if.c revision 1.490 1 /* $NetBSD: if.c,v 1.490 2021/09/21 14:57:26 christos Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.490 2021/09/21 14:57:26 christos Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_atalk.h"
99 #include "opt_wlan.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mrouting.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122 #include <sys/module_hook.h>
123 #include <sys/compat_stub.h>
124 #include <sys/msan.h>
125
126 #include <net/if.h>
127 #include <net/if_dl.h>
128 #include <net/if_ether.h>
129 #include <net/if_media.h>
130 #include <net80211/ieee80211.h>
131 #include <net80211/ieee80211_ioctl.h>
132 #include <net/if_types.h>
133 #include <net/route.h>
134 #include <net/netisr.h>
135 #include <sys/module.h>
136 #ifdef NETATALK
137 #include <netatalk/at_extern.h>
138 #include <netatalk/at.h>
139 #endif
140 #include <net/pfil.h>
141 #include <netinet/in.h>
142 #include <netinet/in_var.h>
143 #include <netinet/ip_encap.h>
144 #include <net/bpf.h>
145
146 #ifdef INET6
147 #include <netinet6/in6_var.h>
148 #include <netinet6/nd6.h>
149 #endif
150
151 #include "ether.h"
152
153 #include "bridge.h"
154 #if NBRIDGE > 0
155 #include <net/if_bridgevar.h>
156 #endif
157
158 #include "carp.h"
159 #if NCARP > 0
160 #include <netinet/ip_carp.h>
161 #endif
162
163 #include "lagg.h"
164 #if NLAGG > 0
165 #include <net/lagg/if_laggvar.h>
166 #endif
167
168 #include <compat/sys/sockio.h>
169
170 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
171 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
172
173 /*
174 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
175 * for each ifnet. It doesn't matter because:
176 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
177 * ifq_lock don't happen
178 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
179 * because if_snd, if_link_state_change and if_link_state_change_process
180 * are all called with KERNEL_LOCK
181 */
182 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \
183 mutex_enter((ifp)->if_snd.ifq_lock)
184 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \
185 mutex_exit((ifp)->if_snd.ifq_lock)
186
187 /*
188 * Global list of interfaces.
189 */
190 /* DEPRECATED. Remove it once kvm(3) users disappeared */
191 struct ifnet_head ifnet_list;
192
193 struct pslist_head ifnet_pslist;
194 static ifnet_t ** ifindex2ifnet = NULL;
195 static u_int if_index = 1;
196 static size_t if_indexlim = 0;
197 static uint64_t index_gen;
198 /* Mutex to protect the above objects. */
199 kmutex_t ifnet_mtx __cacheline_aligned;
200 static struct psref_class *ifnet_psref_class __read_mostly;
201 static pserialize_t ifnet_psz;
202 static struct workqueue *ifnet_link_state_wq __read_mostly;
203
204 static kmutex_t if_clone_mtx;
205
206 struct ifnet *lo0ifp;
207 int ifqmaxlen = IFQ_MAXLEN;
208
209 struct psref_class *ifa_psref_class __read_mostly;
210
211 static int if_delroute_matcher(struct rtentry *, void *);
212
213 static bool if_is_unit(const char *);
214 static struct if_clone *if_clone_lookup(const char *, int *);
215
216 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
217 static int if_cloners_count;
218
219 /* Packet filtering hook for interfaces. */
220 pfil_head_t * if_pfil __read_mostly;
221
222 static kauth_listener_t if_listener;
223
224 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
225 static void if_detach_queues(struct ifnet *, struct ifqueue *);
226 static void sysctl_sndq_setup(struct sysctllog **, const char *,
227 struct ifaltq *);
228 static void if_slowtimo(void *);
229 static void if_attachdomain1(struct ifnet *);
230 static int ifconf(u_long, void *);
231 static int if_transmit(struct ifnet *, struct mbuf *);
232 static int if_clone_create(const char *);
233 static int if_clone_destroy(const char *);
234 static void if_link_state_change_work(struct work *, void *);
235 static void if_up_locked(struct ifnet *);
236 static void _if_down(struct ifnet *);
237 static void if_down_deactivated(struct ifnet *);
238
239 struct if_percpuq {
240 struct ifnet *ipq_ifp;
241 void *ipq_si;
242 struct percpu *ipq_ifqs; /* struct ifqueue */
243 };
244
245 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
246
247 static void if_percpuq_drops(void *, void *, struct cpu_info *);
248 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
249 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
250 struct if_percpuq *);
251
252 struct if_deferred_start {
253 struct ifnet *ids_ifp;
254 void (*ids_if_start)(struct ifnet *);
255 void *ids_si;
256 };
257
258 static void if_deferred_start_softint(void *);
259 static void if_deferred_start_common(struct ifnet *);
260 static void if_deferred_start_destroy(struct ifnet *);
261
262 #if defined(INET) || defined(INET6)
263 static void sysctl_net_pktq_setup(struct sysctllog **, int);
264 #endif
265
266 /*
267 * Hook for if_vlan - needed by if_agr
268 */
269 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook;
270
271 static void if_sysctl_setup(struct sysctllog **);
272
273 static int
274 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
275 void *arg0, void *arg1, void *arg2, void *arg3)
276 {
277 int result;
278 enum kauth_network_req req;
279
280 result = KAUTH_RESULT_DEFER;
281 req = (enum kauth_network_req)(uintptr_t)arg1;
282
283 if (action != KAUTH_NETWORK_INTERFACE)
284 return result;
285
286 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
287 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
288 result = KAUTH_RESULT_ALLOW;
289
290 return result;
291 }
292
293 /*
294 * Network interface utility routines.
295 *
296 * Routines with ifa_ifwith* names take sockaddr *'s as
297 * parameters.
298 */
299 void
300 ifinit(void)
301 {
302
303 #if (defined(INET) || defined(INET6))
304 encapinit();
305 #endif
306
307 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
308 if_listener_cb, NULL);
309
310 /* interfaces are available, inform socket code */
311 ifioctl = doifioctl;
312 }
313
314 /*
315 * XXX Initialization before configure().
316 * XXX hack to get pfil_add_hook working in autoconf.
317 */
318 void
319 ifinit1(void)
320 {
321 int error __diagused;
322
323 #ifdef NET_MPSAFE
324 printf("NET_MPSAFE enabled\n");
325 #endif
326
327 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
328
329 TAILQ_INIT(&ifnet_list);
330 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
331 ifnet_psz = pserialize_create();
332 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
333 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
334 error = workqueue_create(&ifnet_link_state_wq, "iflnkst",
335 if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET,
336 WQ_MPSAFE);
337 KASSERT(error == 0);
338 PSLIST_INIT(&ifnet_pslist);
339
340 if_indexlim = 8;
341
342 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
343 KASSERT(if_pfil != NULL);
344
345 #if NETHER > 0 || defined(NETATALK) || defined(WLAN)
346 etherinit();
347 #endif
348 }
349
350 /* XXX must be after domaininit() */
351 void
352 ifinit_post(void)
353 {
354
355 if_sysctl_setup(NULL);
356 }
357
358 ifnet_t *
359 if_alloc(u_char type)
360 {
361 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
362 }
363
364 void
365 if_free(ifnet_t *ifp)
366 {
367 kmem_free(ifp, sizeof(ifnet_t));
368 }
369
370 void
371 if_initname(struct ifnet *ifp, const char *name, int unit)
372 {
373 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
374 "%s%d", name, unit);
375 }
376
377 /*
378 * Null routines used while an interface is going away. These routines
379 * just return an error.
380 */
381
382 int
383 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
384 const struct sockaddr *so, const struct rtentry *rt)
385 {
386
387 return ENXIO;
388 }
389
390 void
391 if_nullinput(struct ifnet *ifp, struct mbuf *m)
392 {
393
394 /* Nothing. */
395 }
396
397 void
398 if_nullstart(struct ifnet *ifp)
399 {
400
401 /* Nothing. */
402 }
403
404 int
405 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
406 {
407
408 m_freem(m);
409 return ENXIO;
410 }
411
412 int
413 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
414 {
415
416 return ENXIO;
417 }
418
419 int
420 if_nullinit(struct ifnet *ifp)
421 {
422
423 return ENXIO;
424 }
425
426 void
427 if_nullstop(struct ifnet *ifp, int disable)
428 {
429
430 /* Nothing. */
431 }
432
433 void
434 if_nullslowtimo(struct ifnet *ifp)
435 {
436
437 /* Nothing. */
438 }
439
440 void
441 if_nulldrain(struct ifnet *ifp)
442 {
443
444 /* Nothing. */
445 }
446
447 void
448 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
449 {
450 struct ifaddr *ifa;
451 struct sockaddr_dl *sdl;
452
453 ifp->if_addrlen = addrlen;
454 if_alloc_sadl(ifp);
455 ifa = ifp->if_dl;
456 sdl = satosdl(ifa->ifa_addr);
457
458 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
459 if (factory) {
460 KASSERT(ifp->if_hwdl == NULL);
461 ifp->if_hwdl = ifp->if_dl;
462 ifaref(ifp->if_hwdl);
463 }
464 /* TBD routing socket */
465 }
466
467 struct ifaddr *
468 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
469 {
470 unsigned socksize, ifasize;
471 int addrlen, namelen;
472 struct sockaddr_dl *mask, *sdl;
473 struct ifaddr *ifa;
474
475 namelen = strlen(ifp->if_xname);
476 addrlen = ifp->if_addrlen;
477 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
478 ifasize = sizeof(*ifa) + 2 * socksize;
479 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
480
481 sdl = (struct sockaddr_dl *)(ifa + 1);
482 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
483
484 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
485 ifp->if_xname, namelen, NULL, addrlen);
486 mask->sdl_family = AF_LINK;
487 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
488 memset(&mask->sdl_data[0], 0xff, namelen);
489 ifa->ifa_rtrequest = link_rtrequest;
490 ifa->ifa_addr = (struct sockaddr *)sdl;
491 ifa->ifa_netmask = (struct sockaddr *)mask;
492 ifa_psref_init(ifa);
493
494 *sdlp = sdl;
495
496 return ifa;
497 }
498
499 static void
500 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
501 {
502 const struct sockaddr_dl *sdl;
503
504 ifp->if_dl = ifa;
505 ifaref(ifa);
506 sdl = satosdl(ifa->ifa_addr);
507 ifp->if_sadl = sdl;
508 }
509
510 /*
511 * Allocate the link level name for the specified interface. This
512 * is an attachment helper. It must be called after ifp->if_addrlen
513 * is initialized, which may not be the case when if_attach() is
514 * called.
515 */
516 void
517 if_alloc_sadl(struct ifnet *ifp)
518 {
519 struct ifaddr *ifa;
520 const struct sockaddr_dl *sdl;
521
522 /*
523 * If the interface already has a link name, release it
524 * now. This is useful for interfaces that can change
525 * link types, and thus switch link names often.
526 */
527 if (ifp->if_sadl != NULL)
528 if_free_sadl(ifp, 0);
529
530 ifa = if_dl_create(ifp, &sdl);
531
532 ifa_insert(ifp, ifa);
533 if_sadl_setrefs(ifp, ifa);
534 }
535
536 static void
537 if_deactivate_sadl(struct ifnet *ifp)
538 {
539 struct ifaddr *ifa;
540
541 KASSERT(ifp->if_dl != NULL);
542
543 ifa = ifp->if_dl;
544
545 ifp->if_sadl = NULL;
546
547 ifp->if_dl = NULL;
548 ifafree(ifa);
549 }
550
551 static void
552 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
553 {
554 struct ifaddr *old;
555
556 KASSERT(ifp->if_dl != NULL);
557
558 old = ifp->if_dl;
559
560 ifaref(ifa);
561 /* XXX Update if_dl and if_sadl atomically */
562 ifp->if_dl = ifa;
563 ifp->if_sadl = satosdl(ifa->ifa_addr);
564
565 ifafree(old);
566 }
567
568 void
569 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
570 const struct sockaddr_dl *sdl)
571 {
572 int s, ss;
573 struct ifaddr *ifa;
574 int bound = curlwp_bind();
575
576 KASSERT(ifa_held(ifa0));
577
578 s = splsoftnet();
579
580 if_replace_sadl(ifp, ifa0);
581
582 ss = pserialize_read_enter();
583 IFADDR_READER_FOREACH(ifa, ifp) {
584 struct psref psref;
585 ifa_acquire(ifa, &psref);
586 pserialize_read_exit(ss);
587
588 rtinit(ifa, RTM_LLINFO_UPD, 0);
589
590 ss = pserialize_read_enter();
591 ifa_release(ifa, &psref);
592 }
593 pserialize_read_exit(ss);
594
595 splx(s);
596 curlwp_bindx(bound);
597 }
598
599 /*
600 * Free the link level name for the specified interface. This is
601 * a detach helper. This is called from if_detach().
602 */
603 void
604 if_free_sadl(struct ifnet *ifp, int factory)
605 {
606 struct ifaddr *ifa;
607 int s;
608
609 if (factory && ifp->if_hwdl != NULL) {
610 ifa = ifp->if_hwdl;
611 ifp->if_hwdl = NULL;
612 ifafree(ifa);
613 }
614
615 ifa = ifp->if_dl;
616 if (ifa == NULL) {
617 KASSERT(ifp->if_sadl == NULL);
618 return;
619 }
620
621 KASSERT(ifp->if_sadl != NULL);
622
623 s = splsoftnet();
624 KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
625 ifa_remove(ifp, ifa);
626 if_deactivate_sadl(ifp);
627 splx(s);
628 }
629
630 static void
631 if_getindex(ifnet_t *ifp)
632 {
633 bool hitlimit = false;
634
635 ifp->if_index_gen = index_gen++;
636
637 ifp->if_index = if_index;
638 if (ifindex2ifnet == NULL) {
639 if_index++;
640 goto skip;
641 }
642 while (if_byindex(ifp->if_index)) {
643 /*
644 * If we hit USHRT_MAX, we skip back to 0 since
645 * there are a number of places where the value
646 * of if_index or if_index itself is compared
647 * to or stored in an unsigned short. By
648 * jumping back, we won't botch those assignments
649 * or comparisons.
650 */
651 if (++if_index == 0) {
652 if_index = 1;
653 } else if (if_index == USHRT_MAX) {
654 /*
655 * However, if we have to jump back to
656 * zero *twice* without finding an empty
657 * slot in ifindex2ifnet[], then there
658 * there are too many (>65535) interfaces.
659 */
660 if (hitlimit) {
661 panic("too many interfaces");
662 }
663 hitlimit = true;
664 if_index = 1;
665 }
666 ifp->if_index = if_index;
667 }
668 skip:
669 /*
670 * ifindex2ifnet is indexed by if_index. Since if_index will
671 * grow dynamically, it should grow too.
672 */
673 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
674 size_t m, n, oldlim;
675 void *q;
676
677 oldlim = if_indexlim;
678 while (ifp->if_index >= if_indexlim)
679 if_indexlim <<= 1;
680
681 /* grow ifindex2ifnet */
682 m = oldlim * sizeof(struct ifnet *);
683 n = if_indexlim * sizeof(struct ifnet *);
684 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO);
685 if (ifindex2ifnet != NULL) {
686 memcpy(q, ifindex2ifnet, m);
687 free(ifindex2ifnet, M_IFADDR);
688 }
689 ifindex2ifnet = (struct ifnet **)q;
690 }
691 ifindex2ifnet[ifp->if_index] = ifp;
692 }
693
694 /*
695 * Initialize an interface and assign an index for it.
696 *
697 * It must be called prior to a device specific attach routine
698 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
699 * and be followed by if_register:
700 *
701 * if_initialize(ifp);
702 * ether_ifattach(ifp, enaddr);
703 * if_register(ifp);
704 */
705 void
706 if_initialize(ifnet_t *ifp)
707 {
708
709 KASSERT(if_indexlim > 0);
710 TAILQ_INIT(&ifp->if_addrlist);
711
712 /*
713 * Link level name is allocated later by a separate call to
714 * if_alloc_sadl().
715 */
716
717 if (ifp->if_snd.ifq_maxlen == 0)
718 ifp->if_snd.ifq_maxlen = ifqmaxlen;
719
720 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
721
722 ifp->if_link_state = LINK_STATE_UNKNOWN;
723 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
724 ifp->if_link_scheduled = false;
725
726 ifp->if_capenable = 0;
727 ifp->if_csum_flags_tx = 0;
728 ifp->if_csum_flags_rx = 0;
729
730 #ifdef ALTQ
731 ifp->if_snd.altq_type = 0;
732 ifp->if_snd.altq_disc = NULL;
733 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
734 ifp->if_snd.altq_tbr = NULL;
735 ifp->if_snd.altq_ifp = ifp;
736 #endif
737
738 IFQ_LOCK_INIT(&ifp->if_snd);
739
740 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
741 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
742
743 IF_AFDATA_LOCK_INIT(ifp);
744
745 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
746 PSLIST_INIT(&ifp->if_addr_pslist);
747 psref_target_init(&ifp->if_psref, ifnet_psref_class);
748 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
749 LIST_INIT(&ifp->if_multiaddrs);
750 if_stats_init(ifp);
751
752 IFNET_GLOBAL_LOCK();
753 if_getindex(ifp);
754 IFNET_GLOBAL_UNLOCK();
755 }
756
757 /*
758 * Register an interface to the list of "active" interfaces.
759 */
760 void
761 if_register(ifnet_t *ifp)
762 {
763 /*
764 * If the driver has not supplied its own if_ioctl or if_stop,
765 * then supply the default.
766 */
767 if (ifp->if_ioctl == NULL)
768 ifp->if_ioctl = ifioctl_common;
769 if (ifp->if_stop == NULL)
770 ifp->if_stop = if_nullstop;
771
772 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
773
774 if (!STAILQ_EMPTY(&domains))
775 if_attachdomain1(ifp);
776
777 /* Announce the interface. */
778 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
779
780 if (ifp->if_slowtimo != NULL) {
781 ifp->if_slowtimo_ch =
782 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
783 callout_init(ifp->if_slowtimo_ch, 0);
784 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
785 if_slowtimo(ifp);
786 }
787
788 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
789 ifp->if_transmit = if_transmit;
790
791 IFNET_GLOBAL_LOCK();
792 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
793 IFNET_WRITER_INSERT_TAIL(ifp);
794 IFNET_GLOBAL_UNLOCK();
795 }
796
797 /*
798 * The if_percpuq framework
799 *
800 * It allows network device drivers to execute the network stack
801 * in softint (so called softint-based if_input). It utilizes
802 * softint and percpu ifqueue. It doesn't distribute any packets
803 * between CPUs, unlike pktqueue(9).
804 *
805 * Currently we support two options for device drivers to apply the framework:
806 * - Use it implicitly with less changes
807 * - If you use if_attach in driver's _attach function and if_input in
808 * driver's Rx interrupt handler, a packet is queued and a softint handles
809 * the packet implicitly
810 * - Use it explicitly in each driver (recommended)
811 * - You can use if_percpuq_* directly in your driver
812 * - In this case, you need to allocate struct if_percpuq in driver's softc
813 * - See wm(4) as a reference implementation
814 */
815
816 static void
817 if_percpuq_softint(void *arg)
818 {
819 struct if_percpuq *ipq = arg;
820 struct ifnet *ifp = ipq->ipq_ifp;
821 struct mbuf *m;
822
823 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
824 if_statinc(ifp, if_ipackets);
825 bpf_mtap(ifp, m, BPF_D_IN);
826
827 ifp->_if_input(ifp, m);
828 }
829 }
830
831 static void
832 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
833 {
834 struct ifqueue *const ifq = p;
835
836 memset(ifq, 0, sizeof(*ifq));
837 ifq->ifq_maxlen = IFQ_MAXLEN;
838 }
839
840 struct if_percpuq *
841 if_percpuq_create(struct ifnet *ifp)
842 {
843 struct if_percpuq *ipq;
844 u_int flags = SOFTINT_NET;
845
846 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
847
848 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
849 ipq->ipq_ifp = ifp;
850 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
851 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
852 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
853
854 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
855
856 return ipq;
857 }
858
859 static struct mbuf *
860 if_percpuq_dequeue(struct if_percpuq *ipq)
861 {
862 struct mbuf *m;
863 struct ifqueue *ifq;
864 int s;
865
866 s = splnet();
867 ifq = percpu_getref(ipq->ipq_ifqs);
868 IF_DEQUEUE(ifq, m);
869 percpu_putref(ipq->ipq_ifqs);
870 splx(s);
871
872 return m;
873 }
874
875 static void
876 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
877 {
878 struct ifqueue *const ifq = p;
879
880 IF_PURGE(ifq);
881 }
882
883 void
884 if_percpuq_destroy(struct if_percpuq *ipq)
885 {
886
887 /* if_detach may already destroy it */
888 if (ipq == NULL)
889 return;
890
891 softint_disestablish(ipq->ipq_si);
892 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
893 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
894 kmem_free(ipq, sizeof(*ipq));
895 }
896
897 void
898 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
899 {
900 struct ifqueue *ifq;
901 int s;
902
903 KASSERT(ipq != NULL);
904
905 s = splnet();
906 ifq = percpu_getref(ipq->ipq_ifqs);
907 if (IF_QFULL(ifq)) {
908 IF_DROP(ifq);
909 percpu_putref(ipq->ipq_ifqs);
910 m_freem(m);
911 goto out;
912 }
913 IF_ENQUEUE(ifq, m);
914 percpu_putref(ipq->ipq_ifqs);
915
916 softint_schedule(ipq->ipq_si);
917 out:
918 splx(s);
919 }
920
921 static void
922 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
923 {
924 struct ifqueue *const ifq = p;
925 int *sum = arg;
926
927 *sum += ifq->ifq_drops;
928 }
929
930 static int
931 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
932 {
933 struct sysctlnode node;
934 struct if_percpuq *ipq;
935 int sum = 0;
936 int error;
937
938 node = *rnode;
939 ipq = node.sysctl_data;
940
941 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
942
943 node.sysctl_data = ∑
944 error = sysctl_lookup(SYSCTLFN_CALL(&node));
945 if (error != 0 || newp == NULL)
946 return error;
947
948 return 0;
949 }
950
951 static void
952 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
953 struct if_percpuq *ipq)
954 {
955 const struct sysctlnode *cnode, *rnode;
956
957 if (sysctl_createv(clog, 0, NULL, &rnode,
958 CTLFLAG_PERMANENT,
959 CTLTYPE_NODE, "interfaces",
960 SYSCTL_DESCR("Per-interface controls"),
961 NULL, 0, NULL, 0,
962 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
963 goto bad;
964
965 if (sysctl_createv(clog, 0, &rnode, &rnode,
966 CTLFLAG_PERMANENT,
967 CTLTYPE_NODE, ifname,
968 SYSCTL_DESCR("Interface controls"),
969 NULL, 0, NULL, 0,
970 CTL_CREATE, CTL_EOL) != 0)
971 goto bad;
972
973 if (sysctl_createv(clog, 0, &rnode, &rnode,
974 CTLFLAG_PERMANENT,
975 CTLTYPE_NODE, "rcvq",
976 SYSCTL_DESCR("Interface input queue controls"),
977 NULL, 0, NULL, 0,
978 CTL_CREATE, CTL_EOL) != 0)
979 goto bad;
980
981 #ifdef NOTYET
982 /* XXX Should show each per-CPU queue length? */
983 if (sysctl_createv(clog, 0, &rnode, &rnode,
984 CTLFLAG_PERMANENT,
985 CTLTYPE_INT, "len",
986 SYSCTL_DESCR("Current input queue length"),
987 sysctl_percpuq_len, 0, NULL, 0,
988 CTL_CREATE, CTL_EOL) != 0)
989 goto bad;
990
991 if (sysctl_createv(clog, 0, &rnode, &cnode,
992 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
993 CTLTYPE_INT, "maxlen",
994 SYSCTL_DESCR("Maximum allowed input queue length"),
995 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
996 CTL_CREATE, CTL_EOL) != 0)
997 goto bad;
998 #endif
999
1000 if (sysctl_createv(clog, 0, &rnode, &cnode,
1001 CTLFLAG_PERMANENT,
1002 CTLTYPE_INT, "drops",
1003 SYSCTL_DESCR("Total packets dropped due to full input queue"),
1004 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
1005 CTL_CREATE, CTL_EOL) != 0)
1006 goto bad;
1007
1008 return;
1009 bad:
1010 printf("%s: could not attach sysctl nodes\n", ifname);
1011 return;
1012 }
1013
1014 /*
1015 * The deferred if_start framework
1016 *
1017 * The common APIs to defer if_start to softint when if_start is requested
1018 * from a device driver running in hardware interrupt context.
1019 */
1020 /*
1021 * Call ifp->if_start (or equivalent) in a dedicated softint for
1022 * deferred if_start.
1023 */
1024 static void
1025 if_deferred_start_softint(void *arg)
1026 {
1027 struct if_deferred_start *ids = arg;
1028 struct ifnet *ifp = ids->ids_ifp;
1029
1030 ids->ids_if_start(ifp);
1031 }
1032
1033 /*
1034 * The default callback function for deferred if_start.
1035 */
1036 static void
1037 if_deferred_start_common(struct ifnet *ifp)
1038 {
1039 int s;
1040
1041 s = splnet();
1042 if_start_lock(ifp);
1043 splx(s);
1044 }
1045
1046 static inline bool
1047 if_snd_is_used(struct ifnet *ifp)
1048 {
1049
1050 return ALTQ_IS_ENABLED(&ifp->if_snd) ||
1051 ifp->if_transmit == if_transmit ||
1052 ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit;
1053 }
1054
1055 /*
1056 * Schedule deferred if_start.
1057 */
1058 void
1059 if_schedule_deferred_start(struct ifnet *ifp)
1060 {
1061
1062 KASSERT(ifp->if_deferred_start != NULL);
1063
1064 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1065 return;
1066
1067 softint_schedule(ifp->if_deferred_start->ids_si);
1068 }
1069
1070 /*
1071 * Create an instance of deferred if_start. A driver should call the function
1072 * only if the driver needs deferred if_start. Drivers can setup their own
1073 * deferred if_start function via 2nd argument.
1074 */
1075 void
1076 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1077 {
1078 struct if_deferred_start *ids;
1079 u_int flags = SOFTINT_NET;
1080
1081 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
1082
1083 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1084 ids->ids_ifp = ifp;
1085 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
1086 if (func != NULL)
1087 ids->ids_if_start = func;
1088 else
1089 ids->ids_if_start = if_deferred_start_common;
1090
1091 ifp->if_deferred_start = ids;
1092 }
1093
1094 static void
1095 if_deferred_start_destroy(struct ifnet *ifp)
1096 {
1097
1098 if (ifp->if_deferred_start == NULL)
1099 return;
1100
1101 softint_disestablish(ifp->if_deferred_start->ids_si);
1102 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1103 ifp->if_deferred_start = NULL;
1104 }
1105
1106 /*
1107 * The common interface input routine that is called by device drivers,
1108 * which should be used only when the driver's rx handler already runs
1109 * in softint.
1110 */
1111 void
1112 if_input(struct ifnet *ifp, struct mbuf *m)
1113 {
1114
1115 KASSERT(ifp->if_percpuq == NULL);
1116 KASSERT(!cpu_intr_p());
1117
1118 if_statinc(ifp, if_ipackets);
1119 bpf_mtap(ifp, m, BPF_D_IN);
1120
1121 ifp->_if_input(ifp, m);
1122 }
1123
1124 /*
1125 * DEPRECATED. Use if_initialize and if_register instead.
1126 * See the above comment of if_initialize.
1127 *
1128 * Note that it implicitly enables if_percpuq to make drivers easy to
1129 * migrate softint-based if_input without much changes. If you don't
1130 * want to enable it, use if_initialize instead.
1131 */
1132 void
1133 if_attach(ifnet_t *ifp)
1134 {
1135
1136 if_initialize(ifp);
1137 ifp->if_percpuq = if_percpuq_create(ifp);
1138 if_register(ifp);
1139 }
1140
1141 void
1142 if_attachdomain(void)
1143 {
1144 struct ifnet *ifp;
1145 int s;
1146 int bound = curlwp_bind();
1147
1148 s = pserialize_read_enter();
1149 IFNET_READER_FOREACH(ifp) {
1150 struct psref psref;
1151 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1152 pserialize_read_exit(s);
1153 if_attachdomain1(ifp);
1154 s = pserialize_read_enter();
1155 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1156 }
1157 pserialize_read_exit(s);
1158 curlwp_bindx(bound);
1159 }
1160
1161 static void
1162 if_attachdomain1(struct ifnet *ifp)
1163 {
1164 struct domain *dp;
1165 int s;
1166
1167 s = splsoftnet();
1168
1169 /* address family dependent data region */
1170 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1171 DOMAIN_FOREACH(dp) {
1172 if (dp->dom_ifattach != NULL)
1173 ifp->if_afdata[dp->dom_family] =
1174 (*dp->dom_ifattach)(ifp);
1175 }
1176
1177 splx(s);
1178 }
1179
1180 /*
1181 * Deactivate an interface. This points all of the procedure
1182 * handles at error stubs. May be called from interrupt context.
1183 */
1184 void
1185 if_deactivate(struct ifnet *ifp)
1186 {
1187 int s;
1188
1189 s = splsoftnet();
1190
1191 ifp->if_output = if_nulloutput;
1192 ifp->_if_input = if_nullinput;
1193 ifp->if_start = if_nullstart;
1194 ifp->if_transmit = if_nulltransmit;
1195 ifp->if_ioctl = if_nullioctl;
1196 ifp->if_init = if_nullinit;
1197 ifp->if_stop = if_nullstop;
1198 ifp->if_slowtimo = if_nullslowtimo;
1199 ifp->if_drain = if_nulldrain;
1200
1201 ifp->if_link_state_changed = NULL;
1202
1203 /* No more packets may be enqueued. */
1204 ifp->if_snd.ifq_maxlen = 0;
1205
1206 splx(s);
1207 }
1208
1209 bool
1210 if_is_deactivated(const struct ifnet *ifp)
1211 {
1212
1213 return ifp->if_output == if_nulloutput;
1214 }
1215
1216 void
1217 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1218 {
1219 struct ifaddr *ifa, *nifa;
1220 int s;
1221
1222 s = pserialize_read_enter();
1223 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1224 nifa = IFADDR_READER_NEXT(ifa);
1225 if (ifa->ifa_addr->sa_family != family)
1226 continue;
1227 pserialize_read_exit(s);
1228
1229 (*purgeaddr)(ifa);
1230
1231 s = pserialize_read_enter();
1232 }
1233 pserialize_read_exit(s);
1234 }
1235
1236 #ifdef IFAREF_DEBUG
1237 static struct ifaddr **ifa_list;
1238 static int ifa_list_size;
1239
1240 /* Depends on only one if_attach runs at once */
1241 static void
1242 if_build_ifa_list(struct ifnet *ifp)
1243 {
1244 struct ifaddr *ifa;
1245 int i;
1246
1247 KASSERT(ifa_list == NULL);
1248 KASSERT(ifa_list_size == 0);
1249
1250 IFADDR_READER_FOREACH(ifa, ifp)
1251 ifa_list_size++;
1252
1253 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1254 i = 0;
1255 IFADDR_READER_FOREACH(ifa, ifp) {
1256 ifa_list[i++] = ifa;
1257 ifaref(ifa);
1258 }
1259 }
1260
1261 static void
1262 if_check_and_free_ifa_list(struct ifnet *ifp)
1263 {
1264 int i;
1265 struct ifaddr *ifa;
1266
1267 if (ifa_list == NULL)
1268 return;
1269
1270 for (i = 0; i < ifa_list_size; i++) {
1271 char buf[64];
1272
1273 ifa = ifa_list[i];
1274 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1275 if (ifa->ifa_refcnt > 1) {
1276 log(LOG_WARNING,
1277 "ifa(%s) still referenced (refcnt=%d)\n",
1278 buf, ifa->ifa_refcnt - 1);
1279 } else
1280 log(LOG_DEBUG,
1281 "ifa(%s) not referenced (refcnt=%d)\n",
1282 buf, ifa->ifa_refcnt - 1);
1283 ifafree(ifa);
1284 }
1285
1286 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1287 ifa_list = NULL;
1288 ifa_list_size = 0;
1289 }
1290 #endif
1291
1292 /*
1293 * Detach an interface from the list of "active" interfaces,
1294 * freeing any resources as we go along.
1295 *
1296 * NOTE: This routine must be called with a valid thread context,
1297 * as it may block.
1298 */
1299 void
1300 if_detach(struct ifnet *ifp)
1301 {
1302 struct socket so;
1303 struct ifaddr *ifa;
1304 #ifdef IFAREF_DEBUG
1305 struct ifaddr *last_ifa = NULL;
1306 #endif
1307 struct domain *dp;
1308 const struct protosw *pr;
1309 int s, i, family, purged;
1310
1311 #ifdef IFAREF_DEBUG
1312 if_build_ifa_list(ifp);
1313 #endif
1314 /*
1315 * XXX It's kind of lame that we have to have the
1316 * XXX socket structure...
1317 */
1318 memset(&so, 0, sizeof(so));
1319
1320 s = splnet();
1321
1322 sysctl_teardown(&ifp->if_sysctl_log);
1323
1324 IFNET_LOCK(ifp);
1325
1326 /*
1327 * Unset all queued link states and pretend a
1328 * link state change is scheduled.
1329 * This stops any more link state changes occurring for this
1330 * interface while it's being detached so it's safe
1331 * to drain the workqueue.
1332 */
1333 IF_LINK_STATE_CHANGE_LOCK(ifp);
1334 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
1335 ifp->if_link_scheduled = true;
1336 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
1337 workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work);
1338
1339 if_deactivate(ifp);
1340 IFNET_UNLOCK(ifp);
1341
1342 /*
1343 * Unlink from the list and wait for all readers to leave
1344 * from pserialize read sections. Note that we can't do
1345 * psref_target_destroy here. See below.
1346 */
1347 IFNET_GLOBAL_LOCK();
1348 ifindex2ifnet[ifp->if_index] = NULL;
1349 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1350 IFNET_WRITER_REMOVE(ifp);
1351 pserialize_perform(ifnet_psz);
1352 IFNET_GLOBAL_UNLOCK();
1353
1354 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1355 ifp->if_slowtimo = NULL;
1356 callout_halt(ifp->if_slowtimo_ch, NULL);
1357 callout_destroy(ifp->if_slowtimo_ch);
1358 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1359 }
1360 if_deferred_start_destroy(ifp);
1361
1362 /*
1363 * Do an if_down() to give protocols a chance to do something.
1364 */
1365 if_down_deactivated(ifp);
1366
1367 #ifdef ALTQ
1368 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1369 altq_disable(&ifp->if_snd);
1370 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1371 altq_detach(&ifp->if_snd);
1372 #endif
1373
1374 #if NCARP > 0
1375 /* Remove the interface from any carp group it is a part of. */
1376 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1377 carp_ifdetach(ifp);
1378 #endif
1379
1380 /*
1381 * Rip all the addresses off the interface. This should make
1382 * all of the routes go away.
1383 *
1384 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1385 * from the list, including our "cursor", ifa. For safety,
1386 * and to honor the TAILQ abstraction, I just restart the
1387 * loop after each removal. Note that the loop will exit
1388 * when all of the remaining ifaddrs belong to the AF_LINK
1389 * family. I am counting on the historical fact that at
1390 * least one pr_usrreq in each address domain removes at
1391 * least one ifaddr.
1392 */
1393 again:
1394 /*
1395 * At this point, no other one tries to remove ifa in the list,
1396 * so we don't need to take a lock or psref. Avoid using
1397 * IFADDR_READER_FOREACH to pass over an inspection of contract
1398 * violations of pserialize.
1399 */
1400 IFADDR_WRITER_FOREACH(ifa, ifp) {
1401 family = ifa->ifa_addr->sa_family;
1402 #ifdef IFAREF_DEBUG
1403 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1404 ifa, family, ifa->ifa_refcnt);
1405 if (last_ifa != NULL && ifa == last_ifa)
1406 panic("if_detach: loop detected");
1407 last_ifa = ifa;
1408 #endif
1409 if (family == AF_LINK)
1410 continue;
1411 dp = pffinddomain(family);
1412 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1413 /*
1414 * XXX These PURGEIF calls are redundant with the
1415 * purge-all-families calls below, but are left in for
1416 * now both to make a smaller change, and to avoid
1417 * unplanned interactions with clearing of
1418 * ifp->if_addrlist.
1419 */
1420 purged = 0;
1421 for (pr = dp->dom_protosw;
1422 pr < dp->dom_protoswNPROTOSW; pr++) {
1423 so.so_proto = pr;
1424 if (pr->pr_usrreqs) {
1425 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1426 purged = 1;
1427 }
1428 }
1429 if (purged == 0) {
1430 /*
1431 * XXX What's really the best thing to do
1432 * XXX here? --thorpej (at) NetBSD.org
1433 */
1434 printf("if_detach: WARNING: AF %d not purged\n",
1435 family);
1436 ifa_remove(ifp, ifa);
1437 }
1438 goto again;
1439 }
1440
1441 if_free_sadl(ifp, 1);
1442
1443 restart:
1444 IFADDR_WRITER_FOREACH(ifa, ifp) {
1445 family = ifa->ifa_addr->sa_family;
1446 KASSERT(family == AF_LINK);
1447 ifa_remove(ifp, ifa);
1448 goto restart;
1449 }
1450
1451 /* Delete stray routes from the routing table. */
1452 for (i = 0; i <= AF_MAX; i++)
1453 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1454
1455 DOMAIN_FOREACH(dp) {
1456 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1457 {
1458 void *p = ifp->if_afdata[dp->dom_family];
1459 if (p) {
1460 ifp->if_afdata[dp->dom_family] = NULL;
1461 (*dp->dom_ifdetach)(ifp, p);
1462 }
1463 }
1464
1465 /*
1466 * One would expect multicast memberships (INET and
1467 * INET6) on UDP sockets to be purged by the PURGEIF
1468 * calls above, but if all addresses were removed from
1469 * the interface prior to destruction, the calls will
1470 * not be made (e.g. ppp, for which pppd(8) generally
1471 * removes addresses before destroying the interface).
1472 * Because there is no invariant that multicast
1473 * memberships only exist for interfaces with IPv4
1474 * addresses, we must call PURGEIF regardless of
1475 * addresses. (Protocols which might store ifnet
1476 * pointers are marked with PR_PURGEIF.)
1477 */
1478 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1479 so.so_proto = pr;
1480 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1481 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1482 }
1483 }
1484
1485 /*
1486 * Must be done after the above pr_purgeif because if_psref may be
1487 * still used in pr_purgeif.
1488 */
1489 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1490 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1491
1492 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1493 (void)pfil_head_destroy(ifp->if_pfil);
1494
1495 /* Announce that the interface is gone. */
1496 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1497
1498 IF_AFDATA_LOCK_DESTROY(ifp);
1499
1500 /*
1501 * remove packets that came from ifp, from software interrupt queues.
1502 */
1503 DOMAIN_FOREACH(dp) {
1504 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1505 struct ifqueue *iq = dp->dom_ifqueues[i];
1506 if (iq == NULL)
1507 break;
1508 dp->dom_ifqueues[i] = NULL;
1509 if_detach_queues(ifp, iq);
1510 }
1511 }
1512
1513 /*
1514 * IP queues have to be processed separately: net-queue barrier
1515 * ensures that the packets are dequeued while a cross-call will
1516 * ensure that the interrupts have completed. FIXME: not quite..
1517 */
1518 #ifdef INET
1519 pktq_barrier(ip_pktq);
1520 #endif
1521 #ifdef INET6
1522 if (in6_present)
1523 pktq_barrier(ip6_pktq);
1524 #endif
1525 xc_barrier(0);
1526
1527 if (ifp->if_percpuq != NULL) {
1528 if_percpuq_destroy(ifp->if_percpuq);
1529 ifp->if_percpuq = NULL;
1530 }
1531
1532 mutex_obj_free(ifp->if_ioctl_lock);
1533 ifp->if_ioctl_lock = NULL;
1534 mutex_obj_free(ifp->if_snd.ifq_lock);
1535 if_stats_fini(ifp);
1536
1537 splx(s);
1538
1539 #ifdef IFAREF_DEBUG
1540 if_check_and_free_ifa_list(ifp);
1541 #endif
1542 }
1543
1544 static void
1545 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1546 {
1547 struct mbuf *m, *prev, *next;
1548
1549 prev = NULL;
1550 for (m = q->ifq_head; m != NULL; m = next) {
1551 KASSERT((m->m_flags & M_PKTHDR) != 0);
1552
1553 next = m->m_nextpkt;
1554 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1555 prev = m;
1556 continue;
1557 }
1558
1559 if (prev != NULL)
1560 prev->m_nextpkt = m->m_nextpkt;
1561 else
1562 q->ifq_head = m->m_nextpkt;
1563 if (q->ifq_tail == m)
1564 q->ifq_tail = prev;
1565 q->ifq_len--;
1566
1567 m->m_nextpkt = NULL;
1568 m_freem(m);
1569 IF_DROP(q);
1570 }
1571 }
1572
1573 /*
1574 * Callback for a radix tree walk to delete all references to an
1575 * ifnet.
1576 */
1577 static int
1578 if_delroute_matcher(struct rtentry *rt, void *v)
1579 {
1580 struct ifnet *ifp = (struct ifnet *)v;
1581
1582 if (rt->rt_ifp == ifp)
1583 return 1;
1584 else
1585 return 0;
1586 }
1587
1588 /*
1589 * Create a clone network interface.
1590 */
1591 static int
1592 if_clone_create(const char *name)
1593 {
1594 struct if_clone *ifc;
1595 int unit;
1596 struct ifnet *ifp;
1597 struct psref psref;
1598
1599 KASSERT(mutex_owned(&if_clone_mtx));
1600
1601 ifc = if_clone_lookup(name, &unit);
1602 if (ifc == NULL)
1603 return EINVAL;
1604
1605 ifp = if_get(name, &psref);
1606 if (ifp != NULL) {
1607 if_put(ifp, &psref);
1608 return EEXIST;
1609 }
1610
1611 return (*ifc->ifc_create)(ifc, unit);
1612 }
1613
1614 /*
1615 * Destroy a clone network interface.
1616 */
1617 static int
1618 if_clone_destroy(const char *name)
1619 {
1620 struct if_clone *ifc;
1621 struct ifnet *ifp;
1622 struct psref psref;
1623 int error;
1624 int (*if_ioctl)(struct ifnet *, u_long, void *);
1625
1626 KASSERT(mutex_owned(&if_clone_mtx));
1627
1628 ifc = if_clone_lookup(name, NULL);
1629 if (ifc == NULL)
1630 return EINVAL;
1631
1632 if (ifc->ifc_destroy == NULL)
1633 return EOPNOTSUPP;
1634
1635 ifp = if_get(name, &psref);
1636 if (ifp == NULL)
1637 return ENXIO;
1638
1639 /* We have to disable ioctls here */
1640 IFNET_LOCK(ifp);
1641 if_ioctl = ifp->if_ioctl;
1642 ifp->if_ioctl = if_nullioctl;
1643 IFNET_UNLOCK(ifp);
1644
1645 /*
1646 * We cannot call ifc_destroy with holding ifp.
1647 * Releasing ifp here is safe thanks to if_clone_mtx.
1648 */
1649 if_put(ifp, &psref);
1650
1651 error = (*ifc->ifc_destroy)(ifp);
1652
1653 if (error != 0) {
1654 /* We have to restore if_ioctl on error */
1655 IFNET_LOCK(ifp);
1656 ifp->if_ioctl = if_ioctl;
1657 IFNET_UNLOCK(ifp);
1658 }
1659
1660 return error;
1661 }
1662
1663 static bool
1664 if_is_unit(const char *name)
1665 {
1666
1667 while (*name != '\0') {
1668 if (*name < '0' || *name > '9')
1669 return false;
1670 name++;
1671 }
1672
1673 return true;
1674 }
1675
1676 /*
1677 * Look up a network interface cloner.
1678 */
1679 static struct if_clone *
1680 if_clone_lookup(const char *name, int *unitp)
1681 {
1682 struct if_clone *ifc;
1683 const char *cp;
1684 char *dp, ifname[IFNAMSIZ + 3];
1685 int unit;
1686
1687 KASSERT(mutex_owned(&if_clone_mtx));
1688
1689 strcpy(ifname, "if_");
1690 /* separate interface name from unit */
1691 /* TODO: search unit number from backward */
1692 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1693 *cp && !if_is_unit(cp);)
1694 *dp++ = *cp++;
1695
1696 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1697 return NULL; /* No name or unit number */
1698 *dp++ = '\0';
1699
1700 again:
1701 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1702 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1703 break;
1704 }
1705
1706 if (ifc == NULL) {
1707 int error;
1708 if (*ifname == '\0')
1709 return NULL;
1710 mutex_exit(&if_clone_mtx);
1711 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1712 mutex_enter(&if_clone_mtx);
1713 if (error)
1714 return NULL;
1715 *ifname = '\0';
1716 goto again;
1717 }
1718
1719 unit = 0;
1720 while (cp - name < IFNAMSIZ && *cp) {
1721 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1722 /* Bogus unit number. */
1723 return NULL;
1724 }
1725 unit = (unit * 10) + (*cp++ - '0');
1726 }
1727
1728 if (unitp != NULL)
1729 *unitp = unit;
1730 return ifc;
1731 }
1732
1733 /*
1734 * Register a network interface cloner.
1735 */
1736 void
1737 if_clone_attach(struct if_clone *ifc)
1738 {
1739
1740 mutex_enter(&if_clone_mtx);
1741 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1742 if_cloners_count++;
1743 mutex_exit(&if_clone_mtx);
1744 }
1745
1746 /*
1747 * Unregister a network interface cloner.
1748 */
1749 void
1750 if_clone_detach(struct if_clone *ifc)
1751 {
1752
1753 mutex_enter(&if_clone_mtx);
1754 LIST_REMOVE(ifc, ifc_list);
1755 if_cloners_count--;
1756 mutex_exit(&if_clone_mtx);
1757 }
1758
1759 /*
1760 * Provide list of interface cloners to userspace.
1761 */
1762 int
1763 if_clone_list(int buf_count, char *buffer, int *total)
1764 {
1765 char outbuf[IFNAMSIZ], *dst;
1766 struct if_clone *ifc;
1767 int count, error = 0;
1768
1769 mutex_enter(&if_clone_mtx);
1770 *total = if_cloners_count;
1771 if ((dst = buffer) == NULL) {
1772 /* Just asking how many there are. */
1773 goto out;
1774 }
1775
1776 if (buf_count < 0) {
1777 error = EINVAL;
1778 goto out;
1779 }
1780
1781 count = (if_cloners_count < buf_count) ?
1782 if_cloners_count : buf_count;
1783
1784 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1785 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1786 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1787 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1788 error = ENAMETOOLONG;
1789 goto out;
1790 }
1791 error = copyout(outbuf, dst, sizeof(outbuf));
1792 if (error != 0)
1793 break;
1794 }
1795
1796 out:
1797 mutex_exit(&if_clone_mtx);
1798 return error;
1799 }
1800
1801 void
1802 ifa_psref_init(struct ifaddr *ifa)
1803 {
1804
1805 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1806 }
1807
1808 void
1809 ifaref(struct ifaddr *ifa)
1810 {
1811
1812 atomic_inc_uint(&ifa->ifa_refcnt);
1813 }
1814
1815 void
1816 ifafree(struct ifaddr *ifa)
1817 {
1818 KASSERT(ifa != NULL);
1819 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt);
1820
1821 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) == 0) {
1822 free(ifa, M_IFADDR);
1823 }
1824 }
1825
1826 bool
1827 ifa_is_destroying(struct ifaddr *ifa)
1828 {
1829
1830 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1831 }
1832
1833 void
1834 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1835 {
1836
1837 ifa->ifa_ifp = ifp;
1838
1839 /*
1840 * Check MP-safety for IFEF_MPSAFE drivers.
1841 * Check !IFF_RUNNING for initialization routines that normally don't
1842 * take IFNET_LOCK but it's safe because there is no competitor.
1843 * XXX there are false positive cases because IFF_RUNNING can be off on
1844 * if_stop.
1845 */
1846 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
1847 IFNET_LOCKED(ifp));
1848
1849 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1850 IFADDR_ENTRY_INIT(ifa);
1851 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1852
1853 ifaref(ifa);
1854 }
1855
1856 void
1857 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1858 {
1859
1860 KASSERT(ifa->ifa_ifp == ifp);
1861 /*
1862 * Check MP-safety for IFEF_MPSAFE drivers.
1863 * if_is_deactivated indicates ifa_remove is called form if_detach
1864 * where is safe even if IFNET_LOCK isn't held.
1865 */
1866 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
1867
1868 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1869 IFADDR_WRITER_REMOVE(ifa);
1870 #ifdef NET_MPSAFE
1871 IFNET_GLOBAL_LOCK();
1872 pserialize_perform(ifnet_psz);
1873 IFNET_GLOBAL_UNLOCK();
1874 #endif
1875
1876 #ifdef NET_MPSAFE
1877 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1878 #endif
1879 IFADDR_ENTRY_DESTROY(ifa);
1880 ifafree(ifa);
1881 }
1882
1883 void
1884 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1885 {
1886
1887 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
1888 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1889 }
1890
1891 void
1892 ifa_release(struct ifaddr *ifa, struct psref *psref)
1893 {
1894
1895 if (ifa == NULL)
1896 return;
1897
1898 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1899 }
1900
1901 bool
1902 ifa_held(struct ifaddr *ifa)
1903 {
1904
1905 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1906 }
1907
1908 static inline int
1909 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1910 {
1911 return sockaddr_cmp(sa1, sa2) == 0;
1912 }
1913
1914 /*
1915 * Locate an interface based on a complete address.
1916 */
1917 /*ARGSUSED*/
1918 struct ifaddr *
1919 ifa_ifwithaddr(const struct sockaddr *addr)
1920 {
1921 struct ifnet *ifp;
1922 struct ifaddr *ifa;
1923
1924 IFNET_READER_FOREACH(ifp) {
1925 if (if_is_deactivated(ifp))
1926 continue;
1927 IFADDR_READER_FOREACH(ifa, ifp) {
1928 if (ifa->ifa_addr->sa_family != addr->sa_family)
1929 continue;
1930 if (equal(addr, ifa->ifa_addr))
1931 return ifa;
1932 if ((ifp->if_flags & IFF_BROADCAST) &&
1933 ifa->ifa_broadaddr &&
1934 /* IP6 doesn't have broadcast */
1935 ifa->ifa_broadaddr->sa_len != 0 &&
1936 equal(ifa->ifa_broadaddr, addr))
1937 return ifa;
1938 }
1939 }
1940 return NULL;
1941 }
1942
1943 struct ifaddr *
1944 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1945 {
1946 struct ifaddr *ifa;
1947 int s = pserialize_read_enter();
1948
1949 ifa = ifa_ifwithaddr(addr);
1950 if (ifa != NULL)
1951 ifa_acquire(ifa, psref);
1952 pserialize_read_exit(s);
1953
1954 return ifa;
1955 }
1956
1957 /*
1958 * Locate the point to point interface with a given destination address.
1959 */
1960 /*ARGSUSED*/
1961 struct ifaddr *
1962 ifa_ifwithdstaddr(const struct sockaddr *addr)
1963 {
1964 struct ifnet *ifp;
1965 struct ifaddr *ifa;
1966
1967 IFNET_READER_FOREACH(ifp) {
1968 if (if_is_deactivated(ifp))
1969 continue;
1970 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1971 continue;
1972 IFADDR_READER_FOREACH(ifa, ifp) {
1973 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1974 ifa->ifa_dstaddr == NULL)
1975 continue;
1976 if (equal(addr, ifa->ifa_dstaddr))
1977 return ifa;
1978 }
1979 }
1980
1981 return NULL;
1982 }
1983
1984 struct ifaddr *
1985 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1986 {
1987 struct ifaddr *ifa;
1988 int s;
1989
1990 s = pserialize_read_enter();
1991 ifa = ifa_ifwithdstaddr(addr);
1992 if (ifa != NULL)
1993 ifa_acquire(ifa, psref);
1994 pserialize_read_exit(s);
1995
1996 return ifa;
1997 }
1998
1999 /*
2000 * Find an interface on a specific network. If many, choice
2001 * is most specific found.
2002 */
2003 struct ifaddr *
2004 ifa_ifwithnet(const struct sockaddr *addr)
2005 {
2006 struct ifnet *ifp;
2007 struct ifaddr *ifa, *ifa_maybe = NULL;
2008 const struct sockaddr_dl *sdl;
2009 u_int af = addr->sa_family;
2010 const char *addr_data = addr->sa_data, *cplim;
2011
2012 if (af == AF_LINK) {
2013 sdl = satocsdl(addr);
2014 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
2015 ifindex2ifnet[sdl->sdl_index] &&
2016 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
2017 return ifindex2ifnet[sdl->sdl_index]->if_dl;
2018 }
2019 }
2020 #ifdef NETATALK
2021 if (af == AF_APPLETALK) {
2022 const struct sockaddr_at *sat, *sat2;
2023 sat = (const struct sockaddr_at *)addr;
2024 IFNET_READER_FOREACH(ifp) {
2025 if (if_is_deactivated(ifp))
2026 continue;
2027 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
2028 if (ifa == NULL)
2029 continue;
2030 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
2031 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
2032 return ifa; /* exact match */
2033 if (ifa_maybe == NULL) {
2034 /* else keep the if with the right range */
2035 ifa_maybe = ifa;
2036 }
2037 }
2038 return ifa_maybe;
2039 }
2040 #endif
2041 IFNET_READER_FOREACH(ifp) {
2042 if (if_is_deactivated(ifp))
2043 continue;
2044 IFADDR_READER_FOREACH(ifa, ifp) {
2045 const char *cp, *cp2, *cp3;
2046
2047 if (ifa->ifa_addr->sa_family != af ||
2048 ifa->ifa_netmask == NULL)
2049 next: continue;
2050 cp = addr_data;
2051 cp2 = ifa->ifa_addr->sa_data;
2052 cp3 = ifa->ifa_netmask->sa_data;
2053 cplim = (const char *)ifa->ifa_netmask +
2054 ifa->ifa_netmask->sa_len;
2055 while (cp3 < cplim) {
2056 if ((*cp++ ^ *cp2++) & *cp3++) {
2057 /* want to continue for() loop */
2058 goto next;
2059 }
2060 }
2061 if (ifa_maybe == NULL ||
2062 rt_refines(ifa->ifa_netmask,
2063 ifa_maybe->ifa_netmask))
2064 ifa_maybe = ifa;
2065 }
2066 }
2067 return ifa_maybe;
2068 }
2069
2070 struct ifaddr *
2071 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2072 {
2073 struct ifaddr *ifa;
2074 int s;
2075
2076 s = pserialize_read_enter();
2077 ifa = ifa_ifwithnet(addr);
2078 if (ifa != NULL)
2079 ifa_acquire(ifa, psref);
2080 pserialize_read_exit(s);
2081
2082 return ifa;
2083 }
2084
2085 /*
2086 * Find the interface of the addresss.
2087 */
2088 struct ifaddr *
2089 ifa_ifwithladdr(const struct sockaddr *addr)
2090 {
2091 struct ifaddr *ia;
2092
2093 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2094 (ia = ifa_ifwithnet(addr)))
2095 return ia;
2096 return NULL;
2097 }
2098
2099 struct ifaddr *
2100 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2101 {
2102 struct ifaddr *ifa;
2103 int s;
2104
2105 s = pserialize_read_enter();
2106 ifa = ifa_ifwithladdr(addr);
2107 if (ifa != NULL)
2108 ifa_acquire(ifa, psref);
2109 pserialize_read_exit(s);
2110
2111 return ifa;
2112 }
2113
2114 /*
2115 * Find an interface using a specific address family
2116 */
2117 struct ifaddr *
2118 ifa_ifwithaf(int af)
2119 {
2120 struct ifnet *ifp;
2121 struct ifaddr *ifa = NULL;
2122 int s;
2123
2124 s = pserialize_read_enter();
2125 IFNET_READER_FOREACH(ifp) {
2126 if (if_is_deactivated(ifp))
2127 continue;
2128 IFADDR_READER_FOREACH(ifa, ifp) {
2129 if (ifa->ifa_addr->sa_family == af)
2130 goto out;
2131 }
2132 }
2133 out:
2134 pserialize_read_exit(s);
2135 return ifa;
2136 }
2137
2138 /*
2139 * Find an interface address specific to an interface best matching
2140 * a given address.
2141 */
2142 struct ifaddr *
2143 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2144 {
2145 struct ifaddr *ifa;
2146 const char *cp, *cp2, *cp3;
2147 const char *cplim;
2148 struct ifaddr *ifa_maybe = 0;
2149 u_int af = addr->sa_family;
2150
2151 if (if_is_deactivated(ifp))
2152 return NULL;
2153
2154 if (af >= AF_MAX)
2155 return NULL;
2156
2157 IFADDR_READER_FOREACH(ifa, ifp) {
2158 if (ifa->ifa_addr->sa_family != af)
2159 continue;
2160 ifa_maybe = ifa;
2161 if (ifa->ifa_netmask == NULL) {
2162 if (equal(addr, ifa->ifa_addr) ||
2163 (ifa->ifa_dstaddr &&
2164 equal(addr, ifa->ifa_dstaddr)))
2165 return ifa;
2166 continue;
2167 }
2168 cp = addr->sa_data;
2169 cp2 = ifa->ifa_addr->sa_data;
2170 cp3 = ifa->ifa_netmask->sa_data;
2171 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2172 for (; cp3 < cplim; cp3++) {
2173 if ((*cp++ ^ *cp2++) & *cp3)
2174 break;
2175 }
2176 if (cp3 == cplim)
2177 return ifa;
2178 }
2179 return ifa_maybe;
2180 }
2181
2182 struct ifaddr *
2183 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2184 struct psref *psref)
2185 {
2186 struct ifaddr *ifa;
2187 int s;
2188
2189 s = pserialize_read_enter();
2190 ifa = ifaof_ifpforaddr(addr, ifp);
2191 if (ifa != NULL)
2192 ifa_acquire(ifa, psref);
2193 pserialize_read_exit(s);
2194
2195 return ifa;
2196 }
2197
2198 /*
2199 * Default action when installing a route with a Link Level gateway.
2200 * Lookup an appropriate real ifa to point to.
2201 * This should be moved to /sys/net/link.c eventually.
2202 */
2203 void
2204 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2205 {
2206 struct ifaddr *ifa;
2207 const struct sockaddr *dst;
2208 struct ifnet *ifp;
2209 struct psref psref;
2210
2211 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2212 return;
2213 ifp = rt->rt_ifa->ifa_ifp;
2214 dst = rt_getkey(rt);
2215 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2216 rt_replace_ifa(rt, ifa);
2217 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2218 ifa->ifa_rtrequest(cmd, rt, info);
2219 ifa_release(ifa, &psref);
2220 }
2221 }
2222
2223 /*
2224 * bitmask macros to manage a densely packed link_state change queue.
2225 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2226 * LINK_STATE_UP(2) we need 2 bits for each state change.
2227 * As a state change to store is 0, treat all bits set as an unset item.
2228 */
2229 #define LQ_ITEM_BITS 2
2230 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2231 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2232 #define LINK_STATE_UNSET LQ_ITEM_MASK
2233 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2234 #define LQ_STORE(q, i, v) \
2235 do { \
2236 (q) &= ~LQ_MASK((i)); \
2237 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2238 } while (0 /* CONSTCOND */)
2239 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2240 #define LQ_POP(q, v) \
2241 do { \
2242 (v) = LQ_ITEM((q), 0); \
2243 (q) >>= LQ_ITEM_BITS; \
2244 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2245 } while (0 /* CONSTCOND */)
2246 #define LQ_PUSH(q, v) \
2247 do { \
2248 (q) >>= LQ_ITEM_BITS; \
2249 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2250 } while (0 /* CONSTCOND */)
2251 #define LQ_FIND_UNSET(q, i) \
2252 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2253 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2254 break; \
2255 }
2256
2257 /*
2258 * Handle a change in the interface link state and
2259 * queue notifications.
2260 */
2261 void
2262 if_link_state_change(struct ifnet *ifp, int link_state)
2263 {
2264 int idx;
2265
2266 /* Ensure change is to a valid state */
2267 switch (link_state) {
2268 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2269 case LINK_STATE_DOWN: /* FALLTHROUGH */
2270 case LINK_STATE_UP:
2271 break;
2272 default:
2273 #ifdef DEBUG
2274 printf("%s: invalid link state %d\n",
2275 ifp->if_xname, link_state);
2276 #endif
2277 return;
2278 }
2279
2280 IF_LINK_STATE_CHANGE_LOCK(ifp);
2281
2282 /* Find the last unset event in the queue. */
2283 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2284
2285 if (idx == 0) {
2286 /*
2287 * There is no queue of link state changes.
2288 * As we have the lock we can safely compare against the
2289 * current link state and return if the same.
2290 * Otherwise, if scheduled is true then the interface is being
2291 * detached and the queue is being drained so we need
2292 * to avoid queuing more work.
2293 */
2294 if (ifp->if_link_state == link_state || ifp->if_link_scheduled)
2295 goto out;
2296 } else {
2297 /* Ensure link_state doesn't match the last queued state. */
2298 if (LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2299 goto out;
2300 }
2301
2302 /* Handle queue overflow. */
2303 if (idx == LQ_MAX(ifp->if_link_queue)) {
2304 uint8_t lost;
2305
2306 /*
2307 * The DOWN state must be protected from being pushed off
2308 * the queue to ensure that userland will always be
2309 * in a sane state.
2310 * Because DOWN is protected, there is no need to protect
2311 * UNKNOWN.
2312 * It should be invalid to change from any other state to
2313 * UNKNOWN anyway ...
2314 */
2315 lost = LQ_ITEM(ifp->if_link_queue, 0);
2316 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2317 if (lost == LINK_STATE_DOWN) {
2318 lost = LQ_ITEM(ifp->if_link_queue, 0);
2319 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2320 }
2321 printf("%s: lost link state change %s\n",
2322 ifp->if_xname,
2323 lost == LINK_STATE_UP ? "UP" :
2324 lost == LINK_STATE_DOWN ? "DOWN" :
2325 "UNKNOWN");
2326 } else
2327 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2328
2329 if (ifp->if_link_scheduled)
2330 goto out;
2331
2332 ifp->if_link_scheduled = true;
2333 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
2334
2335 out:
2336 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2337 }
2338
2339 /*
2340 * Handle interface link state change notifications.
2341 */
2342 static void
2343 if_link_state_change_process(struct ifnet *ifp, int link_state)
2344 {
2345 struct domain *dp;
2346 int s = splnet();
2347 bool notify;
2348
2349 KASSERT(!cpu_intr_p());
2350
2351 IF_LINK_STATE_CHANGE_LOCK(ifp);
2352
2353 /* Ensure the change is still valid. */
2354 if (ifp->if_link_state == link_state) {
2355 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2356 splx(s);
2357 return;
2358 }
2359
2360 #ifdef DEBUG
2361 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2362 link_state == LINK_STATE_UP ? "UP" :
2363 link_state == LINK_STATE_DOWN ? "DOWN" :
2364 "UNKNOWN",
2365 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2366 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2367 "UNKNOWN");
2368 #endif
2369
2370 /*
2371 * When going from UNKNOWN to UP, we need to mark existing
2372 * addresses as tentative and restart DAD as we may have
2373 * erroneously not found a duplicate.
2374 *
2375 * This needs to happen before rt_ifmsg to avoid a race where
2376 * listeners would have an address and expect it to work right
2377 * away.
2378 */
2379 notify = (link_state == LINK_STATE_UP &&
2380 ifp->if_link_state == LINK_STATE_UNKNOWN);
2381 ifp->if_link_state = link_state;
2382 /* The following routines may sleep so release the spin mutex */
2383 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2384
2385 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2386 if (notify) {
2387 DOMAIN_FOREACH(dp) {
2388 if (dp->dom_if_link_state_change != NULL)
2389 dp->dom_if_link_state_change(ifp,
2390 LINK_STATE_DOWN);
2391 }
2392 }
2393
2394 /* Notify that the link state has changed. */
2395 rt_ifmsg(ifp);
2396
2397 #if NCARP > 0
2398 if (ifp->if_carp)
2399 carp_carpdev_state(ifp);
2400 #endif
2401
2402 if (ifp->if_link_state_changed != NULL)
2403 ifp->if_link_state_changed(ifp, link_state);
2404
2405 #if NBRIDGE > 0
2406 if (ifp->if_bridge != NULL)
2407 bridge_calc_link_state(ifp->if_bridge);
2408 #endif
2409
2410 #if NLAGG > 0
2411 if (ifp->if_lagg != NULL)
2412 lagg_linkstate_changed(ifp);
2413 #endif
2414
2415 DOMAIN_FOREACH(dp) {
2416 if (dp->dom_if_link_state_change != NULL)
2417 dp->dom_if_link_state_change(ifp, link_state);
2418 }
2419 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2420 splx(s);
2421 }
2422
2423 /*
2424 * Process the interface link state change queue.
2425 */
2426 static void
2427 if_link_state_change_work(struct work *work, void *arg)
2428 {
2429 struct ifnet *ifp = container_of(work, struct ifnet, if_link_work);
2430 int s;
2431 uint8_t state;
2432
2433 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2434 s = splnet();
2435
2436 /* Pop a link state change from the queue and process it.
2437 * If there is nothing to process then if_detach() has been called.
2438 * We keep if_link_scheduled = true so the queue can safely drain
2439 * without more work being queued. */
2440 IF_LINK_STATE_CHANGE_LOCK(ifp);
2441 LQ_POP(ifp->if_link_queue, state);
2442 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2443 if (state == LINK_STATE_UNSET)
2444 goto out;
2445
2446 if_link_state_change_process(ifp, state);
2447
2448 /* If there is a link state change to come, schedule it. */
2449 IF_LINK_STATE_CHANGE_LOCK(ifp);
2450 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) {
2451 ifp->if_link_scheduled = true;
2452 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
2453 } else
2454 ifp->if_link_scheduled = false;
2455 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2456
2457 out:
2458 splx(s);
2459 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2460 }
2461
2462 /*
2463 * Used to mark addresses on an interface as DETATCHED or TENTATIVE
2464 * and thus start Duplicate Address Detection without changing the
2465 * real link state.
2466 */
2467 void
2468 if_domain_link_state_change(struct ifnet *ifp, int link_state)
2469 {
2470 struct domain *dp;
2471 int s = splnet();
2472
2473 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2474
2475 DOMAIN_FOREACH(dp) {
2476 if (dp->dom_if_link_state_change != NULL)
2477 dp->dom_if_link_state_change(ifp, link_state);
2478 }
2479
2480 splx(s);
2481 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2482 }
2483
2484 /*
2485 * Default action when installing a local route on a point-to-point
2486 * interface.
2487 */
2488 void
2489 p2p_rtrequest(int req, struct rtentry *rt,
2490 __unused const struct rt_addrinfo *info)
2491 {
2492 struct ifnet *ifp = rt->rt_ifp;
2493 struct ifaddr *ifa, *lo0ifa;
2494 int s = pserialize_read_enter();
2495
2496 switch (req) {
2497 case RTM_ADD:
2498 if ((rt->rt_flags & RTF_LOCAL) == 0)
2499 break;
2500
2501 rt->rt_ifp = lo0ifp;
2502
2503 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2504 break;
2505
2506 IFADDR_READER_FOREACH(ifa, ifp) {
2507 if (equal(rt_getkey(rt), ifa->ifa_addr))
2508 break;
2509 }
2510 if (ifa == NULL)
2511 break;
2512
2513 /*
2514 * Ensure lo0 has an address of the same family.
2515 */
2516 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2517 if (lo0ifa->ifa_addr->sa_family ==
2518 ifa->ifa_addr->sa_family)
2519 break;
2520 }
2521 if (lo0ifa == NULL)
2522 break;
2523
2524 /*
2525 * Make sure to set rt->rt_ifa to the interface
2526 * address we are using, otherwise we will have trouble
2527 * with source address selection.
2528 */
2529 if (ifa != rt->rt_ifa)
2530 rt_replace_ifa(rt, ifa);
2531 break;
2532 case RTM_DELETE:
2533 default:
2534 break;
2535 }
2536 pserialize_read_exit(s);
2537 }
2538
2539 static void
2540 _if_down(struct ifnet *ifp)
2541 {
2542 struct ifaddr *ifa;
2543 struct domain *dp;
2544 int s, bound;
2545 struct psref psref;
2546
2547 ifp->if_flags &= ~IFF_UP;
2548 nanotime(&ifp->if_lastchange);
2549
2550 bound = curlwp_bind();
2551 s = pserialize_read_enter();
2552 IFADDR_READER_FOREACH(ifa, ifp) {
2553 ifa_acquire(ifa, &psref);
2554 pserialize_read_exit(s);
2555
2556 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2557
2558 s = pserialize_read_enter();
2559 ifa_release(ifa, &psref);
2560 }
2561 pserialize_read_exit(s);
2562 curlwp_bindx(bound);
2563
2564 IFQ_PURGE(&ifp->if_snd);
2565 #if NCARP > 0
2566 if (ifp->if_carp)
2567 carp_carpdev_state(ifp);
2568 #endif
2569 rt_ifmsg(ifp);
2570 DOMAIN_FOREACH(dp) {
2571 if (dp->dom_if_down)
2572 dp->dom_if_down(ifp);
2573 }
2574 }
2575
2576 static void
2577 if_down_deactivated(struct ifnet *ifp)
2578 {
2579
2580 KASSERT(if_is_deactivated(ifp));
2581 _if_down(ifp);
2582 }
2583
2584 void
2585 if_down_locked(struct ifnet *ifp)
2586 {
2587
2588 KASSERT(IFNET_LOCKED(ifp));
2589 _if_down(ifp);
2590 }
2591
2592 /*
2593 * Mark an interface down and notify protocols of
2594 * the transition.
2595 * NOTE: must be called at splsoftnet or equivalent.
2596 */
2597 void
2598 if_down(struct ifnet *ifp)
2599 {
2600
2601 IFNET_LOCK(ifp);
2602 if_down_locked(ifp);
2603 IFNET_UNLOCK(ifp);
2604 }
2605
2606 /*
2607 * Must be called with holding if_ioctl_lock.
2608 */
2609 static void
2610 if_up_locked(struct ifnet *ifp)
2611 {
2612 #ifdef notyet
2613 struct ifaddr *ifa;
2614 #endif
2615 struct domain *dp;
2616
2617 KASSERT(IFNET_LOCKED(ifp));
2618
2619 KASSERT(!if_is_deactivated(ifp));
2620 ifp->if_flags |= IFF_UP;
2621 nanotime(&ifp->if_lastchange);
2622 #ifdef notyet
2623 /* this has no effect on IP, and will kill all ISO connections XXX */
2624 IFADDR_READER_FOREACH(ifa, ifp)
2625 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2626 #endif
2627 #if NCARP > 0
2628 if (ifp->if_carp)
2629 carp_carpdev_state(ifp);
2630 #endif
2631 rt_ifmsg(ifp);
2632 DOMAIN_FOREACH(dp) {
2633 if (dp->dom_if_up)
2634 dp->dom_if_up(ifp);
2635 }
2636 }
2637
2638 /*
2639 * Handle interface slowtimo timer routine. Called
2640 * from softclock, we decrement timer (if set) and
2641 * call the appropriate interface routine on expiration.
2642 */
2643 static void
2644 if_slowtimo(void *arg)
2645 {
2646 void (*slowtimo)(struct ifnet *);
2647 struct ifnet *ifp = arg;
2648 int s;
2649
2650 slowtimo = ifp->if_slowtimo;
2651 if (__predict_false(slowtimo == NULL))
2652 return;
2653
2654 s = splnet();
2655 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2656 (*slowtimo)(ifp);
2657
2658 splx(s);
2659
2660 if (__predict_true(ifp->if_slowtimo != NULL))
2661 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2662 }
2663
2664 /*
2665 * Mark an interface up and notify protocols of
2666 * the transition.
2667 * NOTE: must be called at splsoftnet or equivalent.
2668 */
2669 void
2670 if_up(struct ifnet *ifp)
2671 {
2672
2673 IFNET_LOCK(ifp);
2674 if_up_locked(ifp);
2675 IFNET_UNLOCK(ifp);
2676 }
2677
2678 /*
2679 * Set/clear promiscuous mode on interface ifp based on the truth value
2680 * of pswitch. The calls are reference counted so that only the first
2681 * "on" request actually has an effect, as does the final "off" request.
2682 * Results are undefined if the "off" and "on" requests are not matched.
2683 */
2684 int
2685 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2686 {
2687 int pcount, ret = 0;
2688 u_short nflags;
2689
2690 KASSERT(IFNET_LOCKED(ifp));
2691
2692 pcount = ifp->if_pcount;
2693 if (pswitch) {
2694 /*
2695 * Allow the device to be "placed" into promiscuous
2696 * mode even if it is not configured up. It will
2697 * consult IFF_PROMISC when it is brought up.
2698 */
2699 if (ifp->if_pcount++ != 0)
2700 goto out;
2701 nflags = ifp->if_flags | IFF_PROMISC;
2702 } else {
2703 if (--ifp->if_pcount > 0)
2704 goto out;
2705 nflags = ifp->if_flags & ~IFF_PROMISC;
2706 }
2707 ret = if_flags_set(ifp, nflags);
2708 /* Restore interface state if not successful. */
2709 if (ret != 0) {
2710 ifp->if_pcount = pcount;
2711 }
2712 out:
2713 return ret;
2714 }
2715
2716 int
2717 ifpromisc(struct ifnet *ifp, int pswitch)
2718 {
2719 int e;
2720
2721 IFNET_LOCK(ifp);
2722 e = ifpromisc_locked(ifp, pswitch);
2723 IFNET_UNLOCK(ifp);
2724
2725 return e;
2726 }
2727
2728 /*
2729 * Map interface name to
2730 * interface structure pointer.
2731 */
2732 struct ifnet *
2733 ifunit(const char *name)
2734 {
2735 struct ifnet *ifp;
2736 const char *cp = name;
2737 u_int unit = 0;
2738 u_int i;
2739 int s;
2740
2741 /*
2742 * If the entire name is a number, treat it as an ifindex.
2743 */
2744 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2745 unit = unit * 10 + (*cp - '0');
2746 }
2747
2748 /*
2749 * If the number took all of the name, then it's a valid ifindex.
2750 */
2751 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2752 return if_byindex(unit);
2753
2754 ifp = NULL;
2755 s = pserialize_read_enter();
2756 IFNET_READER_FOREACH(ifp) {
2757 if (if_is_deactivated(ifp))
2758 continue;
2759 if (strcmp(ifp->if_xname, name) == 0)
2760 goto out;
2761 }
2762 out:
2763 pserialize_read_exit(s);
2764 return ifp;
2765 }
2766
2767 /*
2768 * Get a reference of an ifnet object by an interface name.
2769 * The returned reference is protected by psref(9). The caller
2770 * must release a returned reference by if_put after use.
2771 */
2772 struct ifnet *
2773 if_get(const char *name, struct psref *psref)
2774 {
2775 struct ifnet *ifp;
2776 const char *cp = name;
2777 u_int unit = 0;
2778 u_int i;
2779 int s;
2780
2781 /*
2782 * If the entire name is a number, treat it as an ifindex.
2783 */
2784 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2785 unit = unit * 10 + (*cp - '0');
2786 }
2787
2788 /*
2789 * If the number took all of the name, then it's a valid ifindex.
2790 */
2791 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2792 return if_get_byindex(unit, psref);
2793
2794 ifp = NULL;
2795 s = pserialize_read_enter();
2796 IFNET_READER_FOREACH(ifp) {
2797 if (if_is_deactivated(ifp))
2798 continue;
2799 if (strcmp(ifp->if_xname, name) == 0) {
2800 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2801 psref_acquire(psref, &ifp->if_psref,
2802 ifnet_psref_class);
2803 goto out;
2804 }
2805 }
2806 out:
2807 pserialize_read_exit(s);
2808 return ifp;
2809 }
2810
2811 /*
2812 * Release a reference of an ifnet object given by if_get, if_get_byindex
2813 * or if_get_bylla.
2814 */
2815 void
2816 if_put(const struct ifnet *ifp, struct psref *psref)
2817 {
2818
2819 if (ifp == NULL)
2820 return;
2821
2822 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2823 }
2824
2825 /*
2826 * Return ifp having idx. Return NULL if not found. Normally if_byindex
2827 * should be used.
2828 */
2829 ifnet_t *
2830 _if_byindex(u_int idx)
2831 {
2832
2833 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2834 }
2835
2836 /*
2837 * Return ifp having idx. Return NULL if not found or the found ifp is
2838 * already deactivated.
2839 */
2840 ifnet_t *
2841 if_byindex(u_int idx)
2842 {
2843 ifnet_t *ifp;
2844
2845 ifp = _if_byindex(idx);
2846 if (ifp != NULL && if_is_deactivated(ifp))
2847 ifp = NULL;
2848 return ifp;
2849 }
2850
2851 /*
2852 * Get a reference of an ifnet object by an interface index.
2853 * The returned reference is protected by psref(9). The caller
2854 * must release a returned reference by if_put after use.
2855 */
2856 ifnet_t *
2857 if_get_byindex(u_int idx, struct psref *psref)
2858 {
2859 ifnet_t *ifp;
2860 int s;
2861
2862 s = pserialize_read_enter();
2863 ifp = if_byindex(idx);
2864 if (__predict_true(ifp != NULL)) {
2865 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2866 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2867 }
2868 pserialize_read_exit(s);
2869
2870 return ifp;
2871 }
2872
2873 ifnet_t *
2874 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2875 {
2876 ifnet_t *ifp;
2877 int s;
2878
2879 s = pserialize_read_enter();
2880 IFNET_READER_FOREACH(ifp) {
2881 if (if_is_deactivated(ifp))
2882 continue;
2883 if (ifp->if_addrlen != lla_len)
2884 continue;
2885 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2886 psref_acquire(psref, &ifp->if_psref,
2887 ifnet_psref_class);
2888 break;
2889 }
2890 }
2891 pserialize_read_exit(s);
2892
2893 return ifp;
2894 }
2895
2896 /*
2897 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2898 * for example using pserialize or the ifp is already held or some other
2899 * object is held which guarantes the ifp to not be freed indirectly.
2900 */
2901 void
2902 if_acquire(struct ifnet *ifp, struct psref *psref)
2903 {
2904
2905 KASSERT(ifp->if_index != 0);
2906 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2907 }
2908
2909 bool
2910 if_held(struct ifnet *ifp)
2911 {
2912
2913 return psref_held(&ifp->if_psref, ifnet_psref_class);
2914 }
2915
2916 /*
2917 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
2918 * Check the tunnel nesting count.
2919 * Return > 0, if tunnel nesting count is more than limit.
2920 * Return 0, if tunnel nesting count is equal or less than limit.
2921 */
2922 int
2923 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
2924 {
2925 struct m_tag *mtag;
2926 int *count;
2927
2928 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO);
2929 if (mtag != NULL) {
2930 count = (int *)(mtag + 1);
2931 if (++(*count) > limit) {
2932 log(LOG_NOTICE,
2933 "%s: recursively called too many times(%d)\n",
2934 ifp->if_xname, *count);
2935 return EIO;
2936 }
2937 } else {
2938 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
2939 M_NOWAIT);
2940 if (mtag != NULL) {
2941 m_tag_prepend(m, mtag);
2942 count = (int *)(mtag + 1);
2943 *count = 0;
2944 } else {
2945 log(LOG_DEBUG,
2946 "%s: m_tag_get() failed, recursion calls are not prevented.\n",
2947 ifp->if_xname);
2948 }
2949 }
2950
2951 return 0;
2952 }
2953
2954 static void
2955 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
2956 {
2957 struct tunnel_ro *tro = p;
2958
2959 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP);
2960 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
2961 }
2962
2963 static void
2964 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
2965 {
2966 struct tunnel_ro *tro = p;
2967
2968 rtcache_free(tro->tr_ro);
2969 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro));
2970
2971 mutex_obj_free(tro->tr_lock);
2972 }
2973
2974 percpu_t *
2975 if_tunnel_alloc_ro_percpu(void)
2976 {
2977
2978 return percpu_create(sizeof(struct tunnel_ro),
2979 if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL);
2980 }
2981
2982 void
2983 if_tunnel_free_ro_percpu(percpu_t *ro_percpu)
2984 {
2985
2986 percpu_free(ro_percpu, sizeof(struct tunnel_ro));
2987 }
2988
2989
2990 static void
2991 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
2992 {
2993 struct tunnel_ro *tro = p;
2994
2995 mutex_enter(tro->tr_lock);
2996 rtcache_free(tro->tr_ro);
2997 mutex_exit(tro->tr_lock);
2998 }
2999
3000 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu)
3001 {
3002
3003 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL);
3004 }
3005
3006 void
3007 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats)
3008 {
3009
3010 /* Collet the volatile stats first; this zeros *ifi. */
3011 if_stats_to_if_data(ifp, ifi, zero_stats);
3012
3013 ifi->ifi_type = ifp->if_type;
3014 ifi->ifi_addrlen = ifp->if_addrlen;
3015 ifi->ifi_hdrlen = ifp->if_hdrlen;
3016 ifi->ifi_link_state = ifp->if_link_state;
3017 ifi->ifi_mtu = ifp->if_mtu;
3018 ifi->ifi_metric = ifp->if_metric;
3019 ifi->ifi_baudrate = ifp->if_baudrate;
3020 ifi->ifi_lastchange = ifp->if_lastchange;
3021 }
3022
3023 /* common */
3024 int
3025 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
3026 {
3027 int s;
3028 struct ifreq *ifr;
3029 struct ifcapreq *ifcr;
3030 struct ifdatareq *ifdr;
3031 unsigned short flags;
3032 char *descr;
3033 int error;
3034
3035 switch (cmd) {
3036 case SIOCSIFCAP:
3037 ifcr = data;
3038 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
3039 return EINVAL;
3040
3041 if (ifcr->ifcr_capenable == ifp->if_capenable)
3042 return 0;
3043
3044 ifp->if_capenable = ifcr->ifcr_capenable;
3045
3046 /* Pre-compute the checksum flags mask. */
3047 ifp->if_csum_flags_tx = 0;
3048 ifp->if_csum_flags_rx = 0;
3049 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
3050 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
3051 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3052 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
3053
3054 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx)
3055 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
3056 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
3057 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
3058
3059 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx)
3060 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
3061 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
3062 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
3063
3064 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx)
3065 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
3066 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx)
3067 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
3068
3069 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx)
3070 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
3071 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx)
3072 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
3073
3074 if (ifp->if_capenable & IFCAP_TSOv4)
3075 ifp->if_csum_flags_tx |= M_CSUM_TSOv4;
3076 if (ifp->if_capenable & IFCAP_TSOv6)
3077 ifp->if_csum_flags_tx |= M_CSUM_TSOv6;
3078
3079 #if NBRIDGE > 0
3080 if (ifp->if_bridge != NULL)
3081 bridge_calc_csum_flags(ifp->if_bridge);
3082 #endif
3083
3084 if (ifp->if_flags & IFF_UP)
3085 return ENETRESET;
3086 return 0;
3087 case SIOCSIFFLAGS:
3088 ifr = data;
3089 /*
3090 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
3091 * and if_down aren't MP-safe yet, so we must hold the lock.
3092 */
3093 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3094 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
3095 s = splsoftnet();
3096 if_down_locked(ifp);
3097 splx(s);
3098 }
3099 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
3100 s = splsoftnet();
3101 if_up_locked(ifp);
3102 splx(s);
3103 }
3104 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3105 flags = (ifp->if_flags & IFF_CANTCHANGE) |
3106 (ifr->ifr_flags &~ IFF_CANTCHANGE);
3107 if (ifp->if_flags != flags) {
3108 ifp->if_flags = flags;
3109 /* Notify that the flags have changed. */
3110 rt_ifmsg(ifp);
3111 }
3112 break;
3113 case SIOCGIFFLAGS:
3114 ifr = data;
3115 ifr->ifr_flags = ifp->if_flags;
3116 break;
3117
3118 case SIOCGIFMETRIC:
3119 ifr = data;
3120 ifr->ifr_metric = ifp->if_metric;
3121 break;
3122
3123 case SIOCGIFMTU:
3124 ifr = data;
3125 ifr->ifr_mtu = ifp->if_mtu;
3126 break;
3127
3128 case SIOCGIFDLT:
3129 ifr = data;
3130 ifr->ifr_dlt = ifp->if_dlt;
3131 break;
3132
3133 case SIOCGIFCAP:
3134 ifcr = data;
3135 ifcr->ifcr_capabilities = ifp->if_capabilities;
3136 ifcr->ifcr_capenable = ifp->if_capenable;
3137 break;
3138
3139 case SIOCSIFMETRIC:
3140 ifr = data;
3141 ifp->if_metric = ifr->ifr_metric;
3142 break;
3143
3144 case SIOCGIFDATA:
3145 ifdr = data;
3146 if_export_if_data(ifp, &ifdr->ifdr_data, false);
3147 break;
3148
3149 case SIOCGIFINDEX:
3150 ifr = data;
3151 ifr->ifr_index = ifp->if_index;
3152 break;
3153
3154 case SIOCZIFDATA:
3155 ifdr = data;
3156 if_export_if_data(ifp, &ifdr->ifdr_data, true);
3157 getnanotime(&ifp->if_lastchange);
3158 break;
3159 case SIOCSIFMTU:
3160 ifr = data;
3161 if (ifp->if_mtu == ifr->ifr_mtu)
3162 break;
3163 ifp->if_mtu = ifr->ifr_mtu;
3164 return ENETRESET;
3165 case SIOCSIFDESCR:
3166 error = kauth_authorize_network(kauth_cred_get(),
3167 KAUTH_NETWORK_INTERFACE,
3168 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
3169 NULL);
3170 if (error)
3171 return error;
3172
3173 ifr = data;
3174
3175 if (ifr->ifr_buflen > IFDESCRSIZE)
3176 return ENAMETOOLONG;
3177
3178 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) {
3179 /* unset description */
3180 descr = NULL;
3181 } else {
3182 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP);
3183 /*
3184 * copy (IFDESCRSIZE - 1) bytes to ensure
3185 * terminating nul
3186 */
3187 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1);
3188 if (error) {
3189 kmem_free(descr, IFDESCRSIZE);
3190 return error;
3191 }
3192 }
3193
3194 if (ifp->if_description != NULL)
3195 kmem_free(ifp->if_description, IFDESCRSIZE);
3196
3197 ifp->if_description = descr;
3198 break;
3199
3200 case SIOCGIFDESCR:
3201 ifr = data;
3202 descr = ifp->if_description;
3203
3204 if (descr == NULL)
3205 return ENOMSG;
3206
3207 if (ifr->ifr_buflen < IFDESCRSIZE)
3208 return EINVAL;
3209
3210 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE);
3211 if (error)
3212 return error;
3213 break;
3214
3215 default:
3216 return ENOTTY;
3217 }
3218 return 0;
3219 }
3220
3221 int
3222 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3223 {
3224 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3225 struct ifaddr *ifa;
3226 const struct sockaddr *any, *sa;
3227 union {
3228 struct sockaddr sa;
3229 struct sockaddr_storage ss;
3230 } u, v;
3231 int s, error = 0;
3232
3233 switch (cmd) {
3234 case SIOCSIFADDRPREF:
3235 error = kauth_authorize_network(kauth_cred_get(),
3236 KAUTH_NETWORK_INTERFACE,
3237 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
3238 NULL);
3239 if (error)
3240 return error;
3241 break;
3242 case SIOCGIFADDRPREF:
3243 break;
3244 default:
3245 return EOPNOTSUPP;
3246 }
3247
3248 /* sanity checks */
3249 if (data == NULL || ifp == NULL) {
3250 panic("invalid argument to %s", __func__);
3251 /*NOTREACHED*/
3252 }
3253
3254 /* address must be specified on ADD and DELETE */
3255 sa = sstocsa(&ifap->ifap_addr);
3256 if (sa->sa_family != sofamily(so))
3257 return EINVAL;
3258 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3259 return EINVAL;
3260
3261 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3262
3263 s = pserialize_read_enter();
3264 IFADDR_READER_FOREACH(ifa, ifp) {
3265 if (ifa->ifa_addr->sa_family != sa->sa_family)
3266 continue;
3267 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3268 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3269 break;
3270 }
3271 if (ifa == NULL) {
3272 error = EADDRNOTAVAIL;
3273 goto out;
3274 }
3275
3276 switch (cmd) {
3277 case SIOCSIFADDRPREF:
3278 ifa->ifa_preference = ifap->ifap_preference;
3279 goto out;
3280 case SIOCGIFADDRPREF:
3281 /* fill in the if_laddrreq structure */
3282 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3283 sizeof(ifap->ifap_addr), ifa->ifa_addr);
3284 ifap->ifap_preference = ifa->ifa_preference;
3285 goto out;
3286 default:
3287 error = EOPNOTSUPP;
3288 }
3289 out:
3290 pserialize_read_exit(s);
3291 return error;
3292 }
3293
3294 /*
3295 * Interface ioctls.
3296 */
3297 static int
3298 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3299 {
3300 struct ifnet *ifp;
3301 struct ifreq *ifr;
3302 int error = 0;
3303 u_long ocmd = cmd;
3304 u_short oif_flags;
3305 struct ifreq ifrb;
3306 struct oifreq *oifr = NULL;
3307 int r;
3308 struct psref psref;
3309 int bound;
3310 bool do_if43_post = false;
3311 bool do_ifm80_post = false;
3312
3313 switch (cmd) {
3314 case SIOCGIFCONF:
3315 return ifconf(cmd, data);
3316 case SIOCINITIFADDR:
3317 return EPERM;
3318 default:
3319 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(),
3320 error);
3321 if (error != ENOSYS)
3322 return error;
3323 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data),
3324 enosys(), error);
3325 if (error != ENOSYS)
3326 return error;
3327 error = 0;
3328 break;
3329 }
3330
3331 ifr = data;
3332 /* Pre-conversion */
3333 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error);
3334 if (cmd != ocmd) {
3335 oifr = data;
3336 data = ifr = &ifrb;
3337 IFREQO2N_43(oifr, ifr);
3338 do_if43_post = true;
3339 }
3340 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post),
3341 enosys(), error);
3342
3343 switch (cmd) {
3344 case SIOCIFCREATE:
3345 case SIOCIFDESTROY:
3346 bound = curlwp_bind();
3347 if (l != NULL) {
3348 ifp = if_get(ifr->ifr_name, &psref);
3349 error = kauth_authorize_network(l->l_cred,
3350 KAUTH_NETWORK_INTERFACE,
3351 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3352 KAUTH_ARG(cmd), NULL);
3353 if (ifp != NULL)
3354 if_put(ifp, &psref);
3355 if (error != 0) {
3356 curlwp_bindx(bound);
3357 return error;
3358 }
3359 }
3360 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3361 mutex_enter(&if_clone_mtx);
3362 r = (cmd == SIOCIFCREATE) ?
3363 if_clone_create(ifr->ifr_name) :
3364 if_clone_destroy(ifr->ifr_name);
3365 mutex_exit(&if_clone_mtx);
3366 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3367 curlwp_bindx(bound);
3368 return r;
3369
3370 case SIOCIFGCLONERS:
3371 {
3372 struct if_clonereq *req = (struct if_clonereq *)data;
3373 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3374 &req->ifcr_total);
3375 }
3376 }
3377
3378 bound = curlwp_bind();
3379 ifp = if_get(ifr->ifr_name, &psref);
3380 if (ifp == NULL) {
3381 curlwp_bindx(bound);
3382 return ENXIO;
3383 }
3384
3385 switch (cmd) {
3386 case SIOCALIFADDR:
3387 case SIOCDLIFADDR:
3388 case SIOCSIFADDRPREF:
3389 case SIOCSIFFLAGS:
3390 case SIOCSIFCAP:
3391 case SIOCSIFMETRIC:
3392 case SIOCZIFDATA:
3393 case SIOCSIFMTU:
3394 case SIOCSIFPHYADDR:
3395 case SIOCDIFPHYADDR:
3396 #ifdef INET6
3397 case SIOCSIFPHYADDR_IN6:
3398 #endif
3399 case SIOCSLIFPHYADDR:
3400 case SIOCADDMULTI:
3401 case SIOCDELMULTI:
3402 case SIOCSETHERCAP:
3403 case SIOCSIFMEDIA:
3404 case SIOCSDRVSPEC:
3405 case SIOCG80211:
3406 case SIOCS80211:
3407 case SIOCS80211NWID:
3408 case SIOCS80211NWKEY:
3409 case SIOCS80211POWER:
3410 case SIOCS80211BSSID:
3411 case SIOCS80211CHANNEL:
3412 case SIOCSLINKSTR:
3413 if (l != NULL) {
3414 error = kauth_authorize_network(l->l_cred,
3415 KAUTH_NETWORK_INTERFACE,
3416 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3417 KAUTH_ARG(cmd), NULL);
3418 if (error != 0)
3419 goto out;
3420 }
3421 }
3422
3423 oif_flags = ifp->if_flags;
3424
3425 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3426 IFNET_LOCK(ifp);
3427
3428 error = (*ifp->if_ioctl)(ifp, cmd, data);
3429 if (error != ENOTTY)
3430 ;
3431 else if (so->so_proto == NULL)
3432 error = EOPNOTSUPP;
3433 else {
3434 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3435 MODULE_HOOK_CALL(if_ifioctl_43_hook,
3436 (so, ocmd, cmd, data, l), enosys(), error);
3437 if (error == ENOSYS)
3438 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3439 cmd, data, ifp);
3440 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3441 }
3442
3443 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3444 if ((ifp->if_flags & IFF_UP) != 0) {
3445 int s = splsoftnet();
3446 if_up_locked(ifp);
3447 splx(s);
3448 }
3449 }
3450
3451 /* Post-conversion */
3452 if (do_ifm80_post && (error == 0))
3453 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd),
3454 enosys(), error);
3455 if (do_if43_post)
3456 IFREQN2O_43(oifr, ifr);
3457
3458 IFNET_UNLOCK(ifp);
3459 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3460 out:
3461 if_put(ifp, &psref);
3462 curlwp_bindx(bound);
3463 return error;
3464 }
3465
3466 /*
3467 * Return interface configuration
3468 * of system. List may be used
3469 * in later ioctl's (above) to get
3470 * other information.
3471 *
3472 * Each record is a struct ifreq. Before the addition of
3473 * sockaddr_storage, the API rule was that sockaddr flavors that did
3474 * not fit would extend beyond the struct ifreq, with the next struct
3475 * ifreq starting sa_len beyond the struct sockaddr. Because the
3476 * union in struct ifreq includes struct sockaddr_storage, every kind
3477 * of sockaddr must fit. Thus, there are no longer any overlength
3478 * records.
3479 *
3480 * Records are added to the user buffer if they fit, and ifc_len is
3481 * adjusted to the length that was written. Thus, the user is only
3482 * assured of getting the complete list if ifc_len on return is at
3483 * least sizeof(struct ifreq) less than it was on entry.
3484 *
3485 * If the user buffer pointer is NULL, this routine copies no data and
3486 * returns the amount of space that would be needed.
3487 *
3488 * Invariants:
3489 * ifrp points to the next part of the user's buffer to be used. If
3490 * ifrp != NULL, space holds the number of bytes remaining that we may
3491 * write at ifrp. Otherwise, space holds the number of bytes that
3492 * would have been written had there been adequate space.
3493 */
3494 /*ARGSUSED*/
3495 static int
3496 ifconf(u_long cmd, void *data)
3497 {
3498 struct ifconf *ifc = (struct ifconf *)data;
3499 struct ifnet *ifp;
3500 struct ifaddr *ifa;
3501 struct ifreq ifr, *ifrp = NULL;
3502 int space = 0, error = 0;
3503 const int sz = (int)sizeof(struct ifreq);
3504 const bool docopy = ifc->ifc_req != NULL;
3505 int s;
3506 int bound;
3507 struct psref psref;
3508
3509 if (docopy) {
3510 if (ifc->ifc_len < 0)
3511 return EINVAL;
3512
3513 space = ifc->ifc_len;
3514 ifrp = ifc->ifc_req;
3515 }
3516 memset(&ifr, 0, sizeof(ifr));
3517
3518 bound = curlwp_bind();
3519 s = pserialize_read_enter();
3520 IFNET_READER_FOREACH(ifp) {
3521 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3522 pserialize_read_exit(s);
3523
3524 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3525 sizeof(ifr.ifr_name));
3526 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3527 error = ENAMETOOLONG;
3528 goto release_exit;
3529 }
3530 if (IFADDR_READER_EMPTY(ifp)) {
3531 /* Interface with no addresses - send zero sockaddr. */
3532 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3533 if (!docopy) {
3534 space += sz;
3535 goto next;
3536 }
3537 if (space >= sz) {
3538 error = copyout(&ifr, ifrp, sz);
3539 if (error != 0)
3540 goto release_exit;
3541 ifrp++;
3542 space -= sz;
3543 }
3544 }
3545
3546 s = pserialize_read_enter();
3547 IFADDR_READER_FOREACH(ifa, ifp) {
3548 struct sockaddr *sa = ifa->ifa_addr;
3549 /* all sockaddrs must fit in sockaddr_storage */
3550 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3551
3552 if (!docopy) {
3553 space += sz;
3554 continue;
3555 }
3556 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3557 pserialize_read_exit(s);
3558
3559 if (space >= sz) {
3560 error = copyout(&ifr, ifrp, sz);
3561 if (error != 0)
3562 goto release_exit;
3563 ifrp++; space -= sz;
3564 }
3565 s = pserialize_read_enter();
3566 }
3567 pserialize_read_exit(s);
3568
3569 next:
3570 s = pserialize_read_enter();
3571 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3572 }
3573 pserialize_read_exit(s);
3574 curlwp_bindx(bound);
3575
3576 if (docopy) {
3577 KASSERT(0 <= space && space <= ifc->ifc_len);
3578 ifc->ifc_len -= space;
3579 } else {
3580 KASSERT(space >= 0);
3581 ifc->ifc_len = space;
3582 }
3583 return (0);
3584
3585 release_exit:
3586 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3587 curlwp_bindx(bound);
3588 return error;
3589 }
3590
3591 int
3592 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3593 {
3594 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
3595 struct ifreq ifrb;
3596 struct oifreq *oifr = NULL;
3597 u_long ocmd = cmd;
3598 int hook;
3599
3600 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
3601 if (hook != ENOSYS) {
3602 if (cmd != ocmd) {
3603 oifr = (struct oifreq *)(void *)ifr;
3604 ifr = &ifrb;
3605 IFREQO2N_43(oifr, ifr);
3606 len = sizeof(oifr->ifr_addr);
3607 }
3608 }
3609
3610 if (len < sa->sa_len)
3611 return EFBIG;
3612
3613 memset(&ifr->ifr_addr, 0, len);
3614 sockaddr_copy(&ifr->ifr_addr, len, sa);
3615
3616 if (cmd != ocmd)
3617 IFREQN2O_43(oifr, ifr);
3618 return 0;
3619 }
3620
3621 /*
3622 * wrapper function for the drivers which doesn't have if_transmit().
3623 */
3624 static int
3625 if_transmit(struct ifnet *ifp, struct mbuf *m)
3626 {
3627 int s, error;
3628 size_t pktlen = m->m_pkthdr.len;
3629 bool mcast = (m->m_flags & M_MCAST) != 0;
3630
3631 s = splnet();
3632
3633 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3634 if (error != 0) {
3635 /* mbuf is already freed */
3636 goto out;
3637 }
3638
3639 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
3640 if_statadd_ref(nsr, if_obytes, pktlen);
3641 if (mcast)
3642 if_statinc_ref(nsr, if_omcasts);
3643 IF_STAT_PUTREF(ifp);
3644
3645 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3646 if_start_lock(ifp);
3647 out:
3648 splx(s);
3649
3650 return error;
3651 }
3652
3653 int
3654 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3655 {
3656 int error;
3657
3658 kmsan_check_mbuf(m);
3659
3660 #ifdef ALTQ
3661 KERNEL_LOCK(1, NULL);
3662 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3663 error = if_transmit(ifp, m);
3664 KERNEL_UNLOCK_ONE(NULL);
3665 } else {
3666 KERNEL_UNLOCK_ONE(NULL);
3667 error = (*ifp->if_transmit)(ifp, m);
3668 /* mbuf is alredy freed */
3669 }
3670 #else /* !ALTQ */
3671 error = (*ifp->if_transmit)(ifp, m);
3672 /* mbuf is alredy freed */
3673 #endif /* !ALTQ */
3674
3675 return error;
3676 }
3677
3678 /*
3679 * Queue message on interface, and start output if interface
3680 * not yet active.
3681 */
3682 int
3683 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3684 {
3685
3686 return if_transmit_lock(ifp, m);
3687 }
3688
3689 /*
3690 * Queue message on interface, possibly using a second fast queue
3691 */
3692 int
3693 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3694 {
3695 int error = 0;
3696
3697 if (ifq != NULL
3698 #ifdef ALTQ
3699 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3700 #endif
3701 ) {
3702 if (IF_QFULL(ifq)) {
3703 IF_DROP(&ifp->if_snd);
3704 m_freem(m);
3705 if (error == 0)
3706 error = ENOBUFS;
3707 } else
3708 IF_ENQUEUE(ifq, m);
3709 } else
3710 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3711 if (error != 0) {
3712 if_statinc(ifp, if_oerrors);
3713 return error;
3714 }
3715 return 0;
3716 }
3717
3718 int
3719 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3720 {
3721 int rc;
3722
3723 KASSERT(IFNET_LOCKED(ifp));
3724 if (ifp->if_initaddr != NULL)
3725 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3726 else if (src ||
3727 (rc = (*ifp->if_ioctl)(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3728 rc = (*ifp->if_ioctl)(ifp, SIOCINITIFADDR, ifa);
3729
3730 return rc;
3731 }
3732
3733 int
3734 if_do_dad(struct ifnet *ifp)
3735 {
3736 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3737 return 0;
3738
3739 switch (ifp->if_type) {
3740 case IFT_FAITH:
3741 /*
3742 * These interfaces do not have the IFF_LOOPBACK flag,
3743 * but loop packets back. We do not have to do DAD on such
3744 * interfaces. We should even omit it, because loop-backed
3745 * responses would confuse the DAD procedure.
3746 */
3747 return 0;
3748 default:
3749 /*
3750 * Our DAD routine requires the interface up and running.
3751 * However, some interfaces can be up before the RUNNING
3752 * status. Additionaly, users may try to assign addresses
3753 * before the interface becomes up (or running).
3754 * We simply skip DAD in such a case as a work around.
3755 * XXX: we should rather mark "tentative" on such addresses,
3756 * and do DAD after the interface becomes ready.
3757 */
3758 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
3759 (IFF_UP | IFF_RUNNING))
3760 return 0;
3761
3762 return 1;
3763 }
3764 }
3765
3766 int
3767 if_flags_set(ifnet_t *ifp, const u_short flags)
3768 {
3769 int rc;
3770
3771 KASSERT(IFNET_LOCKED(ifp));
3772
3773 if (ifp->if_setflags != NULL)
3774 rc = (*ifp->if_setflags)(ifp, flags);
3775 else {
3776 u_short cantflags, chgdflags;
3777 struct ifreq ifr;
3778
3779 chgdflags = ifp->if_flags ^ flags;
3780 cantflags = chgdflags & IFF_CANTCHANGE;
3781
3782 if (cantflags != 0)
3783 ifp->if_flags ^= cantflags;
3784
3785 /* Traditionally, we do not call if_ioctl after
3786 * setting/clearing only IFF_PROMISC if the interface
3787 * isn't IFF_UP. Uphold that tradition.
3788 */
3789 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3790 return 0;
3791
3792 memset(&ifr, 0, sizeof(ifr));
3793
3794 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3795 rc = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, &ifr);
3796
3797 if (rc != 0 && cantflags != 0)
3798 ifp->if_flags ^= cantflags;
3799 }
3800
3801 return rc;
3802 }
3803
3804 int
3805 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3806 {
3807 int rc;
3808 struct ifreq ifr;
3809
3810 /*
3811 * XXX NOMPSAFE - this calls if_ioctl without holding IFNET_LOCK()
3812 * in some cases - e.g. when called from vlan/netinet/netinet6 code
3813 * directly rather than via doifoictl()
3814 */
3815 ifreq_setaddr(cmd, &ifr, sa);
3816 rc = (*ifp->if_ioctl)(ifp, cmd, &ifr);
3817
3818 return rc;
3819 }
3820
3821 static void
3822 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3823 struct ifaltq *ifq)
3824 {
3825 const struct sysctlnode *cnode, *rnode;
3826
3827 if (sysctl_createv(clog, 0, NULL, &rnode,
3828 CTLFLAG_PERMANENT,
3829 CTLTYPE_NODE, "interfaces",
3830 SYSCTL_DESCR("Per-interface controls"),
3831 NULL, 0, NULL, 0,
3832 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3833 goto bad;
3834
3835 if (sysctl_createv(clog, 0, &rnode, &rnode,
3836 CTLFLAG_PERMANENT,
3837 CTLTYPE_NODE, ifname,
3838 SYSCTL_DESCR("Interface controls"),
3839 NULL, 0, NULL, 0,
3840 CTL_CREATE, CTL_EOL) != 0)
3841 goto bad;
3842
3843 if (sysctl_createv(clog, 0, &rnode, &rnode,
3844 CTLFLAG_PERMANENT,
3845 CTLTYPE_NODE, "sndq",
3846 SYSCTL_DESCR("Interface output queue controls"),
3847 NULL, 0, NULL, 0,
3848 CTL_CREATE, CTL_EOL) != 0)
3849 goto bad;
3850
3851 if (sysctl_createv(clog, 0, &rnode, &cnode,
3852 CTLFLAG_PERMANENT,
3853 CTLTYPE_INT, "len",
3854 SYSCTL_DESCR("Current output queue length"),
3855 NULL, 0, &ifq->ifq_len, 0,
3856 CTL_CREATE, CTL_EOL) != 0)
3857 goto bad;
3858
3859 if (sysctl_createv(clog, 0, &rnode, &cnode,
3860 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3861 CTLTYPE_INT, "maxlen",
3862 SYSCTL_DESCR("Maximum allowed output queue length"),
3863 NULL, 0, &ifq->ifq_maxlen, 0,
3864 CTL_CREATE, CTL_EOL) != 0)
3865 goto bad;
3866
3867 if (sysctl_createv(clog, 0, &rnode, &cnode,
3868 CTLFLAG_PERMANENT,
3869 CTLTYPE_INT, "drops",
3870 SYSCTL_DESCR("Packets dropped due to full output queue"),
3871 NULL, 0, &ifq->ifq_drops, 0,
3872 CTL_CREATE, CTL_EOL) != 0)
3873 goto bad;
3874
3875 return;
3876 bad:
3877 printf("%s: could not attach sysctl nodes\n", ifname);
3878 return;
3879 }
3880
3881 #if defined(INET) || defined(INET6)
3882
3883 #define SYSCTL_NET_PKTQ(q, cn, c) \
3884 static int \
3885 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3886 { \
3887 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3888 }
3889
3890 #if defined(INET)
3891 static int
3892 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3893 {
3894 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3895 }
3896 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
3897 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
3898 #endif
3899
3900 #if defined(INET6)
3901 static int
3902 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
3903 {
3904 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
3905 }
3906 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
3907 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
3908 #endif
3909
3910 static void
3911 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
3912 {
3913 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
3914 const char *pfname = NULL, *ipname = NULL;
3915 int ipn = 0, qid = 0;
3916
3917 switch (pf) {
3918 #if defined(INET)
3919 case PF_INET:
3920 len_func = sysctl_net_ip_pktq_items;
3921 maxlen_func = sysctl_net_ip_pktq_maxlen;
3922 drops_func = sysctl_net_ip_pktq_drops;
3923 pfname = "inet", ipn = IPPROTO_IP;
3924 ipname = "ip", qid = IPCTL_IFQ;
3925 break;
3926 #endif
3927 #if defined(INET6)
3928 case PF_INET6:
3929 len_func = sysctl_net_ip6_pktq_items;
3930 maxlen_func = sysctl_net_ip6_pktq_maxlen;
3931 drops_func = sysctl_net_ip6_pktq_drops;
3932 pfname = "inet6", ipn = IPPROTO_IPV6;
3933 ipname = "ip6", qid = IPV6CTL_IFQ;
3934 break;
3935 #endif
3936 default:
3937 KASSERT(false);
3938 }
3939
3940 sysctl_createv(clog, 0, NULL, NULL,
3941 CTLFLAG_PERMANENT,
3942 CTLTYPE_NODE, pfname, NULL,
3943 NULL, 0, NULL, 0,
3944 CTL_NET, pf, CTL_EOL);
3945 sysctl_createv(clog, 0, NULL, NULL,
3946 CTLFLAG_PERMANENT,
3947 CTLTYPE_NODE, ipname, NULL,
3948 NULL, 0, NULL, 0,
3949 CTL_NET, pf, ipn, CTL_EOL);
3950 sysctl_createv(clog, 0, NULL, NULL,
3951 CTLFLAG_PERMANENT,
3952 CTLTYPE_NODE, "ifq",
3953 SYSCTL_DESCR("Protocol input queue controls"),
3954 NULL, 0, NULL, 0,
3955 CTL_NET, pf, ipn, qid, CTL_EOL);
3956
3957 sysctl_createv(clog, 0, NULL, NULL,
3958 CTLFLAG_PERMANENT,
3959 CTLTYPE_QUAD, "len",
3960 SYSCTL_DESCR("Current input queue length"),
3961 len_func, 0, NULL, 0,
3962 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
3963 sysctl_createv(clog, 0, NULL, NULL,
3964 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3965 CTLTYPE_INT, "maxlen",
3966 SYSCTL_DESCR("Maximum allowed input queue length"),
3967 maxlen_func, 0, NULL, 0,
3968 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
3969 sysctl_createv(clog, 0, NULL, NULL,
3970 CTLFLAG_PERMANENT,
3971 CTLTYPE_QUAD, "drops",
3972 SYSCTL_DESCR("Packets dropped due to full input queue"),
3973 drops_func, 0, NULL, 0,
3974 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
3975 }
3976 #endif /* INET || INET6 */
3977
3978 static int
3979 if_sdl_sysctl(SYSCTLFN_ARGS)
3980 {
3981 struct ifnet *ifp;
3982 const struct sockaddr_dl *sdl;
3983 struct psref psref;
3984 int error = 0;
3985 int bound;
3986
3987 if (namelen != 1)
3988 return EINVAL;
3989
3990 bound = curlwp_bind();
3991 ifp = if_get_byindex(name[0], &psref);
3992 if (ifp == NULL) {
3993 error = ENODEV;
3994 goto out0;
3995 }
3996
3997 sdl = ifp->if_sadl;
3998 if (sdl == NULL) {
3999 *oldlenp = 0;
4000 goto out1;
4001 }
4002
4003 if (oldp == NULL) {
4004 *oldlenp = sdl->sdl_alen;
4005 goto out1;
4006 }
4007
4008 if (*oldlenp >= sdl->sdl_alen)
4009 *oldlenp = sdl->sdl_alen;
4010 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
4011 out1:
4012 if_put(ifp, &psref);
4013 out0:
4014 curlwp_bindx(bound);
4015 return error;
4016 }
4017
4018 static void
4019 if_sysctl_setup(struct sysctllog **clog)
4020 {
4021 const struct sysctlnode *rnode = NULL;
4022
4023 sysctl_createv(clog, 0, NULL, &rnode,
4024 CTLFLAG_PERMANENT,
4025 CTLTYPE_NODE, "sdl",
4026 SYSCTL_DESCR("Get active link-layer address"),
4027 if_sdl_sysctl, 0, NULL, 0,
4028 CTL_NET, CTL_CREATE, CTL_EOL);
4029
4030 #if defined(INET)
4031 sysctl_net_pktq_setup(NULL, PF_INET);
4032 #endif
4033 #ifdef INET6
4034 if (in6_present)
4035 sysctl_net_pktq_setup(NULL, PF_INET6);
4036 #endif
4037 }
4038