bpf_mtap(ifp, m, BPF_D_IN);
   1128 
   1129 	ifp->_if_input(ifp, m);
   1130 }
   1131 
   1132 /*
   1133  * DEPRECATED. Use if_initialize and if_register instead.
   1134  * See the above comment of if_initialize.
   1135  *
   1136  * Note that it implicitly enables if_percpuq to make drivers easy to
   1137  * migrate softint-based if_input without much changes. If you don't
   1138  * want to enable it, use if_initialize instead.
   1139  */
   1140 int
   1141 if_attach(ifnet_t *ifp)
   1142 {
   1143 	int rv;
   1144 
   1145 	rv = if_initialize(ifp);
   1146 	if (rv != 0)
   1147 		return rv;
   1148 
   1149 	ifp->if_percpuq = if_percpuq_create(ifp);
   1150 	if_register(ifp);
   1151 
   1152 	return 0;
   1153 }
   1154 
   1155 void
   1156 if_attachdomain(void)
   1157 {
   1158 	struct ifnet *ifp;
   1159 	int s;
   1160 	int bound = curlwp_bind();
   1161 
   1162 	s = pserialize_read_enter();
   1163 	IFNET_READER_FOREACH(ifp) {
   1164 		struct psref psref;
   1165 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   1166 		pserialize_read_exit(s);
   1167 		if_attachdomain1(ifp);
   1168 		s = pserialize_read_enter();
   1169 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   1170 	}
   1171 	pserialize_read_exit(s);
   1172 	curlwp_bindx(bound);
   1173 }
   1174 
   1175 static void
   1176 if_attachdomain1(struct ifnet *ifp)
   1177 {
   1178 	struct domain *dp;
   1179 	int s;
   1180 
   1181 	s = splsoftnet();
   1182 
   1183 	/* address family dependent data region */
   1184 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
   1185 	DOMAIN_FOREACH(dp) {
   1186 		if (dp->dom_ifattach != NULL)
   1187 			ifp->if_afdata[dp->dom_family] =
   1188 			    (*dp->dom_ifattach)(ifp);
   1189 	}
   1190 
   1191 	splx(s);
   1192 }
   1193 
   1194 /*
   1195  * Deactivate an interface.  This points all of the procedure
   1196  * handles at error stubs.  May be called from interrupt context.
   1197  */
   1198 void
   1199 if_deactivate(struct ifnet *ifp)
   1200 {
   1201 	int s;
   1202 
   1203 	s = splsoftnet();
   1204 
   1205 	ifp->if_output	 = if_nulloutput;
   1206 	ifp->_if_input	 = if_nullinput;
   1207 	ifp->if_start	 = if_nullstart;
   1208 	ifp->if_transmit = if_nulltransmit;
   1209 	ifp->if_ioctl	 = if_nullioctl;
   1210 	ifp->if_init	 = if_nullinit;
   1211 	ifp->if_stop	 = if_nullstop;
   1212 	ifp->if_slowtimo = if_nullslowtimo;
   1213 	ifp->if_drain	 = if_nulldrain;
   1214 
   1215 	ifp->if_link_state_changed = NULL;
   1216 
   1217 	/* No more packets may be enqueued. */
   1218 	ifp->if_snd.ifq_maxlen = 0;
   1219 
   1220 	splx(s);
   1221 }
   1222 
   1223 bool
   1224 if_is_deactivated(const struct ifnet *ifp)
   1225 {
   1226 
   1227 	return ifp->if_output == if_nulloutput;
   1228 }
   1229 
   1230 void
   1231 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
   1232 {
   1233 	struct ifaddr *ifa, *nifa;
   1234 	int s;
   1235 
   1236 	s = pserialize_read_enter();
   1237 	for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
   1238 		nifa = IFADDR_READER_NEXT(ifa);
   1239 		if (ifa->ifa_addr->sa_family != family)
   1240 			continue;
   1241 		pserialize_read_exit(s);
   1242 
   1243 		(*purgeaddr)(ifa);
   1244 
   1245 		s = pserialize_read_enter();
   1246 	}
   1247 	pserialize_read_exit(s);
   1248 }
   1249 
   1250 #ifdef IFAREF_DEBUG
   1251 static struct ifaddr **ifa_list;
   1252 static int ifa_list_size;
   1253 
   1254 /* Depends on only one if_attach runs at once */
   1255 static void
   1256 if_build_ifa_list(struct ifnet *ifp)
   1257 {
   1258 	struct ifaddr *ifa;
   1259 	int i;
   1260 
   1261 	KASSERT(ifa_list == NULL);
   1262 	KASSERT(ifa_list_size == 0);
   1263 
   1264 	IFADDR_READER_FOREACH(ifa, ifp)
   1265 		ifa_list_size++;
   1266 
   1267 	ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
   1268 	i = 0;
   1269 	IFADDR_READER_FOREACH(ifa, ifp) {
   1270 		ifa_list[i++] = ifa;
   1271 		ifaref(ifa);
   1272 	}
   1273 }
   1274 
   1275 static void
   1276 if_check_and_free_ifa_list(struct ifnet *ifp)
   1277 {
   1278 	int i;
   1279 	struct ifaddr *ifa;
   1280 
   1281 	if (ifa_list == NULL)
   1282 		return;
   1283 
   1284 	for (i = 0; i < ifa_list_size; i++) {
   1285 		char buf[64];
   1286 
   1287 		ifa = ifa_list[i];
   1288 		sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
   1289 		if (ifa->ifa_refcnt > 1) {
   1290 			log(LOG_WARNING,
   1291 			    "ifa(%s) still referenced (refcnt=%d)\n",
   1292 			    buf, ifa->ifa_refcnt - 1);
   1293 		} else
   1294 			log(LOG_DEBUG,
   1295 			    "ifa(%s) not referenced (refcnt=%d)\n",
   1296 			    buf, ifa->ifa_refcnt - 1);
   1297 		ifafree(ifa);
   1298 	}
   1299 
   1300 	kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
   1301 	ifa_list = NULL;
   1302 	ifa_list_size = 0;
   1303 }
   1304 #endif
   1305 
   1306 /*
   1307  * Detach an interface from the list of "active" interfaces,
   1308  * freeing any resources as we go along.
   1309  *
   1310  * NOTE: This routine must be called with a valid thread context,
   1311  * as it may block.
   1312  */
   1313 void
   1314 if_detach(struct ifnet *ifp)
   1315 {
   1316 	struct socket so;
   1317 	struct ifaddr *ifa;
   1318 #ifdef IFAREF_DEBUG
   1319 	struct ifaddr *last_ifa = NULL;
   1320 #endif
   1321 	struct domain *dp;
   1322 	const struct protosw *pr;
   1323 	int s, i, family, purged;
   1324 
   1325 #ifdef IFAREF_DEBUG
   1326 	if_build_ifa_list(ifp);
   1327 #endif
   1328 	/*
   1329 	 * XXX It's kind of lame that we have to have the
   1330 	 * XXX socket structure...
   1331 	 */
   1332 	memset(&so, 0, sizeof(so));
   1333 
   1334 	s = splnet();
   1335 
   1336 	sysctl_teardown(&ifp->if_sysctl_log);
   1337 
   1338 	IFNET_LOCK(ifp);
   1339 
   1340 	/*
   1341 	 * Unset all queued link states and pretend a
   1342 	 * link state change is scheduled.
   1343 	 * This stops any more link state changes occuring for this
   1344 	 * interface while it's being detached so it's safe
   1345 	 * to drain the workqueue.
   1346 	 */
   1347 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   1348 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
   1349 	ifp->if_link_scheduled = true;
   1350 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   1351 	workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work);
   1352 
   1353 	if_deactivate(ifp);
   1354 	IFNET_UNLOCK(ifp);
   1355 
   1356 	/*
   1357 	 * Unlink from the list and wait for all readers to leave
   1358 	 * from pserialize read sections.  Note that we can't do
   1359 	 * psref_target_destroy here.  See below.
   1360 	 */
   1361 	IFNET_GLOBAL_LOCK();
   1362 	ifindex2ifnet[ifp->if_index] = NULL;
   1363 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
   1364 	IFNET_WRITER_REMOVE(ifp);
   1365 	pserialize_perform(ifnet_psz);
   1366 	IFNET_GLOBAL_UNLOCK();
   1367 
   1368 	if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
   1369 		ifp->if_slowtimo = NULL;
   1370 		callout_halt(ifp->if_slowtimo_ch, NULL);
   1371 		callout_destroy(ifp->if_slowtimo_ch);
   1372 		kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
   1373 	}
   1374 	if_deferred_start_destroy(ifp);
   1375 
   1376 	/*
   1377 	 * Do an if_down() to give protocols a chance to do something.
   1378 	 */
   1379 	if_down_deactivated(ifp);
   1380 
   1381 #ifdef ALTQ
   1382 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
   1383 		altq_disable(&ifp->if_snd);
   1384 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
   1385 		altq_detach(&ifp->if_snd);
   1386 #endif
   1387 
   1388 #if NCARP > 0
   1389 	/* Remove the interface from any carp group it is a part of.  */
   1390 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
   1391 		carp_ifdetach(ifp);
   1392 #endif
   1393 
   1394 	/*
   1395 	 * Rip all the addresses off the interface.  This should make
   1396 	 * all of the routes go away.
   1397 	 *
   1398 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
   1399 	 * from the list, including our "cursor", ifa.  For safety,
   1400 	 * and to honor the TAILQ abstraction, I just restart the
   1401 	 * loop after each removal.  Note that the loop will exit
   1402 	 * when all of the remaining ifaddrs belong to the AF_LINK
   1403 	 * family.  I am counting on the historical fact that at
   1404 	 * least one pr_usrreq in each address domain removes at
   1405 	 * least one ifaddr.
   1406 	 */
   1407 again:
   1408 	/*
   1409 	 * At this point, no other one tries to remove ifa in the list,
   1410 	 * so we don't need to take a lock or psref.  Avoid using
   1411 	 * IFADDR_READER_FOREACH to pass over an inspection of contract
   1412 	 * violations of pserialize.
   1413 	 */
   1414 	IFADDR_WRITER_FOREACH(ifa, ifp) {
   1415 		family = ifa->ifa_addr->sa_family;
   1416 #ifdef IFAREF_DEBUG
   1417 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
   1418 		    ifa, family, ifa->ifa_refcnt);
   1419 		if (last_ifa != NULL && ifa == last_ifa)
   1420 			panic("if_detach: loop detected");
   1421 		last_ifa = ifa;
   1422 #endif
   1423 		if (family == AF_LINK)
   1424 			continue;
   1425 		dp = pffinddomain(family);
   1426 		KASSERTMSG(dp != NULL, "no domain for AF %d", family);
   1427 		/*
   1428 		 * XXX These PURGEIF calls are redundant with the
   1429 		 * purge-all-families calls below, but are left in for
   1430 		 * now both to make a smaller change, and to avoid
   1431 		 * unplanned interactions with clearing of
   1432 		 * ifp->if_addrlist.
   1433 		 */
   1434 		purged = 0;
   1435 		for (pr = dp->dom_protosw;
   1436 		     pr < dp->dom_protoswNPROTOSW; pr++) {
   1437 			so.so_proto = pr;
   1438 			if (pr->pr_usrreqs) {
   1439 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1440 				purged = 1;
   1441 			}
   1442 		}
   1443 		if (purged == 0) {
   1444 			/*
   1445 			 * XXX What's really the best thing to do
   1446 			 * XXX here?  --thorpej (at) NetBSD.org
   1447 			 */
   1448 			printf("if_detach: WARNING: AF %d not purged\n",
   1449 			    family);
   1450 			ifa_remove(ifp, ifa);
   1451 		}
   1452 		goto again;
   1453 	}
   1454 
   1455 	if_free_sadl(ifp, 1);
   1456 
   1457 restart:
   1458 	IFADDR_WRITER_FOREACH(ifa, ifp) {
   1459 		family = ifa->ifa_addr->sa_family;
   1460 		KASSERT(family == AF_LINK);
   1461 		ifa_remove(ifp, ifa);
   1462 		goto restart;
   1463 	}
   1464 
   1465 	/* Delete stray routes from the routing table. */
   1466 	for (i = 0; i <= AF_MAX; i++)
   1467 		rt_delete_matched_entries(i, if_delroute_matcher, ifp);
   1468 
   1469 	DOMAIN_FOREACH(dp) {
   1470 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
   1471 		{
   1472 			void *p = ifp->if_afdata[dp->dom_family];
   1473 			if (p) {
   1474 				ifp->if_afdata[dp->dom_family] = NULL;
   1475 				(*dp->dom_ifdetach)(ifp, p);
   1476 			}
   1477 		}
   1478 
   1479 		/*
   1480 		 * One would expect multicast memberships (INET and
   1481 		 * INET6) on UDP sockets to be purged by the PURGEIF
   1482 		 * calls above, but if all addresses were removed from
   1483 		 * the interface prior to destruction, the calls will
   1484 		 * not be made (e.g. ppp, for which pppd(8) generally
   1485 		 * removes addresses before destroying the interface).
   1486 		 * Because there is no invariant that multicast
   1487 		 * memberships only exist for interfaces with IPv4
   1488 		 * addresses, we must call PURGEIF regardless of
   1489 		 * addresses.  (Protocols which might store ifnet
   1490 		 * pointers are marked with PR_PURGEIF.)
   1491 		 */
   1492 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
   1493 			so.so_proto = pr;
   1494 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
   1495 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1496 		}
   1497 	}
   1498 
   1499 	/*
   1500 	 * Must be done after the above pr_purgeif because if_psref may be
   1501 	 * still used in pr_purgeif.
   1502 	 */
   1503 	psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
   1504 	PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
   1505 
   1506 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
   1507 	(void)pfil_head_destroy(ifp->if_pfil);
   1508 
   1509 	/* Announce that the interface is gone. */
   1510 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
   1511 
   1512 	IF_AFDATA_LOCK_DESTROY(ifp);
   1513 
   1514 	/*
   1515 	 * remove packets that came from ifp, from software interrupt queues.
   1516 	 */
   1517 	DOMAIN_FOREACH(dp) {
   1518 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
   1519 			struct ifqueue *iq = dp->dom_ifqueues[i];
   1520 			if (iq == NULL)
   1521 				break;
   1522 			dp->dom_ifqueues[i] = NULL;
   1523 			if_detach_queues(ifp, iq);
   1524 		}
   1525 	}
   1526 
   1527 	/*
   1528 	 * IP queues have to be processed separately: net-queue barrier
   1529 	 * ensures that the packets are dequeued while a cross-call will
   1530 	 * ensure that the interrupts have completed. FIXME: not quite..
   1531 	 */
   1532 #ifdef INET
   1533 	pktq_barrier(ip_pktq);
   1534 #endif
   1535 #ifdef INET6
   1536 	if (in6_present)
   1537 		pktq_barrier(ip6_pktq);
   1538 #endif
   1539 	xc_barrier(0);
   1540 
   1541 	if (ifp->if_percpuq != NULL) {
   1542 		if_percpuq_destroy(ifp->if_percpuq);
   1543 		ifp->if_percpuq = NULL;
   1544 	}
   1545 
   1546 	mutex_obj_free(ifp->if_ioctl_lock);
   1547 	ifp->if_ioctl_lock = NULL;
   1548 	mutex_obj_free(ifp->if_snd.ifq_lock);
   1549 	if_stats_fini(ifp);
   1550 
   1551 	splx(s);
   1552 
   1553 #ifdef IFAREF_DEBUG
   1554 	if_check_and_free_ifa_list(ifp);
   1555 #endif
   1556 }
   1557 
   1558 static void
   1559 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
   1560 {
   1561 	struct mbuf *m, *prev, *next;
   1562 
   1563 	prev = NULL;
   1564 	for (m = q->ifq_head; m != NULL; m = next) {
   1565 		KASSERT((m->m_flags & M_PKTHDR) != 0);
   1566 
   1567 		next = m->m_nextpkt;
   1568 		if (m->m_pkthdr.rcvif_index != ifp->if_index) {
   1569 			prev = m;
   1570 			continue;
   1571 		}
   1572 
   1573 		if (prev != NULL)
   1574 			prev->m_nextpkt = m->m_nextpkt;
   1575 		else
   1576 			q->ifq_head = m->m_nextpkt;
   1577 		if (q->ifq_tail == m)
   1578 			q->ifq_tail = prev;
   1579 		q->ifq_len--;
   1580 
   1581 		m->m_nextpkt = NULL;
   1582 		m_freem(m);
   1583 		IF_DROP(q);
   1584 	}
   1585 }
   1586 
   1587 /*
   1588  * Callback for a radix tree walk to delete all references to an
   1589  * ifnet.
   1590  */
   1591 static int
   1592 if_delroute_matcher(struct rtentry *rt, void *v)
   1593 {
   1594 	struct ifnet *ifp = (struct ifnet *)v;
   1595 
   1596 	if (rt->rt_ifp == ifp)
   1597 		return 1;
   1598 	else
   1599 		return 0;
   1600 }
   1601 
   1602 /*
   1603  * Create a clone network interface.
   1604  */
   1605 static int
   1606 if_clone_create(const char *name)
   1607 {
   1608 	struct if_clone *ifc;
   1609 	int unit;
   1610 	struct ifnet *ifp;
   1611 	struct psref psref;
   1612 
   1613 	KASSERT(mutex_owned(&if_clone_mtx));
   1614 
   1615 	ifc = if_clone_lookup(name, &unit);
   1616 	if (ifc == NULL)
   1617 		return EINVAL;
   1618 
   1619 	ifp = if_get(name, &psref);
   1620 	if (ifp != NULL) {
   1621 		if_put(ifp, &psref);
   1622 		return EEXIST;
   1623 	}
   1624 
   1625 	return (*ifc->ifc_create)(ifc, unit);
   1626 }
   1627 
   1628 /*
   1629  * Destroy a clone network interface.
   1630  */
   1631 static int
   1632 if_clone_destroy(const char *name)
   1633 {
   1634 	struct if_clone *ifc;
   1635 	struct ifnet *ifp;
   1636 	struct psref psref;
   1637 	int error;
   1638 	int (*if_ioctl)(struct ifnet *, u_long, void *);
   1639 
   1640 	KASSERT(mutex_owned(&if_clone_mtx));
   1641 
   1642 	ifc = if_clone_lookup(name, NULL);
   1643 	if (ifc == NULL)
   1644 		return EINVAL;
   1645 
   1646 	if (ifc->ifc_destroy == NULL)
   1647 		return EOPNOTSUPP;
   1648 
   1649 	ifp = if_get(name, &psref);
   1650 	if (ifp == NULL)
   1651 		return ENXIO;
   1652 
   1653 	/* We have to disable ioctls here */
   1654 	IFNET_LOCK(ifp);
   1655 	if_ioctl = ifp->if_ioctl;
   1656 	ifp->if_ioctl = if_nullioctl;
   1657 	IFNET_UNLOCK(ifp);
   1658 
   1659 	/*
   1660 	 * We cannot call ifc_destroy with holding ifp.
   1661 	 * Releasing ifp here is safe thanks to if_clone_mtx.
   1662 	 */
   1663 	if_put(ifp, &psref);
   1664 
   1665 	error = (*ifc->ifc_destroy)(ifp);
   1666 
   1667 	if (error != 0) {
   1668 		/* We have to restore if_ioctl on error */
   1669 		IFNET_LOCK(ifp);
   1670 		ifp->if_ioctl = if_ioctl;
   1671 		IFNET_UNLOCK(ifp);
   1672 	}
   1673 
   1674 	return error;
   1675 }
   1676 
   1677 static bool
   1678 if_is_unit(const char *name)
   1679 {
   1680 
   1681 	while (*name != '\0') {
   1682 		if (*name < '0' || *name > '9')
   1683 			return false;
   1684 		name++;
   1685 	}
   1686 
   1687 	return true;
   1688 }
   1689 
   1690 /*
   1691  * Look up a network interface cloner.
   1692  */
   1693 static struct if_clone *
   1694 if_clone_lookup(const char *name, int *unitp)
   1695 {
   1696 	struct if_clone *ifc;
   1697 	const char *cp;
   1698 	char *dp, ifname[IFNAMSIZ + 3];
   1699 	int unit;
   1700 
   1701 	KASSERT(mutex_owned(&if_clone_mtx));
   1702 
   1703 	strcpy(ifname, "if_");
   1704 	/* separate interface name from unit */
   1705 	/* TODO: search unit number from backward */
   1706 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
   1707 	    *cp && !if_is_unit(cp);)
   1708 		*dp++ = *cp++;
   1709 
   1710 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
   1711 		return NULL;	/* No name or unit number */
   1712 	*dp++ = '\0';
   1713 
   1714 again:
   1715 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
   1716 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
   1717 			break;
   1718 	}
   1719 
   1720 	if (ifc == NULL) {
   1721 		int error;
   1722 		if (*ifname == '\0')
   1723 			return NULL;
   1724 		mutex_exit(&if_clone_mtx);
   1725 		error = module_autoload(ifname, MODULE_CLASS_DRIVER);
   1726 		mutex_enter(&if_clone_mtx);
   1727 		if (error)
   1728 			return NULL;
   1729 		*ifname = '\0';
   1730 		goto again;
   1731 	}
   1732 
   1733 	unit = 0;
   1734 	while (cp - name < IFNAMSIZ && *cp) {
   1735 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
   1736 			/* Bogus unit number. */
   1737 			return NULL;
   1738 		}
   1739 		unit = (unit * 10) + (*cp++ - '0');
   1740 	}
   1741 
   1742 	if (unitp != NULL)
   1743 		*unitp = unit;
   1744 	return ifc;
   1745 }
   1746 
   1747 /*
   1748  * Register a network interface cloner.
   1749  */
   1750 void
   1751 if_clone_attach(struct if_clone *ifc)
   1752 {
   1753 
   1754 	mutex_enter(&if_clone_mtx);
   1755 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
   1756 	if_cloners_count++;
   1757 	mutex_exit(&if_clone_mtx);
   1758 }
   1759 
   1760 /*
   1761  * Unregister a network interface cloner.
   1762  */
   1763 void
   1764 if_clone_detach(struct if_clone *ifc)
   1765 {
   1766 
   1767 	mutex_enter(&if_clone_mtx);
   1768 	LIST_REMOVE(ifc, ifc_list);
   1769 	if_cloners_count--;
   1770 	mutex_exit(&if_clone_mtx);
   1771 }
   1772 
   1773 /*
   1774  * Provide list of interface cloners to userspace.
   1775  */
   1776 int
   1777 if_clone_list(int buf_count, char *buffer, int *total)
   1778 {
   1779 	char outbuf[IFNAMSIZ], *dst;
   1780 	struct if_clone *ifc;
   1781 	int count, error = 0;
   1782 
   1783 	mutex_enter(&if_clone_mtx);
   1784 	*total = if_cloners_count;
   1785 	if ((dst = buffer) == NULL) {
   1786 		/* Just asking how many there are. */
   1787 		goto out;
   1788 	}
   1789 
   1790 	if (buf_count < 0) {
   1791 		error = EINVAL;
   1792 		goto out;
   1793 	}
   1794 
   1795 	count = (if_cloners_count < buf_count) ?
   1796 	    if_cloners_count : buf_count;
   1797 
   1798 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
   1799 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
   1800 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
   1801 		if (outbuf[sizeof(outbuf) - 1] != '\0') {
   1802 			error = ENAMETOOLONG;
   1803 			goto out;
   1804 		}
   1805 		error = copyout(outbuf, dst, sizeof(outbuf));
   1806 		if (error != 0)
   1807 			break;
   1808 	}
   1809 
   1810 out:
   1811 	mutex_exit(&if_clone_mtx);
   1812 	return error;
   1813 }
   1814 
   1815 void
   1816 ifa_psref_init(struct ifaddr *ifa)
   1817 {
   1818 
   1819 	psref_target_init(&ifa->ifa_psref, ifa_psref_class);
   1820 }
   1821 
   1822 void
   1823 ifaref(struct ifaddr *ifa)
   1824 {
   1825 
   1826 	atomic_inc_uint(&ifa->ifa_refcnt);
   1827 }
   1828 
   1829 void
   1830 ifafree(struct ifaddr *ifa)
   1831 {
   1832 	KASSERT(ifa != NULL);
   1833 	KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt);
   1834 
   1835 	if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) {
   1836 		free(ifa, M_IFADDR);
   1837 	}
   1838 }
   1839 
   1840 bool
   1841 ifa_is_destroying(struct ifaddr *ifa)
   1842 {
   1843 
   1844 	return ISSET(ifa->ifa_flags, IFA_DESTROYING);
   1845 }
   1846 
   1847 void
   1848 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
   1849 {
   1850 
   1851 	ifa->ifa_ifp = ifp;
   1852 
   1853 	/*
   1854 	 * Check MP-safety for IFEF_MPSAFE drivers.
   1855 	 * Check !IFF_RUNNING for initialization routines that normally don't
   1856 	 * take IFNET_LOCK but it's safe because there is no competitor.
   1857 	 * XXX there are false positive cases because IFF_RUNNING can be off on
   1858 	 * if_stop.
   1859 	 */
   1860 	KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
   1861 	    IFNET_LOCKED(ifp));
   1862 
   1863 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
   1864 	IFADDR_ENTRY_INIT(ifa);
   1865 	IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
   1866 
   1867 	ifaref(ifa);
   1868 }
   1869 
   1870 void
   1871 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
   1872 {
   1873 
   1874 	KASSERT(ifa->ifa_ifp == ifp);
   1875 	/*
   1876 	 * Check MP-safety for IFEF_MPSAFE drivers.
   1877 	 * if_is_deactivated indicates ifa_remove is called form if_detach
   1878 	 * where is safe even if IFNET_LOCK isn't held.
   1879 	 */
   1880 	KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
   1881 
   1882 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
   1883 	IFADDR_WRITER_REMOVE(ifa);
   1884 #ifdef NET_MPSAFE
   1885 	IFNET_GLOBAL_LOCK();
   1886 	pserialize_perform(ifnet_psz);
   1887 	IFNET_GLOBAL_UNLOCK();
   1888 #endif
   1889 
   1890 #ifdef NET_MPSAFE
   1891 	psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
   1892 #endif
   1893 	IFADDR_ENTRY_DESTROY(ifa);
   1894 	ifafree(ifa);
   1895 }
   1896 
   1897 void
   1898 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
   1899 {
   1900 
   1901 	PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
   1902 	psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
   1903 }
   1904 
   1905 void
   1906 ifa_release(struct ifaddr *ifa, struct psref *psref)
   1907 {
   1908 
   1909 	if (ifa == NULL)
   1910 		return;
   1911 
   1912 	psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
   1913 }
   1914 
   1915 bool
   1916 ifa_held(struct ifaddr *ifa)
   1917 {
   1918 
   1919 	return psref_held(&ifa->ifa_psref, ifa_psref_class);
   1920 }
   1921 
   1922 static inline int
   1923 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
   1924 {
   1925 	return sockaddr_cmp(sa1, sa2) == 0;
   1926 }
   1927 
   1928 /*
   1929  * Locate an interface based on a complete address.
   1930  */
   1931 /*ARGSUSED*/
   1932 struct ifaddr *
   1933 ifa_ifwithaddr(const struct sockaddr *addr)
   1934 {
   1935 	struct ifnet *ifp;
   1936 	struct ifaddr *ifa;
   1937 
   1938 	IFNET_READER_FOREACH(ifp) {
   1939 		if (if_is_deactivated(ifp))
   1940 			continue;
   1941 		IFADDR_READER_FOREACH(ifa, ifp) {
   1942 			if (ifa->ifa_addr->sa_family != addr->sa_family)
   1943 				continue;
   1944 			if (equal(addr, ifa->ifa_addr))
   1945 				return ifa;
   1946 			if ((ifp->if_flags & IFF_BROADCAST) &&
   1947 			    ifa->ifa_broadaddr &&
   1948 			    /* IP6 doesn't have broadcast */
   1949 			    ifa->ifa_broadaddr->sa_len != 0 &&
   1950 			    equal(ifa->ifa_broadaddr, addr))
   1951 				return ifa;
   1952 		}
   1953 	}
   1954 	return NULL;
   1955 }
   1956 
   1957 struct ifaddr *
   1958 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1959 {
   1960 	struct ifaddr *ifa;
   1961 	int s = pserialize_read_enter();
   1962 
   1963 	ifa = ifa_ifwithaddr(addr);
   1964 	if (ifa != NULL)
   1965 		ifa_acquire(ifa, psref);
   1966 	pserialize_read_exit(s);
   1967 
   1968 	return ifa;
   1969 }
   1970 
   1971 /*
   1972  * Locate the point to point interface with a given destination address.
   1973  */
   1974 /*ARGSUSED*/
   1975 struct ifaddr *
   1976 ifa_ifwithdstaddr(const struct sockaddr *addr)
   1977 {
   1978 	struct ifnet *ifp;
   1979 	struct ifaddr *ifa;
   1980 
   1981 	IFNET_READER_FOREACH(ifp) {
   1982 		if (if_is_deactivated(ifp))
   1983 			continue;
   1984 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1985 			continue;
   1986 		IFADDR_READER_FOREACH(ifa, ifp) {
   1987 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
   1988 			    ifa->ifa_dstaddr == NULL)
   1989 				continue;
   1990 			if (equal(addr, ifa->ifa_dstaddr))
   1991 				return ifa;
   1992 		}
   1993 	}
   1994 
   1995 	return NULL;
   1996 }
   1997 
   1998 struct ifaddr *
   1999 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
   2000 {
   2001 	struct ifaddr *ifa;
   2002 	int s;
   2003 
   2004 	s = pserialize_read_enter();
   2005 	ifa = ifa_ifwithdstaddr(addr);
   2006 	if (ifa != NULL)
   2007 		ifa_acquire(ifa, psref);
   2008 	pserialize_read_exit(s);
   2009 
   2010 	return ifa;
   2011 }
   2012 
   2013 /*
   2014  * Find an interface on a specific network.  If many, choice
   2015  * is most specific found.
   2016  */
   2017 struct ifaddr *
   2018 ifa_ifwithnet(const struct sockaddr *addr)
   2019 {
   2020 	struct ifnet *ifp;
   2021 	struct ifaddr *ifa, *ifa_maybe = NULL;
   2022 	const struct sockaddr_dl *sdl;
   2023 	u_int af = addr->sa_family;
   2024 	const char *addr_data = addr->sa_data, *cplim;
   2025 
   2026 	if (af == AF_LINK) {
   2027 		sdl = satocsdl(addr);
   2028 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
   2029 		    ifindex2ifnet[sdl->sdl_index] &&
   2030 		    !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
   2031 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
   2032 		}
   2033 	}
   2034 #ifdef NETATALK
   2035 	if (af == AF_APPLETALK) {
   2036 		const struct sockaddr_at *sat, *sat2;
   2037 		sat = (const struct sockaddr_at *)addr;
   2038 		IFNET_READER_FOREACH(ifp) {
   2039 			if (if_is_deactivated(ifp))
   2040 				continue;
   2041 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
   2042 			if (ifa == NULL)
   2043 				continue;
   2044 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
   2045 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
   2046 				return ifa; /* exact match */
   2047 			if (ifa_maybe == NULL) {
   2048 				/* else keep the if with the right range */
   2049 				ifa_maybe = ifa;
   2050 			}
   2051 		}
   2052 		return ifa_maybe;
   2053 	}
   2054 #endif
   2055 	IFNET_READER_FOREACH(ifp) {
   2056 		if (if_is_deactivated(ifp))
   2057 			continue;
   2058 		IFADDR_READER_FOREACH(ifa, ifp) {
   2059 			const char *cp, *cp2, *cp3;
   2060 
   2061 			if (ifa->ifa_addr->sa_family != af ||
   2062 			    ifa->ifa_netmask == NULL)
   2063  next:				continue;
   2064 			cp = addr_data;
   2065 			cp2 = ifa->ifa_addr->sa_data;
   2066 			cp3 = ifa->ifa_netmask->sa_data;
   2067 			cplim = (const char *)ifa->ifa_netmask +
   2068 			    ifa->ifa_netmask->sa_len;
   2069 			while (cp3 < cplim) {
   2070 				if ((*cp++ ^ *cp2++) & *cp3++) {
   2071 					/* want to continue for() loop */
   2072 					goto next;
   2073 				}
   2074 			}
   2075 			if (ifa_maybe == NULL ||
   2076 			    rt_refines(ifa->ifa_netmask,
   2077 			               ifa_maybe->ifa_netmask))
   2078 				ifa_maybe = ifa;
   2079 		}
   2080 	}
   2081 	return ifa_maybe;
   2082 }
   2083 
   2084 struct ifaddr *
   2085 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
   2086 {
   2087 	struct ifaddr *ifa;
   2088 	int s;
   2089 
   2090 	s = pserialize_read_enter();
   2091 	ifa = ifa_ifwithnet(addr);
   2092 	if (ifa != NULL)
   2093 		ifa_acquire(ifa, psref);
   2094 	pserialize_read_exit(s);
   2095 
   2096 	return ifa;
   2097 }
   2098 
   2099 /*
   2100  * Find the interface of the addresss.
   2101  */
   2102 struct ifaddr *
   2103 ifa_ifwithladdr(const struct sockaddr *addr)
   2104 {
   2105 	struct ifaddr *ia;
   2106 
   2107 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
   2108 	    (ia = ifa_ifwithnet(addr)))
   2109 		return ia;
   2110 	return NULL;
   2111 }
   2112 
   2113 struct ifaddr *
   2114 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
   2115 {
   2116 	struct ifaddr *ifa;
   2117 	int s;
   2118 
   2119 	s = pserialize_read_enter();
   2120 	ifa = ifa_ifwithladdr(addr);
   2121 	if (ifa != NULL)
   2122 		ifa_acquire(ifa, psref);
   2123 	pserialize_read_exit(s);
   2124 
   2125 	return ifa;
   2126 }
   2127 
   2128 /*
   2129  * Find an interface using a specific address family
   2130  */
   2131 struct ifaddr *
   2132 ifa_ifwithaf(int af)
   2133 {
   2134 	struct ifnet *ifp;
   2135 	struct ifaddr *ifa = NULL;
   2136 	int s;
   2137 
   2138 	s = pserialize_read_enter();
   2139 	IFNET_READER_FOREACH(ifp) {
   2140 		if (if_is_deactivated(ifp))
   2141 			continue;
   2142 		IFADDR_READER_FOREACH(ifa, ifp) {
   2143 			if (ifa->ifa_addr->sa_family == af)
   2144 				goto out;
   2145 		}
   2146 	}
   2147 out:
   2148 	pserialize_read_exit(s);
   2149 	return ifa;
   2150 }
   2151 
   2152 /*
   2153  * Find an interface address specific to an interface best matching
   2154  * a given address.
   2155  */
   2156 struct ifaddr *
   2157 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
   2158 {
   2159 	struct ifaddr *ifa;
   2160 	const char *cp, *cp2, *cp3;
   2161 	const char *cplim;
   2162 	struct ifaddr *ifa_maybe = 0;
   2163 	u_int af = addr->sa_family;
   2164 
   2165 	if (if_is_deactivated(ifp))
   2166 		return NULL;
   2167 
   2168 	if (af >= AF_MAX)
   2169 		return NULL;
   2170 
   2171 	IFADDR_READER_FOREACH(ifa, ifp) {
   2172 		if (ifa->ifa_addr->sa_family != af)
   2173 			continue;
   2174 		ifa_maybe = ifa;
   2175 		if (ifa->ifa_netmask == NULL) {
   2176 			if (equal(addr, ifa->ifa_addr) ||
   2177 			    (ifa->ifa_dstaddr &&
   2178 			     equal(addr, ifa->ifa_dstaddr)))
   2179 				return ifa;
   2180 			continue;
   2181 		}
   2182 		cp = addr->sa_data;
   2183 		cp2 = ifa->ifa_addr->sa_data;
   2184 		cp3 = ifa->ifa_netmask->sa_data;
   2185 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
   2186 		for (; cp3 < cplim; cp3++) {
   2187 			if ((*cp++ ^ *cp2++) & *cp3)
   2188 				break;
   2189 		}
   2190 		if (cp3 == cplim)
   2191 			return ifa;
   2192 	}
   2193 	return ifa_maybe;
   2194 }
   2195 
   2196 struct ifaddr *
   2197 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
   2198     struct psref *psref)
   2199 {
   2200 	struct ifaddr *ifa;
   2201 	int s;
   2202 
   2203 	s = pserialize_read_enter();
   2204 	ifa = ifaof_ifpforaddr(addr, ifp);
   2205 	if (ifa != NULL)
   2206 		ifa_acquire(ifa, psref);
   2207 	pserialize_read_exit(s);
   2208 
   2209 	return ifa;
   2210 }
   2211 
   2212 /*
   2213  * Default action when installing a route with a Link Level gateway.
   2214  * Lookup an appropriate real ifa to point to.
   2215  * This should be moved to /sys/net/link.c eventually.
   2216  */
   2217 void
   2218 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
   2219 {
   2220 	struct ifaddr *ifa;
   2221 	const struct sockaddr *dst;
   2222 	struct ifnet *ifp;
   2223 	struct psref psref;
   2224 
   2225 	if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
   2226 		return;
   2227 	ifp = rt->rt_ifa->ifa_ifp;
   2228 	dst = rt_getkey(rt);
   2229 	if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
   2230 		rt_replace_ifa(rt, ifa);
   2231 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
   2232 			ifa->ifa_rtrequest(cmd, rt, info);
   2233 		ifa_release(ifa, &psref);
   2234 	}
   2235 }
   2236 
   2237 /*
   2238  * bitmask macros to manage a densely packed link_state change queue.
   2239  * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
   2240  * LINK_STATE_UP(2) we need 2 bits for each state change.
   2241  * As a state change to store is 0, treat all bits set as an unset item.
   2242  */
   2243 #define LQ_ITEM_BITS		2
   2244 #define LQ_ITEM_MASK		((1 << LQ_ITEM_BITS) - 1)
   2245 #define LQ_MASK(i)		(LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
   2246 #define LINK_STATE_UNSET	LQ_ITEM_MASK
   2247 #define LQ_ITEM(q, i)		(((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
   2248 #define LQ_STORE(q, i, v)						      \
   2249 	do {								      \
   2250 		(q) &= ~LQ_MASK((i));					      \
   2251 		(q) |= (v) << (i) * LQ_ITEM_BITS;			      \
   2252 	} while (0 /* CONSTCOND */)
   2253 #define LQ_MAX(q)		((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
   2254 #define LQ_POP(q, v)							      \
   2255 	do {								      \
   2256 		(v) = LQ_ITEM((q), 0);					      \
   2257 		(q) >>= LQ_ITEM_BITS;					      \
   2258 		(q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;  \
   2259 	} while (0 /* CONSTCOND */)
   2260 #define LQ_PUSH(q, v)							      \
   2261 	do {								      \
   2262 		(q) >>= LQ_ITEM_BITS;					      \
   2263 		(q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;		      \
   2264 	} while (0 /* CONSTCOND */)
   2265 #define LQ_FIND_UNSET(q, i)						      \
   2266 	for ((i) = 0; i < LQ_MAX((q)); (i)++) {				      \
   2267 		if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET)		      \
   2268 			break;						      \
   2269 	}
   2270 
   2271 /*
   2272  * Handle a change in the interface link state and
   2273  * queue notifications.
   2274  */
   2275 void
   2276 if_link_state_change(struct ifnet *ifp, int link_state)
   2277 {
   2278 	int idx;
   2279 
   2280 	KASSERTMSG(if_is_link_state_changeable(ifp),
   2281 	    "%s: IFEF_NO_LINK_STATE_CHANGE must not be set, but if_extflags=0x%x",
   2282 	    ifp->if_xname, ifp->if_extflags);
   2283 
   2284 	/* Ensure change is to a valid state */
   2285 	switch (link_state) {
   2286 	case LINK_STATE_UNKNOWN:	/* FALLTHROUGH */
   2287 	case LINK_STATE_DOWN:		/* FALLTHROUGH */
   2288 	case LINK_STATE_UP:
   2289 		break;
   2290 	default:
   2291 #ifdef DEBUG
   2292 		printf("%s: invalid link state %d\n",
   2293 		    ifp->if_xname, link_state);
   2294 #endif
   2295 		return;
   2296 	}
   2297 
   2298 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2299 
   2300 	/* Find the last unset event in the queue. */
   2301 	LQ_FIND_UNSET(ifp->if_link_queue, idx);
   2302 
   2303 	if (idx == 0) {
   2304 		/*
   2305 		 * There is no queue of link state changes.
   2306 		 * As we have the lock we can safely compare against the
   2307 		 * current link state and return if the same.
   2308 		 * Otherwise, if scheduled is true then the interface is being
   2309 		 * detached and the queue is being drained so we need
   2310 		 * to avoid queuing more work.
   2311 		 */
   2312 		 if (ifp->if_link_state == link_state || ifp->if_link_scheduled)
   2313 			goto out;
   2314 	} else {
   2315 		/* Ensure link_state doesn't match the last queued state. */
   2316 		if (LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
   2317 			goto out;
   2318 	}
   2319 
   2320 	/* Handle queue overflow. */
   2321 	if (idx == LQ_MAX(ifp->if_link_queue)) {
   2322 		uint8_t lost;
   2323 
   2324 		/*
   2325 		 * The DOWN state must be protected from being pushed off
   2326 		 * the queue to ensure that userland will always be
   2327 		 * in a sane state.
   2328 		 * Because DOWN is protected, there is no need to protect
   2329 		 * UNKNOWN.
   2330 		 * It should be invalid to change from any other state to
   2331 		 * UNKNOWN anyway ...
   2332 		 */
   2333 		lost = LQ_ITEM(ifp->if_link_queue, 0);
   2334 		LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
   2335 		if (lost == LINK_STATE_DOWN) {
   2336 			lost = LQ_ITEM(ifp->if_link_queue, 0);
   2337 			LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
   2338 		}
   2339 		printf("%s: lost link state change %s\n",
   2340 		    ifp->if_xname,
   2341 		    lost == LINK_STATE_UP ? "UP" :
   2342 		    lost == LINK_STATE_DOWN ? "DOWN" :
   2343 		    "UNKNOWN");
   2344 	} else
   2345 		LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
   2346 
   2347 	if (ifp->if_link_scheduled)
   2348 		goto out;
   2349 
   2350 	ifp->if_link_scheduled = true;
   2351 	workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
   2352 
   2353 out:
   2354 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2355 }
   2356 
   2357 /*
   2358  * Handle interface link state change notifications.
   2359  */
   2360 static void
   2361 if_link_state_change_process(struct ifnet *ifp, int link_state)
   2362 {
   2363 	struct domain *dp;
   2364 	int s = splnet();
   2365 	bool notify;
   2366 
   2367 	KASSERT(!cpu_intr_p());
   2368 
   2369 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2370 
   2371 	/* Ensure the change is still valid. */
   2372 	if (ifp->if_link_state == link_state) {
   2373 		IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2374 		splx(s);
   2375 		return;
   2376 	}
   2377 
   2378 #ifdef DEBUG
   2379 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
   2380 		link_state == LINK_STATE_UP ? "UP" :
   2381 		link_state == LINK_STATE_DOWN ? "DOWN" :
   2382 		"UNKNOWN",
   2383 		ifp->if_link_state == LINK_STATE_UP ? "UP" :
   2384 		ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
   2385 		"UNKNOWN");
   2386 #endif
   2387 
   2388 	/*
   2389 	 * When going from UNKNOWN to UP, we need to mark existing
   2390 	 * addresses as tentative and restart DAD as we may have
   2391 	 * erroneously not found a duplicate.
   2392 	 *
   2393 	 * This needs to happen before rt_ifmsg to avoid a race where
   2394 	 * listeners would have an address and expect it to work right
   2395 	 * away.
   2396 	 */
   2397 	notify = (link_state == LINK_STATE_UP &&
   2398 	    ifp->if_link_state == LINK_STATE_UNKNOWN);
   2399 	ifp->if_link_state = link_state;
   2400 	/* The following routines may sleep so release the spin mutex */
   2401 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2402 
   2403 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2404 	if (notify) {
   2405 		DOMAIN_FOREACH(dp) {
   2406 			if (dp->dom_if_link_state_change != NULL)
   2407 				dp->dom_if_link_state_change(ifp,
   2408 				    LINK_STATE_DOWN);
   2409 		}
   2410 	}
   2411 
   2412 	/* Notify that the link state has changed. */
   2413 	rt_ifmsg(ifp);
   2414 
   2415 #if NCARP > 0
   2416 	if (ifp->if_carp)
   2417 		carp_carpdev_state(ifp);
   2418 #endif
   2419 
   2420 	if (ifp->if_link_state_changed != NULL)
   2421 		ifp->if_link_state_changed(ifp, link_state);
   2422 
   2423 #if NBRIDGE > 0
   2424 	if (ifp->if_bridge != NULL)
   2425 		bridge_calc_link_state(ifp->if_bridge);
   2426 #endif
   2427 
   2428 	DOMAIN_FOREACH(dp) {
   2429 		if (dp->dom_if_link_state_change != NULL)
   2430 			dp->dom_if_link_state_change(ifp, link_state);
   2431 	}
   2432 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2433 	splx(s);
   2434 }
   2435 
   2436 /*
   2437  * Process the interface link state change queue.
   2438  */
   2439 static void
   2440 if_link_state_change_work(struct work *work, void *arg)
   2441 {
   2442 	struct ifnet *ifp = container_of(work, struct ifnet, if_link_work);
   2443 	int s;
   2444 	uint8_t state;
   2445 
   2446 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2447 	s = splnet();
   2448 
   2449 	/* Pop a link state change from the queue and process it.
   2450 	 * If there is nothing to process then if_detach() has been called.
   2451 	 * We keep if_link_scheduled = true so the queue can safely drain
   2452 	 * without more work being queued. */
   2453 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2454 	LQ_POP(ifp->if_link_queue, state);
   2455 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2456 	if (state == LINK_STATE_UNSET)
   2457 		goto out;
   2458 
   2459 	if_link_state_change_process(ifp, state);
   2460 
   2461 	/* If there is a link state change to come, schedule it. */
   2462 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2463 	if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) {
   2464 		ifp->if_link_scheduled = true;
   2465 		workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
   2466 	} else
   2467 		ifp->if_link_scheduled = false;
   2468 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2469 
   2470 out:
   2471 	splx(s);
   2472 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2473 }
   2474 
   2475 /*
   2476  * Used to mark addresses on an interface as DETATCHED or TENTATIVE
   2477  * and thus start Duplicate Address Detection without changing the
   2478  * real link state.
   2479  */
   2480 void
   2481 if_domain_link_state_change(struct ifnet *ifp, int link_state)
   2482 {
   2483 	struct domain *dp;
   2484 	int s = splnet();
   2485 
   2486 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2487 
   2488 	DOMAIN_FOREACH(dp) {
   2489 		if (dp->dom_if_link_state_change != NULL)
   2490 			dp->dom_if_link_state_change(ifp, link_state);
   2491 	}
   2492 
   2493 	splx(s);
   2494 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2495 }
   2496 
   2497 /*
   2498  * Default action when installing a local route on a point-to-point
   2499  * interface.
   2500  */
   2501 void
   2502 p2p_rtrequest(int req, struct rtentry *rt,
   2503     __unused const struct rt_addrinfo *info)
   2504 {
   2505 	struct ifnet *ifp = rt->rt_ifp;
   2506 	struct ifaddr *ifa, *lo0ifa;
   2507 	int s = pserialize_read_enter();
   2508 
   2509 	switch (req) {
   2510 	case RTM_ADD:
   2511 		if ((rt->rt_flags & RTF_LOCAL) == 0)
   2512 			break;
   2513 
   2514 		rt->rt_ifp = lo0ifp;
   2515 
   2516 		if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
   2517 			break;
   2518 
   2519 		IFADDR_READER_FOREACH(ifa, ifp) {
   2520 			if (equal(rt_getkey(rt), ifa->ifa_addr))
   2521 				break;
   2522 		}
   2523 		if (ifa == NULL)
   2524 			break;
   2525 
   2526 		/*
   2527 		 * Ensure lo0 has an address of the same family.
   2528 		 */
   2529 		IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
   2530 			if (lo0ifa->ifa_addr->sa_family ==
   2531 			    ifa->ifa_addr->sa_family)
   2532 				break;
   2533 		}
   2534 		if (lo0ifa == NULL)
   2535 			break;
   2536 
   2537 		/*
   2538 		 * Make sure to set rt->rt_ifa to the interface
   2539 		 * address we are using, otherwise we will have trouble
   2540 		 * with source address selection.
   2541 		 */
   2542 		if (ifa != rt->rt_ifa)
   2543 			rt_replace_ifa(rt, ifa);
   2544 		break;
   2545 	case RTM_DELETE:
   2546 	default:
   2547 		break;
   2548 	}
   2549 	pserialize_read_exit(s);
   2550 }
   2551 
   2552 static void
   2553 _if_down(struct ifnet *ifp)
   2554 {
   2555 	struct ifaddr *ifa;
   2556 	struct domain *dp;
   2557 	int s, bound;
   2558 	struct psref psref;
   2559 
   2560 	ifp->if_flags &= ~IFF_UP;
   2561 	nanotime(&ifp->if_lastchange);
   2562 
   2563 	bound = curlwp_bind();
   2564 	s = pserialize_read_enter();
   2565 	IFADDR_READER_FOREACH(ifa, ifp) {
   2566 		ifa_acquire(ifa, &psref);
   2567 		pserialize_read_exit(s);
   2568 
   2569 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
   2570 
   2571 		s = pserialize_read_enter();
   2572 		ifa_release(ifa, &psref);
   2573 	}
   2574 	pserialize_read_exit(s);
   2575 	curlwp_bindx(bound);
   2576 
   2577 	IFQ_PURGE(&ifp->if_snd);
   2578 #if NCARP > 0
   2579 	if (ifp->if_carp)
   2580 		carp_carpdev_state(ifp);
   2581 #endif
   2582 	rt_ifmsg(ifp);
   2583 	DOMAIN_FOREACH(dp) {
   2584 		if (dp->dom_if_down)
   2585 			dp->dom_if_down(ifp);
   2586 	}
   2587 }
   2588 
   2589 static void
   2590 if_down_deactivated(struct ifnet *ifp)
   2591 {
   2592 
   2593 	KASSERT(if_is_deactivated(ifp));
   2594 	_if_down(ifp);
   2595 }
   2596 
   2597 void
   2598 if_down_locked(struct ifnet *ifp)
   2599 {
   2600 
   2601 	KASSERT(IFNET_LOCKED(ifp));
   2602 	_if_down(ifp);
   2603 }
   2604 
   2605 /*
   2606  * Mark an interface down and notify protocols of
   2607  * the transition.
   2608  * NOTE: must be called at splsoftnet or equivalent.
   2609  */
   2610 void
   2611 if_down(struct ifnet *ifp)
   2612 {
   2613 
   2614 	IFNET_LOCK(ifp);
   2615 	if_down_locked(ifp);
   2616 	IFNET_UNLOCK(ifp);
   2617 }
   2618 
   2619 /*
   2620  * Must be called with holding if_ioctl_lock.
   2621  */
   2622 static void
   2623 if_up_locked(struct ifnet *ifp)
   2624 {
   2625 #ifdef notyet
   2626 	struct ifaddr *ifa;
   2627 #endif
   2628 	struct domain *dp;
   2629 
   2630 	KASSERT(IFNET_LOCKED(ifp));
   2631 
   2632 	KASSERT(!if_is_deactivated(ifp));
   2633 	ifp->if_flags |= IFF_UP;
   2634 	nanotime(&ifp->if_lastchange);
   2635 #ifdef notyet
   2636 	/* this has no effect on IP, and will kill all ISO connections XXX */
   2637 	IFADDR_READER_FOREACH(ifa, ifp)
   2638 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
   2639 #endif
   2640 #if NCARP > 0
   2641 	if (ifp->if_carp)
   2642 		carp_carpdev_state(ifp);
   2643 #endif
   2644 	rt_ifmsg(ifp);
   2645 	DOMAIN_FOREACH(dp) {
   2646 		if (dp->dom_if_up)
   2647 			dp->dom_if_up(ifp);
   2648 	}
   2649 }
   2650 
   2651 /*
   2652  * Handle interface slowtimo timer routine.  Called
   2653  * from softclock, we decrement timer (if set) and
   2654  * call the appropriate interface routine on expiration.
   2655  */
   2656 static void
   2657 if_slowtimo(void *arg)
   2658 {
   2659 	void (*slowtimo)(struct ifnet *);
   2660 	struct ifnet *ifp = arg;
   2661 	int s;
   2662 
   2663 	slowtimo = ifp->if_slowtimo;
   2664 	if (__predict_false(slowtimo == NULL))
   2665 		return;
   2666 
   2667 	s = splnet();
   2668 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
   2669 		(*slowtimo)(ifp);
   2670 
   2671 	splx(s);
   2672 
   2673 	if (__predict_true(ifp->if_slowtimo != NULL))
   2674 		callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
   2675 }
   2676 
   2677 /*
   2678  * Mark an interface up and notify protocols of
   2679  * the transition.
   2680  * NOTE: must be called at splsoftnet or equivalent.
   2681  */
   2682 void
   2683 if_up(struct ifnet *ifp)
   2684 {
   2685 
   2686 	IFNET_LOCK(ifp);
   2687 	if_up_locked(ifp);
   2688 	IFNET_UNLOCK(ifp);
   2689 }
   2690 
   2691 /*
   2692  * Set/clear promiscuous mode on interface ifp based on the truth value
   2693  * of pswitch.  The calls are reference counted so that only the first
   2694  * "on" request actually has an effect, as does the final "off" request.
   2695  * Results are undefined if the "off" and "on" requests are not matched.
   2696  */
   2697 int
   2698 ifpromisc_locked(struct ifnet *ifp, int pswitch)
   2699 {
   2700 	int pcount, ret = 0;
   2701 	u_short nflags;
   2702 
   2703 	KASSERT(IFNET_LOCKED(ifp));
   2704 
   2705 	pcount = ifp->if_pcount;
   2706 	if (pswitch) {
   2707 		/*
   2708 		 * Allow the device to be "placed" into promiscuous
   2709 		 * mode even if it is not configured up.  It will
   2710 		 * consult IFF_PROMISC when it is brought up.
   2711 		 */
   2712 		if (ifp->if_pcount++ != 0)
   2713 			goto out;
   2714 		nflags = ifp->if_flags | IFF_PROMISC;
   2715 	} else {
   2716 		if (--ifp->if_pcount > 0)
   2717 			goto out;
   2718 		nflags = ifp->if_flags & ~IFF_PROMISC;
   2719 	}
   2720 	ret = if_flags_set(ifp, nflags);
   2721 	/* Restore interface state if not successful. */
   2722 	if (ret != 0) {
   2723 		ifp->if_pcount = pcount;
   2724 	}
   2725 out:
   2726 	return ret;
   2727 }
   2728 
   2729 int
   2730 ifpromisc(struct ifnet *ifp, int pswitch)
   2731 {
   2732 	int e;
   2733 
   2734 	IFNET_LOCK(ifp);
   2735 	e = ifpromisc_locked(ifp, pswitch);
   2736 	IFNET_UNLOCK(ifp);
   2737 
   2738 	return e;
   2739 }
   2740 
   2741 /*
   2742  * Map interface name to
   2743  * interface structure pointer.
   2744  */
   2745 struct ifnet *
   2746 ifunit(const char *name)
   2747 {
   2748 	struct ifnet *ifp;
   2749 	const char *cp = name;
   2750 	u_int unit = 0;
   2751 	u_int i;
   2752 	int s;
   2753 
   2754 	/*
   2755 	 * If the entire name is a number, treat it as an ifindex.
   2756 	 */
   2757 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2758 		unit = unit * 10 + (*cp - '0');
   2759 	}
   2760 
   2761 	/*
   2762 	 * If the number took all of the name, then it's a valid ifindex.
   2763 	 */
   2764 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2765 		return if_byindex(unit);
   2766 
   2767 	ifp = NULL;
   2768 	s = pserialize_read_enter();
   2769 	IFNET_READER_FOREACH(ifp) {
   2770 		if (if_is_deactivated(ifp))
   2771 			continue;
   2772 	 	if (strcmp(ifp->if_xname, name) == 0)
   2773 			goto out;
   2774 	}
   2775 out:
   2776 	pserialize_read_exit(s);
   2777 	return ifp;
   2778 }
   2779 
   2780 /*
   2781  * Get a reference of an ifnet object by an interface name.
   2782  * The returned reference is protected by psref(9). The caller
   2783  * must release a returned reference by if_put after use.
   2784  */
   2785 struct ifnet *
   2786 if_get(const char *name, struct psref *psref)
   2787 {
   2788 	struct ifnet *ifp;
   2789 	const char *cp = name;
   2790 	u_int unit = 0;
   2791 	u_int i;
   2792 	int s;
   2793 
   2794 	/*
   2795 	 * If the entire name is a number, treat it as an ifindex.
   2796 	 */
   2797 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2798 		unit = unit * 10 + (*cp - '0');
   2799 	}
   2800 
   2801 	/*
   2802 	 * If the number took all of the name, then it's a valid ifindex.
   2803 	 */
   2804 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2805 		return if_get_byindex(unit, psref);
   2806 
   2807 	ifp = NULL;
   2808 	s = pserialize_read_enter();
   2809 	IFNET_READER_FOREACH(ifp) {
   2810 		if (if_is_deactivated(ifp))
   2811 			continue;
   2812 		if (strcmp(ifp->if_xname, name) == 0) {
   2813 			PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
   2814 			psref_acquire(psref, &ifp->if_psref,
   2815 			    ifnet_psref_class);
   2816 			goto out;
   2817 		}
   2818 	}
   2819 out:
   2820 	pserialize_read_exit(s);
   2821 	return ifp;
   2822 }
   2823 
   2824 /*
   2825  * Release a reference of an ifnet object given by if_get, if_get_byindex
   2826  * or if_get_bylla.
   2827  */
   2828 void
   2829 if_put(const struct ifnet *ifp, struct psref *psref)
   2830 {
   2831 
   2832 	if (ifp == NULL)
   2833 		return;
   2834 
   2835 	psref_release(psref, &ifp->if_psref, ifnet_psref_class);
   2836 }
   2837 
   2838 /*
   2839  * Return ifp having idx. Return NULL if not found.  Normally if_byindex
   2840  * should be used.
   2841  */
   2842 ifnet_t *
   2843 _if_byindex(u_int idx)
   2844 {
   2845 
   2846 	return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
   2847 }
   2848 
   2849 /*
   2850  * Return ifp having idx. Return NULL if not found or the found ifp is
   2851  * already deactivated.
   2852  */
   2853 ifnet_t *
   2854 if_byindex(u_int idx)
   2855 {
   2856 	ifnet_t *ifp;
   2857 
   2858 	ifp = _if_byindex(idx);
   2859 	if (ifp != NULL && if_is_deactivated(ifp))
   2860 		ifp = NULL;
   2861 	return ifp;
   2862 }
   2863 
   2864 /*
   2865  * Get a reference of an ifnet object by an interface index.
   2866  * The returned reference is protected by psref(9). The caller
   2867  * must release a returned reference by if_put after use.
   2868  */
   2869 ifnet_t *
   2870 if_get_byindex(u_int idx, struct psref *psref)
   2871 {
   2872 	ifnet_t *ifp;
   2873 	int s;
   2874 
   2875 	s = pserialize_read_enter();
   2876 	ifp = if_byindex(idx);
   2877 	if (__predict_true(ifp != NULL)) {
   2878 		PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
   2879 		psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2880 	}
   2881 	pserialize_read_exit(s);
   2882 
   2883 	return ifp;
   2884 }
   2885 
   2886 ifnet_t *
   2887 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
   2888 {
   2889 	ifnet_t *ifp;
   2890 	int s;
   2891 
   2892 	s = pserialize_read_enter();
   2893 	IFNET_READER_FOREACH(ifp) {
   2894 		if (if_is_deactivated(ifp))
   2895 			continue;
   2896 		if (ifp->if_addrlen != lla_len)
   2897 			continue;
   2898 		if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
   2899 			psref_acquire(psref, &ifp->if_psref,
   2900 			    ifnet_psref_class);
   2901 			break;
   2902 		}
   2903 	}
   2904 	pserialize_read_exit(s);
   2905 
   2906 	return ifp;
   2907 }
   2908 
   2909 /*
   2910  * Note that it's safe only if the passed ifp is guaranteed to not be freed,
   2911  * for example using pserialize or the ifp is already held or some other
   2912  * object is held which guarantes the ifp to not be freed indirectly.
   2913  */
   2914 void
   2915 if_acquire(struct ifnet *ifp, struct psref *psref)
   2916 {
   2917 
   2918 	KASSERT(ifp->if_index != 0);
   2919 	psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   2920 }
   2921 
   2922 bool
   2923 if_held(struct ifnet *ifp)
   2924 {
   2925 
   2926 	return psref_held(&ifp->if_psref, ifnet_psref_class);
   2927 }
   2928 
   2929 /*
   2930  * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
   2931  * Check the tunnel nesting count.
   2932  * Return > 0, if tunnel nesting count is more than limit.
   2933  * Return 0, if tunnel nesting count is equal or less than limit.
   2934  */
   2935 int
   2936 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
   2937 {
   2938 	struct m_tag *mtag;
   2939 	int *count;
   2940 
   2941 	mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO);
   2942 	if (mtag != NULL) {
   2943 		count = (int *)(mtag + 1);
   2944 		if (++(*count) > limit) {
   2945 			log(LOG_NOTICE,
   2946 			    "%s: recursively called too many times(%d)\n",
   2947 			    ifp->if_xname, *count);
   2948 			return EIO;
   2949 		}
   2950 	} else {
   2951 		mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
   2952 		    M_NOWAIT);
   2953 		if (mtag != NULL) {
   2954 			m_tag_prepend(m, mtag);
   2955 			count = (int *)(mtag + 1);
   2956 			*count = 0;
   2957 		} else {
   2958 			log(LOG_DEBUG,
   2959 			    "%s: m_tag_get() failed, recursion calls are not prevented.\n",
   2960 			    ifp->if_xname);
   2961 		}
   2962 	}
   2963 
   2964 	return 0;
   2965 }
   2966 
   2967 static void
   2968 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
   2969 {
   2970 	struct tunnel_ro *tro = p;
   2971 
   2972 	tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP);
   2973 	tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   2974 }
   2975 
   2976 static void
   2977 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
   2978 {
   2979 	struct tunnel_ro *tro = p;
   2980 
   2981 	rtcache_free(tro->tr_ro);
   2982 	kmem_free(tro->tr_ro, sizeof(*tro->tr_ro));
   2983 
   2984 	mutex_obj_free(tro->tr_lock);
   2985 }
   2986 
   2987 percpu_t *
   2988 if_tunnel_alloc_ro_percpu(void)
   2989 {
   2990 
   2991 	return percpu_create(sizeof(struct tunnel_ro),
   2992 	    if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL);
   2993 }
   2994 
   2995 void
   2996 if_tunnel_free_ro_percpu(percpu_t *ro_percpu)
   2997 {
   2998 
   2999 	percpu_free(ro_percpu, sizeof(struct tunnel_ro));
   3000 }
   3001 
   3002 
   3003 static void
   3004 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
   3005 {
   3006 	struct tunnel_ro *tro = p;
   3007 
   3008 	mutex_enter(tro->tr_lock);
   3009 	rtcache_free(tro->tr_ro);
   3010 	mutex_exit(tro->tr_lock);
   3011 }
   3012 
   3013 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu)
   3014 {
   3015 
   3016 	percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL);
   3017 }
   3018 
   3019 void
   3020 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats)
   3021 {
   3022 
   3023 	/* Collet the volatile stats first; this zeros *ifi. */
   3024 	if_stats_to_if_data(ifp, ifi, zero_stats);
   3025 
   3026 	ifi->ifi_type = ifp->if_type;
   3027 	ifi->ifi_addrlen = ifp->if_addrlen;
   3028 	ifi->ifi_hdrlen = ifp->if_hdrlen;
   3029 	ifi->ifi_link_state = ifp->if_link_state;
   3030 	ifi->ifi_mtu = ifp->if_mtu;
   3031 	ifi->ifi_metric = ifp->if_metric;
   3032 	ifi->ifi_baudrate = ifp->if_baudrate;
   3033 	ifi->ifi_lastchange = ifp->if_lastchange;
   3034 }
   3035 
   3036 /* common */
   3037 int
   3038 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
   3039 {
   3040 	int s;
   3041 	struct ifreq *ifr;
   3042 	struct ifcapreq *ifcr;
   3043 	struct ifdatareq *ifdr;
   3044 	unsigned short flags;
   3045 	char *descr;
   3046 	int error;
   3047 
   3048 	switch (cmd) {
   3049 	case SIOCSIFCAP:
   3050 		ifcr = data;
   3051 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
   3052 			return EINVAL;
   3053 
   3054 		if (ifcr->ifcr_capenable == ifp->if_capenable)
   3055 			return 0;
   3056 
   3057 		ifp->if_capenable = ifcr->ifcr_capenable;
   3058 
   3059 		/* Pre-compute the checksum flags mask. */
   3060 		ifp->if_csum_flags_tx = 0;
   3061 		ifp->if_csum_flags_rx = 0;
   3062 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
   3063 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
   3064 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   3065 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
   3066 
   3067 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx)
   3068 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
   3069 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
   3070 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
   3071 
   3072 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx)
   3073 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
   3074 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
   3075 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
   3076 
   3077 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx)
   3078 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
   3079 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx)
   3080 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
   3081 
   3082 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx)
   3083 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
   3084 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx)
   3085 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
   3086 
   3087 		if (ifp->if_capenable & IFCAP_TSOv4)
   3088 			ifp->if_csum_flags_tx |= M_CSUM_TSOv4;
   3089 		if (ifp->if_capenable & IFCAP_TSOv6)
   3090 			ifp->if_csum_flags_tx |= M_CSUM_TSOv6;
   3091 
   3092 #if NBRIDGE > 0
   3093 		if (ifp->if_bridge != NULL)
   3094 			bridge_calc_csum_flags(ifp->if_bridge);
   3095 #endif
   3096 
   3097 		if (ifp->if_flags & IFF_UP)
   3098 			return ENETRESET;
   3099 		return 0;
   3100 	case SIOCSIFFLAGS:
   3101 		ifr = data;
   3102 		/*
   3103 		 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
   3104 		 * and if_down aren't MP-safe yet, so we must hold the lock.
   3105 		 */
   3106 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   3107 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
   3108 			s = splsoftnet();
   3109 			if_down_locked(ifp);
   3110 			splx(s);
   3111 		}
   3112 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
   3113 			s = splsoftnet();
   3114 			if_up_locked(ifp);
   3115 			splx(s);
   3116 		}
   3117 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   3118 		flags = (ifp->if_flags & IFF_CANTCHANGE) |
   3119 		    (ifr->ifr_flags &~ IFF_CANTCHANGE);
   3120 		if (ifp->if_flags != flags) {
   3121 			ifp->if_flags = flags;
   3122 			/* Notify that the flags have changed. */
   3123 			rt_ifmsg(ifp);
   3124 		}
   3125 		break;
   3126 	case SIOCGIFFLAGS:
   3127 		ifr = data;
   3128 		ifr->ifr_flags = ifp->if_flags;
   3129 		break;
   3130 
   3131 	case SIOCGIFMETRIC:
   3132 		ifr = data;
   3133 		ifr->ifr_metric = ifp->if_metric;
   3134 		break;
   3135 
   3136 	case SIOCGIFMTU:
   3137 		ifr = data;
   3138 		ifr->ifr_mtu = ifp->if_mtu;
   3139 		break;
   3140 
   3141 	case SIOCGIFDLT:
   3142 		ifr = data;
   3143 		ifr->ifr_dlt = ifp->if_dlt;
   3144 		break;
   3145 
   3146 	case SIOCGIFCAP:
   3147 		ifcr = data;
   3148 		ifcr->ifcr_capabilities = ifp->if_capabilities;
   3149 		ifcr->ifcr_capenable = ifp->if_capenable;
   3150 		break;
   3151 
   3152 	case SIOCSIFMETRIC:
   3153 		ifr = data;
   3154 		ifp->if_metric = ifr->ifr_metric;
   3155 		break;
   3156 
   3157 	case SIOCGIFDATA:
   3158 		ifdr = data;
   3159 		if_export_if_data(ifp, &ifdr->ifdr_data, false);
   3160 		break;
   3161 
   3162 	case SIOCGIFINDEX:
   3163 		ifr = data;
   3164 		ifr->ifr_index = ifp->if_index;
   3165 		break;
   3166 
   3167 	case SIOCZIFDATA:
   3168 		ifdr = data;
   3169 		if_export_if_data(ifp, &ifdr->ifdr_data, true);
   3170 		getnanotime(&ifp->if_lastchange);
   3171 		break;
   3172 	case SIOCSIFMTU:
   3173 		ifr = data;
   3174 		if (ifp->if_mtu == ifr->ifr_mtu)
   3175 			break;
   3176 		ifp->if_mtu = ifr->ifr_mtu;
   3177 		return ENETRESET;
   3178 	case SIOCSIFDESCR:
   3179 		error = kauth_authorize_network(curlwp->l_cred,
   3180 		    KAUTH_NETWORK_INTERFACE,
   3181 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
   3182 		    NULL);
   3183 		if (error)
   3184 			return error;
   3185 
   3186 		ifr = data;
   3187 
   3188 		if (ifr->ifr_buflen > IFDESCRSIZE)
   3189 			return ENAMETOOLONG;
   3190 
   3191 		if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) {
   3192 			/* unset description */
   3193 			descr = NULL;
   3194 		} else {
   3195 			descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP);
   3196 			/*
   3197 			 * copy (IFDESCRSIZE - 1) bytes to ensure
   3198 			 * terminating nul
   3199 			 */
   3200 			error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1);
   3201 			if (error) {
   3202 				kmem_free(descr, IFDESCRSIZE);
   3203 				return error;
   3204 			}
   3205 		}
   3206 
   3207 		if (ifp->if_description != NULL)
   3208 			kmem_free(ifp->if_description, IFDESCRSIZE);
   3209 
   3210 		ifp->if_description = descr;
   3211 		break;
   3212 
   3213  	case SIOCGIFDESCR:
   3214 		ifr = data;
   3215 		descr = ifp->if_description;
   3216 
   3217 		if (descr == NULL)
   3218 			return ENOMSG;
   3219 
   3220 		if (ifr->ifr_buflen < IFDESCRSIZE)
   3221 			return EINVAL;
   3222 
   3223 		error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE);
   3224 		if (error)
   3225 			return error;
   3226  		break;
   3227 
   3228 	default:
   3229 		return ENOTTY;
   3230 	}
   3231 	return 0;
   3232 }
   3233 
   3234 int
   3235 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
   3236 {
   3237 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
   3238 	struct ifaddr *ifa;
   3239 	const struct sockaddr *any, *sa;
   3240 	union {
   3241 		struct sockaddr sa;
   3242 		struct sockaddr_storage ss;
   3243 	} u, v;
   3244 	int s, error = 0;
   3245 
   3246 	switch (cmd) {
   3247 	case SIOCSIFADDRPREF:
   3248 		error = kauth_authorize_network(curlwp->l_cred,
   3249 		    KAUTH_NETWORK_INTERFACE,
   3250 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
   3251 		    NULL);
   3252 		if (error)
   3253 			return error;
   3254 		break;
   3255 	case SIOCGIFADDRPREF:
   3256 		break;
   3257 	default:
   3258 		return EOPNOTSUPP;
   3259 	}
   3260 
   3261 	/* sanity checks */
   3262 	if (data == NULL || ifp == NULL) {
   3263 		panic("invalid argument to %s", __func__);
   3264 		/*NOTREACHED*/
   3265 	}
   3266 
   3267 	/* address must be specified on ADD and DELETE */
   3268 	sa = sstocsa(&ifap->ifap_addr);
   3269 	if (sa->sa_family != sofamily(so))
   3270 		return EINVAL;
   3271 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
   3272 		return EINVAL;
   3273 
   3274 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
   3275 
   3276 	s = pserialize_read_enter();
   3277 	IFADDR_READER_FOREACH(ifa, ifp) {
   3278 		if (ifa->ifa_addr->sa_family != sa->sa_family)
   3279 			continue;
   3280 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
   3281 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
   3282 			break;
   3283 	}
   3284 	if (ifa == NULL) {
   3285 		error = EADDRNOTAVAIL;
   3286 		goto out;
   3287 	}
   3288 
   3289 	switch (cmd) {
   3290 	case SIOCSIFADDRPREF:
   3291 		ifa->ifa_preference = ifap->ifap_preference;
   3292 		goto out;
   3293 	case SIOCGIFADDRPREF:
   3294 		/* fill in the if_laddrreq structure */
   3295 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
   3296 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
   3297 		ifap->ifap_preference = ifa->ifa_preference;
   3298 		goto out;
   3299 	default:
   3300 		error = EOPNOTSUPP;
   3301 	}
   3302 out:
   3303 	pserialize_read_exit(s);
   3304 	return error;
   3305 }
   3306 
   3307 /*
   3308  * Interface ioctls.
   3309  */
   3310 static int
   3311 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
   3312 {
   3313 	struct ifnet *ifp;
   3314 	struct ifreq *ifr;
   3315 	int error = 0;
   3316 	u_long ocmd = cmd;
   3317 	u_short oif_flags;
   3318 	struct ifreq ifrb;
   3319 	struct oifreq *oifr = NULL;
   3320 	int r;
   3321 	struct psref psref;
   3322 	int bound;
   3323 	bool do_if43_post = false;
   3324 	bool do_ifm80_post = false;
   3325 
   3326 	switch (cmd) {
   3327 	case SIOCGIFCONF:
   3328 		return ifconf(cmd, data);
   3329 	case SIOCINITIFADDR:
   3330 		return EPERM;
   3331 	default:
   3332 		MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(),
   3333 		    error);
   3334 		if (error != ENOSYS)
   3335 			return error;
   3336 		MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data),
   3337 		    enosys(), error);
   3338 		if (error != ENOSYS)
   3339 			return error;
   3340 		error = 0;
   3341 		break;
   3342 	}
   3343 
   3344 	ifr = data;
   3345 	/* Pre-conversion */
   3346 	MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error);
   3347 	if (cmd != ocmd) {
   3348 		oifr = data;
   3349 		data = ifr = &ifrb;
   3350 		IFREQO2N_43(oifr, ifr);
   3351 		do_if43_post = true;
   3352 	}
   3353 	MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post),
   3354 	    enosys(), error);
   3355 
   3356 	switch (cmd) {
   3357 	case SIOCIFCREATE:
   3358 	case SIOCIFDESTROY:
   3359 		bound = curlwp_bind();
   3360 		if (l != NULL) {
   3361 			ifp = if_get(ifr->ifr_name, &psref);
   3362 			error = kauth_authorize_network(l->l_cred,
   3363 			    KAUTH_NETWORK_INTERFACE,
   3364 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3365 			    KAUTH_ARG(cmd), NULL);
   3366 			if (ifp != NULL)
   3367 				if_put(ifp, &psref);
   3368 			if (error != 0) {
   3369 				curlwp_bindx(bound);
   3370 				return error;
   3371 			}
   3372 		}
   3373 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
   3374 		mutex_enter(&if_clone_mtx);
   3375 		r = (cmd == SIOCIFCREATE) ?
   3376 			if_clone_create(ifr->ifr_name) :
   3377 			if_clone_destroy(ifr->ifr_name);
   3378 		mutex_exit(&if_clone_mtx);
   3379 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   3380 		curlwp_bindx(bound);
   3381 		return r;
   3382 
   3383 	case SIOCIFGCLONERS:
   3384 		{
   3385 			struct if_clonereq *req = (struct if_clonereq *)data;
   3386 			return if_clone_list(req->ifcr_count, req->ifcr_buffer,
   3387 			    &req->ifcr_total);
   3388 		}
   3389 	}
   3390 
   3391 	bound = curlwp_bind();
   3392 	ifp = if_get(ifr->ifr_name, &psref);
   3393 	if (ifp == NULL) {
   3394 		curlwp_bindx(bound);
   3395 		return ENXIO;
   3396 	}
   3397 
   3398 	switch (cmd) {
   3399 	case SIOCALIFADDR:
   3400 	case SIOCDLIFADDR:
   3401 	case SIOCSIFADDRPREF:
   3402 	case SIOCSIFFLAGS:
   3403 	case SIOCSIFCAP:
   3404 	case SIOCSIFMETRIC:
   3405 	case SIOCZIFDATA:
   3406 	case SIOCSIFMTU:
   3407 	case SIOCSIFPHYADDR:
   3408 	case SIOCDIFPHYADDR:
   3409 #ifdef INET6
   3410 	case SIOCSIFPHYADDR_IN6:
   3411 #endif
   3412 	case SIOCSLIFPHYADDR:
   3413 	case SIOCADDMULTI:
   3414 	case SIOCDELMULTI:
   3415 	case SIOCSETHERCAP:
   3416 	case SIOCSIFMEDIA:
   3417 	case SIOCSDRVSPEC:
   3418 	case SIOCG80211:
   3419 	case SIOCS80211:
   3420 	case SIOCS80211NWID:
   3421 	case SIOCS80211NWKEY:
   3422 	case SIOCS80211POWER:
   3423 	case SIOCS80211BSSID:
   3424 	case SIOCS80211CHANNEL:
   3425 	case SIOCSLINKSTR:
   3426 		if (l != NULL) {
   3427 			error = kauth_authorize_network(l->l_cred,
   3428 			    KAUTH_NETWORK_INTERFACE,
   3429 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3430 			    KAUTH_ARG(cmd), NULL);
   3431 			if (error != 0)
   3432 				goto out;
   3433 		}
   3434 	}
   3435 
   3436 	oif_flags = ifp->if_flags;
   3437 
   3438 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
   3439 	IFNET_LOCK(ifp);
   3440 
   3441 	error = (*ifp->if_ioctl)(ifp, cmd, data);
   3442 	if (error != ENOTTY)
   3443 		;
   3444 	else if (so->so_proto == NULL)
   3445 		error = EOPNOTSUPP;
   3446 	else {
   3447 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   3448 		MODULE_HOOK_CALL(if_ifioctl_43_hook,
   3449 			     (so, ocmd, cmd, data, l), enosys(), error);
   3450 		if (error == ENOSYS)
   3451 			error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
   3452 			    cmd, data, ifp);
   3453 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   3454 	}
   3455 
   3456 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
   3457 		if ((ifp->if_flags & IFF_UP) != 0) {
   3458 			int s = splsoftnet();
   3459 			if_up_locked(ifp);
   3460 			splx(s);
   3461 		}
   3462 	}
   3463 
   3464 	/* Post-conversion */
   3465 	if (do_ifm80_post && (error == 0))
   3466 		MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd),
   3467 		    enosys(), error);
   3468 	if (do_if43_post)
   3469 		IFREQN2O_43(oifr, ifr);
   3470 
   3471 	IFNET_UNLOCK(ifp);
   3472 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
   3473 out:
   3474 	if_put(ifp, &psref);
   3475 	curlwp_bindx(bound);
   3476 	return error;
   3477 }
   3478 
   3479 /*
   3480  * Return interface configuration
   3481  * of system.  List may be used
   3482  * in later ioctl's (above) to get
   3483  * other information.
   3484  *
   3485  * Each record is a struct ifreq.  Before the addition of
   3486  * sockaddr_storage, the API rule was that sockaddr flavors that did
   3487  * not fit would extend beyond the struct ifreq, with the next struct
   3488  * ifreq starting sa_len beyond the struct sockaddr.  Because the
   3489  * union in struct ifreq includes struct sockaddr_storage, every kind
   3490  * of sockaddr must fit.  Thus, there are no longer any overlength
   3491  * records.
   3492  *
   3493  * Records are added to the user buffer if they fit, and ifc_len is
   3494  * adjusted to the length that was written.  Thus, the user is only
   3495  * assured of getting the complete list if ifc_len on return is at
   3496  * least sizeof(struct ifreq) less than it was on entry.
   3497  *
   3498  * If the user buffer pointer is NULL, this routine copies no data and
   3499  * returns the amount of space that would be needed.
   3500  *
   3501  * Invariants:
   3502  * ifrp points to the next part of the user's buffer to be used.  If
   3503  * ifrp != NULL, space holds the number of bytes remaining that we may
   3504  * write at ifrp.  Otherwise, space holds the number of bytes that
   3505  * would have been written had there been adequate space.
   3506  */
   3507 /*ARGSUSED*/
   3508 static int
   3509 ifconf(u_long cmd, void *data)
   3510 {
   3511 	struct ifconf *ifc = (struct ifconf *)data;
   3512 	struct ifnet *ifp;
   3513 	struct ifaddr *ifa;
   3514 	struct ifreq ifr, *ifrp = NULL;
   3515 	int space = 0, error = 0;
   3516 	const int sz = (int)sizeof(struct ifreq);
   3517 	const bool docopy = ifc->ifc_req != NULL;
   3518 	int s;
   3519 	int bound;
   3520 	struct psref psref;
   3521 
   3522 	if (docopy) {
   3523 		if (ifc->ifc_len < 0)
   3524 			return EINVAL;
   3525 
   3526 		space = ifc->ifc_len;
   3527 		ifrp = ifc->ifc_req;
   3528 	}
   3529 	memset(&ifr, 0, sizeof(ifr));
   3530 
   3531 	bound = curlwp_bind();
   3532 	s = pserialize_read_enter();
   3533 	IFNET_READER_FOREACH(ifp) {
   3534 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   3535 		pserialize_read_exit(s);
   3536 
   3537 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
   3538 		    sizeof(ifr.ifr_name));
   3539 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
   3540 			error = ENAMETOOLONG;
   3541 			goto release_exit;
   3542 		}
   3543 		if (IFADDR_READER_EMPTY(ifp)) {
   3544 			/* Interface with no addresses - send zero sockaddr. */
   3545 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
   3546 			if (!docopy) {
   3547 				space += sz;
   3548 				goto next;
   3549 			}
   3550 			if (space >= sz) {
   3551 				error = copyout(&ifr, ifrp, sz);
   3552 				if (error != 0)
   3553 					goto release_exit;
   3554 				ifrp++;
   3555 				space -= sz;
   3556 			}
   3557 		}
   3558 
   3559 		s = pserialize_read_enter();
   3560 		IFADDR_READER_FOREACH(ifa, ifp) {
   3561 			struct sockaddr *sa = ifa->ifa_addr;
   3562 			/* all sockaddrs must fit in sockaddr_storage */
   3563 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
   3564 
   3565 			if (!docopy) {
   3566 				space += sz;
   3567 				continue;
   3568 			}
   3569 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
   3570 			pserialize_read_exit(s);
   3571 
   3572 			if (space >= sz) {
   3573 				error = copyout(&ifr, ifrp, sz);
   3574 				if (error != 0)
   3575 					goto release_exit;
   3576 				ifrp++; space -= sz;
   3577 			}
   3578 			s = pserialize_read_enter();
   3579 		}
   3580 		pserialize_read_exit(s);
   3581 
   3582         next:
   3583 		s = pserialize_read_enter();
   3584 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3585 	}
   3586 	pserialize_read_exit(s);
   3587 	curlwp_bindx(bound);
   3588 
   3589 	if (docopy) {
   3590 		KASSERT(0 <= space && space <= ifc->ifc_len);
   3591 		ifc->ifc_len -= space;
   3592 	} else {
   3593 		KASSERT(space >= 0);
   3594 		ifc->ifc_len = space;
   3595 	}
   3596 	return (0);
   3597 
   3598 release_exit:
   3599 	psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3600 	curlwp_bindx(bound);
   3601 	return error;
   3602 }
   3603 
   3604 int
   3605 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
   3606 {
   3607 	uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
   3608 	struct ifreq ifrb;
   3609 	struct oifreq *oifr = NULL;
   3610 	u_long ocmd = cmd;
   3611 	int hook;
   3612 
   3613 	MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
   3614 	if (hook != ENOSYS) {
   3615 		if (cmd != ocmd) {
   3616 			oifr = (struct oifreq *)(void *)ifr;
   3617 			ifr = &ifrb;
   3618 			IFREQO2N_43(oifr, ifr);
   3619 				len = sizeof(oifr->ifr_addr);
   3620 		}
   3621 	}
   3622 
   3623 	if (len < sa->sa_len)
   3624 		return EFBIG;
   3625 
   3626 	memset(&ifr->ifr_addr, 0, len);
   3627 	sockaddr_copy(&ifr->ifr_addr, len, sa);
   3628 
   3629 	if (cmd != ocmd)
   3630 		IFREQN2O_43(oifr, ifr);
   3631 	return 0;
   3632 }
   3633 
   3634 /*
   3635  * wrapper function for the drivers which doesn't have if_transmit().
   3636  */
   3637 static int
   3638 if_transmit(struct ifnet *ifp, struct mbuf *m)
   3639 {
   3640 	int s, error;
   3641 	size_t pktlen = m->m_pkthdr.len;
   3642 	bool mcast = (m->m_flags & M_MCAST) != 0;
   3643 
   3644 	s = splnet();
   3645 
   3646 	IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3647 	if (error != 0) {
   3648 		/* mbuf is already freed */
   3649 		goto out;
   3650 	}
   3651 
   3652 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   3653 	if_statadd_ref(nsr, if_obytes, pktlen);
   3654 	if (mcast)
   3655 		if_statinc_ref(nsr, if_omcasts);
   3656 	IF_STAT_PUTREF(ifp);
   3657 
   3658 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
   3659 		if_start_lock(ifp);
   3660 out:
   3661 	splx(s);
   3662 
   3663 	return error;
   3664 }
   3665 
   3666 int
   3667 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
   3668 {
   3669 	int error;
   3670 
   3671 	kmsan_check_mbuf(m);
   3672 
   3673 #ifdef ALTQ
   3674 	KERNEL_LOCK(1, NULL);
   3675 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   3676 		error = if_transmit(ifp, m);
   3677 		KERNEL_UNLOCK_ONE(NULL);
   3678 	} else {
   3679 		KERNEL_UNLOCK_ONE(NULL);
   3680 		error = (*ifp->if_transmit)(ifp, m);
   3681 		/* mbuf is alredy freed */
   3682 	}
   3683 #else /* !ALTQ */
   3684 	error = (*ifp->if_transmit)(ifp, m);
   3685 	/* mbuf is alredy freed */
   3686 #endif /* !ALTQ */
   3687 
   3688 	return error;
   3689 }
   3690 
   3691 /*
   3692  * Queue message on interface, and start output if interface
   3693  * not yet active.
   3694  */
   3695 int
   3696 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
   3697 {
   3698 
   3699 	return if_transmit_lock(ifp, m);
   3700 }
   3701 
   3702 /*
   3703  * Queue message on interface, possibly using a second fast queue
   3704  */
   3705 int
   3706 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
   3707 {
   3708 	int error = 0;
   3709 
   3710 	if (ifq != NULL
   3711 #ifdef ALTQ
   3712 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
   3713 #endif
   3714 	    ) {
   3715 		if (IF_QFULL(ifq)) {
   3716 			IF_DROP(&ifp->if_snd);
   3717 			m_freem(m);
   3718 			if (error == 0)
   3719 				error = ENOBUFS;
   3720 		} else
   3721 			IF_ENQUEUE(ifq, m);
   3722 	} else
   3723 		IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3724 	if (error != 0) {
   3725 		if_statinc(ifp, if_oerrors);
   3726 		return error;
   3727 	}
   3728 	return 0;
   3729 }
   3730 
   3731 int
   3732 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
   3733 {
   3734 	int rc;
   3735 
   3736 	KASSERT(IFNET_LOCKED(ifp));
   3737 	if (ifp->if_initaddr != NULL)
   3738 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
   3739 	else if (src ||
   3740 	         (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
   3741 		rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
   3742 
   3743 	return rc;
   3744 }
   3745 
   3746 int
   3747 if_do_dad(struct ifnet *ifp)
   3748 {
   3749 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   3750 		return 0;
   3751 
   3752 	switch (ifp->if_type) {
   3753 	case IFT_FAITH:
   3754 		/*
   3755 		 * These interfaces do not have the IFF_LOOPBACK flag,
   3756 		 * but loop packets back.  We do not have to do DAD on such
   3757 		 * interfaces.  We should even omit it, because loop-backed
   3758 		 * responses would confuse the DAD procedure.
   3759 		 */
   3760 		return 0;
   3761 	default:
   3762 		/*
   3763 		 * Our DAD routine requires the interface up and running.
   3764 		 * However, some interfaces can be up before the RUNNING
   3765 		 * status.  Additionaly, users may try to assign addresses
   3766 		 * before the interface becomes up (or running).
   3767 		 * We simply skip DAD in such a case as a work around.
   3768 		 * XXX: we should rather mark "tentative" on such addresses,
   3769 		 * and do DAD after the interface becomes ready.
   3770 		 */
   3771 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   3772 		    (IFF_UP | IFF_RUNNING))
   3773 			return 0;
   3774 
   3775 		return 1;
   3776 	}
   3777 }
   3778 
   3779 int
   3780 if_flags_set(ifnet_t *ifp, const u_short flags)
   3781 {
   3782 	int rc;
   3783 
   3784 	KASSERT(IFNET_LOCKED(ifp));
   3785 
   3786 	if (ifp->if_setflags != NULL)
   3787 		rc = (*ifp->if_setflags)(ifp, flags);
   3788 	else {
   3789 		u_short cantflags, chgdflags;
   3790 		struct ifreq ifr;
   3791 
   3792 		chgdflags = ifp->if_flags ^ flags;
   3793 		cantflags = chgdflags & IFF_CANTCHANGE;
   3794 
   3795 		if (cantflags != 0)
   3796 			ifp->if_flags ^= cantflags;
   3797 
   3798                 /* Traditionally, we do not call if_ioctl after
   3799                  * setting/clearing only IFF_PROMISC if the interface
   3800                  * isn't IFF_UP.  Uphold that tradition.
   3801 		 */
   3802 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
   3803 			return 0;
   3804 
   3805 		memset(&ifr, 0, sizeof(ifr));
   3806 
   3807 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
   3808 		rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
   3809 
   3810 		if (rc != 0 && cantflags != 0)
   3811 			ifp->if_flags ^= cantflags;
   3812 	}
   3813 
   3814 	return rc;
   3815 }
   3816 
   3817 int
   3818 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
   3819 {
   3820 	int rc;
   3821 	struct ifreq ifr;
   3822 
   3823 	/*
   3824 	 * XXX NOMPSAFE - this calls if_ioctl without holding IFNET_LOCK()
   3825 	 * in some cases - e.g. when called from vlan/netinet/netinet6 code
   3826 	 * directly rather than via doifoictl()
   3827 	 */
   3828 	ifreq_setaddr(cmd, &ifr, sa);
   3829 	rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
   3830 
   3831 	return rc;
   3832 }
   3833 
   3834 static void
   3835 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
   3836     struct ifaltq *ifq)
   3837 {
   3838 	const struct sysctlnode *cnode, *rnode;
   3839 
   3840 	if (sysctl_createv(clog, 0, NULL, &rnode,
   3841 		       CTLFLAG_PERMANENT,
   3842 		       CTLTYPE_NODE, "interfaces",
   3843 		       SYSCTL_DESCR("Per-interface controls"),
   3844 		       NULL, 0, NULL, 0,
   3845 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   3846 		goto bad;
   3847 
   3848 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3849 		       CTLFLAG_PERMANENT,
   3850 		       CTLTYPE_NODE, ifname,
   3851 		       SYSCTL_DESCR("Interface controls"),
   3852 		       NULL, 0, NULL, 0,
   3853 		       CTL_CREATE, CTL_EOL) != 0)
   3854 		goto bad;
   3855 
   3856 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   3857 		       CTLFLAG_PERMANENT,
   3858 		       CTLTYPE_NODE, "sndq",
   3859 		       SYSCTL_DESCR("Interface output queue controls"),
   3860 		       NULL, 0, NULL, 0,
   3861 		       CTL_CREATE, CTL_EOL) != 0)
   3862 		goto bad;
   3863 
   3864 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3865 		       CTLFLAG_PERMANENT,
   3866 		       CTLTYPE_INT, "len",
   3867 		       SYSCTL_DESCR("Current output queue length"),
   3868 		       NULL, 0, &ifq->ifq_len, 0,
   3869 		       CTL_CREATE, CTL_EOL) != 0)
   3870 		goto bad;
   3871 
   3872 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3873 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3874 		       CTLTYPE_INT, "maxlen",
   3875 		       SYSCTL_DESCR("Maximum allowed output queue length"),
   3876 		       NULL, 0, &ifq->ifq_maxlen, 0,
   3877 		       CTL_CREATE, CTL_EOL) != 0)
   3878 		goto bad;
   3879 
   3880 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   3881 		       CTLFLAG_PERMANENT,
   3882 		       CTLTYPE_INT, "drops",
   3883 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
   3884 		       NULL, 0, &ifq->ifq_drops, 0,
   3885 		       CTL_CREATE, CTL_EOL) != 0)
   3886 		goto bad;
   3887 
   3888 	return;
   3889 bad:
   3890 	printf("%s: could not attach sysctl nodes\n", ifname);
   3891 	return;
   3892 }
   3893 
   3894 #if defined(INET) || defined(INET6)
   3895 
   3896 #define	SYSCTL_NET_PKTQ(q, cn, c)					\
   3897 	static int							\
   3898 	sysctl_net_##q##_##cn(SYSCTLFN_ARGS)				\
   3899 	{								\
   3900 		return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c);	\
   3901 	}
   3902 
   3903 #if defined(INET)
   3904 static int
   3905 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
   3906 {
   3907 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
   3908 }
   3909 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
   3910 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
   3911 #endif
   3912 
   3913 #if defined(INET6)
   3914 static int
   3915 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
   3916 {
   3917 	return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
   3918 }
   3919 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
   3920 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
   3921 #endif
   3922 
   3923 static void
   3924 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
   3925 {
   3926 	sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
   3927 	const char *pfname = NULL, *ipname = NULL;
   3928 	int ipn = 0, qid = 0;
   3929 
   3930 	switch (pf) {
   3931 #if defined(INET)
   3932 	case PF_INET:
   3933 		len_func = sysctl_net_ip_pktq_items;
   3934 		maxlen_func = sysctl_net_ip_pktq_maxlen;
   3935 		drops_func = sysctl_net_ip_pktq_drops;
   3936 		pfname = "inet", ipn = IPPROTO_IP;
   3937 		ipname = "ip", qid = IPCTL_IFQ;
   3938 		break;
   3939 #endif
   3940 #if defined(INET6)
   3941 	case PF_INET6:
   3942 		len_func = sysctl_net_ip6_pktq_items;
   3943 		maxlen_func = sysctl_net_ip6_pktq_maxlen;
   3944 		drops_func = sysctl_net_ip6_pktq_drops;
   3945 		pfname = "inet6", ipn = IPPROTO_IPV6;
   3946 		ipname = "ip6", qid = IPV6CTL_IFQ;
   3947 		break;
   3948 #endif
   3949 	default:
   3950 		KASSERT(false);
   3951 	}
   3952 
   3953 	sysctl_createv(clog, 0, NULL, NULL,
   3954 		       CTLFLAG_PERMANENT,
   3955 		       CTLTYPE_NODE, pfname, NULL,
   3956 		       NULL, 0, NULL, 0,
   3957 		       CTL_NET, pf, CTL_EOL);
   3958 	sysctl_createv(clog, 0, NULL, NULL,
   3959 		       CTLFLAG_PERMANENT,
   3960 		       CTLTYPE_NODE, ipname, NULL,
   3961 		       NULL, 0, NULL, 0,
   3962 		       CTL_NET, pf, ipn, CTL_EOL);
   3963 	sysctl_createv(clog, 0, NULL, NULL,
   3964 		       CTLFLAG_PERMANENT,
   3965 		       CTLTYPE_NODE, "ifq",
   3966 		       SYSCTL_DESCR("Protocol input queue controls"),
   3967 		       NULL, 0, NULL, 0,
   3968 		       CTL_NET, pf, ipn, qid, CTL_EOL);
   3969 
   3970 	sysctl_createv(clog, 0, NULL, NULL,
   3971 		       CTLFLAG_PERMANENT,
   3972 		       CTLTYPE_QUAD, "len",
   3973 		       SYSCTL_DESCR("Current input queue length"),
   3974 		       len_func, 0, NULL, 0,
   3975 		       CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
   3976 	sysctl_createv(clog, 0, NULL, NULL,
   3977 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   3978 		       CTLTYPE_INT, "maxlen",
   3979 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   3980 		       maxlen_func, 0, NULL, 0,
   3981 		       CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
   3982 	sysctl_createv(clog, 0, NULL, NULL,
   3983 		       CTLFLAG_PERMANENT,
   3984 		       CTLTYPE_QUAD, "drops",
   3985 		       SYSCTL_DESCR("Packets dropped due to full input queue"),
   3986 		       drops_func, 0, NULL, 0,
   3987 		       CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
   3988 }
   3989 #endif /* INET || INET6 */
   3990 
   3991 static int
   3992 if_sdl_sysctl(SYSCTLFN_ARGS)
   3993 {
   3994 	struct ifnet *ifp;
   3995 	const struct sockaddr_dl *sdl;
   3996 	struct psref psref;
   3997 	int error = 0;
   3998 	int bound;
   3999 
   4000 	if (namelen != 1)
   4001 		return EINVAL;
   4002 
   4003 	bound = curlwp_bind();
   4004 	ifp = if_get_byindex(name[0], &psref);
   4005 	if (ifp == NULL) {
   4006 		error = ENODEV;
   4007 		goto out0;
   4008 	}
   4009 
   4010 	sdl = ifp->if_sadl;
   4011 	if (sdl == NULL) {
   4012 		*oldlenp = 0;
   4013 		goto out1;
   4014 	}
   4015 
   4016 	if (oldp == NULL) {
   4017 		*oldlenp = sdl->sdl_alen;
   4018 		goto out1;
   4019 	}
   4020 
   4021 	if (*oldlenp >= sdl->sdl_alen)
   4022 		*oldlenp = sdl->sdl_alen;
   4023 	error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
   4024 out1:
   4025 	if_put(ifp, &psref);
   4026 out0:
   4027 	curlwp_bindx(bound);
   4028 	return error;
   4029 }
   4030 
   4031 static void
   4032 if_sysctl_setup(struct sysctllog **clog)
   4033 {
   4034 	const struct sysctlnode *rnode = NULL;
   4035 
   4036 	sysctl_createv(clog, 0, NULL, &rnode,
   4037 		       CTLFLAG_PERMANENT,
   4038 		       CTLTYPE_NODE, "sdl",
   4039 		       SYSCTL_DESCR("Get active link-layer address"),
   4040 		       if_sdl_sysctl, 0, NULL, 0,
   4041 		       CTL_NET, CTL_CREATE, CTL_EOL);
   4042 
   4043 #if defined(INET)
   4044 	sysctl_net_pktq_setup(NULL, PF_INET);
   4045 #endif
   4046 #ifdef INET6
   4047 	if (in6_present)
   4048 		sysctl_net_pktq_setup(NULL, PF_INET6);
   4049 #endif
   4050 }
   4051