if.c revision 1.485 1 /* $NetBSD: if.c,v 1.485 2021/05/17 04:07:43 yamaguchi Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.485 2021/05/17 04:07:43 yamaguchi Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_atalk.h"
99 #include "opt_wlan.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mrouting.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122 #include <sys/module_hook.h>
123 #include <sys/compat_stub.h>
124 #include <sys/msan.h>
125
126 #include <net/if.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net80211/ieee80211.h>
131 #include <net80211/ieee80211_ioctl.h>
132 #include <net/if_types.h>
133 #include <net/route.h>
134 #include <net/netisr.h>
135 #include <sys/module.h>
136 #ifdef NETATALK
137 #include <netatalk/at_extern.h>
138 #include <netatalk/at.h>
139 #endif
140 #include <net/pfil.h>
141 #include <netinet/in.h>
142 #include <netinet/in_var.h>
143 #include <netinet/ip_encap.h>
144 #include <net/bpf.h>
145
146 #ifdef INET6
147 #include <netinet6/in6_var.h>
148 #include <netinet6/nd6.h>
149 #endif
150
151 #include "ether.h"
152
153 #include "bridge.h"
154 #if NBRIDGE > 0
155 #include <net/if_bridgevar.h>
156 #endif
157
158 #include "carp.h"
159 #if NCARP > 0
160 #include <netinet/ip_carp.h>
161 #endif
162
163 #include "lagg.h"
164 #if NLAGG > 0
165 #include <net/lagg/if_laggvar.h>
166 #endif
167
168 #include <compat/sys/sockio.h>
169
170 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
171 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
172
173 /*
174 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
175 * for each ifnet. It doesn't matter because:
176 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
177 * ifq_lock don't happen
178 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
179 * because if_snd, if_link_state_change and if_link_state_change_process
180 * are all called with KERNEL_LOCK
181 */
182 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \
183 mutex_enter((ifp)->if_snd.ifq_lock)
184 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \
185 mutex_exit((ifp)->if_snd.ifq_lock)
186
187 /*
188 * Global list of interfaces.
189 */
190 /* DEPRECATED. Remove it once kvm(3) users disappeared */
191 struct ifnet_head ifnet_list;
192
193 struct pslist_head ifnet_pslist;
194 static ifnet_t ** ifindex2ifnet = NULL;
195 static u_int if_index = 1;
196 static size_t if_indexlim = 0;
197 static uint64_t index_gen;
198 /* Mutex to protect the above objects. */
199 kmutex_t ifnet_mtx __cacheline_aligned;
200 static struct psref_class *ifnet_psref_class __read_mostly;
201 static pserialize_t ifnet_psz;
202 static struct workqueue *ifnet_link_state_wq __read_mostly;
203
204 static kmutex_t if_clone_mtx;
205
206 struct ifnet *lo0ifp;
207 int ifqmaxlen = IFQ_MAXLEN;
208
209 struct psref_class *ifa_psref_class __read_mostly;
210
211 static int if_delroute_matcher(struct rtentry *, void *);
212
213 static bool if_is_unit(const char *);
214 static struct if_clone *if_clone_lookup(const char *, int *);
215
216 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
217 static int if_cloners_count;
218
219 /* Packet filtering hook for interfaces. */
220 pfil_head_t * if_pfil __read_mostly;
221
222 static kauth_listener_t if_listener;
223
224 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
225 static void if_detach_queues(struct ifnet *, struct ifqueue *);
226 static void sysctl_sndq_setup(struct sysctllog **, const char *,
227 struct ifaltq *);
228 static void if_slowtimo(void *);
229 static void if_attachdomain1(struct ifnet *);
230 static int ifconf(u_long, void *);
231 static int if_transmit(struct ifnet *, struct mbuf *);
232 static int if_clone_create(const char *);
233 static int if_clone_destroy(const char *);
234 static void if_link_state_change_work(struct work *, void *);
235 static void if_up_locked(struct ifnet *);
236 static void _if_down(struct ifnet *);
237 static void if_down_deactivated(struct ifnet *);
238
239 struct if_percpuq {
240 struct ifnet *ipq_ifp;
241 void *ipq_si;
242 struct percpu *ipq_ifqs; /* struct ifqueue */
243 };
244
245 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
246
247 static void if_percpuq_drops(void *, void *, struct cpu_info *);
248 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
249 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
250 struct if_percpuq *);
251
252 struct if_deferred_start {
253 struct ifnet *ids_ifp;
254 void (*ids_if_start)(struct ifnet *);
255 void *ids_si;
256 };
257
258 static void if_deferred_start_softint(void *);
259 static void if_deferred_start_common(struct ifnet *);
260 static void if_deferred_start_destroy(struct ifnet *);
261
262 #if defined(INET) || defined(INET6)
263 static void sysctl_net_pktq_setup(struct sysctllog **, int);
264 #endif
265
266 /*
267 * Hook for if_vlan - needed by if_agr
268 */
269 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook;
270
271 static void if_sysctl_setup(struct sysctllog **);
272
273 static int
274 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
275 void *arg0, void *arg1, void *arg2, void *arg3)
276 {
277 int result;
278 enum kauth_network_req req;
279
280 result = KAUTH_RESULT_DEFER;
281 req = (enum kauth_network_req)(uintptr_t)arg1;
282
283 if (action != KAUTH_NETWORK_INTERFACE)
284 return result;
285
286 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
287 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
288 result = KAUTH_RESULT_ALLOW;
289
290 return result;
291 }
292
293 /*
294 * Network interface utility routines.
295 *
296 * Routines with ifa_ifwith* names take sockaddr *'s as
297 * parameters.
298 */
299 void
300 ifinit(void)
301 {
302
303 #if (defined(INET) || defined(INET6))
304 encapinit();
305 #endif
306
307 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
308 if_listener_cb, NULL);
309
310 /* interfaces are available, inform socket code */
311 ifioctl = doifioctl;
312 }
313
314 /*
315 * XXX Initialization before configure().
316 * XXX hack to get pfil_add_hook working in autoconf.
317 */
318 void
319 ifinit1(void)
320 {
321 int error __diagused;
322
323 #ifdef NET_MPSAFE
324 printf("NET_MPSAFE enabled\n");
325 #endif
326
327 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
328
329 TAILQ_INIT(&ifnet_list);
330 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
331 ifnet_psz = pserialize_create();
332 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
333 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
334 error = workqueue_create(&ifnet_link_state_wq, "iflnkst",
335 if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET,
336 WQ_MPSAFE);
337 KASSERT(error == 0);
338 PSLIST_INIT(&ifnet_pslist);
339
340 if_indexlim = 8;
341
342 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
343 KASSERT(if_pfil != NULL);
344
345 #if NETHER > 0 || defined(NETATALK) || defined(WLAN)
346 etherinit();
347 #endif
348 }
349
350 /* XXX must be after domaininit() */
351 void
352 ifinit_post(void)
353 {
354
355 if_sysctl_setup(NULL);
356 }
357
358 ifnet_t *
359 if_alloc(u_char type)
360 {
361 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
362 }
363
364 void
365 if_free(ifnet_t *ifp)
366 {
367 kmem_free(ifp, sizeof(ifnet_t));
368 }
369
370 void
371 if_initname(struct ifnet *ifp, const char *name, int unit)
372 {
373 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
374 "%s%d", name, unit);
375 }
376
377 /*
378 * Null routines used while an interface is going away. These routines
379 * just return an error.
380 */
381
382 int
383 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
384 const struct sockaddr *so, const struct rtentry *rt)
385 {
386
387 return ENXIO;
388 }
389
390 void
391 if_nullinput(struct ifnet *ifp, struct mbuf *m)
392 {
393
394 /* Nothing. */
395 }
396
397 void
398 if_nullstart(struct ifnet *ifp)
399 {
400
401 /* Nothing. */
402 }
403
404 int
405 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
406 {
407
408 m_freem(m);
409 return ENXIO;
410 }
411
412 int
413 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
414 {
415
416 return ENXIO;
417 }
418
419 int
420 if_nullinit(struct ifnet *ifp)
421 {
422
423 return ENXIO;
424 }
425
426 void
427 if_nullstop(struct ifnet *ifp, int disable)
428 {
429
430 /* Nothing. */
431 }
432
433 void
434 if_nullslowtimo(struct ifnet *ifp)
435 {
436
437 /* Nothing. */
438 }
439
440 void
441 if_nulldrain(struct ifnet *ifp)
442 {
443
444 /* Nothing. */
445 }
446
447 void
448 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
449 {
450 struct ifaddr *ifa;
451 struct sockaddr_dl *sdl;
452
453 ifp->if_addrlen = addrlen;
454 if_alloc_sadl(ifp);
455 ifa = ifp->if_dl;
456 sdl = satosdl(ifa->ifa_addr);
457
458 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
459 if (factory) {
460 KASSERT(ifp->if_hwdl == NULL);
461 ifp->if_hwdl = ifp->if_dl;
462 ifaref(ifp->if_hwdl);
463 }
464 /* TBD routing socket */
465 }
466
467 struct ifaddr *
468 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
469 {
470 unsigned socksize, ifasize;
471 int addrlen, namelen;
472 struct sockaddr_dl *mask, *sdl;
473 struct ifaddr *ifa;
474
475 namelen = strlen(ifp->if_xname);
476 addrlen = ifp->if_addrlen;
477 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
478 ifasize = sizeof(*ifa) + 2 * socksize;
479 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
480
481 sdl = (struct sockaddr_dl *)(ifa + 1);
482 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
483
484 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
485 ifp->if_xname, namelen, NULL, addrlen);
486 mask->sdl_family = AF_LINK;
487 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
488 memset(&mask->sdl_data[0], 0xff, namelen);
489 ifa->ifa_rtrequest = link_rtrequest;
490 ifa->ifa_addr = (struct sockaddr *)sdl;
491 ifa->ifa_netmask = (struct sockaddr *)mask;
492 ifa_psref_init(ifa);
493
494 *sdlp = sdl;
495
496 return ifa;
497 }
498
499 static void
500 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
501 {
502 const struct sockaddr_dl *sdl;
503
504 ifp->if_dl = ifa;
505 ifaref(ifa);
506 sdl = satosdl(ifa->ifa_addr);
507 ifp->if_sadl = sdl;
508 }
509
510 /*
511 * Allocate the link level name for the specified interface. This
512 * is an attachment helper. It must be called after ifp->if_addrlen
513 * is initialized, which may not be the case when if_attach() is
514 * called.
515 */
516 void
517 if_alloc_sadl(struct ifnet *ifp)
518 {
519 struct ifaddr *ifa;
520 const struct sockaddr_dl *sdl;
521
522 /*
523 * If the interface already has a link name, release it
524 * now. This is useful for interfaces that can change
525 * link types, and thus switch link names often.
526 */
527 if (ifp->if_sadl != NULL)
528 if_free_sadl(ifp, 0);
529
530 ifa = if_dl_create(ifp, &sdl);
531
532 ifa_insert(ifp, ifa);
533 if_sadl_setrefs(ifp, ifa);
534 }
535
536 static void
537 if_deactivate_sadl(struct ifnet *ifp)
538 {
539 struct ifaddr *ifa;
540
541 KASSERT(ifp->if_dl != NULL);
542
543 ifa = ifp->if_dl;
544
545 ifp->if_sadl = NULL;
546
547 ifp->if_dl = NULL;
548 ifafree(ifa);
549 }
550
551 static void
552 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
553 {
554 struct ifaddr *old;
555
556 KASSERT(ifp->if_dl != NULL);
557
558 old = ifp->if_dl;
559
560 ifaref(ifa);
561 /* XXX Update if_dl and if_sadl atomically */
562 ifp->if_dl = ifa;
563 ifp->if_sadl = satosdl(ifa->ifa_addr);
564
565 ifafree(old);
566 }
567
568 void
569 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
570 const struct sockaddr_dl *sdl)
571 {
572 int s, ss;
573 struct ifaddr *ifa;
574 int bound = curlwp_bind();
575
576 KASSERT(ifa_held(ifa0));
577
578 s = splsoftnet();
579
580 if_replace_sadl(ifp, ifa0);
581
582 ss = pserialize_read_enter();
583 IFADDR_READER_FOREACH(ifa, ifp) {
584 struct psref psref;
585 ifa_acquire(ifa, &psref);
586 pserialize_read_exit(ss);
587
588 rtinit(ifa, RTM_LLINFO_UPD, 0);
589
590 ss = pserialize_read_enter();
591 ifa_release(ifa, &psref);
592 }
593 pserialize_read_exit(ss);
594
595 splx(s);
596 curlwp_bindx(bound);
597 }
598
599 /*
600 * Free the link level name for the specified interface. This is
601 * a detach helper. This is called from if_detach().
602 */
603 void
604 if_free_sadl(struct ifnet *ifp, int factory)
605 {
606 struct ifaddr *ifa;
607 int s;
608
609 if (factory && ifp->if_hwdl != NULL) {
610 ifa = ifp->if_hwdl;
611 ifp->if_hwdl = NULL;
612 ifafree(ifa);
613 }
614
615 ifa = ifp->if_dl;
616 if (ifa == NULL) {
617 KASSERT(ifp->if_sadl == NULL);
618 return;
619 }
620
621 KASSERT(ifp->if_sadl != NULL);
622
623 s = splsoftnet();
624 KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
625 ifa_remove(ifp, ifa);
626 if_deactivate_sadl(ifp);
627 splx(s);
628 }
629
630 static void
631 if_getindex(ifnet_t *ifp)
632 {
633 bool hitlimit = false;
634
635 ifp->if_index_gen = index_gen++;
636
637 ifp->if_index = if_index;
638 if (ifindex2ifnet == NULL) {
639 if_index++;
640 goto skip;
641 }
642 while (if_byindex(ifp->if_index)) {
643 /*
644 * If we hit USHRT_MAX, we skip back to 0 since
645 * there are a number of places where the value
646 * of if_index or if_index itself is compared
647 * to or stored in an unsigned short. By
648 * jumping back, we won't botch those assignments
649 * or comparisons.
650 */
651 if (++if_index == 0) {
652 if_index = 1;
653 } else if (if_index == USHRT_MAX) {
654 /*
655 * However, if we have to jump back to
656 * zero *twice* without finding an empty
657 * slot in ifindex2ifnet[], then there
658 * there are too many (>65535) interfaces.
659 */
660 if (hitlimit) {
661 panic("too many interfaces");
662 }
663 hitlimit = true;
664 if_index = 1;
665 }
666 ifp->if_index = if_index;
667 }
668 skip:
669 /*
670 * ifindex2ifnet is indexed by if_index. Since if_index will
671 * grow dynamically, it should grow too.
672 */
673 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
674 size_t m, n, oldlim;
675 void *q;
676
677 oldlim = if_indexlim;
678 while (ifp->if_index >= if_indexlim)
679 if_indexlim <<= 1;
680
681 /* grow ifindex2ifnet */
682 m = oldlim * sizeof(struct ifnet *);
683 n = if_indexlim * sizeof(struct ifnet *);
684 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO);
685 if (ifindex2ifnet != NULL) {
686 memcpy(q, ifindex2ifnet, m);
687 free(ifindex2ifnet, M_IFADDR);
688 }
689 ifindex2ifnet = (struct ifnet **)q;
690 }
691 ifindex2ifnet[ifp->if_index] = ifp;
692 }
693
694 /*
695 * Initialize an interface and assign an index for it.
696 *
697 * It must be called prior to a device specific attach routine
698 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
699 * and be followed by if_register:
700 *
701 * if_initialize(ifp);
702 * ether_ifattach(ifp, enaddr);
703 * if_register(ifp);
704 */
705 int
706 if_initialize(ifnet_t *ifp)
707 {
708 int rv = 0;
709
710 KASSERT(if_indexlim > 0);
711 TAILQ_INIT(&ifp->if_addrlist);
712
713 /*
714 * Link level name is allocated later by a separate call to
715 * if_alloc_sadl().
716 */
717
718 if (ifp->if_snd.ifq_maxlen == 0)
719 ifp->if_snd.ifq_maxlen = ifqmaxlen;
720
721 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
722
723 ifp->if_link_state = LINK_STATE_UNKNOWN;
724 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
725 ifp->if_link_scheduled = false;
726
727 ifp->if_capenable = 0;
728 ifp->if_csum_flags_tx = 0;
729 ifp->if_csum_flags_rx = 0;
730
731 #ifdef ALTQ
732 ifp->if_snd.altq_type = 0;
733 ifp->if_snd.altq_disc = NULL;
734 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
735 ifp->if_snd.altq_tbr = NULL;
736 ifp->if_snd.altq_ifp = ifp;
737 #endif
738
739 IFQ_LOCK_INIT(&ifp->if_snd);
740
741 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
742 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
743
744 IF_AFDATA_LOCK_INIT(ifp);
745
746 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
747 PSLIST_INIT(&ifp->if_addr_pslist);
748 psref_target_init(&ifp->if_psref, ifnet_psref_class);
749 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
750 LIST_INIT(&ifp->if_multiaddrs);
751 if ((rv = if_stats_init(ifp)) != 0) {
752 goto fail;
753 }
754
755 IFNET_GLOBAL_LOCK();
756 if_getindex(ifp);
757 IFNET_GLOBAL_UNLOCK();
758
759 return 0;
760
761 fail:
762 IF_AFDATA_LOCK_DESTROY(ifp);
763
764 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
765 (void)pfil_head_destroy(ifp->if_pfil);
766
767 IFQ_LOCK_DESTROY(&ifp->if_snd);
768
769 return rv;
770 }
771
772 /*
773 * Register an interface to the list of "active" interfaces.
774 */
775 void
776 if_register(ifnet_t *ifp)
777 {
778 /*
779 * If the driver has not supplied its own if_ioctl, then
780 * supply the default.
781 */
782 if (ifp->if_ioctl == NULL)
783 ifp->if_ioctl = ifioctl_common;
784
785 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
786
787 if (!STAILQ_EMPTY(&domains))
788 if_attachdomain1(ifp);
789
790 /* Announce the interface. */
791 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
792
793 if (ifp->if_slowtimo != NULL) {
794 ifp->if_slowtimo_ch =
795 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
796 callout_init(ifp->if_slowtimo_ch, 0);
797 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
798 if_slowtimo(ifp);
799 }
800
801 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
802 ifp->if_transmit = if_transmit;
803
804 IFNET_GLOBAL_LOCK();
805 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
806 IFNET_WRITER_INSERT_TAIL(ifp);
807 IFNET_GLOBAL_UNLOCK();
808 }
809
810 /*
811 * The if_percpuq framework
812 *
813 * It allows network device drivers to execute the network stack
814 * in softint (so called softint-based if_input). It utilizes
815 * softint and percpu ifqueue. It doesn't distribute any packets
816 * between CPUs, unlike pktqueue(9).
817 *
818 * Currently we support two options for device drivers to apply the framework:
819 * - Use it implicitly with less changes
820 * - If you use if_attach in driver's _attach function and if_input in
821 * driver's Rx interrupt handler, a packet is queued and a softint handles
822 * the packet implicitly
823 * - Use it explicitly in each driver (recommended)
824 * - You can use if_percpuq_* directly in your driver
825 * - In this case, you need to allocate struct if_percpuq in driver's softc
826 * - See wm(4) as a reference implementation
827 */
828
829 static void
830 if_percpuq_softint(void *arg)
831 {
832 struct if_percpuq *ipq = arg;
833 struct ifnet *ifp = ipq->ipq_ifp;
834 struct mbuf *m;
835
836 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
837 if_statinc(ifp, if_ipackets);
838 bpf_mtap(ifp, m, BPF_D_IN);
839
840 ifp->_if_input(ifp, m);
841 }
842 }
843
844 static void
845 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
846 {
847 struct ifqueue *const ifq = p;
848
849 memset(ifq, 0, sizeof(*ifq));
850 ifq->ifq_maxlen = IFQ_MAXLEN;
851 }
852
853 struct if_percpuq *
854 if_percpuq_create(struct ifnet *ifp)
855 {
856 struct if_percpuq *ipq;
857 u_int flags = SOFTINT_NET;
858
859 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
860
861 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
862 ipq->ipq_ifp = ifp;
863 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
864 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
865 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
866
867 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
868
869 return ipq;
870 }
871
872 static struct mbuf *
873 if_percpuq_dequeue(struct if_percpuq *ipq)
874 {
875 struct mbuf *m;
876 struct ifqueue *ifq;
877 int s;
878
879 s = splnet();
880 ifq = percpu_getref(ipq->ipq_ifqs);
881 IF_DEQUEUE(ifq, m);
882 percpu_putref(ipq->ipq_ifqs);
883 splx(s);
884
885 return m;
886 }
887
888 static void
889 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
890 {
891 struct ifqueue *const ifq = p;
892
893 IF_PURGE(ifq);
894 }
895
896 void
897 if_percpuq_destroy(struct if_percpuq *ipq)
898 {
899
900 /* if_detach may already destroy it */
901 if (ipq == NULL)
902 return;
903
904 softint_disestablish(ipq->ipq_si);
905 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
906 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
907 kmem_free(ipq, sizeof(*ipq));
908 }
909
910 void
911 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
912 {
913 struct ifqueue *ifq;
914 int s;
915
916 KASSERT(ipq != NULL);
917
918 s = splnet();
919 ifq = percpu_getref(ipq->ipq_ifqs);
920 if (IF_QFULL(ifq)) {
921 IF_DROP(ifq);
922 percpu_putref(ipq->ipq_ifqs);
923 m_freem(m);
924 goto out;
925 }
926 IF_ENQUEUE(ifq, m);
927 percpu_putref(ipq->ipq_ifqs);
928
929 softint_schedule(ipq->ipq_si);
930 out:
931 splx(s);
932 }
933
934 static void
935 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
936 {
937 struct ifqueue *const ifq = p;
938 int *sum = arg;
939
940 *sum += ifq->ifq_drops;
941 }
942
943 static int
944 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
945 {
946 struct sysctlnode node;
947 struct if_percpuq *ipq;
948 int sum = 0;
949 int error;
950
951 node = *rnode;
952 ipq = node.sysctl_data;
953
954 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
955
956 node.sysctl_data = ∑
957 error = sysctl_lookup(SYSCTLFN_CALL(&node));
958 if (error != 0 || newp == NULL)
959 return error;
960
961 return 0;
962 }
963
964 static void
965 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
966 struct if_percpuq *ipq)
967 {
968 const struct sysctlnode *cnode, *rnode;
969
970 if (sysctl_createv(clog, 0, NULL, &rnode,
971 CTLFLAG_PERMANENT,
972 CTLTYPE_NODE, "interfaces",
973 SYSCTL_DESCR("Per-interface controls"),
974 NULL, 0, NULL, 0,
975 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
976 goto bad;
977
978 if (sysctl_createv(clog, 0, &rnode, &rnode,
979 CTLFLAG_PERMANENT,
980 CTLTYPE_NODE, ifname,
981 SYSCTL_DESCR("Interface controls"),
982 NULL, 0, NULL, 0,
983 CTL_CREATE, CTL_EOL) != 0)
984 goto bad;
985
986 if (sysctl_createv(clog, 0, &rnode, &rnode,
987 CTLFLAG_PERMANENT,
988 CTLTYPE_NODE, "rcvq",
989 SYSCTL_DESCR("Interface input queue controls"),
990 NULL, 0, NULL, 0,
991 CTL_CREATE, CTL_EOL) != 0)
992 goto bad;
993
994 #ifdef NOTYET
995 /* XXX Should show each per-CPU queue length? */
996 if (sysctl_createv(clog, 0, &rnode, &rnode,
997 CTLFLAG_PERMANENT,
998 CTLTYPE_INT, "len",
999 SYSCTL_DESCR("Current input queue length"),
1000 sysctl_percpuq_len, 0, NULL, 0,
1001 CTL_CREATE, CTL_EOL) != 0)
1002 goto bad;
1003
1004 if (sysctl_createv(clog, 0, &rnode, &cnode,
1005 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1006 CTLTYPE_INT, "maxlen",
1007 SYSCTL_DESCR("Maximum allowed input queue length"),
1008 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
1009 CTL_CREATE, CTL_EOL) != 0)
1010 goto bad;
1011 #endif
1012
1013 if (sysctl_createv(clog, 0, &rnode, &cnode,
1014 CTLFLAG_PERMANENT,
1015 CTLTYPE_INT, "drops",
1016 SYSCTL_DESCR("Total packets dropped due to full input queue"),
1017 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
1018 CTL_CREATE, CTL_EOL) != 0)
1019 goto bad;
1020
1021 return;
1022 bad:
1023 printf("%s: could not attach sysctl nodes\n", ifname);
1024 return;
1025 }
1026
1027 /*
1028 * The deferred if_start framework
1029 *
1030 * The common APIs to defer if_start to softint when if_start is requested
1031 * from a device driver running in hardware interrupt context.
1032 */
1033 /*
1034 * Call ifp->if_start (or equivalent) in a dedicated softint for
1035 * deferred if_start.
1036 */
1037 static void
1038 if_deferred_start_softint(void *arg)
1039 {
1040 struct if_deferred_start *ids = arg;
1041 struct ifnet *ifp = ids->ids_ifp;
1042
1043 ids->ids_if_start(ifp);
1044 }
1045
1046 /*
1047 * The default callback function for deferred if_start.
1048 */
1049 static void
1050 if_deferred_start_common(struct ifnet *ifp)
1051 {
1052 int s;
1053
1054 s = splnet();
1055 if_start_lock(ifp);
1056 splx(s);
1057 }
1058
1059 static inline bool
1060 if_snd_is_used(struct ifnet *ifp)
1061 {
1062
1063 return ALTQ_IS_ENABLED(&ifp->if_snd) ||
1064 ifp->if_transmit == if_transmit ||
1065 ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit;
1066 }
1067
1068 /*
1069 * Schedule deferred if_start.
1070 */
1071 void
1072 if_schedule_deferred_start(struct ifnet *ifp)
1073 {
1074
1075 KASSERT(ifp->if_deferred_start != NULL);
1076
1077 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1078 return;
1079
1080 softint_schedule(ifp->if_deferred_start->ids_si);
1081 }
1082
1083 /*
1084 * Create an instance of deferred if_start. A driver should call the function
1085 * only if the driver needs deferred if_start. Drivers can setup their own
1086 * deferred if_start function via 2nd argument.
1087 */
1088 void
1089 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1090 {
1091 struct if_deferred_start *ids;
1092 u_int flags = SOFTINT_NET;
1093
1094 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
1095
1096 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1097 ids->ids_ifp = ifp;
1098 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
1099 if (func != NULL)
1100 ids->ids_if_start = func;
1101 else
1102 ids->ids_if_start = if_deferred_start_common;
1103
1104 ifp->if_deferred_start = ids;
1105 }
1106
1107 static void
1108 if_deferred_start_destroy(struct ifnet *ifp)
1109 {
1110
1111 if (ifp->if_deferred_start == NULL)
1112 return;
1113
1114 softint_disestablish(ifp->if_deferred_start->ids_si);
1115 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1116 ifp->if_deferred_start = NULL;
1117 }
1118
1119 /*
1120 * The common interface input routine that is called by device drivers,
1121 * which should be used only when the driver's rx handler already runs
1122 * in softint.
1123 */
1124 void
1125 if_input(struct ifnet *ifp, struct mbuf *m)
1126 {
1127
1128 KASSERT(ifp->if_percpuq == NULL);
1129 KASSERT(!cpu_intr_p());
1130
1131 if_statinc(ifp, if_ipackets);
1132 bpf_mtap(ifp, m, BPF_D_IN);
1133
1134 ifp->_if_input(ifp, m);
1135 }
1136
1137 /*
1138 * DEPRECATED. Use if_initialize and if_register instead.
1139 * See the above comment of if_initialize.
1140 *
1141 * Note that it implicitly enables if_percpuq to make drivers easy to
1142 * migrate softint-based if_input without much changes. If you don't
1143 * want to enable it, use if_initialize instead.
1144 */
1145 int
1146 if_attach(ifnet_t *ifp)
1147 {
1148 int rv;
1149
1150 rv = if_initialize(ifp);
1151 if (rv != 0)
1152 return rv;
1153
1154 ifp->if_percpuq = if_percpuq_create(ifp);
1155 if_register(ifp);
1156
1157 return 0;
1158 }
1159
1160 void
1161 if_attachdomain(void)
1162 {
1163 struct ifnet *ifp;
1164 int s;
1165 int bound = curlwp_bind();
1166
1167 s = pserialize_read_enter();
1168 IFNET_READER_FOREACH(ifp) {
1169 struct psref psref;
1170 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1171 pserialize_read_exit(s);
1172 if_attachdomain1(ifp);
1173 s = pserialize_read_enter();
1174 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1175 }
1176 pserialize_read_exit(s);
1177 curlwp_bindx(bound);
1178 }
1179
1180 static void
1181 if_attachdomain1(struct ifnet *ifp)
1182 {
1183 struct domain *dp;
1184 int s;
1185
1186 s = splsoftnet();
1187
1188 /* address family dependent data region */
1189 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1190 DOMAIN_FOREACH(dp) {
1191 if (dp->dom_ifattach != NULL)
1192 ifp->if_afdata[dp->dom_family] =
1193 (*dp->dom_ifattach)(ifp);
1194 }
1195
1196 splx(s);
1197 }
1198
1199 /*
1200 * Deactivate an interface. This points all of the procedure
1201 * handles at error stubs. May be called from interrupt context.
1202 */
1203 void
1204 if_deactivate(struct ifnet *ifp)
1205 {
1206 int s;
1207
1208 s = splsoftnet();
1209
1210 ifp->if_output = if_nulloutput;
1211 ifp->_if_input = if_nullinput;
1212 ifp->if_start = if_nullstart;
1213 ifp->if_transmit = if_nulltransmit;
1214 ifp->if_ioctl = if_nullioctl;
1215 ifp->if_init = if_nullinit;
1216 ifp->if_stop = if_nullstop;
1217 ifp->if_slowtimo = if_nullslowtimo;
1218 ifp->if_drain = if_nulldrain;
1219
1220 ifp->if_link_state_changed = NULL;
1221
1222 /* No more packets may be enqueued. */
1223 ifp->if_snd.ifq_maxlen = 0;
1224
1225 splx(s);
1226 }
1227
1228 bool
1229 if_is_deactivated(const struct ifnet *ifp)
1230 {
1231
1232 return ifp->if_output == if_nulloutput;
1233 }
1234
1235 void
1236 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1237 {
1238 struct ifaddr *ifa, *nifa;
1239 int s;
1240
1241 s = pserialize_read_enter();
1242 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1243 nifa = IFADDR_READER_NEXT(ifa);
1244 if (ifa->ifa_addr->sa_family != family)
1245 continue;
1246 pserialize_read_exit(s);
1247
1248 (*purgeaddr)(ifa);
1249
1250 s = pserialize_read_enter();
1251 }
1252 pserialize_read_exit(s);
1253 }
1254
1255 #ifdef IFAREF_DEBUG
1256 static struct ifaddr **ifa_list;
1257 static int ifa_list_size;
1258
1259 /* Depends on only one if_attach runs at once */
1260 static void
1261 if_build_ifa_list(struct ifnet *ifp)
1262 {
1263 struct ifaddr *ifa;
1264 int i;
1265
1266 KASSERT(ifa_list == NULL);
1267 KASSERT(ifa_list_size == 0);
1268
1269 IFADDR_READER_FOREACH(ifa, ifp)
1270 ifa_list_size++;
1271
1272 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1273 i = 0;
1274 IFADDR_READER_FOREACH(ifa, ifp) {
1275 ifa_list[i++] = ifa;
1276 ifaref(ifa);
1277 }
1278 }
1279
1280 static void
1281 if_check_and_free_ifa_list(struct ifnet *ifp)
1282 {
1283 int i;
1284 struct ifaddr *ifa;
1285
1286 if (ifa_list == NULL)
1287 return;
1288
1289 for (i = 0; i < ifa_list_size; i++) {
1290 char buf[64];
1291
1292 ifa = ifa_list[i];
1293 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1294 if (ifa->ifa_refcnt > 1) {
1295 log(LOG_WARNING,
1296 "ifa(%s) still referenced (refcnt=%d)\n",
1297 buf, ifa->ifa_refcnt - 1);
1298 } else
1299 log(LOG_DEBUG,
1300 "ifa(%s) not referenced (refcnt=%d)\n",
1301 buf, ifa->ifa_refcnt - 1);
1302 ifafree(ifa);
1303 }
1304
1305 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1306 ifa_list = NULL;
1307 ifa_list_size = 0;
1308 }
1309 #endif
1310
1311 /*
1312 * Detach an interface from the list of "active" interfaces,
1313 * freeing any resources as we go along.
1314 *
1315 * NOTE: This routine must be called with a valid thread context,
1316 * as it may block.
1317 */
1318 void
1319 if_detach(struct ifnet *ifp)
1320 {
1321 struct socket so;
1322 struct ifaddr *ifa;
1323 #ifdef IFAREF_DEBUG
1324 struct ifaddr *last_ifa = NULL;
1325 #endif
1326 struct domain *dp;
1327 const struct protosw *pr;
1328 int s, i, family, purged;
1329
1330 #ifdef IFAREF_DEBUG
1331 if_build_ifa_list(ifp);
1332 #endif
1333 /*
1334 * XXX It's kind of lame that we have to have the
1335 * XXX socket structure...
1336 */
1337 memset(&so, 0, sizeof(so));
1338
1339 s = splnet();
1340
1341 sysctl_teardown(&ifp->if_sysctl_log);
1342
1343 IFNET_LOCK(ifp);
1344
1345 /*
1346 * Unset all queued link states and pretend a
1347 * link state change is scheduled.
1348 * This stops any more link state changes occuring for this
1349 * interface while it's being detached so it's safe
1350 * to drain the workqueue.
1351 */
1352 IF_LINK_STATE_CHANGE_LOCK(ifp);
1353 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
1354 ifp->if_link_scheduled = true;
1355 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
1356 workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work);
1357
1358 if_deactivate(ifp);
1359 IFNET_UNLOCK(ifp);
1360
1361 /*
1362 * Unlink from the list and wait for all readers to leave
1363 * from pserialize read sections. Note that we can't do
1364 * psref_target_destroy here. See below.
1365 */
1366 IFNET_GLOBAL_LOCK();
1367 ifindex2ifnet[ifp->if_index] = NULL;
1368 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1369 IFNET_WRITER_REMOVE(ifp);
1370 pserialize_perform(ifnet_psz);
1371 IFNET_GLOBAL_UNLOCK();
1372
1373 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1374 ifp->if_slowtimo = NULL;
1375 callout_halt(ifp->if_slowtimo_ch, NULL);
1376 callout_destroy(ifp->if_slowtimo_ch);
1377 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1378 }
1379 if_deferred_start_destroy(ifp);
1380
1381 /*
1382 * Do an if_down() to give protocols a chance to do something.
1383 */
1384 if_down_deactivated(ifp);
1385
1386 #ifdef ALTQ
1387 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1388 altq_disable(&ifp->if_snd);
1389 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1390 altq_detach(&ifp->if_snd);
1391 #endif
1392
1393 #if NCARP > 0
1394 /* Remove the interface from any carp group it is a part of. */
1395 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1396 carp_ifdetach(ifp);
1397 #endif
1398
1399 /*
1400 * Rip all the addresses off the interface. This should make
1401 * all of the routes go away.
1402 *
1403 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1404 * from the list, including our "cursor", ifa. For safety,
1405 * and to honor the TAILQ abstraction, I just restart the
1406 * loop after each removal. Note that the loop will exit
1407 * when all of the remaining ifaddrs belong to the AF_LINK
1408 * family. I am counting on the historical fact that at
1409 * least one pr_usrreq in each address domain removes at
1410 * least one ifaddr.
1411 */
1412 again:
1413 /*
1414 * At this point, no other one tries to remove ifa in the list,
1415 * so we don't need to take a lock or psref. Avoid using
1416 * IFADDR_READER_FOREACH to pass over an inspection of contract
1417 * violations of pserialize.
1418 */
1419 IFADDR_WRITER_FOREACH(ifa, ifp) {
1420 family = ifa->ifa_addr->sa_family;
1421 #ifdef IFAREF_DEBUG
1422 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1423 ifa, family, ifa->ifa_refcnt);
1424 if (last_ifa != NULL && ifa == last_ifa)
1425 panic("if_detach: loop detected");
1426 last_ifa = ifa;
1427 #endif
1428 if (family == AF_LINK)
1429 continue;
1430 dp = pffinddomain(family);
1431 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1432 /*
1433 * XXX These PURGEIF calls are redundant with the
1434 * purge-all-families calls below, but are left in for
1435 * now both to make a smaller change, and to avoid
1436 * unplanned interactions with clearing of
1437 * ifp->if_addrlist.
1438 */
1439 purged = 0;
1440 for (pr = dp->dom_protosw;
1441 pr < dp->dom_protoswNPROTOSW; pr++) {
1442 so.so_proto = pr;
1443 if (pr->pr_usrreqs) {
1444 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1445 purged = 1;
1446 }
1447 }
1448 if (purged == 0) {
1449 /*
1450 * XXX What's really the best thing to do
1451 * XXX here? --thorpej (at) NetBSD.org
1452 */
1453 printf("if_detach: WARNING: AF %d not purged\n",
1454 family);
1455 ifa_remove(ifp, ifa);
1456 }
1457 goto again;
1458 }
1459
1460 if_free_sadl(ifp, 1);
1461
1462 restart:
1463 IFADDR_WRITER_FOREACH(ifa, ifp) {
1464 family = ifa->ifa_addr->sa_family;
1465 KASSERT(family == AF_LINK);
1466 ifa_remove(ifp, ifa);
1467 goto restart;
1468 }
1469
1470 /* Delete stray routes from the routing table. */
1471 for (i = 0; i <= AF_MAX; i++)
1472 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1473
1474 DOMAIN_FOREACH(dp) {
1475 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1476 {
1477 void *p = ifp->if_afdata[dp->dom_family];
1478 if (p) {
1479 ifp->if_afdata[dp->dom_family] = NULL;
1480 (*dp->dom_ifdetach)(ifp, p);
1481 }
1482 }
1483
1484 /*
1485 * One would expect multicast memberships (INET and
1486 * INET6) on UDP sockets to be purged by the PURGEIF
1487 * calls above, but if all addresses were removed from
1488 * the interface prior to destruction, the calls will
1489 * not be made (e.g. ppp, for which pppd(8) generally
1490 * removes addresses before destroying the interface).
1491 * Because there is no invariant that multicast
1492 * memberships only exist for interfaces with IPv4
1493 * addresses, we must call PURGEIF regardless of
1494 * addresses. (Protocols which might store ifnet
1495 * pointers are marked with PR_PURGEIF.)
1496 */
1497 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1498 so.so_proto = pr;
1499 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1500 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1501 }
1502 }
1503
1504 /*
1505 * Must be done after the above pr_purgeif because if_psref may be
1506 * still used in pr_purgeif.
1507 */
1508 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1509 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1510
1511 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1512 (void)pfil_head_destroy(ifp->if_pfil);
1513
1514 /* Announce that the interface is gone. */
1515 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1516
1517 IF_AFDATA_LOCK_DESTROY(ifp);
1518
1519 /*
1520 * remove packets that came from ifp, from software interrupt queues.
1521 */
1522 DOMAIN_FOREACH(dp) {
1523 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1524 struct ifqueue *iq = dp->dom_ifqueues[i];
1525 if (iq == NULL)
1526 break;
1527 dp->dom_ifqueues[i] = NULL;
1528 if_detach_queues(ifp, iq);
1529 }
1530 }
1531
1532 /*
1533 * IP queues have to be processed separately: net-queue barrier
1534 * ensures that the packets are dequeued while a cross-call will
1535 * ensure that the interrupts have completed. FIXME: not quite..
1536 */
1537 #ifdef INET
1538 pktq_barrier(ip_pktq);
1539 #endif
1540 #ifdef INET6
1541 if (in6_present)
1542 pktq_barrier(ip6_pktq);
1543 #endif
1544 xc_barrier(0);
1545
1546 if (ifp->if_percpuq != NULL) {
1547 if_percpuq_destroy(ifp->if_percpuq);
1548 ifp->if_percpuq = NULL;
1549 }
1550
1551 mutex_obj_free(ifp->if_ioctl_lock);
1552 ifp->if_ioctl_lock = NULL;
1553 mutex_obj_free(ifp->if_snd.ifq_lock);
1554 if_stats_fini(ifp);
1555
1556 splx(s);
1557
1558 #ifdef IFAREF_DEBUG
1559 if_check_and_free_ifa_list(ifp);
1560 #endif
1561 }
1562
1563 static void
1564 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1565 {
1566 struct mbuf *m, *prev, *next;
1567
1568 prev = NULL;
1569 for (m = q->ifq_head; m != NULL; m = next) {
1570 KASSERT((m->m_flags & M_PKTHDR) != 0);
1571
1572 next = m->m_nextpkt;
1573 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1574 prev = m;
1575 continue;
1576 }
1577
1578 if (prev != NULL)
1579 prev->m_nextpkt = m->m_nextpkt;
1580 else
1581 q->ifq_head = m->m_nextpkt;
1582 if (q->ifq_tail == m)
1583 q->ifq_tail = prev;
1584 q->ifq_len--;
1585
1586 m->m_nextpkt = NULL;
1587 m_freem(m);
1588 IF_DROP(q);
1589 }
1590 }
1591
1592 /*
1593 * Callback for a radix tree walk to delete all references to an
1594 * ifnet.
1595 */
1596 static int
1597 if_delroute_matcher(struct rtentry *rt, void *v)
1598 {
1599 struct ifnet *ifp = (struct ifnet *)v;
1600
1601 if (rt->rt_ifp == ifp)
1602 return 1;
1603 else
1604 return 0;
1605 }
1606
1607 /*
1608 * Create a clone network interface.
1609 */
1610 static int
1611 if_clone_create(const char *name)
1612 {
1613 struct if_clone *ifc;
1614 int unit;
1615 struct ifnet *ifp;
1616 struct psref psref;
1617
1618 KASSERT(mutex_owned(&if_clone_mtx));
1619
1620 ifc = if_clone_lookup(name, &unit);
1621 if (ifc == NULL)
1622 return EINVAL;
1623
1624 ifp = if_get(name, &psref);
1625 if (ifp != NULL) {
1626 if_put(ifp, &psref);
1627 return EEXIST;
1628 }
1629
1630 return (*ifc->ifc_create)(ifc, unit);
1631 }
1632
1633 /*
1634 * Destroy a clone network interface.
1635 */
1636 static int
1637 if_clone_destroy(const char *name)
1638 {
1639 struct if_clone *ifc;
1640 struct ifnet *ifp;
1641 struct psref psref;
1642 int error;
1643 int (*if_ioctl)(struct ifnet *, u_long, void *);
1644
1645 KASSERT(mutex_owned(&if_clone_mtx));
1646
1647 ifc = if_clone_lookup(name, NULL);
1648 if (ifc == NULL)
1649 return EINVAL;
1650
1651 if (ifc->ifc_destroy == NULL)
1652 return EOPNOTSUPP;
1653
1654 ifp = if_get(name, &psref);
1655 if (ifp == NULL)
1656 return ENXIO;
1657
1658 /* We have to disable ioctls here */
1659 IFNET_LOCK(ifp);
1660 if_ioctl = ifp->if_ioctl;
1661 ifp->if_ioctl = if_nullioctl;
1662 IFNET_UNLOCK(ifp);
1663
1664 /*
1665 * We cannot call ifc_destroy with holding ifp.
1666 * Releasing ifp here is safe thanks to if_clone_mtx.
1667 */
1668 if_put(ifp, &psref);
1669
1670 error = (*ifc->ifc_destroy)(ifp);
1671
1672 if (error != 0) {
1673 /* We have to restore if_ioctl on error */
1674 IFNET_LOCK(ifp);
1675 ifp->if_ioctl = if_ioctl;
1676 IFNET_UNLOCK(ifp);
1677 }
1678
1679 return error;
1680 }
1681
1682 static bool
1683 if_is_unit(const char *name)
1684 {
1685
1686 while (*name != '\0') {
1687 if (*name < '0' || *name > '9')
1688 return false;
1689 name++;
1690 }
1691
1692 return true;
1693 }
1694
1695 /*
1696 * Look up a network interface cloner.
1697 */
1698 static struct if_clone *
1699 if_clone_lookup(const char *name, int *unitp)
1700 {
1701 struct if_clone *ifc;
1702 const char *cp;
1703 char *dp, ifname[IFNAMSIZ + 3];
1704 int unit;
1705
1706 KASSERT(mutex_owned(&if_clone_mtx));
1707
1708 strcpy(ifname, "if_");
1709 /* separate interface name from unit */
1710 /* TODO: search unit number from backward */
1711 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1712 *cp && !if_is_unit(cp);)
1713 *dp++ = *cp++;
1714
1715 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1716 return NULL; /* No name or unit number */
1717 *dp++ = '\0';
1718
1719 again:
1720 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1721 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1722 break;
1723 }
1724
1725 if (ifc == NULL) {
1726 int error;
1727 if (*ifname == '\0')
1728 return NULL;
1729 mutex_exit(&if_clone_mtx);
1730 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1731 mutex_enter(&if_clone_mtx);
1732 if (error)
1733 return NULL;
1734 *ifname = '\0';
1735 goto again;
1736 }
1737
1738 unit = 0;
1739 while (cp - name < IFNAMSIZ && *cp) {
1740 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1741 /* Bogus unit number. */
1742 return NULL;
1743 }
1744 unit = (unit * 10) + (*cp++ - '0');
1745 }
1746
1747 if (unitp != NULL)
1748 *unitp = unit;
1749 return ifc;
1750 }
1751
1752 /*
1753 * Register a network interface cloner.
1754 */
1755 void
1756 if_clone_attach(struct if_clone *ifc)
1757 {
1758
1759 mutex_enter(&if_clone_mtx);
1760 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1761 if_cloners_count++;
1762 mutex_exit(&if_clone_mtx);
1763 }
1764
1765 /*
1766 * Unregister a network interface cloner.
1767 */
1768 void
1769 if_clone_detach(struct if_clone *ifc)
1770 {
1771
1772 mutex_enter(&if_clone_mtx);
1773 LIST_REMOVE(ifc, ifc_list);
1774 if_cloners_count--;
1775 mutex_exit(&if_clone_mtx);
1776 }
1777
1778 /*
1779 * Provide list of interface cloners to userspace.
1780 */
1781 int
1782 if_clone_list(int buf_count, char *buffer, int *total)
1783 {
1784 char outbuf[IFNAMSIZ], *dst;
1785 struct if_clone *ifc;
1786 int count, error = 0;
1787
1788 mutex_enter(&if_clone_mtx);
1789 *total = if_cloners_count;
1790 if ((dst = buffer) == NULL) {
1791 /* Just asking how many there are. */
1792 goto out;
1793 }
1794
1795 if (buf_count < 0) {
1796 error = EINVAL;
1797 goto out;
1798 }
1799
1800 count = (if_cloners_count < buf_count) ?
1801 if_cloners_count : buf_count;
1802
1803 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1804 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1805 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1806 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1807 error = ENAMETOOLONG;
1808 goto out;
1809 }
1810 error = copyout(outbuf, dst, sizeof(outbuf));
1811 if (error != 0)
1812 break;
1813 }
1814
1815 out:
1816 mutex_exit(&if_clone_mtx);
1817 return error;
1818 }
1819
1820 void
1821 ifa_psref_init(struct ifaddr *ifa)
1822 {
1823
1824 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1825 }
1826
1827 void
1828 ifaref(struct ifaddr *ifa)
1829 {
1830
1831 atomic_inc_uint(&ifa->ifa_refcnt);
1832 }
1833
1834 void
1835 ifafree(struct ifaddr *ifa)
1836 {
1837 KASSERT(ifa != NULL);
1838 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt);
1839
1840 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) {
1841 free(ifa, M_IFADDR);
1842 }
1843 }
1844
1845 bool
1846 ifa_is_destroying(struct ifaddr *ifa)
1847 {
1848
1849 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1850 }
1851
1852 void
1853 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1854 {
1855
1856 ifa->ifa_ifp = ifp;
1857
1858 /*
1859 * Check MP-safety for IFEF_MPSAFE drivers.
1860 * Check !IFF_RUNNING for initialization routines that normally don't
1861 * take IFNET_LOCK but it's safe because there is no competitor.
1862 * XXX there are false positive cases because IFF_RUNNING can be off on
1863 * if_stop.
1864 */
1865 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
1866 IFNET_LOCKED(ifp));
1867
1868 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1869 IFADDR_ENTRY_INIT(ifa);
1870 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1871
1872 ifaref(ifa);
1873 }
1874
1875 void
1876 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1877 {
1878
1879 KASSERT(ifa->ifa_ifp == ifp);
1880 /*
1881 * Check MP-safety for IFEF_MPSAFE drivers.
1882 * if_is_deactivated indicates ifa_remove is called form if_detach
1883 * where is safe even if IFNET_LOCK isn't held.
1884 */
1885 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
1886
1887 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1888 IFADDR_WRITER_REMOVE(ifa);
1889 #ifdef NET_MPSAFE
1890 IFNET_GLOBAL_LOCK();
1891 pserialize_perform(ifnet_psz);
1892 IFNET_GLOBAL_UNLOCK();
1893 #endif
1894
1895 #ifdef NET_MPSAFE
1896 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1897 #endif
1898 IFADDR_ENTRY_DESTROY(ifa);
1899 ifafree(ifa);
1900 }
1901
1902 void
1903 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1904 {
1905
1906 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
1907 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1908 }
1909
1910 void
1911 ifa_release(struct ifaddr *ifa, struct psref *psref)
1912 {
1913
1914 if (ifa == NULL)
1915 return;
1916
1917 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1918 }
1919
1920 bool
1921 ifa_held(struct ifaddr *ifa)
1922 {
1923
1924 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1925 }
1926
1927 static inline int
1928 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1929 {
1930 return sockaddr_cmp(sa1, sa2) == 0;
1931 }
1932
1933 /*
1934 * Locate an interface based on a complete address.
1935 */
1936 /*ARGSUSED*/
1937 struct ifaddr *
1938 ifa_ifwithaddr(const struct sockaddr *addr)
1939 {
1940 struct ifnet *ifp;
1941 struct ifaddr *ifa;
1942
1943 IFNET_READER_FOREACH(ifp) {
1944 if (if_is_deactivated(ifp))
1945 continue;
1946 IFADDR_READER_FOREACH(ifa, ifp) {
1947 if (ifa->ifa_addr->sa_family != addr->sa_family)
1948 continue;
1949 if (equal(addr, ifa->ifa_addr))
1950 return ifa;
1951 if ((ifp->if_flags & IFF_BROADCAST) &&
1952 ifa->ifa_broadaddr &&
1953 /* IP6 doesn't have broadcast */
1954 ifa->ifa_broadaddr->sa_len != 0 &&
1955 equal(ifa->ifa_broadaddr, addr))
1956 return ifa;
1957 }
1958 }
1959 return NULL;
1960 }
1961
1962 struct ifaddr *
1963 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1964 {
1965 struct ifaddr *ifa;
1966 int s = pserialize_read_enter();
1967
1968 ifa = ifa_ifwithaddr(addr);
1969 if (ifa != NULL)
1970 ifa_acquire(ifa, psref);
1971 pserialize_read_exit(s);
1972
1973 return ifa;
1974 }
1975
1976 /*
1977 * Locate the point to point interface with a given destination address.
1978 */
1979 /*ARGSUSED*/
1980 struct ifaddr *
1981 ifa_ifwithdstaddr(const struct sockaddr *addr)
1982 {
1983 struct ifnet *ifp;
1984 struct ifaddr *ifa;
1985
1986 IFNET_READER_FOREACH(ifp) {
1987 if (if_is_deactivated(ifp))
1988 continue;
1989 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1990 continue;
1991 IFADDR_READER_FOREACH(ifa, ifp) {
1992 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1993 ifa->ifa_dstaddr == NULL)
1994 continue;
1995 if (equal(addr, ifa->ifa_dstaddr))
1996 return ifa;
1997 }
1998 }
1999
2000 return NULL;
2001 }
2002
2003 struct ifaddr *
2004 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
2005 {
2006 struct ifaddr *ifa;
2007 int s;
2008
2009 s = pserialize_read_enter();
2010 ifa = ifa_ifwithdstaddr(addr);
2011 if (ifa != NULL)
2012 ifa_acquire(ifa, psref);
2013 pserialize_read_exit(s);
2014
2015 return ifa;
2016 }
2017
2018 /*
2019 * Find an interface on a specific network. If many, choice
2020 * is most specific found.
2021 */
2022 struct ifaddr *
2023 ifa_ifwithnet(const struct sockaddr *addr)
2024 {
2025 struct ifnet *ifp;
2026 struct ifaddr *ifa, *ifa_maybe = NULL;
2027 const struct sockaddr_dl *sdl;
2028 u_int af = addr->sa_family;
2029 const char *addr_data = addr->sa_data, *cplim;
2030
2031 if (af == AF_LINK) {
2032 sdl = satocsdl(addr);
2033 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
2034 ifindex2ifnet[sdl->sdl_index] &&
2035 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
2036 return ifindex2ifnet[sdl->sdl_index]->if_dl;
2037 }
2038 }
2039 #ifdef NETATALK
2040 if (af == AF_APPLETALK) {
2041 const struct sockaddr_at *sat, *sat2;
2042 sat = (const struct sockaddr_at *)addr;
2043 IFNET_READER_FOREACH(ifp) {
2044 if (if_is_deactivated(ifp))
2045 continue;
2046 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
2047 if (ifa == NULL)
2048 continue;
2049 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
2050 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
2051 return ifa; /* exact match */
2052 if (ifa_maybe == NULL) {
2053 /* else keep the if with the right range */
2054 ifa_maybe = ifa;
2055 }
2056 }
2057 return ifa_maybe;
2058 }
2059 #endif
2060 IFNET_READER_FOREACH(ifp) {
2061 if (if_is_deactivated(ifp))
2062 continue;
2063 IFADDR_READER_FOREACH(ifa, ifp) {
2064 const char *cp, *cp2, *cp3;
2065
2066 if (ifa->ifa_addr->sa_family != af ||
2067 ifa->ifa_netmask == NULL)
2068 next: continue;
2069 cp = addr_data;
2070 cp2 = ifa->ifa_addr->sa_data;
2071 cp3 = ifa->ifa_netmask->sa_data;
2072 cplim = (const char *)ifa->ifa_netmask +
2073 ifa->ifa_netmask->sa_len;
2074 while (cp3 < cplim) {
2075 if ((*cp++ ^ *cp2++) & *cp3++) {
2076 /* want to continue for() loop */
2077 goto next;
2078 }
2079 }
2080 if (ifa_maybe == NULL ||
2081 rt_refines(ifa->ifa_netmask,
2082 ifa_maybe->ifa_netmask))
2083 ifa_maybe = ifa;
2084 }
2085 }
2086 return ifa_maybe;
2087 }
2088
2089 struct ifaddr *
2090 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2091 {
2092 struct ifaddr *ifa;
2093 int s;
2094
2095 s = pserialize_read_enter();
2096 ifa = ifa_ifwithnet(addr);
2097 if (ifa != NULL)
2098 ifa_acquire(ifa, psref);
2099 pserialize_read_exit(s);
2100
2101 return ifa;
2102 }
2103
2104 /*
2105 * Find the interface of the addresss.
2106 */
2107 struct ifaddr *
2108 ifa_ifwithladdr(const struct sockaddr *addr)
2109 {
2110 struct ifaddr *ia;
2111
2112 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2113 (ia = ifa_ifwithnet(addr)))
2114 return ia;
2115 return NULL;
2116 }
2117
2118 struct ifaddr *
2119 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2120 {
2121 struct ifaddr *ifa;
2122 int s;
2123
2124 s = pserialize_read_enter();
2125 ifa = ifa_ifwithladdr(addr);
2126 if (ifa != NULL)
2127 ifa_acquire(ifa, psref);
2128 pserialize_read_exit(s);
2129
2130 return ifa;
2131 }
2132
2133 /*
2134 * Find an interface using a specific address family
2135 */
2136 struct ifaddr *
2137 ifa_ifwithaf(int af)
2138 {
2139 struct ifnet *ifp;
2140 struct ifaddr *ifa = NULL;
2141 int s;
2142
2143 s = pserialize_read_enter();
2144 IFNET_READER_FOREACH(ifp) {
2145 if (if_is_deactivated(ifp))
2146 continue;
2147 IFADDR_READER_FOREACH(ifa, ifp) {
2148 if (ifa->ifa_addr->sa_family == af)
2149 goto out;
2150 }
2151 }
2152 out:
2153 pserialize_read_exit(s);
2154 return ifa;
2155 }
2156
2157 /*
2158 * Find an interface address specific to an interface best matching
2159 * a given address.
2160 */
2161 struct ifaddr *
2162 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2163 {
2164 struct ifaddr *ifa;
2165 const char *cp, *cp2, *cp3;
2166 const char *cplim;
2167 struct ifaddr *ifa_maybe = 0;
2168 u_int af = addr->sa_family;
2169
2170 if (if_is_deactivated(ifp))
2171 return NULL;
2172
2173 if (af >= AF_MAX)
2174 return NULL;
2175
2176 IFADDR_READER_FOREACH(ifa, ifp) {
2177 if (ifa->ifa_addr->sa_family != af)
2178 continue;
2179 ifa_maybe = ifa;
2180 if (ifa->ifa_netmask == NULL) {
2181 if (equal(addr, ifa->ifa_addr) ||
2182 (ifa->ifa_dstaddr &&
2183 equal(addr, ifa->ifa_dstaddr)))
2184 return ifa;
2185 continue;
2186 }
2187 cp = addr->sa_data;
2188 cp2 = ifa->ifa_addr->sa_data;
2189 cp3 = ifa->ifa_netmask->sa_data;
2190 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2191 for (; cp3 < cplim; cp3++) {
2192 if ((*cp++ ^ *cp2++) & *cp3)
2193 break;
2194 }
2195 if (cp3 == cplim)
2196 return ifa;
2197 }
2198 return ifa_maybe;
2199 }
2200
2201 struct ifaddr *
2202 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2203 struct psref *psref)
2204 {
2205 struct ifaddr *ifa;
2206 int s;
2207
2208 s = pserialize_read_enter();
2209 ifa = ifaof_ifpforaddr(addr, ifp);
2210 if (ifa != NULL)
2211 ifa_acquire(ifa, psref);
2212 pserialize_read_exit(s);
2213
2214 return ifa;
2215 }
2216
2217 /*
2218 * Default action when installing a route with a Link Level gateway.
2219 * Lookup an appropriate real ifa to point to.
2220 * This should be moved to /sys/net/link.c eventually.
2221 */
2222 void
2223 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2224 {
2225 struct ifaddr *ifa;
2226 const struct sockaddr *dst;
2227 struct ifnet *ifp;
2228 struct psref psref;
2229
2230 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2231 return;
2232 ifp = rt->rt_ifa->ifa_ifp;
2233 dst = rt_getkey(rt);
2234 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2235 rt_replace_ifa(rt, ifa);
2236 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2237 ifa->ifa_rtrequest(cmd, rt, info);
2238 ifa_release(ifa, &psref);
2239 }
2240 }
2241
2242 /*
2243 * bitmask macros to manage a densely packed link_state change queue.
2244 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2245 * LINK_STATE_UP(2) we need 2 bits for each state change.
2246 * As a state change to store is 0, treat all bits set as an unset item.
2247 */
2248 #define LQ_ITEM_BITS 2
2249 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2250 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2251 #define LINK_STATE_UNSET LQ_ITEM_MASK
2252 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2253 #define LQ_STORE(q, i, v) \
2254 do { \
2255 (q) &= ~LQ_MASK((i)); \
2256 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2257 } while (0 /* CONSTCOND */)
2258 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2259 #define LQ_POP(q, v) \
2260 do { \
2261 (v) = LQ_ITEM((q), 0); \
2262 (q) >>= LQ_ITEM_BITS; \
2263 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2264 } while (0 /* CONSTCOND */)
2265 #define LQ_PUSH(q, v) \
2266 do { \
2267 (q) >>= LQ_ITEM_BITS; \
2268 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2269 } while (0 /* CONSTCOND */)
2270 #define LQ_FIND_UNSET(q, i) \
2271 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2272 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2273 break; \
2274 }
2275
2276 /*
2277 * Handle a change in the interface link state and
2278 * queue notifications.
2279 */
2280 void
2281 if_link_state_change(struct ifnet *ifp, int link_state)
2282 {
2283 int idx;
2284
2285 /* Ensure change is to a valid state */
2286 switch (link_state) {
2287 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2288 case LINK_STATE_DOWN: /* FALLTHROUGH */
2289 case LINK_STATE_UP:
2290 break;
2291 default:
2292 #ifdef DEBUG
2293 printf("%s: invalid link state %d\n",
2294 ifp->if_xname, link_state);
2295 #endif
2296 return;
2297 }
2298
2299 IF_LINK_STATE_CHANGE_LOCK(ifp);
2300
2301 /* Find the last unset event in the queue. */
2302 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2303
2304 if (idx == 0) {
2305 /*
2306 * There is no queue of link state changes.
2307 * As we have the lock we can safely compare against the
2308 * current link state and return if the same.
2309 * Otherwise, if scheduled is true then the interface is being
2310 * detached and the queue is being drained so we need
2311 * to avoid queuing more work.
2312 */
2313 if (ifp->if_link_state == link_state || ifp->if_link_scheduled)
2314 goto out;
2315 } else {
2316 /* Ensure link_state doesn't match the last queued state. */
2317 if (LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2318 goto out;
2319 }
2320
2321 /* Handle queue overflow. */
2322 if (idx == LQ_MAX(ifp->if_link_queue)) {
2323 uint8_t lost;
2324
2325 /*
2326 * The DOWN state must be protected from being pushed off
2327 * the queue to ensure that userland will always be
2328 * in a sane state.
2329 * Because DOWN is protected, there is no need to protect
2330 * UNKNOWN.
2331 * It should be invalid to change from any other state to
2332 * UNKNOWN anyway ...
2333 */
2334 lost = LQ_ITEM(ifp->if_link_queue, 0);
2335 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2336 if (lost == LINK_STATE_DOWN) {
2337 lost = LQ_ITEM(ifp->if_link_queue, 0);
2338 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2339 }
2340 printf("%s: lost link state change %s\n",
2341 ifp->if_xname,
2342 lost == LINK_STATE_UP ? "UP" :
2343 lost == LINK_STATE_DOWN ? "DOWN" :
2344 "UNKNOWN");
2345 } else
2346 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2347
2348 if (ifp->if_link_scheduled)
2349 goto out;
2350
2351 ifp->if_link_scheduled = true;
2352 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
2353
2354 out:
2355 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2356 }
2357
2358 /*
2359 * Handle interface link state change notifications.
2360 */
2361 static void
2362 if_link_state_change_process(struct ifnet *ifp, int link_state)
2363 {
2364 struct domain *dp;
2365 int s = splnet();
2366 bool notify;
2367
2368 KASSERT(!cpu_intr_p());
2369
2370 IF_LINK_STATE_CHANGE_LOCK(ifp);
2371
2372 /* Ensure the change is still valid. */
2373 if (ifp->if_link_state == link_state) {
2374 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2375 splx(s);
2376 return;
2377 }
2378
2379 #ifdef DEBUG
2380 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2381 link_state == LINK_STATE_UP ? "UP" :
2382 link_state == LINK_STATE_DOWN ? "DOWN" :
2383 "UNKNOWN",
2384 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2385 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2386 "UNKNOWN");
2387 #endif
2388
2389 /*
2390 * When going from UNKNOWN to UP, we need to mark existing
2391 * addresses as tentative and restart DAD as we may have
2392 * erroneously not found a duplicate.
2393 *
2394 * This needs to happen before rt_ifmsg to avoid a race where
2395 * listeners would have an address and expect it to work right
2396 * away.
2397 */
2398 notify = (link_state == LINK_STATE_UP &&
2399 ifp->if_link_state == LINK_STATE_UNKNOWN);
2400 ifp->if_link_state = link_state;
2401 /* The following routines may sleep so release the spin mutex */
2402 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2403
2404 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2405 if (notify) {
2406 DOMAIN_FOREACH(dp) {
2407 if (dp->dom_if_link_state_change != NULL)
2408 dp->dom_if_link_state_change(ifp,
2409 LINK_STATE_DOWN);
2410 }
2411 }
2412
2413 /* Notify that the link state has changed. */
2414 rt_ifmsg(ifp);
2415
2416 #if NCARP > 0
2417 if (ifp->if_carp)
2418 carp_carpdev_state(ifp);
2419 #endif
2420
2421 if (ifp->if_link_state_changed != NULL)
2422 ifp->if_link_state_changed(ifp, link_state);
2423
2424 #if NBRIDGE > 0
2425 if (ifp->if_bridge != NULL)
2426 bridge_calc_link_state(ifp->if_bridge);
2427 #endif
2428
2429 #if NLAGG > 0
2430 if (ifp->if_lagg != NULL)
2431 lagg_linkstate_changed(ifp);
2432 #endif
2433
2434 DOMAIN_FOREACH(dp) {
2435 if (dp->dom_if_link_state_change != NULL)
2436 dp->dom_if_link_state_change(ifp, link_state);
2437 }
2438 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2439 splx(s);
2440 }
2441
2442 /*
2443 * Process the interface link state change queue.
2444 */
2445 static void
2446 if_link_state_change_work(struct work *work, void *arg)
2447 {
2448 struct ifnet *ifp = container_of(work, struct ifnet, if_link_work);
2449 int s;
2450 uint8_t state;
2451
2452 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2453 s = splnet();
2454
2455 /* Pop a link state change from the queue and process it.
2456 * If there is nothing to process then if_detach() has been called.
2457 * We keep if_link_scheduled = true so the queue can safely drain
2458 * without more work being queued. */
2459 IF_LINK_STATE_CHANGE_LOCK(ifp);
2460 LQ_POP(ifp->if_link_queue, state);
2461 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2462 if (state == LINK_STATE_UNSET)
2463 goto out;
2464
2465 if_link_state_change_process(ifp, state);
2466
2467 /* If there is a link state change to come, schedule it. */
2468 IF_LINK_STATE_CHANGE_LOCK(ifp);
2469 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) {
2470 ifp->if_link_scheduled = true;
2471 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
2472 } else
2473 ifp->if_link_scheduled = false;
2474 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2475
2476 out:
2477 splx(s);
2478 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2479 }
2480
2481 /*
2482 * Used to mark addresses on an interface as DETATCHED or TENTATIVE
2483 * and thus start Duplicate Address Detection without changing the
2484 * real link state.
2485 */
2486 void
2487 if_domain_link_state_change(struct ifnet *ifp, int link_state)
2488 {
2489 struct domain *dp;
2490 int s = splnet();
2491
2492 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2493
2494 DOMAIN_FOREACH(dp) {
2495 if (dp->dom_if_link_state_change != NULL)
2496 dp->dom_if_link_state_change(ifp, link_state);
2497 }
2498
2499 splx(s);
2500 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2501 }
2502
2503 /*
2504 * Default action when installing a local route on a point-to-point
2505 * interface.
2506 */
2507 void
2508 p2p_rtrequest(int req, struct rtentry *rt,
2509 __unused const struct rt_addrinfo *info)
2510 {
2511 struct ifnet *ifp = rt->rt_ifp;
2512 struct ifaddr *ifa, *lo0ifa;
2513 int s = pserialize_read_enter();
2514
2515 switch (req) {
2516 case RTM_ADD:
2517 if ((rt->rt_flags & RTF_LOCAL) == 0)
2518 break;
2519
2520 rt->rt_ifp = lo0ifp;
2521
2522 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2523 break;
2524
2525 IFADDR_READER_FOREACH(ifa, ifp) {
2526 if (equal(rt_getkey(rt), ifa->ifa_addr))
2527 break;
2528 }
2529 if (ifa == NULL)
2530 break;
2531
2532 /*
2533 * Ensure lo0 has an address of the same family.
2534 */
2535 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2536 if (lo0ifa->ifa_addr->sa_family ==
2537 ifa->ifa_addr->sa_family)
2538 break;
2539 }
2540 if (lo0ifa == NULL)
2541 break;
2542
2543 /*
2544 * Make sure to set rt->rt_ifa to the interface
2545 * address we are using, otherwise we will have trouble
2546 * with source address selection.
2547 */
2548 if (ifa != rt->rt_ifa)
2549 rt_replace_ifa(rt, ifa);
2550 break;
2551 case RTM_DELETE:
2552 default:
2553 break;
2554 }
2555 pserialize_read_exit(s);
2556 }
2557
2558 static void
2559 _if_down(struct ifnet *ifp)
2560 {
2561 struct ifaddr *ifa;
2562 struct domain *dp;
2563 int s, bound;
2564 struct psref psref;
2565
2566 ifp->if_flags &= ~IFF_UP;
2567 nanotime(&ifp->if_lastchange);
2568
2569 bound = curlwp_bind();
2570 s = pserialize_read_enter();
2571 IFADDR_READER_FOREACH(ifa, ifp) {
2572 ifa_acquire(ifa, &psref);
2573 pserialize_read_exit(s);
2574
2575 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2576
2577 s = pserialize_read_enter();
2578 ifa_release(ifa, &psref);
2579 }
2580 pserialize_read_exit(s);
2581 curlwp_bindx(bound);
2582
2583 IFQ_PURGE(&ifp->if_snd);
2584 #if NCARP > 0
2585 if (ifp->if_carp)
2586 carp_carpdev_state(ifp);
2587 #endif
2588 rt_ifmsg(ifp);
2589 DOMAIN_FOREACH(dp) {
2590 if (dp->dom_if_down)
2591 dp->dom_if_down(ifp);
2592 }
2593 }
2594
2595 static void
2596 if_down_deactivated(struct ifnet *ifp)
2597 {
2598
2599 KASSERT(if_is_deactivated(ifp));
2600 _if_down(ifp);
2601 }
2602
2603 void
2604 if_down_locked(struct ifnet *ifp)
2605 {
2606
2607 KASSERT(IFNET_LOCKED(ifp));
2608 _if_down(ifp);
2609 }
2610
2611 /*
2612 * Mark an interface down and notify protocols of
2613 * the transition.
2614 * NOTE: must be called at splsoftnet or equivalent.
2615 */
2616 void
2617 if_down(struct ifnet *ifp)
2618 {
2619
2620 IFNET_LOCK(ifp);
2621 if_down_locked(ifp);
2622 IFNET_UNLOCK(ifp);
2623 }
2624
2625 /*
2626 * Must be called with holding if_ioctl_lock.
2627 */
2628 static void
2629 if_up_locked(struct ifnet *ifp)
2630 {
2631 #ifdef notyet
2632 struct ifaddr *ifa;
2633 #endif
2634 struct domain *dp;
2635
2636 KASSERT(IFNET_LOCKED(ifp));
2637
2638 KASSERT(!if_is_deactivated(ifp));
2639 ifp->if_flags |= IFF_UP;
2640 nanotime(&ifp->if_lastchange);
2641 #ifdef notyet
2642 /* this has no effect on IP, and will kill all ISO connections XXX */
2643 IFADDR_READER_FOREACH(ifa, ifp)
2644 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2645 #endif
2646 #if NCARP > 0
2647 if (ifp->if_carp)
2648 carp_carpdev_state(ifp);
2649 #endif
2650 rt_ifmsg(ifp);
2651 DOMAIN_FOREACH(dp) {
2652 if (dp->dom_if_up)
2653 dp->dom_if_up(ifp);
2654 }
2655 }
2656
2657 /*
2658 * Handle interface slowtimo timer routine. Called
2659 * from softclock, we decrement timer (if set) and
2660 * call the appropriate interface routine on expiration.
2661 */
2662 static void
2663 if_slowtimo(void *arg)
2664 {
2665 void (*slowtimo)(struct ifnet *);
2666 struct ifnet *ifp = arg;
2667 int s;
2668
2669 slowtimo = ifp->if_slowtimo;
2670 if (__predict_false(slowtimo == NULL))
2671 return;
2672
2673 s = splnet();
2674 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2675 (*slowtimo)(ifp);
2676
2677 splx(s);
2678
2679 if (__predict_true(ifp->if_slowtimo != NULL))
2680 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2681 }
2682
2683 /*
2684 * Mark an interface up and notify protocols of
2685 * the transition.
2686 * NOTE: must be called at splsoftnet or equivalent.
2687 */
2688 void
2689 if_up(struct ifnet *ifp)
2690 {
2691
2692 IFNET_LOCK(ifp);
2693 if_up_locked(ifp);
2694 IFNET_UNLOCK(ifp);
2695 }
2696
2697 /*
2698 * Set/clear promiscuous mode on interface ifp based on the truth value
2699 * of pswitch. The calls are reference counted so that only the first
2700 * "on" request actually has an effect, as does the final "off" request.
2701 * Results are undefined if the "off" and "on" requests are not matched.
2702 */
2703 int
2704 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2705 {
2706 int pcount, ret = 0;
2707 u_short nflags;
2708
2709 KASSERT(IFNET_LOCKED(ifp));
2710
2711 pcount = ifp->if_pcount;
2712 if (pswitch) {
2713 /*
2714 * Allow the device to be "placed" into promiscuous
2715 * mode even if it is not configured up. It will
2716 * consult IFF_PROMISC when it is brought up.
2717 */
2718 if (ifp->if_pcount++ != 0)
2719 goto out;
2720 nflags = ifp->if_flags | IFF_PROMISC;
2721 } else {
2722 if (--ifp->if_pcount > 0)
2723 goto out;
2724 nflags = ifp->if_flags & ~IFF_PROMISC;
2725 }
2726 ret = if_flags_set(ifp, nflags);
2727 /* Restore interface state if not successful. */
2728 if (ret != 0) {
2729 ifp->if_pcount = pcount;
2730 }
2731 out:
2732 return ret;
2733 }
2734
2735 int
2736 ifpromisc(struct ifnet *ifp, int pswitch)
2737 {
2738 int e;
2739
2740 IFNET_LOCK(ifp);
2741 e = ifpromisc_locked(ifp, pswitch);
2742 IFNET_UNLOCK(ifp);
2743
2744 return e;
2745 }
2746
2747 /*
2748 * Map interface name to
2749 * interface structure pointer.
2750 */
2751 struct ifnet *
2752 ifunit(const char *name)
2753 {
2754 struct ifnet *ifp;
2755 const char *cp = name;
2756 u_int unit = 0;
2757 u_int i;
2758 int s;
2759
2760 /*
2761 * If the entire name is a number, treat it as an ifindex.
2762 */
2763 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2764 unit = unit * 10 + (*cp - '0');
2765 }
2766
2767 /*
2768 * If the number took all of the name, then it's a valid ifindex.
2769 */
2770 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2771 return if_byindex(unit);
2772
2773 ifp = NULL;
2774 s = pserialize_read_enter();
2775 IFNET_READER_FOREACH(ifp) {
2776 if (if_is_deactivated(ifp))
2777 continue;
2778 if (strcmp(ifp->if_xname, name) == 0)
2779 goto out;
2780 }
2781 out:
2782 pserialize_read_exit(s);
2783 return ifp;
2784 }
2785
2786 /*
2787 * Get a reference of an ifnet object by an interface name.
2788 * The returned reference is protected by psref(9). The caller
2789 * must release a returned reference by if_put after use.
2790 */
2791 struct ifnet *
2792 if_get(const char *name, struct psref *psref)
2793 {
2794 struct ifnet *ifp;
2795 const char *cp = name;
2796 u_int unit = 0;
2797 u_int i;
2798 int s;
2799
2800 /*
2801 * If the entire name is a number, treat it as an ifindex.
2802 */
2803 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2804 unit = unit * 10 + (*cp - '0');
2805 }
2806
2807 /*
2808 * If the number took all of the name, then it's a valid ifindex.
2809 */
2810 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2811 return if_get_byindex(unit, psref);
2812
2813 ifp = NULL;
2814 s = pserialize_read_enter();
2815 IFNET_READER_FOREACH(ifp) {
2816 if (if_is_deactivated(ifp))
2817 continue;
2818 if (strcmp(ifp->if_xname, name) == 0) {
2819 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2820 psref_acquire(psref, &ifp->if_psref,
2821 ifnet_psref_class);
2822 goto out;
2823 }
2824 }
2825 out:
2826 pserialize_read_exit(s);
2827 return ifp;
2828 }
2829
2830 /*
2831 * Release a reference of an ifnet object given by if_get, if_get_byindex
2832 * or if_get_bylla.
2833 */
2834 void
2835 if_put(const struct ifnet *ifp, struct psref *psref)
2836 {
2837
2838 if (ifp == NULL)
2839 return;
2840
2841 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2842 }
2843
2844 /*
2845 * Return ifp having idx. Return NULL if not found. Normally if_byindex
2846 * should be used.
2847 */
2848 ifnet_t *
2849 _if_byindex(u_int idx)
2850 {
2851
2852 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2853 }
2854
2855 /*
2856 * Return ifp having idx. Return NULL if not found or the found ifp is
2857 * already deactivated.
2858 */
2859 ifnet_t *
2860 if_byindex(u_int idx)
2861 {
2862 ifnet_t *ifp;
2863
2864 ifp = _if_byindex(idx);
2865 if (ifp != NULL && if_is_deactivated(ifp))
2866 ifp = NULL;
2867 return ifp;
2868 }
2869
2870 /*
2871 * Get a reference of an ifnet object by an interface index.
2872 * The returned reference is protected by psref(9). The caller
2873 * must release a returned reference by if_put after use.
2874 */
2875 ifnet_t *
2876 if_get_byindex(u_int idx, struct psref *psref)
2877 {
2878 ifnet_t *ifp;
2879 int s;
2880
2881 s = pserialize_read_enter();
2882 ifp = if_byindex(idx);
2883 if (__predict_true(ifp != NULL)) {
2884 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2885 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2886 }
2887 pserialize_read_exit(s);
2888
2889 return ifp;
2890 }
2891
2892 ifnet_t *
2893 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2894 {
2895 ifnet_t *ifp;
2896 int s;
2897
2898 s = pserialize_read_enter();
2899 IFNET_READER_FOREACH(ifp) {
2900 if (if_is_deactivated(ifp))
2901 continue;
2902 if (ifp->if_addrlen != lla_len)
2903 continue;
2904 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2905 psref_acquire(psref, &ifp->if_psref,
2906 ifnet_psref_class);
2907 break;
2908 }
2909 }
2910 pserialize_read_exit(s);
2911
2912 return ifp;
2913 }
2914
2915 /*
2916 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2917 * for example using pserialize or the ifp is already held or some other
2918 * object is held which guarantes the ifp to not be freed indirectly.
2919 */
2920 void
2921 if_acquire(struct ifnet *ifp, struct psref *psref)
2922 {
2923
2924 KASSERT(ifp->if_index != 0);
2925 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2926 }
2927
2928 bool
2929 if_held(struct ifnet *ifp)
2930 {
2931
2932 return psref_held(&ifp->if_psref, ifnet_psref_class);
2933 }
2934
2935 /*
2936 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
2937 * Check the tunnel nesting count.
2938 * Return > 0, if tunnel nesting count is more than limit.
2939 * Return 0, if tunnel nesting count is equal or less than limit.
2940 */
2941 int
2942 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
2943 {
2944 struct m_tag *mtag;
2945 int *count;
2946
2947 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO);
2948 if (mtag != NULL) {
2949 count = (int *)(mtag + 1);
2950 if (++(*count) > limit) {
2951 log(LOG_NOTICE,
2952 "%s: recursively called too many times(%d)\n",
2953 ifp->if_xname, *count);
2954 return EIO;
2955 }
2956 } else {
2957 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
2958 M_NOWAIT);
2959 if (mtag != NULL) {
2960 m_tag_prepend(m, mtag);
2961 count = (int *)(mtag + 1);
2962 *count = 0;
2963 } else {
2964 log(LOG_DEBUG,
2965 "%s: m_tag_get() failed, recursion calls are not prevented.\n",
2966 ifp->if_xname);
2967 }
2968 }
2969
2970 return 0;
2971 }
2972
2973 static void
2974 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
2975 {
2976 struct tunnel_ro *tro = p;
2977
2978 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP);
2979 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2980 }
2981
2982 static void
2983 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
2984 {
2985 struct tunnel_ro *tro = p;
2986
2987 rtcache_free(tro->tr_ro);
2988 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro));
2989
2990 mutex_obj_free(tro->tr_lock);
2991 }
2992
2993 percpu_t *
2994 if_tunnel_alloc_ro_percpu(void)
2995 {
2996
2997 return percpu_create(sizeof(struct tunnel_ro),
2998 if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL);
2999 }
3000
3001 void
3002 if_tunnel_free_ro_percpu(percpu_t *ro_percpu)
3003 {
3004
3005 percpu_free(ro_percpu, sizeof(struct tunnel_ro));
3006 }
3007
3008
3009 static void
3010 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
3011 {
3012 struct tunnel_ro *tro = p;
3013
3014 mutex_enter(tro->tr_lock);
3015 rtcache_free(tro->tr_ro);
3016 mutex_exit(tro->tr_lock);
3017 }
3018
3019 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu)
3020 {
3021
3022 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL);
3023 }
3024
3025 void
3026 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats)
3027 {
3028
3029 /* Collet the volatile stats first; this zeros *ifi. */
3030 if_stats_to_if_data(ifp, ifi, zero_stats);
3031
3032 ifi->ifi_type = ifp->if_type;
3033 ifi->ifi_addrlen = ifp->if_addrlen;
3034 ifi->ifi_hdrlen = ifp->if_hdrlen;
3035 ifi->ifi_link_state = ifp->if_link_state;
3036 ifi->ifi_mtu = ifp->if_mtu;
3037 ifi->ifi_metric = ifp->if_metric;
3038 ifi->ifi_baudrate = ifp->if_baudrate;
3039 ifi->ifi_lastchange = ifp->if_lastchange;
3040 }
3041
3042 /* common */
3043 int
3044 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
3045 {
3046 int s;
3047 struct ifreq *ifr;
3048 struct ifcapreq *ifcr;
3049 struct ifdatareq *ifdr;
3050 unsigned short flags;
3051 char *descr;
3052 int error;
3053
3054 switch (cmd) {
3055 case SIOCSIFCAP:
3056 ifcr = data;
3057 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
3058 return EINVAL;
3059
3060 if (ifcr->ifcr_capenable == ifp->if_capenable)
3061 return 0;
3062
3063 ifp->if_capenable = ifcr->ifcr_capenable;
3064
3065 /* Pre-compute the checksum flags mask. */
3066 ifp->if_csum_flags_tx = 0;
3067 ifp->if_csum_flags_rx = 0;
3068 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
3069 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
3070 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3071 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
3072
3073 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx)
3074 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
3075 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
3076 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
3077
3078 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx)
3079 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
3080 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
3081 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
3082
3083 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx)
3084 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
3085 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx)
3086 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
3087
3088 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx)
3089 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
3090 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx)
3091 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
3092
3093 if (ifp->if_capenable & IFCAP_TSOv4)
3094 ifp->if_csum_flags_tx |= M_CSUM_TSOv4;
3095 if (ifp->if_capenable & IFCAP_TSOv6)
3096 ifp->if_csum_flags_tx |= M_CSUM_TSOv6;
3097
3098 #if NBRIDGE > 0
3099 if (ifp->if_bridge != NULL)
3100 bridge_calc_csum_flags(ifp->if_bridge);
3101 #endif
3102
3103 if (ifp->if_flags & IFF_UP)
3104 return ENETRESET;
3105 return 0;
3106 case SIOCSIFFLAGS:
3107 ifr = data;
3108 /*
3109 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
3110 * and if_down aren't MP-safe yet, so we must hold the lock.
3111 */
3112 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3113 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
3114 s = splsoftnet();
3115 if_down_locked(ifp);
3116 splx(s);
3117 }
3118 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
3119 s = splsoftnet();
3120 if_up_locked(ifp);
3121 splx(s);
3122 }
3123 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3124 flags = (ifp->if_flags & IFF_CANTCHANGE) |
3125 (ifr->ifr_flags &~ IFF_CANTCHANGE);
3126 if (ifp->if_flags != flags) {
3127 ifp->if_flags = flags;
3128 /* Notify that the flags have changed. */
3129 rt_ifmsg(ifp);
3130 }
3131 break;
3132 case SIOCGIFFLAGS:
3133 ifr = data;
3134 ifr->ifr_flags = ifp->if_flags;
3135 break;
3136
3137 case SIOCGIFMETRIC:
3138 ifr = data;
3139 ifr->ifr_metric = ifp->if_metric;
3140 break;
3141
3142 case SIOCGIFMTU:
3143 ifr = data;
3144 ifr->ifr_mtu = ifp->if_mtu;
3145 break;
3146
3147 case SIOCGIFDLT:
3148 ifr = data;
3149 ifr->ifr_dlt = ifp->if_dlt;
3150 break;
3151
3152 case SIOCGIFCAP:
3153 ifcr = data;
3154 ifcr->ifcr_capabilities = ifp->if_capabilities;
3155 ifcr->ifcr_capenable = ifp->if_capenable;
3156 break;
3157
3158 case SIOCSIFMETRIC:
3159 ifr = data;
3160 ifp->if_metric = ifr->ifr_metric;
3161 break;
3162
3163 case SIOCGIFDATA:
3164 ifdr = data;
3165 if_export_if_data(ifp, &ifdr->ifdr_data, false);
3166 break;
3167
3168 case SIOCGIFINDEX:
3169 ifr = data;
3170 ifr->ifr_index = ifp->if_index;
3171 break;
3172
3173 case SIOCZIFDATA:
3174 ifdr = data;
3175 if_export_if_data(ifp, &ifdr->ifdr_data, true);
3176 getnanotime(&ifp->if_lastchange);
3177 break;
3178 case SIOCSIFMTU:
3179 ifr = data;
3180 if (ifp->if_mtu == ifr->ifr_mtu)
3181 break;
3182 ifp->if_mtu = ifr->ifr_mtu;
3183 return ENETRESET;
3184 case SIOCSIFDESCR:
3185 error = kauth_authorize_network(curlwp->l_cred,
3186 KAUTH_NETWORK_INTERFACE,
3187 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
3188 NULL);
3189 if (error)
3190 return error;
3191
3192 ifr = data;
3193
3194 if (ifr->ifr_buflen > IFDESCRSIZE)
3195 return ENAMETOOLONG;
3196
3197 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) {
3198 /* unset description */
3199 descr = NULL;
3200 } else {
3201 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP);
3202 /*
3203 * copy (IFDESCRSIZE - 1) bytes to ensure
3204 * terminating nul
3205 */
3206 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1);
3207 if (error) {
3208 kmem_free(descr, IFDESCRSIZE);
3209 return error;
3210 }
3211 }
3212
3213 if (ifp->if_description != NULL)
3214 kmem_free(ifp->if_description, IFDESCRSIZE);
3215
3216 ifp->if_description = descr;
3217 break;
3218
3219 case SIOCGIFDESCR:
3220 ifr = data;
3221 descr = ifp->if_description;
3222
3223 if (descr == NULL)
3224 return ENOMSG;
3225
3226 if (ifr->ifr_buflen < IFDESCRSIZE)
3227 return EINVAL;
3228
3229 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE);
3230 if (error)
3231 return error;
3232 break;
3233
3234 default:
3235 return ENOTTY;
3236 }
3237 return 0;
3238 }
3239
3240 int
3241 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3242 {
3243 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3244 struct ifaddr *ifa;
3245 const struct sockaddr *any, *sa;
3246 union {
3247 struct sockaddr sa;
3248 struct sockaddr_storage ss;
3249 } u, v;
3250 int s, error = 0;
3251
3252 switch (cmd) {
3253 case SIOCSIFADDRPREF:
3254 error = kauth_authorize_network(curlwp->l_cred,
3255 KAUTH_NETWORK_INTERFACE,
3256 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
3257 NULL);
3258 if (error)
3259 return error;
3260 break;
3261 case SIOCGIFADDRPREF:
3262 break;
3263 default:
3264 return EOPNOTSUPP;
3265 }
3266
3267 /* sanity checks */
3268 if (data == NULL || ifp == NULL) {
3269 panic("invalid argument to %s", __func__);
3270 /*NOTREACHED*/
3271 }
3272
3273 /* address must be specified on ADD and DELETE */
3274 sa = sstocsa(&ifap->ifap_addr);
3275 if (sa->sa_family != sofamily(so))
3276 return EINVAL;
3277 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3278 return EINVAL;
3279
3280 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3281
3282 s = pserialize_read_enter();
3283 IFADDR_READER_FOREACH(ifa, ifp) {
3284 if (ifa->ifa_addr->sa_family != sa->sa_family)
3285 continue;
3286 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3287 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3288 break;
3289 }
3290 if (ifa == NULL) {
3291 error = EADDRNOTAVAIL;
3292 goto out;
3293 }
3294
3295 switch (cmd) {
3296 case SIOCSIFADDRPREF:
3297 ifa->ifa_preference = ifap->ifap_preference;
3298 goto out;
3299 case SIOCGIFADDRPREF:
3300 /* fill in the if_laddrreq structure */
3301 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3302 sizeof(ifap->ifap_addr), ifa->ifa_addr);
3303 ifap->ifap_preference = ifa->ifa_preference;
3304 goto out;
3305 default:
3306 error = EOPNOTSUPP;
3307 }
3308 out:
3309 pserialize_read_exit(s);
3310 return error;
3311 }
3312
3313 /*
3314 * Interface ioctls.
3315 */
3316 static int
3317 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3318 {
3319 struct ifnet *ifp;
3320 struct ifreq *ifr;
3321 int error = 0;
3322 u_long ocmd = cmd;
3323 u_short oif_flags;
3324 struct ifreq ifrb;
3325 struct oifreq *oifr = NULL;
3326 int r;
3327 struct psref psref;
3328 int bound;
3329 bool do_if43_post = false;
3330 bool do_ifm80_post = false;
3331
3332 switch (cmd) {
3333 case SIOCGIFCONF:
3334 return ifconf(cmd, data);
3335 case SIOCINITIFADDR:
3336 return EPERM;
3337 default:
3338 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(),
3339 error);
3340 if (error != ENOSYS)
3341 return error;
3342 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data),
3343 enosys(), error);
3344 if (error != ENOSYS)
3345 return error;
3346 error = 0;
3347 break;
3348 }
3349
3350 ifr = data;
3351 /* Pre-conversion */
3352 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error);
3353 if (cmd != ocmd) {
3354 oifr = data;
3355 data = ifr = &ifrb;
3356 IFREQO2N_43(oifr, ifr);
3357 do_if43_post = true;
3358 }
3359 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post),
3360 enosys(), error);
3361
3362 switch (cmd) {
3363 case SIOCIFCREATE:
3364 case SIOCIFDESTROY:
3365 bound = curlwp_bind();
3366 if (l != NULL) {
3367 ifp = if_get(ifr->ifr_name, &psref);
3368 error = kauth_authorize_network(l->l_cred,
3369 KAUTH_NETWORK_INTERFACE,
3370 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3371 KAUTH_ARG(cmd), NULL);
3372 if (ifp != NULL)
3373 if_put(ifp, &psref);
3374 if (error != 0) {
3375 curlwp_bindx(bound);
3376 return error;
3377 }
3378 }
3379 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3380 mutex_enter(&if_clone_mtx);
3381 r = (cmd == SIOCIFCREATE) ?
3382 if_clone_create(ifr->ifr_name) :
3383 if_clone_destroy(ifr->ifr_name);
3384 mutex_exit(&if_clone_mtx);
3385 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3386 curlwp_bindx(bound);
3387 return r;
3388
3389 case SIOCIFGCLONERS:
3390 {
3391 struct if_clonereq *req = (struct if_clonereq *)data;
3392 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3393 &req->ifcr_total);
3394 }
3395 }
3396
3397 bound = curlwp_bind();
3398 ifp = if_get(ifr->ifr_name, &psref);
3399 if (ifp == NULL) {
3400 curlwp_bindx(bound);
3401 return ENXIO;
3402 }
3403
3404 switch (cmd) {
3405 case SIOCALIFADDR:
3406 case SIOCDLIFADDR:
3407 case SIOCSIFADDRPREF:
3408 case SIOCSIFFLAGS:
3409 case SIOCSIFCAP:
3410 case SIOCSIFMETRIC:
3411 case SIOCZIFDATA:
3412 case SIOCSIFMTU:
3413 case SIOCSIFPHYADDR:
3414 case SIOCDIFPHYADDR:
3415 #ifdef INET6
3416 case SIOCSIFPHYADDR_IN6:
3417 #endif
3418 case SIOCSLIFPHYADDR:
3419 case SIOCADDMULTI:
3420 case SIOCDELMULTI:
3421 case SIOCSETHERCAP:
3422 case SIOCSIFMEDIA:
3423 case SIOCSDRVSPEC:
3424 case SIOCG80211:
3425 case SIOCS80211:
3426 case SIOCS80211NWID:
3427 case SIOCS80211NWKEY:
3428 case SIOCS80211POWER:
3429 case SIOCS80211BSSID:
3430 case SIOCS80211CHANNEL:
3431 case SIOCSLINKSTR:
3432 if (l != NULL) {
3433 error = kauth_authorize_network(l->l_cred,
3434 KAUTH_NETWORK_INTERFACE,
3435 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3436 KAUTH_ARG(cmd), NULL);
3437 if (error != 0)
3438 goto out;
3439 }
3440 }
3441
3442 oif_flags = ifp->if_flags;
3443
3444 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3445 IFNET_LOCK(ifp);
3446
3447 error = (*ifp->if_ioctl)(ifp, cmd, data);
3448 if (error != ENOTTY)
3449 ;
3450 else if (so->so_proto == NULL)
3451 error = EOPNOTSUPP;
3452 else {
3453 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3454 MODULE_HOOK_CALL(if_ifioctl_43_hook,
3455 (so, ocmd, cmd, data, l), enosys(), error);
3456 if (error == ENOSYS)
3457 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3458 cmd, data, ifp);
3459 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3460 }
3461
3462 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3463 if ((ifp->if_flags & IFF_UP) != 0) {
3464 int s = splsoftnet();
3465 if_up_locked(ifp);
3466 splx(s);
3467 }
3468 }
3469
3470 /* Post-conversion */
3471 if (do_ifm80_post && (error == 0))
3472 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd),
3473 enosys(), error);
3474 if (do_if43_post)
3475 IFREQN2O_43(oifr, ifr);
3476
3477 IFNET_UNLOCK(ifp);
3478 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3479 out:
3480 if_put(ifp, &psref);
3481 curlwp_bindx(bound);
3482 return error;
3483 }
3484
3485 /*
3486 * Return interface configuration
3487 * of system. List may be used
3488 * in later ioctl's (above) to get
3489 * other information.
3490 *
3491 * Each record is a struct ifreq. Before the addition of
3492 * sockaddr_storage, the API rule was that sockaddr flavors that did
3493 * not fit would extend beyond the struct ifreq, with the next struct
3494 * ifreq starting sa_len beyond the struct sockaddr. Because the
3495 * union in struct ifreq includes struct sockaddr_storage, every kind
3496 * of sockaddr must fit. Thus, there are no longer any overlength
3497 * records.
3498 *
3499 * Records are added to the user buffer if they fit, and ifc_len is
3500 * adjusted to the length that was written. Thus, the user is only
3501 * assured of getting the complete list if ifc_len on return is at
3502 * least sizeof(struct ifreq) less than it was on entry.
3503 *
3504 * If the user buffer pointer is NULL, this routine copies no data and
3505 * returns the amount of space that would be needed.
3506 *
3507 * Invariants:
3508 * ifrp points to the next part of the user's buffer to be used. If
3509 * ifrp != NULL, space holds the number of bytes remaining that we may
3510 * write at ifrp. Otherwise, space holds the number of bytes that
3511 * would have been written had there been adequate space.
3512 */
3513 /*ARGSUSED*/
3514 static int
3515 ifconf(u_long cmd, void *data)
3516 {
3517 struct ifconf *ifc = (struct ifconf *)data;
3518 struct ifnet *ifp;
3519 struct ifaddr *ifa;
3520 struct ifreq ifr, *ifrp = NULL;
3521 int space = 0, error = 0;
3522 const int sz = (int)sizeof(struct ifreq);
3523 const bool docopy = ifc->ifc_req != NULL;
3524 int s;
3525 int bound;
3526 struct psref psref;
3527
3528 if (docopy) {
3529 if (ifc->ifc_len < 0)
3530 return EINVAL;
3531
3532 space = ifc->ifc_len;
3533 ifrp = ifc->ifc_req;
3534 }
3535 memset(&ifr, 0, sizeof(ifr));
3536
3537 bound = curlwp_bind();
3538 s = pserialize_read_enter();
3539 IFNET_READER_FOREACH(ifp) {
3540 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3541 pserialize_read_exit(s);
3542
3543 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3544 sizeof(ifr.ifr_name));
3545 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3546 error = ENAMETOOLONG;
3547 goto release_exit;
3548 }
3549 if (IFADDR_READER_EMPTY(ifp)) {
3550 /* Interface with no addresses - send zero sockaddr. */
3551 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3552 if (!docopy) {
3553 space += sz;
3554 goto next;
3555 }
3556 if (space >= sz) {
3557 error = copyout(&ifr, ifrp, sz);
3558 if (error != 0)
3559 goto release_exit;
3560 ifrp++;
3561 space -= sz;
3562 }
3563 }
3564
3565 s = pserialize_read_enter();
3566 IFADDR_READER_FOREACH(ifa, ifp) {
3567 struct sockaddr *sa = ifa->ifa_addr;
3568 /* all sockaddrs must fit in sockaddr_storage */
3569 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3570
3571 if (!docopy) {
3572 space += sz;
3573 continue;
3574 }
3575 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3576 pserialize_read_exit(s);
3577
3578 if (space >= sz) {
3579 error = copyout(&ifr, ifrp, sz);
3580 if (error != 0)
3581 goto release_exit;
3582 ifrp++; space -= sz;
3583 }
3584 s = pserialize_read_enter();
3585 }
3586 pserialize_read_exit(s);
3587
3588 next:
3589 s = pserialize_read_enter();
3590 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3591 }
3592 pserialize_read_exit(s);
3593 curlwp_bindx(bound);
3594
3595 if (docopy) {
3596 KASSERT(0 <= space && space <= ifc->ifc_len);
3597 ifc->ifc_len -= space;
3598 } else {
3599 KASSERT(space >= 0);
3600 ifc->ifc_len = space;
3601 }
3602 return (0);
3603
3604 release_exit:
3605 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3606 curlwp_bindx(bound);
3607 return error;
3608 }
3609
3610 int
3611 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3612 {
3613 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
3614 struct ifreq ifrb;
3615 struct oifreq *oifr = NULL;
3616 u_long ocmd = cmd;
3617 int hook;
3618
3619 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
3620 if (hook != ENOSYS) {
3621 if (cmd != ocmd) {
3622 oifr = (struct oifreq *)(void *)ifr;
3623 ifr = &ifrb;
3624 IFREQO2N_43(oifr, ifr);
3625 len = sizeof(oifr->ifr_addr);
3626 }
3627 }
3628
3629 if (len < sa->sa_len)
3630 return EFBIG;
3631
3632 memset(&ifr->ifr_addr, 0, len);
3633 sockaddr_copy(&ifr->ifr_addr, len, sa);
3634
3635 if (cmd != ocmd)
3636 IFREQN2O_43(oifr, ifr);
3637 return 0;
3638 }
3639
3640 /*
3641 * wrapper function for the drivers which doesn't have if_transmit().
3642 */
3643 static int
3644 if_transmit(struct ifnet *ifp, struct mbuf *m)
3645 {
3646 int s, error;
3647 size_t pktlen = m->m_pkthdr.len;
3648 bool mcast = (m->m_flags & M_MCAST) != 0;
3649
3650 s = splnet();
3651
3652 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3653 if (error != 0) {
3654 /* mbuf is already freed */
3655 goto out;
3656 }
3657
3658 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
3659 if_statadd_ref(nsr, if_obytes, pktlen);
3660 if (mcast)
3661 if_statinc_ref(nsr, if_omcasts);
3662 IF_STAT_PUTREF(ifp);
3663
3664 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3665 if_start_lock(ifp);
3666 out:
3667 splx(s);
3668
3669 return error;
3670 }
3671
3672 int
3673 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3674 {
3675 int error;
3676
3677 kmsan_check_mbuf(m);
3678
3679 #ifdef ALTQ
3680 KERNEL_LOCK(1, NULL);
3681 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3682 error = if_transmit(ifp, m);
3683 KERNEL_UNLOCK_ONE(NULL);
3684 } else {
3685 KERNEL_UNLOCK_ONE(NULL);
3686 error = (*ifp->if_transmit)(ifp, m);
3687 /* mbuf is alredy freed */
3688 }
3689 #else /* !ALTQ */
3690 error = (*ifp->if_transmit)(ifp, m);
3691 /* mbuf is alredy freed */
3692 #endif /* !ALTQ */
3693
3694 return error;
3695 }
3696
3697 /*
3698 * Queue message on interface, and start output if interface
3699 * not yet active.
3700 */
3701 int
3702 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3703 {
3704
3705 return if_transmit_lock(ifp, m);
3706 }
3707
3708 /*
3709 * Queue message on interface, possibly using a second fast queue
3710 */
3711 int
3712 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3713 {
3714 int error = 0;
3715
3716 if (ifq != NULL
3717 #ifdef ALTQ
3718 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3719 #endif
3720 ) {
3721 if (IF_QFULL(ifq)) {
3722 IF_DROP(&ifp->if_snd);
3723 m_freem(m);
3724 if (error == 0)
3725 error = ENOBUFS;
3726 } else
3727 IF_ENQUEUE(ifq, m);
3728 } else
3729 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3730 if (error != 0) {
3731 if_statinc(ifp, if_oerrors);
3732 return error;
3733 }
3734 return 0;
3735 }
3736
3737 int
3738 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3739 {
3740 int rc;
3741
3742 KASSERT(IFNET_LOCKED(ifp));
3743 if (ifp->if_initaddr != NULL)
3744 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3745 else if (src ||
3746 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3747 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3748
3749 return rc;
3750 }
3751
3752 int
3753 if_do_dad(struct ifnet *ifp)
3754 {
3755 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3756 return 0;
3757
3758 switch (ifp->if_type) {
3759 case IFT_FAITH:
3760 /*
3761 * These interfaces do not have the IFF_LOOPBACK flag,
3762 * but loop packets back. We do not have to do DAD on such
3763 * interfaces. We should even omit it, because loop-backed
3764 * responses would confuse the DAD procedure.
3765 */
3766 return 0;
3767 default:
3768 /*
3769 * Our DAD routine requires the interface up and running.
3770 * However, some interfaces can be up before the RUNNING
3771 * status. Additionaly, users may try to assign addresses
3772 * before the interface becomes up (or running).
3773 * We simply skip DAD in such a case as a work around.
3774 * XXX: we should rather mark "tentative" on such addresses,
3775 * and do DAD after the interface becomes ready.
3776 */
3777 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
3778 (IFF_UP | IFF_RUNNING))
3779 return 0;
3780
3781 return 1;
3782 }
3783 }
3784
3785 int
3786 if_flags_set(ifnet_t *ifp, const u_short flags)
3787 {
3788 int rc;
3789
3790 KASSERT(IFNET_LOCKED(ifp));
3791
3792 if (ifp->if_setflags != NULL)
3793 rc = (*ifp->if_setflags)(ifp, flags);
3794 else {
3795 u_short cantflags, chgdflags;
3796 struct ifreq ifr;
3797
3798 chgdflags = ifp->if_flags ^ flags;
3799 cantflags = chgdflags & IFF_CANTCHANGE;
3800
3801 if (cantflags != 0)
3802 ifp->if_flags ^= cantflags;
3803
3804 /* Traditionally, we do not call if_ioctl after
3805 * setting/clearing only IFF_PROMISC if the interface
3806 * isn't IFF_UP. Uphold that tradition.
3807 */
3808 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3809 return 0;
3810
3811 memset(&ifr, 0, sizeof(ifr));
3812
3813 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3814 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3815
3816 if (rc != 0 && cantflags != 0)
3817 ifp->if_flags ^= cantflags;
3818 }
3819
3820 return rc;
3821 }
3822
3823 int
3824 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3825 {
3826 int rc;
3827 struct ifreq ifr;
3828
3829 /*
3830 * XXX NOMPSAFE - this calls if_ioctl without holding IFNET_LOCK()
3831 * in some cases - e.g. when called from vlan/netinet/netinet6 code
3832 * directly rather than via doifoictl()
3833 */
3834 ifreq_setaddr(cmd, &ifr, sa);
3835 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3836
3837 return rc;
3838 }
3839
3840 static void
3841 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3842 struct ifaltq *ifq)
3843 {
3844 const struct sysctlnode *cnode, *rnode;
3845
3846 if (sysctl_createv(clog, 0, NULL, &rnode,
3847 CTLFLAG_PERMANENT,
3848 CTLTYPE_NODE, "interfaces",
3849 SYSCTL_DESCR("Per-interface controls"),
3850 NULL, 0, NULL, 0,
3851 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3852 goto bad;
3853
3854 if (sysctl_createv(clog, 0, &rnode, &rnode,
3855 CTLFLAG_PERMANENT,
3856 CTLTYPE_NODE, ifname,
3857 SYSCTL_DESCR("Interface controls"),
3858 NULL, 0, NULL, 0,
3859 CTL_CREATE, CTL_EOL) != 0)
3860 goto bad;
3861
3862 if (sysctl_createv(clog, 0, &rnode, &rnode,
3863 CTLFLAG_PERMANENT,
3864 CTLTYPE_NODE, "sndq",
3865 SYSCTL_DESCR("Interface output queue controls"),
3866 NULL, 0, NULL, 0,
3867 CTL_CREATE, CTL_EOL) != 0)
3868 goto bad;
3869
3870 if (sysctl_createv(clog, 0, &rnode, &cnode,
3871 CTLFLAG_PERMANENT,
3872 CTLTYPE_INT, "len",
3873 SYSCTL_DESCR("Current output queue length"),
3874 NULL, 0, &ifq->ifq_len, 0,
3875 CTL_CREATE, CTL_EOL) != 0)
3876 goto bad;
3877
3878 if (sysctl_createv(clog, 0, &rnode, &cnode,
3879 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3880 CTLTYPE_INT, "maxlen",
3881 SYSCTL_DESCR("Maximum allowed output queue length"),
3882 NULL, 0, &ifq->ifq_maxlen, 0,
3883 CTL_CREATE, CTL_EOL) != 0)
3884 goto bad;
3885
3886 if (sysctl_createv(clog, 0, &rnode, &cnode,
3887 CTLFLAG_PERMANENT,
3888 CTLTYPE_INT, "drops",
3889 SYSCTL_DESCR("Packets dropped due to full output queue"),
3890 NULL, 0, &ifq->ifq_drops, 0,
3891 CTL_CREATE, CTL_EOL) != 0)
3892 goto bad;
3893
3894 return;
3895 bad:
3896 printf("%s: could not attach sysctl nodes\n", ifname);
3897 return;
3898 }
3899
3900 #if defined(INET) || defined(INET6)
3901
3902 #define SYSCTL_NET_PKTQ(q, cn, c) \
3903 static int \
3904 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3905 { \
3906 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3907 }
3908
3909 #if defined(INET)
3910 static int
3911 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3912 {
3913 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3914 }
3915 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3916 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3917 #endif
3918
3919 #if defined(INET6)
3920 static int
3921 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3922 {
3923 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3924 }
3925 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3926 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3927 #endif
3928
3929 static void
3930 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3931 {
3932 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3933 const char *pfname = NULL, *ipname = NULL;
3934 int ipn = 0, qid = 0;
3935
3936 switch (pf) {
3937 #if defined(INET)
3938 case PF_INET:
3939 len_func = sysctl_net_ip_pktq_items;
3940 maxlen_func = sysctl_net_ip_pktq_maxlen;
3941 drops_func = sysctl_net_ip_pktq_drops;
3942 pfname = "inet", ipn = IPPROTO_IP;
3943 ipname = "ip", qid = IPCTL_IFQ;
3944 break;
3945 #endif
3946 #if defined(INET6)
3947 case PF_INET6:
3948 len_func = sysctl_net_ip6_pktq_items;
3949 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3950 drops_func = sysctl_net_ip6_pktq_drops;
3951 pfname = "inet6", ipn = IPPROTO_IPV6;
3952 ipname = "ip6", qid = IPV6CTL_IFQ;
3953 break;
3954 #endif
3955 default:
3956 KASSERT(false);
3957 }
3958
3959 sysctl_createv(clog, 0, NULL, NULL,
3960 CTLFLAG_PERMANENT,
3961 CTLTYPE_NODE, pfname, NULL,
3962 NULL, 0, NULL, 0,
3963 CTL_NET, pf, CTL_EOL);
3964 sysctl_createv(clog, 0, NULL, NULL,
3965 CTLFLAG_PERMANENT,
3966 CTLTYPE_NODE, ipname, NULL,
3967 NULL, 0, NULL, 0,
3968 CTL_NET, pf, ipn, CTL_EOL);
3969 sysctl_createv(clog, 0, NULL, NULL,
3970 CTLFLAG_PERMANENT,
3971 CTLTYPE_NODE, "ifq",
3972 SYSCTL_DESCR("Protocol input queue controls"),
3973 NULL, 0, NULL, 0,
3974 CTL_NET, pf, ipn, qid, CTL_EOL);
3975
3976 sysctl_createv(clog, 0, NULL, NULL,
3977 CTLFLAG_PERMANENT,
3978 CTLTYPE_QUAD, "len",
3979 SYSCTL_DESCR("Current input queue length"),
3980 len_func, 0, NULL, 0,
3981 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3982 sysctl_createv(clog, 0, NULL, NULL,
3983 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3984 CTLTYPE_INT, "maxlen",
3985 SYSCTL_DESCR("Maximum allowed input queue length"),
3986 maxlen_func, 0, NULL, 0,
3987 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3988 sysctl_createv(clog, 0, NULL, NULL,
3989 CTLFLAG_PERMANENT,
3990 CTLTYPE_QUAD, "drops",
3991 SYSCTL_DESCR("Packets dropped due to full input queue"),
3992 drops_func, 0, NULL, 0,
3993 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3994 }
3995 #endif /* INET || INET6 */
3996
3997 static int
3998 if_sdl_sysctl(SYSCTLFN_ARGS)
3999 {
4000 struct ifnet *ifp;
4001 const struct sockaddr_dl *sdl;
4002 struct psref psref;
4003 int error = 0;
4004 int bound;
4005
4006 if (namelen != 1)
4007 return EINVAL;
4008
4009 bound = curlwp_bind();
4010 ifp = if_get_byindex(name[0], &psref);
4011 if (ifp == NULL) {
4012 error = ENODEV;
4013 goto out0;
4014 }
4015
4016 sdl = ifp->if_sadl;
4017 if (sdl == NULL) {
4018 *oldlenp = 0;
4019 goto out1;
4020 }
4021
4022 if (oldp == NULL) {
4023 *oldlenp = sdl->sdl_alen;
4024 goto out1;
4025 }
4026
4027 if (*oldlenp >= sdl->sdl_alen)
4028 *oldlenp = sdl->sdl_alen;
4029 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
4030 out1:
4031 if_put(ifp, &psref);
4032 out0:
4033 curlwp_bindx(bound);
4034 return error;
4035 }
4036
4037 static void
4038 if_sysctl_setup(struct sysctllog **clog)
4039 {
4040 const struct sysctlnode *rnode = NULL;
4041
4042 sysctl_createv(clog, 0, NULL, &rnode,
4043 CTLFLAG_PERMANENT,
4044 CTLTYPE_NODE, "sdl",
4045 SYSCTL_DESCR("Get active link-layer address"),
4046 if_sdl_sysctl, 0, NULL, 0,
4047 CTL_NET, CTL_CREATE, CTL_EOL);
4048
4049 #if defined(INET)
4050 sysctl_net_pktq_setup(NULL, PF_INET);
4051 #endif
4052 #ifdef INET6
4053 if (in6_present)
4054 sysctl_net_pktq_setup(NULL, PF_INET6);
4055 #endif
4056 }
4057