if.c revision 1.510 1 /* $NetBSD: if.c,v 1.510 2022/07/29 15:19:30 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.510 2022/07/29 15:19:30 skrll Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_atalk.h"
99 #include "opt_wlan.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mrouting.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122 #include <sys/module_hook.h>
123 #include <sys/compat_stub.h>
124 #include <sys/msan.h>
125 #include <sys/hook.h>
126
127 #include <net/if.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net80211/ieee80211.h>
132 #include <net80211/ieee80211_ioctl.h>
133 #include <net/if_types.h>
134 #include <net/route.h>
135 #include <net/netisr.h>
136 #include <sys/module.h>
137 #ifdef NETATALK
138 #include <netatalk/at_extern.h>
139 #include <netatalk/at.h>
140 #endif
141 #include <net/pfil.h>
142 #include <netinet/in.h>
143 #include <netinet/in_var.h>
144 #include <netinet/ip_encap.h>
145 #include <net/bpf.h>
146
147 #ifdef INET6
148 #include <netinet6/in6_var.h>
149 #include <netinet6/nd6.h>
150 #endif
151
152 #include "ether.h"
153
154 #include "bridge.h"
155 #if NBRIDGE > 0
156 #include <net/if_bridgevar.h>
157 #endif
158
159 #include "carp.h"
160 #if NCARP > 0
161 #include <netinet/ip_carp.h>
162 #endif
163
164 #include <compat/sys/sockio.h>
165
166 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
167 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
168
169 /*
170 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
171 * for each ifnet. It doesn't matter because:
172 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
173 * ifq_lock don't happen
174 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
175 * because if_snd, if_link_state_change and if_link_state_change_process
176 * are all called with KERNEL_LOCK
177 */
178 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \
179 mutex_enter((ifp)->if_snd.ifq_lock)
180 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \
181 mutex_exit((ifp)->if_snd.ifq_lock)
182
183 /*
184 * Global list of interfaces.
185 */
186 /* DEPRECATED. Remove it once kvm(3) users disappeared */
187 struct ifnet_head ifnet_list;
188
189 struct pslist_head ifnet_pslist;
190 static ifnet_t ** ifindex2ifnet = NULL;
191 static u_int if_index = 1;
192 static size_t if_indexlim = 0;
193 static uint64_t index_gen;
194 /* Mutex to protect the above objects. */
195 kmutex_t ifnet_mtx __cacheline_aligned;
196 static struct psref_class *ifnet_psref_class __read_mostly;
197 static pserialize_t ifnet_psz;
198 static struct workqueue *ifnet_link_state_wq __read_mostly;
199
200 static kmutex_t if_clone_mtx;
201
202 struct ifnet *lo0ifp;
203 int ifqmaxlen = IFQ_MAXLEN;
204
205 struct psref_class *ifa_psref_class __read_mostly;
206
207 static int if_delroute_matcher(struct rtentry *, void *);
208
209 static bool if_is_unit(const char *);
210 static struct if_clone *if_clone_lookup(const char *, int *);
211
212 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
213 static int if_cloners_count;
214
215 /* Packet filtering hook for interfaces. */
216 pfil_head_t * if_pfil __read_mostly;
217
218 static kauth_listener_t if_listener;
219
220 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
221 static void if_detach_queues(struct ifnet *, struct ifqueue *);
222 static void sysctl_sndq_setup(struct sysctllog **, const char *,
223 struct ifaltq *);
224 static void if_slowtimo(void *);
225 static void if_attachdomain1(struct ifnet *);
226 static int ifconf(u_long, void *);
227 static int if_transmit(struct ifnet *, struct mbuf *);
228 static int if_clone_create(const char *);
229 static int if_clone_destroy(const char *);
230 static void if_link_state_change_work(struct work *, void *);
231 static void if_up_locked(struct ifnet *);
232 static void _if_down(struct ifnet *);
233 static void if_down_deactivated(struct ifnet *);
234
235 struct if_percpuq {
236 struct ifnet *ipq_ifp;
237 void *ipq_si;
238 struct percpu *ipq_ifqs; /* struct ifqueue */
239 };
240
241 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
242
243 static void if_percpuq_drops(void *, void *, struct cpu_info *);
244 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
245 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
246 struct if_percpuq *);
247
248 struct if_deferred_start {
249 struct ifnet *ids_ifp;
250 void (*ids_if_start)(struct ifnet *);
251 void *ids_si;
252 };
253
254 static void if_deferred_start_softint(void *);
255 static void if_deferred_start_common(struct ifnet *);
256 static void if_deferred_start_destroy(struct ifnet *);
257
258 #if defined(INET) || defined(INET6)
259 static void sysctl_net_pktq_setup(struct sysctllog **, int);
260 #endif
261
262 /*
263 * Hook for if_vlan - needed by if_agr
264 */
265 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook;
266
267 static void if_sysctl_setup(struct sysctllog **);
268
269 static int
270 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
271 void *arg0, void *arg1, void *arg2, void *arg3)
272 {
273 int result;
274 enum kauth_network_req req;
275
276 result = KAUTH_RESULT_DEFER;
277 req = (enum kauth_network_req)(uintptr_t)arg1;
278
279 if (action != KAUTH_NETWORK_INTERFACE)
280 return result;
281
282 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
283 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
284 result = KAUTH_RESULT_ALLOW;
285
286 return result;
287 }
288
289 /*
290 * Network interface utility routines.
291 *
292 * Routines with ifa_ifwith* names take sockaddr *'s as
293 * parameters.
294 */
295 void
296 ifinit(void)
297 {
298
299 #if (defined(INET) || defined(INET6))
300 encapinit();
301 #endif
302
303 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
304 if_listener_cb, NULL);
305
306 /* interfaces are available, inform socket code */
307 ifioctl = doifioctl;
308 }
309
310 /*
311 * XXX Initialization before configure().
312 * XXX hack to get pfil_add_hook working in autoconf.
313 */
314 void
315 ifinit1(void)
316 {
317 int error __diagused;
318
319 #ifdef NET_MPSAFE
320 printf("NET_MPSAFE enabled\n");
321 #endif
322
323 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
324
325 TAILQ_INIT(&ifnet_list);
326 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
327 ifnet_psz = pserialize_create();
328 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
329 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
330 error = workqueue_create(&ifnet_link_state_wq, "iflnkst",
331 if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET,
332 WQ_MPSAFE);
333 KASSERT(error == 0);
334 PSLIST_INIT(&ifnet_pslist);
335
336 if_indexlim = 8;
337
338 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
339 KASSERT(if_pfil != NULL);
340
341 #if NETHER > 0 || defined(NETATALK) || defined(WLAN)
342 etherinit();
343 #endif
344 }
345
346 /* XXX must be after domaininit() */
347 void
348 ifinit_post(void)
349 {
350
351 if_sysctl_setup(NULL);
352 }
353
354 ifnet_t *
355 if_alloc(u_char type)
356 {
357 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
358 }
359
360 void
361 if_free(ifnet_t *ifp)
362 {
363 kmem_free(ifp, sizeof(ifnet_t));
364 }
365
366 void
367 if_initname(struct ifnet *ifp, const char *name, int unit)
368 {
369 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
370 "%s%d", name, unit);
371 }
372
373 /*
374 * Null routines used while an interface is going away. These routines
375 * just return an error.
376 */
377
378 int
379 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
380 const struct sockaddr *so, const struct rtentry *rt)
381 {
382
383 return ENXIO;
384 }
385
386 void
387 if_nullinput(struct ifnet *ifp, struct mbuf *m)
388 {
389
390 /* Nothing. */
391 }
392
393 void
394 if_nullstart(struct ifnet *ifp)
395 {
396
397 /* Nothing. */
398 }
399
400 int
401 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
402 {
403
404 m_freem(m);
405 return ENXIO;
406 }
407
408 int
409 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
410 {
411
412 return ENXIO;
413 }
414
415 int
416 if_nullinit(struct ifnet *ifp)
417 {
418
419 return ENXIO;
420 }
421
422 void
423 if_nullstop(struct ifnet *ifp, int disable)
424 {
425
426 /* Nothing. */
427 }
428
429 void
430 if_nullslowtimo(struct ifnet *ifp)
431 {
432
433 /* Nothing. */
434 }
435
436 void
437 if_nulldrain(struct ifnet *ifp)
438 {
439
440 /* Nothing. */
441 }
442
443 void
444 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
445 {
446 struct ifaddr *ifa;
447 struct sockaddr_dl *sdl;
448
449 ifp->if_addrlen = addrlen;
450 if_alloc_sadl(ifp);
451 ifa = ifp->if_dl;
452 sdl = satosdl(ifa->ifa_addr);
453
454 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
455 if (factory) {
456 KASSERT(ifp->if_hwdl == NULL);
457 ifp->if_hwdl = ifp->if_dl;
458 ifaref(ifp->if_hwdl);
459 }
460 /* TBD routing socket */
461 }
462
463 struct ifaddr *
464 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
465 {
466 unsigned socksize, ifasize;
467 int addrlen, namelen;
468 struct sockaddr_dl *mask, *sdl;
469 struct ifaddr *ifa;
470
471 namelen = strlen(ifp->if_xname);
472 addrlen = ifp->if_addrlen;
473 socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
474 ifasize = sizeof(*ifa) + 2 * socksize;
475 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
476
477 sdl = (struct sockaddr_dl *)(ifa + 1);
478 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
479
480 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
481 ifp->if_xname, namelen, NULL, addrlen);
482 mask->sdl_family = AF_LINK;
483 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
484 memset(&mask->sdl_data[0], 0xff, namelen);
485 ifa->ifa_rtrequest = link_rtrequest;
486 ifa->ifa_addr = (struct sockaddr *)sdl;
487 ifa->ifa_netmask = (struct sockaddr *)mask;
488 ifa_psref_init(ifa);
489
490 *sdlp = sdl;
491
492 return ifa;
493 }
494
495 static void
496 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
497 {
498 const struct sockaddr_dl *sdl;
499
500 ifp->if_dl = ifa;
501 ifaref(ifa);
502 sdl = satosdl(ifa->ifa_addr);
503 ifp->if_sadl = sdl;
504 }
505
506 /*
507 * Allocate the link level name for the specified interface. This
508 * is an attachment helper. It must be called after ifp->if_addrlen
509 * is initialized, which may not be the case when if_attach() is
510 * called.
511 */
512 void
513 if_alloc_sadl(struct ifnet *ifp)
514 {
515 struct ifaddr *ifa;
516 const struct sockaddr_dl *sdl;
517
518 /*
519 * If the interface already has a link name, release it
520 * now. This is useful for interfaces that can change
521 * link types, and thus switch link names often.
522 */
523 if (ifp->if_sadl != NULL)
524 if_free_sadl(ifp, 0);
525
526 ifa = if_dl_create(ifp, &sdl);
527
528 ifa_insert(ifp, ifa);
529 if_sadl_setrefs(ifp, ifa);
530 }
531
532 static void
533 if_deactivate_sadl(struct ifnet *ifp)
534 {
535 struct ifaddr *ifa;
536
537 KASSERT(ifp->if_dl != NULL);
538
539 ifa = ifp->if_dl;
540
541 ifp->if_sadl = NULL;
542
543 ifp->if_dl = NULL;
544 ifafree(ifa);
545 }
546
547 static void
548 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
549 {
550 struct ifaddr *old;
551
552 KASSERT(ifp->if_dl != NULL);
553
554 old = ifp->if_dl;
555
556 ifaref(ifa);
557 /* XXX Update if_dl and if_sadl atomically */
558 ifp->if_dl = ifa;
559 ifp->if_sadl = satosdl(ifa->ifa_addr);
560
561 ifafree(old);
562 }
563
564 void
565 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
566 const struct sockaddr_dl *sdl)
567 {
568 int s, ss;
569 struct ifaddr *ifa;
570 int bound = curlwp_bind();
571
572 KASSERT(ifa_held(ifa0));
573
574 s = splsoftnet();
575
576 if_replace_sadl(ifp, ifa0);
577
578 ss = pserialize_read_enter();
579 IFADDR_READER_FOREACH(ifa, ifp) {
580 struct psref psref;
581 ifa_acquire(ifa, &psref);
582 pserialize_read_exit(ss);
583
584 rtinit(ifa, RTM_LLINFO_UPD, 0);
585
586 ss = pserialize_read_enter();
587 ifa_release(ifa, &psref);
588 }
589 pserialize_read_exit(ss);
590
591 splx(s);
592 curlwp_bindx(bound);
593 }
594
595 /*
596 * Free the link level name for the specified interface. This is
597 * a detach helper. This is called from if_detach().
598 */
599 void
600 if_free_sadl(struct ifnet *ifp, int factory)
601 {
602 struct ifaddr *ifa;
603 int s;
604
605 if (factory && ifp->if_hwdl != NULL) {
606 ifa = ifp->if_hwdl;
607 ifp->if_hwdl = NULL;
608 ifafree(ifa);
609 }
610
611 ifa = ifp->if_dl;
612 if (ifa == NULL) {
613 KASSERT(ifp->if_sadl == NULL);
614 return;
615 }
616
617 KASSERT(ifp->if_sadl != NULL);
618
619 s = splsoftnet();
620 KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
621 ifa_remove(ifp, ifa);
622 if_deactivate_sadl(ifp);
623 splx(s);
624 }
625
626 static void
627 if_getindex(ifnet_t *ifp)
628 {
629 bool hitlimit = false;
630 char xnamebuf[HOOKNAMSIZ];
631
632 ifp->if_index_gen = index_gen++;
633 snprintf(xnamebuf, sizeof(xnamebuf),
634 "%s-lshk", ifp->if_xname);
635 ifp->if_linkstate_hooks = simplehook_create(IPL_NET,
636 xnamebuf);
637
638 ifp->if_index = if_index;
639 if (ifindex2ifnet == NULL) {
640 if_index++;
641 goto skip;
642 }
643 while (if_byindex(ifp->if_index)) {
644 /*
645 * If we hit USHRT_MAX, we skip back to 0 since
646 * there are a number of places where the value
647 * of if_index or if_index itself is compared
648 * to or stored in an unsigned short. By
649 * jumping back, we won't botch those assignments
650 * or comparisons.
651 */
652 if (++if_index == 0) {
653 if_index = 1;
654 } else if (if_index == USHRT_MAX) {
655 /*
656 * However, if we have to jump back to
657 * zero *twice* without finding an empty
658 * slot in ifindex2ifnet[], then there
659 * there are too many (>65535) interfaces.
660 */
661 if (hitlimit) {
662 panic("too many interfaces");
663 }
664 hitlimit = true;
665 if_index = 1;
666 }
667 ifp->if_index = if_index;
668 }
669 skip:
670 /*
671 * ifindex2ifnet is indexed by if_index. Since if_index will
672 * grow dynamically, it should grow too.
673 */
674 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
675 size_t m, n, oldlim;
676 void *q;
677
678 oldlim = if_indexlim;
679 while (ifp->if_index >= if_indexlim)
680 if_indexlim <<= 1;
681
682 /* grow ifindex2ifnet */
683 m = oldlim * sizeof(struct ifnet *);
684 n = if_indexlim * sizeof(struct ifnet *);
685 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO);
686 if (ifindex2ifnet != NULL) {
687 memcpy(q, ifindex2ifnet, m);
688 free(ifindex2ifnet, M_IFADDR);
689 }
690 ifindex2ifnet = (struct ifnet **)q;
691 }
692 ifindex2ifnet[ifp->if_index] = ifp;
693 }
694
695 /*
696 * Initialize an interface and assign an index for it.
697 *
698 * It must be called prior to a device specific attach routine
699 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
700 * and be followed by if_register:
701 *
702 * if_initialize(ifp);
703 * ether_ifattach(ifp, enaddr);
704 * if_register(ifp);
705 */
706 void
707 if_initialize(ifnet_t *ifp)
708 {
709
710 KASSERT(if_indexlim > 0);
711 TAILQ_INIT(&ifp->if_addrlist);
712
713 /*
714 * Link level name is allocated later by a separate call to
715 * if_alloc_sadl().
716 */
717
718 if (ifp->if_snd.ifq_maxlen == 0)
719 ifp->if_snd.ifq_maxlen = ifqmaxlen;
720
721 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
722
723 ifp->if_link_state = LINK_STATE_UNKNOWN;
724 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
725 ifp->if_link_scheduled = false;
726
727 ifp->if_capenable = 0;
728 ifp->if_csum_flags_tx = 0;
729 ifp->if_csum_flags_rx = 0;
730
731 #ifdef ALTQ
732 ifp->if_snd.altq_type = 0;
733 ifp->if_snd.altq_disc = NULL;
734 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
735 ifp->if_snd.altq_tbr = NULL;
736 ifp->if_snd.altq_ifp = ifp;
737 #endif
738
739 IFQ_LOCK_INIT(&ifp->if_snd);
740
741 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
742 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
743
744 IF_AFDATA_LOCK_INIT(ifp);
745
746 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
747 PSLIST_INIT(&ifp->if_addr_pslist);
748 psref_target_init(&ifp->if_psref, ifnet_psref_class);
749 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
750 LIST_INIT(&ifp->if_multiaddrs);
751 if_stats_init(ifp);
752
753 IFNET_GLOBAL_LOCK();
754 if_getindex(ifp);
755 IFNET_GLOBAL_UNLOCK();
756 }
757
758 /*
759 * Register an interface to the list of "active" interfaces.
760 */
761 void
762 if_register(ifnet_t *ifp)
763 {
764 /*
765 * If the driver has not supplied its own if_ioctl or if_stop,
766 * then supply the default.
767 */
768 if (ifp->if_ioctl == NULL)
769 ifp->if_ioctl = ifioctl_common;
770 if (ifp->if_stop == NULL)
771 ifp->if_stop = if_nullstop;
772
773 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
774
775 if (!STAILQ_EMPTY(&domains))
776 if_attachdomain1(ifp);
777
778 /* Announce the interface. */
779 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
780
781 if (ifp->if_slowtimo != NULL) {
782 ifp->if_slowtimo_ch =
783 kmem_zalloc(sizeof(*ifp->if_slowtimo_ch), KM_SLEEP);
784 callout_init(ifp->if_slowtimo_ch, 0);
785 callout_setfunc(ifp->if_slowtimo_ch, if_slowtimo, ifp);
786 if_slowtimo(ifp);
787 }
788
789 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
790 ifp->if_transmit = if_transmit;
791
792 IFNET_GLOBAL_LOCK();
793 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
794 IFNET_WRITER_INSERT_TAIL(ifp);
795 IFNET_GLOBAL_UNLOCK();
796 }
797
798 /*
799 * The if_percpuq framework
800 *
801 * It allows network device drivers to execute the network stack
802 * in softint (so called softint-based if_input). It utilizes
803 * softint and percpu ifqueue. It doesn't distribute any packets
804 * between CPUs, unlike pktqueue(9).
805 *
806 * Currently we support two options for device drivers to apply the framework:
807 * - Use it implicitly with less changes
808 * - If you use if_attach in driver's _attach function and if_input in
809 * driver's Rx interrupt handler, a packet is queued and a softint handles
810 * the packet implicitly
811 * - Use it explicitly in each driver (recommended)
812 * - You can use if_percpuq_* directly in your driver
813 * - In this case, you need to allocate struct if_percpuq in driver's softc
814 * - See wm(4) as a reference implementation
815 */
816
817 static void
818 if_percpuq_softint(void *arg)
819 {
820 struct if_percpuq *ipq = arg;
821 struct ifnet *ifp = ipq->ipq_ifp;
822 struct mbuf *m;
823
824 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
825 if_statinc(ifp, if_ipackets);
826 bpf_mtap(ifp, m, BPF_D_IN);
827
828 ifp->_if_input(ifp, m);
829 }
830 }
831
832 static void
833 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
834 {
835 struct ifqueue *const ifq = p;
836
837 memset(ifq, 0, sizeof(*ifq));
838 ifq->ifq_maxlen = IFQ_MAXLEN;
839 }
840
841 struct if_percpuq *
842 if_percpuq_create(struct ifnet *ifp)
843 {
844 struct if_percpuq *ipq;
845 u_int flags = SOFTINT_NET;
846
847 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
848
849 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
850 ipq->ipq_ifp = ifp;
851 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
852 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
853 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
854
855 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
856
857 return ipq;
858 }
859
860 static struct mbuf *
861 if_percpuq_dequeue(struct if_percpuq *ipq)
862 {
863 struct mbuf *m;
864 struct ifqueue *ifq;
865 int s;
866
867 s = splnet();
868 ifq = percpu_getref(ipq->ipq_ifqs);
869 IF_DEQUEUE(ifq, m);
870 percpu_putref(ipq->ipq_ifqs);
871 splx(s);
872
873 return m;
874 }
875
876 static void
877 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
878 {
879 struct ifqueue *const ifq = p;
880
881 IF_PURGE(ifq);
882 }
883
884 void
885 if_percpuq_destroy(struct if_percpuq *ipq)
886 {
887
888 /* if_detach may already destroy it */
889 if (ipq == NULL)
890 return;
891
892 softint_disestablish(ipq->ipq_si);
893 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
894 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
895 kmem_free(ipq, sizeof(*ipq));
896 }
897
898 void
899 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
900 {
901 struct ifqueue *ifq;
902 int s;
903
904 KASSERT(ipq != NULL);
905
906 s = splnet();
907 ifq = percpu_getref(ipq->ipq_ifqs);
908 if (IF_QFULL(ifq)) {
909 IF_DROP(ifq);
910 percpu_putref(ipq->ipq_ifqs);
911 m_freem(m);
912 goto out;
913 }
914 IF_ENQUEUE(ifq, m);
915 percpu_putref(ipq->ipq_ifqs);
916
917 softint_schedule(ipq->ipq_si);
918 out:
919 splx(s);
920 }
921
922 static void
923 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
924 {
925 struct ifqueue *const ifq = p;
926 int *sum = arg;
927
928 *sum += ifq->ifq_drops;
929 }
930
931 static int
932 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
933 {
934 struct sysctlnode node;
935 struct if_percpuq *ipq;
936 int sum = 0;
937 int error;
938
939 node = *rnode;
940 ipq = node.sysctl_data;
941
942 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
943
944 node.sysctl_data = ∑
945 error = sysctl_lookup(SYSCTLFN_CALL(&node));
946 if (error != 0 || newp == NULL)
947 return error;
948
949 return 0;
950 }
951
952 static void
953 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
954 struct if_percpuq *ipq)
955 {
956 const struct sysctlnode *cnode, *rnode;
957
958 if (sysctl_createv(clog, 0, NULL, &rnode,
959 CTLFLAG_PERMANENT,
960 CTLTYPE_NODE, "interfaces",
961 SYSCTL_DESCR("Per-interface controls"),
962 NULL, 0, NULL, 0,
963 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
964 goto bad;
965
966 if (sysctl_createv(clog, 0, &rnode, &rnode,
967 CTLFLAG_PERMANENT,
968 CTLTYPE_NODE, ifname,
969 SYSCTL_DESCR("Interface controls"),
970 NULL, 0, NULL, 0,
971 CTL_CREATE, CTL_EOL) != 0)
972 goto bad;
973
974 if (sysctl_createv(clog, 0, &rnode, &rnode,
975 CTLFLAG_PERMANENT,
976 CTLTYPE_NODE, "rcvq",
977 SYSCTL_DESCR("Interface input queue controls"),
978 NULL, 0, NULL, 0,
979 CTL_CREATE, CTL_EOL) != 0)
980 goto bad;
981
982 #ifdef NOTYET
983 /* XXX Should show each per-CPU queue length? */
984 if (sysctl_createv(clog, 0, &rnode, &rnode,
985 CTLFLAG_PERMANENT,
986 CTLTYPE_INT, "len",
987 SYSCTL_DESCR("Current input queue length"),
988 sysctl_percpuq_len, 0, NULL, 0,
989 CTL_CREATE, CTL_EOL) != 0)
990 goto bad;
991
992 if (sysctl_createv(clog, 0, &rnode, &cnode,
993 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
994 CTLTYPE_INT, "maxlen",
995 SYSCTL_DESCR("Maximum allowed input queue length"),
996 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
997 CTL_CREATE, CTL_EOL) != 0)
998 goto bad;
999 #endif
1000
1001 if (sysctl_createv(clog, 0, &rnode, &cnode,
1002 CTLFLAG_PERMANENT,
1003 CTLTYPE_INT, "drops",
1004 SYSCTL_DESCR("Total packets dropped due to full input queue"),
1005 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
1006 CTL_CREATE, CTL_EOL) != 0)
1007 goto bad;
1008
1009 return;
1010 bad:
1011 printf("%s: could not attach sysctl nodes\n", ifname);
1012 return;
1013 }
1014
1015 /*
1016 * The deferred if_start framework
1017 *
1018 * The common APIs to defer if_start to softint when if_start is requested
1019 * from a device driver running in hardware interrupt context.
1020 */
1021 /*
1022 * Call ifp->if_start (or equivalent) in a dedicated softint for
1023 * deferred if_start.
1024 */
1025 static void
1026 if_deferred_start_softint(void *arg)
1027 {
1028 struct if_deferred_start *ids = arg;
1029 struct ifnet *ifp = ids->ids_ifp;
1030
1031 ids->ids_if_start(ifp);
1032 }
1033
1034 /*
1035 * The default callback function for deferred if_start.
1036 */
1037 static void
1038 if_deferred_start_common(struct ifnet *ifp)
1039 {
1040 int s;
1041
1042 s = splnet();
1043 if_start_lock(ifp);
1044 splx(s);
1045 }
1046
1047 static inline bool
1048 if_snd_is_used(struct ifnet *ifp)
1049 {
1050
1051 return ALTQ_IS_ENABLED(&ifp->if_snd) ||
1052 ifp->if_transmit == if_transmit ||
1053 ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit;
1054 }
1055
1056 /*
1057 * Schedule deferred if_start.
1058 */
1059 void
1060 if_schedule_deferred_start(struct ifnet *ifp)
1061 {
1062
1063 KASSERT(ifp->if_deferred_start != NULL);
1064
1065 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1066 return;
1067
1068 softint_schedule(ifp->if_deferred_start->ids_si);
1069 }
1070
1071 /*
1072 * Create an instance of deferred if_start. A driver should call the function
1073 * only if the driver needs deferred if_start. Drivers can setup their own
1074 * deferred if_start function via 2nd argument.
1075 */
1076 void
1077 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1078 {
1079 struct if_deferred_start *ids;
1080 u_int flags = SOFTINT_NET;
1081
1082 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
1083
1084 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1085 ids->ids_ifp = ifp;
1086 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
1087 if (func != NULL)
1088 ids->ids_if_start = func;
1089 else
1090 ids->ids_if_start = if_deferred_start_common;
1091
1092 ifp->if_deferred_start = ids;
1093 }
1094
1095 static void
1096 if_deferred_start_destroy(struct ifnet *ifp)
1097 {
1098
1099 if (ifp->if_deferred_start == NULL)
1100 return;
1101
1102 softint_disestablish(ifp->if_deferred_start->ids_si);
1103 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1104 ifp->if_deferred_start = NULL;
1105 }
1106
1107 /*
1108 * The common interface input routine that is called by device drivers,
1109 * which should be used only when the driver's rx handler already runs
1110 * in softint.
1111 */
1112 void
1113 if_input(struct ifnet *ifp, struct mbuf *m)
1114 {
1115
1116 KASSERT(ifp->if_percpuq == NULL);
1117 KASSERT(!cpu_intr_p());
1118
1119 if_statinc(ifp, if_ipackets);
1120 bpf_mtap(ifp, m, BPF_D_IN);
1121
1122 ifp->_if_input(ifp, m);
1123 }
1124
1125 /*
1126 * DEPRECATED. Use if_initialize and if_register instead.
1127 * See the above comment of if_initialize.
1128 *
1129 * Note that it implicitly enables if_percpuq to make drivers easy to
1130 * migrate softint-based if_input without much changes. If you don't
1131 * want to enable it, use if_initialize instead.
1132 */
1133 void
1134 if_attach(ifnet_t *ifp)
1135 {
1136
1137 if_initialize(ifp);
1138 ifp->if_percpuq = if_percpuq_create(ifp);
1139 if_register(ifp);
1140 }
1141
1142 void
1143 if_attachdomain(void)
1144 {
1145 struct ifnet *ifp;
1146 int s;
1147 int bound = curlwp_bind();
1148
1149 s = pserialize_read_enter();
1150 IFNET_READER_FOREACH(ifp) {
1151 struct psref psref;
1152 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1153 pserialize_read_exit(s);
1154 if_attachdomain1(ifp);
1155 s = pserialize_read_enter();
1156 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1157 }
1158 pserialize_read_exit(s);
1159 curlwp_bindx(bound);
1160 }
1161
1162 static void
1163 if_attachdomain1(struct ifnet *ifp)
1164 {
1165 struct domain *dp;
1166 int s;
1167
1168 s = splsoftnet();
1169
1170 /* address family dependent data region */
1171 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1172 DOMAIN_FOREACH(dp) {
1173 if (dp->dom_ifattach != NULL)
1174 ifp->if_afdata[dp->dom_family] =
1175 (*dp->dom_ifattach)(ifp);
1176 }
1177
1178 splx(s);
1179 }
1180
1181 /*
1182 * Deactivate an interface. This points all of the procedure
1183 * handles at error stubs. May be called from interrupt context.
1184 */
1185 void
1186 if_deactivate(struct ifnet *ifp)
1187 {
1188 int s;
1189
1190 s = splsoftnet();
1191
1192 ifp->if_output = if_nulloutput;
1193 ifp->_if_input = if_nullinput;
1194 ifp->if_start = if_nullstart;
1195 ifp->if_transmit = if_nulltransmit;
1196 ifp->if_ioctl = if_nullioctl;
1197 ifp->if_init = if_nullinit;
1198 ifp->if_stop = if_nullstop;
1199 ifp->if_slowtimo = if_nullslowtimo;
1200 ifp->if_drain = if_nulldrain;
1201
1202 /* No more packets may be enqueued. */
1203 ifp->if_snd.ifq_maxlen = 0;
1204
1205 splx(s);
1206 }
1207
1208 bool
1209 if_is_deactivated(const struct ifnet *ifp)
1210 {
1211
1212 return ifp->if_output == if_nulloutput;
1213 }
1214
1215 void
1216 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
1217 {
1218 struct ifaddr *ifa, *nifa;
1219 int s;
1220
1221 s = pserialize_read_enter();
1222 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1223 nifa = IFADDR_READER_NEXT(ifa);
1224 if (ifa->ifa_addr->sa_family != family)
1225 continue;
1226 pserialize_read_exit(s);
1227
1228 (*purgeaddr)(ifa);
1229
1230 s = pserialize_read_enter();
1231 }
1232 pserialize_read_exit(s);
1233 }
1234
1235 #ifdef IFAREF_DEBUG
1236 static struct ifaddr **ifa_list;
1237 static int ifa_list_size;
1238
1239 /* Depends on only one if_attach runs at once */
1240 static void
1241 if_build_ifa_list(struct ifnet *ifp)
1242 {
1243 struct ifaddr *ifa;
1244 int i;
1245
1246 KASSERT(ifa_list == NULL);
1247 KASSERT(ifa_list_size == 0);
1248
1249 IFADDR_READER_FOREACH(ifa, ifp)
1250 ifa_list_size++;
1251
1252 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1253 i = 0;
1254 IFADDR_READER_FOREACH(ifa, ifp) {
1255 ifa_list[i++] = ifa;
1256 ifaref(ifa);
1257 }
1258 }
1259
1260 static void
1261 if_check_and_free_ifa_list(struct ifnet *ifp)
1262 {
1263 int i;
1264 struct ifaddr *ifa;
1265
1266 if (ifa_list == NULL)
1267 return;
1268
1269 for (i = 0; i < ifa_list_size; i++) {
1270 char buf[64];
1271
1272 ifa = ifa_list[i];
1273 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1274 if (ifa->ifa_refcnt > 1) {
1275 log(LOG_WARNING,
1276 "ifa(%s) still referenced (refcnt=%d)\n",
1277 buf, ifa->ifa_refcnt - 1);
1278 } else
1279 log(LOG_DEBUG,
1280 "ifa(%s) not referenced (refcnt=%d)\n",
1281 buf, ifa->ifa_refcnt - 1);
1282 ifafree(ifa);
1283 }
1284
1285 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1286 ifa_list = NULL;
1287 ifa_list_size = 0;
1288 }
1289 #endif
1290
1291 /*
1292 * Detach an interface from the list of "active" interfaces,
1293 * freeing any resources as we go along.
1294 *
1295 * NOTE: This routine must be called with a valid thread context,
1296 * as it may block.
1297 */
1298 void
1299 if_detach(struct ifnet *ifp)
1300 {
1301 struct socket so;
1302 struct ifaddr *ifa;
1303 #ifdef IFAREF_DEBUG
1304 struct ifaddr *last_ifa = NULL;
1305 #endif
1306 struct domain *dp;
1307 const struct protosw *pr;
1308 int s, i, family, purged;
1309
1310 #ifdef IFAREF_DEBUG
1311 if_build_ifa_list(ifp);
1312 #endif
1313 /*
1314 * XXX It's kind of lame that we have to have the
1315 * XXX socket structure...
1316 */
1317 memset(&so, 0, sizeof(so));
1318
1319 s = splnet();
1320
1321 sysctl_teardown(&ifp->if_sysctl_log);
1322
1323 IFNET_LOCK(ifp);
1324
1325 /*
1326 * Unset all queued link states and pretend a
1327 * link state change is scheduled.
1328 * This stops any more link state changes occurring for this
1329 * interface while it's being detached so it's safe
1330 * to drain the workqueue.
1331 */
1332 IF_LINK_STATE_CHANGE_LOCK(ifp);
1333 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
1334 ifp->if_link_scheduled = true;
1335 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
1336 workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work);
1337
1338 if_deactivate(ifp);
1339 IFNET_UNLOCK(ifp);
1340
1341 /*
1342 * Unlink from the list and wait for all readers to leave
1343 * from pserialize read sections. Note that we can't do
1344 * psref_target_destroy here. See below.
1345 */
1346 IFNET_GLOBAL_LOCK();
1347 ifindex2ifnet[ifp->if_index] = NULL;
1348 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1349 IFNET_WRITER_REMOVE(ifp);
1350 pserialize_perform(ifnet_psz);
1351 IFNET_GLOBAL_UNLOCK();
1352
1353 if (ifp->if_slowtimo != NULL && ifp->if_slowtimo_ch != NULL) {
1354 ifp->if_slowtimo = NULL;
1355 callout_halt(ifp->if_slowtimo_ch, NULL);
1356 callout_destroy(ifp->if_slowtimo_ch);
1357 kmem_free(ifp->if_slowtimo_ch, sizeof(*ifp->if_slowtimo_ch));
1358 }
1359 if_deferred_start_destroy(ifp);
1360
1361 /*
1362 * Do an if_down() to give protocols a chance to do something.
1363 */
1364 if_down_deactivated(ifp);
1365
1366 #ifdef ALTQ
1367 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1368 altq_disable(&ifp->if_snd);
1369 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1370 altq_detach(&ifp->if_snd);
1371 #endif
1372
1373 #if NCARP > 0
1374 /* Remove the interface from any carp group it is a part of. */
1375 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1376 carp_ifdetach(ifp);
1377 #endif
1378
1379 /*
1380 * Rip all the addresses off the interface. This should make
1381 * all of the routes go away.
1382 *
1383 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1384 * from the list, including our "cursor", ifa. For safety,
1385 * and to honor the TAILQ abstraction, I just restart the
1386 * loop after each removal. Note that the loop will exit
1387 * when all of the remaining ifaddrs belong to the AF_LINK
1388 * family. I am counting on the historical fact that at
1389 * least one pr_usrreq in each address domain removes at
1390 * least one ifaddr.
1391 */
1392 again:
1393 /*
1394 * At this point, no other one tries to remove ifa in the list,
1395 * so we don't need to take a lock or psref. Avoid using
1396 * IFADDR_READER_FOREACH to pass over an inspection of contract
1397 * violations of pserialize.
1398 */
1399 IFADDR_WRITER_FOREACH(ifa, ifp) {
1400 family = ifa->ifa_addr->sa_family;
1401 #ifdef IFAREF_DEBUG
1402 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1403 ifa, family, ifa->ifa_refcnt);
1404 if (last_ifa != NULL && ifa == last_ifa)
1405 panic("if_detach: loop detected");
1406 last_ifa = ifa;
1407 #endif
1408 if (family == AF_LINK)
1409 continue;
1410 dp = pffinddomain(family);
1411 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1412 /*
1413 * XXX These PURGEIF calls are redundant with the
1414 * purge-all-families calls below, but are left in for
1415 * now both to make a smaller change, and to avoid
1416 * unplanned interactions with clearing of
1417 * ifp->if_addrlist.
1418 */
1419 purged = 0;
1420 for (pr = dp->dom_protosw;
1421 pr < dp->dom_protoswNPROTOSW; pr++) {
1422 so.so_proto = pr;
1423 if (pr->pr_usrreqs) {
1424 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1425 purged = 1;
1426 }
1427 }
1428 if (purged == 0) {
1429 /*
1430 * XXX What's really the best thing to do
1431 * XXX here? --thorpej (at) NetBSD.org
1432 */
1433 printf("if_detach: WARNING: AF %d not purged\n",
1434 family);
1435 ifa_remove(ifp, ifa);
1436 }
1437 goto again;
1438 }
1439
1440 if_free_sadl(ifp, 1);
1441
1442 restart:
1443 IFADDR_WRITER_FOREACH(ifa, ifp) {
1444 family = ifa->ifa_addr->sa_family;
1445 KASSERT(family == AF_LINK);
1446 ifa_remove(ifp, ifa);
1447 goto restart;
1448 }
1449
1450 /* Delete stray routes from the routing table. */
1451 for (i = 0; i <= AF_MAX; i++)
1452 rt_delete_matched_entries(i, if_delroute_matcher, ifp);
1453
1454 DOMAIN_FOREACH(dp) {
1455 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1456 {
1457 void *p = ifp->if_afdata[dp->dom_family];
1458 if (p) {
1459 ifp->if_afdata[dp->dom_family] = NULL;
1460 (*dp->dom_ifdetach)(ifp, p);
1461 }
1462 }
1463
1464 /*
1465 * One would expect multicast memberships (INET and
1466 * INET6) on UDP sockets to be purged by the PURGEIF
1467 * calls above, but if all addresses were removed from
1468 * the interface prior to destruction, the calls will
1469 * not be made (e.g. ppp, for which pppd(8) generally
1470 * removes addresses before destroying the interface).
1471 * Because there is no invariant that multicast
1472 * memberships only exist for interfaces with IPv4
1473 * addresses, we must call PURGEIF regardless of
1474 * addresses. (Protocols which might store ifnet
1475 * pointers are marked with PR_PURGEIF.)
1476 */
1477 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
1478 so.so_proto = pr;
1479 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1480 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1481 }
1482 }
1483
1484 /*
1485 * Must be done after the above pr_purgeif because if_psref may be
1486 * still used in pr_purgeif.
1487 */
1488 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1489 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1490
1491 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1492 (void)pfil_head_destroy(ifp->if_pfil);
1493
1494 /* Announce that the interface is gone. */
1495 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1496
1497 IF_AFDATA_LOCK_DESTROY(ifp);
1498
1499 /*
1500 * remove packets that came from ifp, from software interrupt queues.
1501 */
1502 DOMAIN_FOREACH(dp) {
1503 for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
1504 struct ifqueue *iq = dp->dom_ifqueues[i];
1505 if (iq == NULL)
1506 break;
1507 dp->dom_ifqueues[i] = NULL;
1508 if_detach_queues(ifp, iq);
1509 }
1510 }
1511
1512 /*
1513 * IP queues have to be processed separately: net-queue barrier
1514 * ensures that the packets are dequeued while a cross-call will
1515 * ensure that the interrupts have completed. FIXME: not quite..
1516 */
1517 #ifdef INET
1518 pktq_barrier(ip_pktq);
1519 #endif
1520 #ifdef INET6
1521 if (in6_present)
1522 pktq_barrier(ip6_pktq);
1523 #endif
1524 xc_barrier(0);
1525
1526 if (ifp->if_percpuq != NULL) {
1527 if_percpuq_destroy(ifp->if_percpuq);
1528 ifp->if_percpuq = NULL;
1529 }
1530
1531 mutex_obj_free(ifp->if_ioctl_lock);
1532 ifp->if_ioctl_lock = NULL;
1533 mutex_obj_free(ifp->if_snd.ifq_lock);
1534 if_stats_fini(ifp);
1535 KASSERT(!simplehook_has_hooks(ifp->if_linkstate_hooks));
1536 simplehook_destroy(ifp->if_linkstate_hooks);
1537
1538 splx(s);
1539
1540 #ifdef IFAREF_DEBUG
1541 if_check_and_free_ifa_list(ifp);
1542 #endif
1543 }
1544
1545 static void
1546 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
1547 {
1548 struct mbuf *m, *prev, *next;
1549
1550 prev = NULL;
1551 for (m = q->ifq_head; m != NULL; m = next) {
1552 KASSERT((m->m_flags & M_PKTHDR) != 0);
1553
1554 next = m->m_nextpkt;
1555 if (m->m_pkthdr.rcvif_index != ifp->if_index) {
1556 prev = m;
1557 continue;
1558 }
1559
1560 if (prev != NULL)
1561 prev->m_nextpkt = m->m_nextpkt;
1562 else
1563 q->ifq_head = m->m_nextpkt;
1564 if (q->ifq_tail == m)
1565 q->ifq_tail = prev;
1566 q->ifq_len--;
1567
1568 m->m_nextpkt = NULL;
1569 m_freem(m);
1570 IF_DROP(q);
1571 }
1572 }
1573
1574 /*
1575 * Callback for a radix tree walk to delete all references to an
1576 * ifnet.
1577 */
1578 static int
1579 if_delroute_matcher(struct rtentry *rt, void *v)
1580 {
1581 struct ifnet *ifp = (struct ifnet *)v;
1582
1583 if (rt->rt_ifp == ifp)
1584 return 1;
1585 else
1586 return 0;
1587 }
1588
1589 /*
1590 * Create a clone network interface.
1591 */
1592 static int
1593 if_clone_create(const char *name)
1594 {
1595 struct if_clone *ifc;
1596 int unit;
1597 struct ifnet *ifp;
1598 struct psref psref;
1599
1600 KASSERT(mutex_owned(&if_clone_mtx));
1601
1602 ifc = if_clone_lookup(name, &unit);
1603 if (ifc == NULL)
1604 return EINVAL;
1605
1606 ifp = if_get(name, &psref);
1607 if (ifp != NULL) {
1608 if_put(ifp, &psref);
1609 return EEXIST;
1610 }
1611
1612 return (*ifc->ifc_create)(ifc, unit);
1613 }
1614
1615 /*
1616 * Destroy a clone network interface.
1617 */
1618 static int
1619 if_clone_destroy(const char *name)
1620 {
1621 struct if_clone *ifc;
1622 struct ifnet *ifp;
1623 struct psref psref;
1624 int error;
1625 int (*if_ioctlfn)(struct ifnet *, u_long, void *);
1626
1627 KASSERT(mutex_owned(&if_clone_mtx));
1628
1629 ifc = if_clone_lookup(name, NULL);
1630 if (ifc == NULL)
1631 return EINVAL;
1632
1633 if (ifc->ifc_destroy == NULL)
1634 return EOPNOTSUPP;
1635
1636 ifp = if_get(name, &psref);
1637 if (ifp == NULL)
1638 return ENXIO;
1639
1640 /* We have to disable ioctls here */
1641 IFNET_LOCK(ifp);
1642 if_ioctlfn = ifp->if_ioctl;
1643 ifp->if_ioctl = if_nullioctl;
1644 IFNET_UNLOCK(ifp);
1645
1646 /*
1647 * We cannot call ifc_destroy with holding ifp.
1648 * Releasing ifp here is safe thanks to if_clone_mtx.
1649 */
1650 if_put(ifp, &psref);
1651
1652 error = (*ifc->ifc_destroy)(ifp);
1653
1654 if (error != 0) {
1655 /* We have to restore if_ioctl on error */
1656 IFNET_LOCK(ifp);
1657 ifp->if_ioctl = if_ioctlfn;
1658 IFNET_UNLOCK(ifp);
1659 }
1660
1661 return error;
1662 }
1663
1664 static bool
1665 if_is_unit(const char *name)
1666 {
1667
1668 while (*name != '\0') {
1669 if (*name < '0' || *name > '9')
1670 return false;
1671 name++;
1672 }
1673
1674 return true;
1675 }
1676
1677 /*
1678 * Look up a network interface cloner.
1679 */
1680 static struct if_clone *
1681 if_clone_lookup(const char *name, int *unitp)
1682 {
1683 struct if_clone *ifc;
1684 const char *cp;
1685 char *dp, ifname[IFNAMSIZ + 3];
1686 int unit;
1687
1688 KASSERT(mutex_owned(&if_clone_mtx));
1689
1690 strcpy(ifname, "if_");
1691 /* separate interface name from unit */
1692 /* TODO: search unit number from backward */
1693 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1694 *cp && !if_is_unit(cp);)
1695 *dp++ = *cp++;
1696
1697 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1698 return NULL; /* No name or unit number */
1699 *dp++ = '\0';
1700
1701 again:
1702 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1703 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1704 break;
1705 }
1706
1707 if (ifc == NULL) {
1708 int error;
1709 if (*ifname == '\0')
1710 return NULL;
1711 mutex_exit(&if_clone_mtx);
1712 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1713 mutex_enter(&if_clone_mtx);
1714 if (error)
1715 return NULL;
1716 *ifname = '\0';
1717 goto again;
1718 }
1719
1720 unit = 0;
1721 while (cp - name < IFNAMSIZ && *cp) {
1722 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1723 /* Bogus unit number. */
1724 return NULL;
1725 }
1726 unit = (unit * 10) + (*cp++ - '0');
1727 }
1728
1729 if (unitp != NULL)
1730 *unitp = unit;
1731 return ifc;
1732 }
1733
1734 /*
1735 * Register a network interface cloner.
1736 */
1737 void
1738 if_clone_attach(struct if_clone *ifc)
1739 {
1740
1741 mutex_enter(&if_clone_mtx);
1742 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1743 if_cloners_count++;
1744 mutex_exit(&if_clone_mtx);
1745 }
1746
1747 /*
1748 * Unregister a network interface cloner.
1749 */
1750 void
1751 if_clone_detach(struct if_clone *ifc)
1752 {
1753
1754 mutex_enter(&if_clone_mtx);
1755 LIST_REMOVE(ifc, ifc_list);
1756 if_cloners_count--;
1757 mutex_exit(&if_clone_mtx);
1758 }
1759
1760 /*
1761 * Provide list of interface cloners to userspace.
1762 */
1763 int
1764 if_clone_list(int buf_count, char *buffer, int *total)
1765 {
1766 char outbuf[IFNAMSIZ], *dst;
1767 struct if_clone *ifc;
1768 int count, error = 0;
1769
1770 mutex_enter(&if_clone_mtx);
1771 *total = if_cloners_count;
1772 if ((dst = buffer) == NULL) {
1773 /* Just asking how many there are. */
1774 goto out;
1775 }
1776
1777 if (buf_count < 0) {
1778 error = EINVAL;
1779 goto out;
1780 }
1781
1782 count = (if_cloners_count < buf_count) ?
1783 if_cloners_count : buf_count;
1784
1785 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1786 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1787 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1788 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1789 error = ENAMETOOLONG;
1790 goto out;
1791 }
1792 error = copyout(outbuf, dst, sizeof(outbuf));
1793 if (error != 0)
1794 break;
1795 }
1796
1797 out:
1798 mutex_exit(&if_clone_mtx);
1799 return error;
1800 }
1801
1802 void
1803 ifa_psref_init(struct ifaddr *ifa)
1804 {
1805
1806 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1807 }
1808
1809 void
1810 ifaref(struct ifaddr *ifa)
1811 {
1812
1813 atomic_inc_uint(&ifa->ifa_refcnt);
1814 }
1815
1816 void
1817 ifafree(struct ifaddr *ifa)
1818 {
1819 KASSERT(ifa != NULL);
1820 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt);
1821
1822 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1823 membar_release();
1824 #endif
1825 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) != 0)
1826 return;
1827 #ifndef __HAVE_ATOMIC_AS_MEMBAR
1828 membar_acquire();
1829 #endif
1830 free(ifa, M_IFADDR);
1831 }
1832
1833 bool
1834 ifa_is_destroying(struct ifaddr *ifa)
1835 {
1836
1837 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1838 }
1839
1840 void
1841 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1842 {
1843
1844 ifa->ifa_ifp = ifp;
1845
1846 /*
1847 * Check MP-safety for IFEF_MPSAFE drivers.
1848 * Check !IFF_RUNNING for initialization routines that normally don't
1849 * take IFNET_LOCK but it's safe because there is no competitor.
1850 * XXX there are false positive cases because IFF_RUNNING can be off on
1851 * if_stop.
1852 */
1853 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
1854 IFNET_LOCKED(ifp));
1855
1856 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1857 IFADDR_ENTRY_INIT(ifa);
1858 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1859
1860 ifaref(ifa);
1861 }
1862
1863 void
1864 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1865 {
1866
1867 KASSERT(ifa->ifa_ifp == ifp);
1868 /*
1869 * Check MP-safety for IFEF_MPSAFE drivers.
1870 * if_is_deactivated indicates ifa_remove is called fromm if_detach
1871 * where it is safe even if IFNET_LOCK isn't held.
1872 */
1873 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
1874
1875 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1876 IFADDR_WRITER_REMOVE(ifa);
1877 #ifdef NET_MPSAFE
1878 IFNET_GLOBAL_LOCK();
1879 pserialize_perform(ifnet_psz);
1880 IFNET_GLOBAL_UNLOCK();
1881 #endif
1882
1883 #ifdef NET_MPSAFE
1884 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1885 #endif
1886 IFADDR_ENTRY_DESTROY(ifa);
1887 ifafree(ifa);
1888 }
1889
1890 void
1891 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1892 {
1893
1894 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
1895 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1896 }
1897
1898 void
1899 ifa_release(struct ifaddr *ifa, struct psref *psref)
1900 {
1901
1902 if (ifa == NULL)
1903 return;
1904
1905 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1906 }
1907
1908 bool
1909 ifa_held(struct ifaddr *ifa)
1910 {
1911
1912 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1913 }
1914
1915 static inline int
1916 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1917 {
1918 return sockaddr_cmp(sa1, sa2) == 0;
1919 }
1920
1921 /*
1922 * Locate an interface based on a complete address.
1923 */
1924 /*ARGSUSED*/
1925 struct ifaddr *
1926 ifa_ifwithaddr(const struct sockaddr *addr)
1927 {
1928 struct ifnet *ifp;
1929 struct ifaddr *ifa;
1930
1931 IFNET_READER_FOREACH(ifp) {
1932 if (if_is_deactivated(ifp))
1933 continue;
1934 IFADDR_READER_FOREACH(ifa, ifp) {
1935 if (ifa->ifa_addr->sa_family != addr->sa_family)
1936 continue;
1937 if (equal(addr, ifa->ifa_addr))
1938 return ifa;
1939 if ((ifp->if_flags & IFF_BROADCAST) &&
1940 ifa->ifa_broadaddr &&
1941 /* IP6 doesn't have broadcast */
1942 ifa->ifa_broadaddr->sa_len != 0 &&
1943 equal(ifa->ifa_broadaddr, addr))
1944 return ifa;
1945 }
1946 }
1947 return NULL;
1948 }
1949
1950 struct ifaddr *
1951 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1952 {
1953 struct ifaddr *ifa;
1954 int s = pserialize_read_enter();
1955
1956 ifa = ifa_ifwithaddr(addr);
1957 if (ifa != NULL)
1958 ifa_acquire(ifa, psref);
1959 pserialize_read_exit(s);
1960
1961 return ifa;
1962 }
1963
1964 /*
1965 * Locate the point to point interface with a given destination address.
1966 */
1967 /*ARGSUSED*/
1968 struct ifaddr *
1969 ifa_ifwithdstaddr(const struct sockaddr *addr)
1970 {
1971 struct ifnet *ifp;
1972 struct ifaddr *ifa;
1973
1974 IFNET_READER_FOREACH(ifp) {
1975 if (if_is_deactivated(ifp))
1976 continue;
1977 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1978 continue;
1979 IFADDR_READER_FOREACH(ifa, ifp) {
1980 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1981 ifa->ifa_dstaddr == NULL)
1982 continue;
1983 if (equal(addr, ifa->ifa_dstaddr))
1984 return ifa;
1985 }
1986 }
1987
1988 return NULL;
1989 }
1990
1991 struct ifaddr *
1992 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1993 {
1994 struct ifaddr *ifa;
1995 int s;
1996
1997 s = pserialize_read_enter();
1998 ifa = ifa_ifwithdstaddr(addr);
1999 if (ifa != NULL)
2000 ifa_acquire(ifa, psref);
2001 pserialize_read_exit(s);
2002
2003 return ifa;
2004 }
2005
2006 /*
2007 * Find an interface on a specific network. If many, choice
2008 * is most specific found.
2009 */
2010 struct ifaddr *
2011 ifa_ifwithnet(const struct sockaddr *addr)
2012 {
2013 struct ifnet *ifp;
2014 struct ifaddr *ifa, *ifa_maybe = NULL;
2015 const struct sockaddr_dl *sdl;
2016 u_int af = addr->sa_family;
2017 const char *addr_data = addr->sa_data, *cplim;
2018
2019 if (af == AF_LINK) {
2020 sdl = satocsdl(addr);
2021 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
2022 ifindex2ifnet[sdl->sdl_index] &&
2023 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
2024 return ifindex2ifnet[sdl->sdl_index]->if_dl;
2025 }
2026 }
2027 #ifdef NETATALK
2028 if (af == AF_APPLETALK) {
2029 const struct sockaddr_at *sat, *sat2;
2030 sat = (const struct sockaddr_at *)addr;
2031 IFNET_READER_FOREACH(ifp) {
2032 if (if_is_deactivated(ifp))
2033 continue;
2034 ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
2035 if (ifa == NULL)
2036 continue;
2037 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
2038 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
2039 return ifa; /* exact match */
2040 if (ifa_maybe == NULL) {
2041 /* else keep the if with the right range */
2042 ifa_maybe = ifa;
2043 }
2044 }
2045 return ifa_maybe;
2046 }
2047 #endif
2048 IFNET_READER_FOREACH(ifp) {
2049 if (if_is_deactivated(ifp))
2050 continue;
2051 IFADDR_READER_FOREACH(ifa, ifp) {
2052 const char *cp, *cp2, *cp3;
2053
2054 if (ifa->ifa_addr->sa_family != af ||
2055 ifa->ifa_netmask == NULL)
2056 next: continue;
2057 cp = addr_data;
2058 cp2 = ifa->ifa_addr->sa_data;
2059 cp3 = ifa->ifa_netmask->sa_data;
2060 cplim = (const char *)ifa->ifa_netmask +
2061 ifa->ifa_netmask->sa_len;
2062 while (cp3 < cplim) {
2063 if ((*cp++ ^ *cp2++) & *cp3++) {
2064 /* want to continue for() loop */
2065 goto next;
2066 }
2067 }
2068 if (ifa_maybe == NULL ||
2069 rt_refines(ifa->ifa_netmask,
2070 ifa_maybe->ifa_netmask))
2071 ifa_maybe = ifa;
2072 }
2073 }
2074 return ifa_maybe;
2075 }
2076
2077 struct ifaddr *
2078 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2079 {
2080 struct ifaddr *ifa;
2081 int s;
2082
2083 s = pserialize_read_enter();
2084 ifa = ifa_ifwithnet(addr);
2085 if (ifa != NULL)
2086 ifa_acquire(ifa, psref);
2087 pserialize_read_exit(s);
2088
2089 return ifa;
2090 }
2091
2092 /*
2093 * Find the interface of the address.
2094 */
2095 struct ifaddr *
2096 ifa_ifwithladdr(const struct sockaddr *addr)
2097 {
2098 struct ifaddr *ia;
2099
2100 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2101 (ia = ifa_ifwithnet(addr)))
2102 return ia;
2103 return NULL;
2104 }
2105
2106 struct ifaddr *
2107 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2108 {
2109 struct ifaddr *ifa;
2110 int s;
2111
2112 s = pserialize_read_enter();
2113 ifa = ifa_ifwithladdr(addr);
2114 if (ifa != NULL)
2115 ifa_acquire(ifa, psref);
2116 pserialize_read_exit(s);
2117
2118 return ifa;
2119 }
2120
2121 /*
2122 * Find an interface using a specific address family
2123 */
2124 struct ifaddr *
2125 ifa_ifwithaf(int af)
2126 {
2127 struct ifnet *ifp;
2128 struct ifaddr *ifa = NULL;
2129 int s;
2130
2131 s = pserialize_read_enter();
2132 IFNET_READER_FOREACH(ifp) {
2133 if (if_is_deactivated(ifp))
2134 continue;
2135 IFADDR_READER_FOREACH(ifa, ifp) {
2136 if (ifa->ifa_addr->sa_family == af)
2137 goto out;
2138 }
2139 }
2140 out:
2141 pserialize_read_exit(s);
2142 return ifa;
2143 }
2144
2145 /*
2146 * Find an interface address specific to an interface best matching
2147 * a given address.
2148 */
2149 struct ifaddr *
2150 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2151 {
2152 struct ifaddr *ifa;
2153 const char *cp, *cp2, *cp3;
2154 const char *cplim;
2155 struct ifaddr *ifa_maybe = 0;
2156 u_int af = addr->sa_family;
2157
2158 if (if_is_deactivated(ifp))
2159 return NULL;
2160
2161 if (af >= AF_MAX)
2162 return NULL;
2163
2164 IFADDR_READER_FOREACH(ifa, ifp) {
2165 if (ifa->ifa_addr->sa_family != af)
2166 continue;
2167 ifa_maybe = ifa;
2168 if (ifa->ifa_netmask == NULL) {
2169 if (equal(addr, ifa->ifa_addr) ||
2170 (ifa->ifa_dstaddr &&
2171 equal(addr, ifa->ifa_dstaddr)))
2172 return ifa;
2173 continue;
2174 }
2175 cp = addr->sa_data;
2176 cp2 = ifa->ifa_addr->sa_data;
2177 cp3 = ifa->ifa_netmask->sa_data;
2178 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2179 for (; cp3 < cplim; cp3++) {
2180 if ((*cp++ ^ *cp2++) & *cp3)
2181 break;
2182 }
2183 if (cp3 == cplim)
2184 return ifa;
2185 }
2186 return ifa_maybe;
2187 }
2188
2189 struct ifaddr *
2190 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2191 struct psref *psref)
2192 {
2193 struct ifaddr *ifa;
2194 int s;
2195
2196 s = pserialize_read_enter();
2197 ifa = ifaof_ifpforaddr(addr, ifp);
2198 if (ifa != NULL)
2199 ifa_acquire(ifa, psref);
2200 pserialize_read_exit(s);
2201
2202 return ifa;
2203 }
2204
2205 /*
2206 * Default action when installing a route with a Link Level gateway.
2207 * Lookup an appropriate real ifa to point to.
2208 * This should be moved to /sys/net/link.c eventually.
2209 */
2210 void
2211 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2212 {
2213 struct ifaddr *ifa;
2214 const struct sockaddr *dst;
2215 struct ifnet *ifp;
2216 struct psref psref;
2217
2218 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2219 return;
2220 ifp = rt->rt_ifa->ifa_ifp;
2221 dst = rt_getkey(rt);
2222 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2223 rt_replace_ifa(rt, ifa);
2224 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2225 ifa->ifa_rtrequest(cmd, rt, info);
2226 ifa_release(ifa, &psref);
2227 }
2228 }
2229
2230 /*
2231 * bitmask macros to manage a densely packed link_state change queue.
2232 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2233 * LINK_STATE_UP(2) we need 2 bits for each state change.
2234 * As a state change to store is 0, treat all bits set as an unset item.
2235 */
2236 #define LQ_ITEM_BITS 2
2237 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2238 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2239 #define LINK_STATE_UNSET LQ_ITEM_MASK
2240 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2241 #define LQ_STORE(q, i, v) \
2242 do { \
2243 (q) &= ~LQ_MASK((i)); \
2244 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2245 } while (0 /* CONSTCOND */)
2246 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2247 #define LQ_POP(q, v) \
2248 do { \
2249 (v) = LQ_ITEM((q), 0); \
2250 (q) >>= LQ_ITEM_BITS; \
2251 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2252 } while (0 /* CONSTCOND */)
2253 #define LQ_PUSH(q, v) \
2254 do { \
2255 (q) >>= LQ_ITEM_BITS; \
2256 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2257 } while (0 /* CONSTCOND */)
2258 #define LQ_FIND_UNSET(q, i) \
2259 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2260 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2261 break; \
2262 }
2263
2264 /*
2265 * Handle a change in the interface link state and
2266 * queue notifications.
2267 */
2268 void
2269 if_link_state_change(struct ifnet *ifp, int link_state)
2270 {
2271 int idx;
2272
2273 /* Ensure change is to a valid state */
2274 switch (link_state) {
2275 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2276 case LINK_STATE_DOWN: /* FALLTHROUGH */
2277 case LINK_STATE_UP:
2278 break;
2279 default:
2280 #ifdef DEBUG
2281 printf("%s: invalid link state %d\n",
2282 ifp->if_xname, link_state);
2283 #endif
2284 return;
2285 }
2286
2287 IF_LINK_STATE_CHANGE_LOCK(ifp);
2288
2289 /* Find the last unset event in the queue. */
2290 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2291
2292 if (idx == 0) {
2293 /*
2294 * There is no queue of link state changes.
2295 * As we have the lock we can safely compare against the
2296 * current link state and return if the same.
2297 * Otherwise, if scheduled is true then the interface is being
2298 * detached and the queue is being drained so we need
2299 * to avoid queuing more work.
2300 */
2301 if (ifp->if_link_state == link_state || ifp->if_link_scheduled)
2302 goto out;
2303 } else {
2304 /* Ensure link_state doesn't match the last queued state. */
2305 if (LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
2306 goto out;
2307 }
2308
2309 /* Handle queue overflow. */
2310 if (idx == LQ_MAX(ifp->if_link_queue)) {
2311 uint8_t lost;
2312
2313 /*
2314 * The DOWN state must be protected from being pushed off
2315 * the queue to ensure that userland will always be
2316 * in a sane state.
2317 * Because DOWN is protected, there is no need to protect
2318 * UNKNOWN.
2319 * It should be invalid to change from any other state to
2320 * UNKNOWN anyway ...
2321 */
2322 lost = LQ_ITEM(ifp->if_link_queue, 0);
2323 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2324 if (lost == LINK_STATE_DOWN) {
2325 lost = LQ_ITEM(ifp->if_link_queue, 0);
2326 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2327 }
2328 printf("%s: lost link state change %s\n",
2329 ifp->if_xname,
2330 lost == LINK_STATE_UP ? "UP" :
2331 lost == LINK_STATE_DOWN ? "DOWN" :
2332 "UNKNOWN");
2333 } else
2334 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2335
2336 if (ifp->if_link_scheduled)
2337 goto out;
2338
2339 ifp->if_link_scheduled = true;
2340 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
2341
2342 out:
2343 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2344 }
2345
2346 /*
2347 * Handle interface link state change notifications.
2348 */
2349 static void
2350 if_link_state_change_process(struct ifnet *ifp, int link_state)
2351 {
2352 struct domain *dp;
2353 int s = splnet();
2354 bool notify;
2355
2356 KASSERT(!cpu_intr_p());
2357
2358 IF_LINK_STATE_CHANGE_LOCK(ifp);
2359
2360 /* Ensure the change is still valid. */
2361 if (ifp->if_link_state == link_state) {
2362 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2363 splx(s);
2364 return;
2365 }
2366
2367 #ifdef DEBUG
2368 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2369 link_state == LINK_STATE_UP ? "UP" :
2370 link_state == LINK_STATE_DOWN ? "DOWN" :
2371 "UNKNOWN",
2372 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2373 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2374 "UNKNOWN");
2375 #endif
2376
2377 /*
2378 * When going from UNKNOWN to UP, we need to mark existing
2379 * addresses as tentative and restart DAD as we may have
2380 * erroneously not found a duplicate.
2381 *
2382 * This needs to happen before rt_ifmsg to avoid a race where
2383 * listeners would have an address and expect it to work right
2384 * away.
2385 */
2386 notify = (link_state == LINK_STATE_UP &&
2387 ifp->if_link_state == LINK_STATE_UNKNOWN);
2388 ifp->if_link_state = link_state;
2389 /* The following routines may sleep so release the spin mutex */
2390 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2391
2392 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2393 if (notify) {
2394 DOMAIN_FOREACH(dp) {
2395 if (dp->dom_if_link_state_change != NULL)
2396 dp->dom_if_link_state_change(ifp,
2397 LINK_STATE_DOWN);
2398 }
2399 }
2400
2401 /* Notify that the link state has changed. */
2402 rt_ifmsg(ifp);
2403
2404 simplehook_dohooks(ifp->if_linkstate_hooks);
2405
2406 DOMAIN_FOREACH(dp) {
2407 if (dp->dom_if_link_state_change != NULL)
2408 dp->dom_if_link_state_change(ifp, link_state);
2409 }
2410 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2411 splx(s);
2412 }
2413
2414 /*
2415 * Process the interface link state change queue.
2416 */
2417 static void
2418 if_link_state_change_work(struct work *work, void *arg)
2419 {
2420 struct ifnet *ifp = container_of(work, struct ifnet, if_link_work);
2421 int s;
2422 uint8_t state;
2423
2424 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2425 s = splnet();
2426
2427 /*
2428 * Pop a link state change from the queue and process it.
2429 * If there is nothing to process then if_detach() has been called.
2430 * We keep if_link_scheduled = true so the queue can safely drain
2431 * without more work being queued.
2432 */
2433 IF_LINK_STATE_CHANGE_LOCK(ifp);
2434 LQ_POP(ifp->if_link_queue, state);
2435 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2436 if (state == LINK_STATE_UNSET)
2437 goto out;
2438
2439 if_link_state_change_process(ifp, state);
2440
2441 /* If there is a link state change to come, schedule it. */
2442 IF_LINK_STATE_CHANGE_LOCK(ifp);
2443 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) {
2444 ifp->if_link_scheduled = true;
2445 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
2446 } else
2447 ifp->if_link_scheduled = false;
2448 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2449
2450 out:
2451 splx(s);
2452 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2453 }
2454
2455 void *
2456 if_linkstate_change_establish(struct ifnet *ifp, void (*fn)(void *), void *arg)
2457 {
2458 khook_t *hk;
2459
2460 hk = simplehook_establish(ifp->if_linkstate_hooks, fn, arg);
2461
2462 return (void *)hk;
2463 }
2464
2465 void
2466 if_linkstate_change_disestablish(struct ifnet *ifp, void *vhook, kmutex_t *lock)
2467 {
2468
2469 simplehook_disestablish(ifp->if_linkstate_hooks, vhook, lock);
2470 }
2471
2472 /*
2473 * Used to mark addresses on an interface as DETATCHED or TENTATIVE
2474 * and thus start Duplicate Address Detection without changing the
2475 * real link state.
2476 */
2477 void
2478 if_domain_link_state_change(struct ifnet *ifp, int link_state)
2479 {
2480 struct domain *dp;
2481 int s = splnet();
2482
2483 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2484
2485 DOMAIN_FOREACH(dp) {
2486 if (dp->dom_if_link_state_change != NULL)
2487 dp->dom_if_link_state_change(ifp, link_state);
2488 }
2489
2490 splx(s);
2491 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2492 }
2493
2494 /*
2495 * Default action when installing a local route on a point-to-point
2496 * interface.
2497 */
2498 void
2499 p2p_rtrequest(int req, struct rtentry *rt,
2500 __unused const struct rt_addrinfo *info)
2501 {
2502 struct ifnet *ifp = rt->rt_ifp;
2503 struct ifaddr *ifa, *lo0ifa;
2504 int s = pserialize_read_enter();
2505
2506 switch (req) {
2507 case RTM_ADD:
2508 if ((rt->rt_flags & RTF_LOCAL) == 0)
2509 break;
2510
2511 rt->rt_ifp = lo0ifp;
2512
2513 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2514 break;
2515
2516 IFADDR_READER_FOREACH(ifa, ifp) {
2517 if (equal(rt_getkey(rt), ifa->ifa_addr))
2518 break;
2519 }
2520 if (ifa == NULL)
2521 break;
2522
2523 /*
2524 * Ensure lo0 has an address of the same family.
2525 */
2526 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2527 if (lo0ifa->ifa_addr->sa_family ==
2528 ifa->ifa_addr->sa_family)
2529 break;
2530 }
2531 if (lo0ifa == NULL)
2532 break;
2533
2534 /*
2535 * Make sure to set rt->rt_ifa to the interface
2536 * address we are using, otherwise we will have trouble
2537 * with source address selection.
2538 */
2539 if (ifa != rt->rt_ifa)
2540 rt_replace_ifa(rt, ifa);
2541 break;
2542 case RTM_DELETE:
2543 default:
2544 break;
2545 }
2546 pserialize_read_exit(s);
2547 }
2548
2549 static void
2550 _if_down(struct ifnet *ifp)
2551 {
2552 struct ifaddr *ifa;
2553 struct domain *dp;
2554 int s, bound;
2555 struct psref psref;
2556
2557 ifp->if_flags &= ~IFF_UP;
2558 nanotime(&ifp->if_lastchange);
2559
2560 bound = curlwp_bind();
2561 s = pserialize_read_enter();
2562 IFADDR_READER_FOREACH(ifa, ifp) {
2563 ifa_acquire(ifa, &psref);
2564 pserialize_read_exit(s);
2565
2566 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2567
2568 s = pserialize_read_enter();
2569 ifa_release(ifa, &psref);
2570 }
2571 pserialize_read_exit(s);
2572 curlwp_bindx(bound);
2573
2574 IFQ_PURGE(&ifp->if_snd);
2575 #if NCARP > 0
2576 if (ifp->if_carp)
2577 carp_carpdev_state(ifp);
2578 #endif
2579 rt_ifmsg(ifp);
2580 DOMAIN_FOREACH(dp) {
2581 if (dp->dom_if_down)
2582 dp->dom_if_down(ifp);
2583 }
2584 }
2585
2586 static void
2587 if_down_deactivated(struct ifnet *ifp)
2588 {
2589
2590 KASSERT(if_is_deactivated(ifp));
2591 _if_down(ifp);
2592 }
2593
2594 void
2595 if_down_locked(struct ifnet *ifp)
2596 {
2597
2598 KASSERT(IFNET_LOCKED(ifp));
2599 _if_down(ifp);
2600 }
2601
2602 /*
2603 * Mark an interface down and notify protocols of
2604 * the transition.
2605 * NOTE: must be called at splsoftnet or equivalent.
2606 */
2607 void
2608 if_down(struct ifnet *ifp)
2609 {
2610
2611 IFNET_LOCK(ifp);
2612 if_down_locked(ifp);
2613 IFNET_UNLOCK(ifp);
2614 }
2615
2616 /*
2617 * Must be called with holding if_ioctl_lock.
2618 */
2619 static void
2620 if_up_locked(struct ifnet *ifp)
2621 {
2622 #ifdef notyet
2623 struct ifaddr *ifa;
2624 #endif
2625 struct domain *dp;
2626
2627 KASSERT(IFNET_LOCKED(ifp));
2628
2629 KASSERT(!if_is_deactivated(ifp));
2630 ifp->if_flags |= IFF_UP;
2631 nanotime(&ifp->if_lastchange);
2632 #ifdef notyet
2633 /* this has no effect on IP, and will kill all ISO connections XXX */
2634 IFADDR_READER_FOREACH(ifa, ifp)
2635 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2636 #endif
2637 #if NCARP > 0
2638 if (ifp->if_carp)
2639 carp_carpdev_state(ifp);
2640 #endif
2641 rt_ifmsg(ifp);
2642 DOMAIN_FOREACH(dp) {
2643 if (dp->dom_if_up)
2644 dp->dom_if_up(ifp);
2645 }
2646 }
2647
2648 /*
2649 * Handle interface slowtimo timer routine. Called
2650 * from softclock, we decrement timer (if set) and
2651 * call the appropriate interface routine on expiration.
2652 */
2653 static void
2654 if_slowtimo(void *arg)
2655 {
2656 void (*slowtimo)(struct ifnet *);
2657 struct ifnet *ifp = arg;
2658 int s;
2659
2660 slowtimo = ifp->if_slowtimo;
2661 if (__predict_false(slowtimo == NULL))
2662 return;
2663
2664 s = splnet();
2665 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2666 (*slowtimo)(ifp);
2667
2668 splx(s);
2669
2670 if (__predict_true(ifp->if_slowtimo != NULL))
2671 callout_schedule(ifp->if_slowtimo_ch, hz / IFNET_SLOWHZ);
2672 }
2673
2674 /*
2675 * Mark an interface up and notify protocols of
2676 * the transition.
2677 * NOTE: must be called at splsoftnet or equivalent.
2678 */
2679 void
2680 if_up(struct ifnet *ifp)
2681 {
2682
2683 IFNET_LOCK(ifp);
2684 if_up_locked(ifp);
2685 IFNET_UNLOCK(ifp);
2686 }
2687
2688 /*
2689 * Set/clear promiscuous mode on interface ifp based on the truth value
2690 * of pswitch. The calls are reference counted so that only the first
2691 * "on" request actually has an effect, as does the final "off" request.
2692 * Results are undefined if the "off" and "on" requests are not matched.
2693 */
2694 int
2695 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2696 {
2697 int pcount, ret = 0;
2698 u_short nflags;
2699
2700 KASSERT(IFNET_LOCKED(ifp));
2701
2702 pcount = ifp->if_pcount;
2703 if (pswitch) {
2704 /*
2705 * Allow the device to be "placed" into promiscuous
2706 * mode even if it is not configured up. It will
2707 * consult IFF_PROMISC when it is brought up.
2708 */
2709 if (ifp->if_pcount++ != 0)
2710 goto out;
2711 nflags = ifp->if_flags | IFF_PROMISC;
2712 } else {
2713 if (--ifp->if_pcount > 0)
2714 goto out;
2715 nflags = ifp->if_flags & ~IFF_PROMISC;
2716 }
2717 ret = if_flags_set(ifp, nflags);
2718 /* Restore interface state if not successful. */
2719 if (ret != 0) {
2720 ifp->if_pcount = pcount;
2721 }
2722 out:
2723 return ret;
2724 }
2725
2726 int
2727 ifpromisc(struct ifnet *ifp, int pswitch)
2728 {
2729 int e;
2730
2731 IFNET_LOCK(ifp);
2732 e = ifpromisc_locked(ifp, pswitch);
2733 IFNET_UNLOCK(ifp);
2734
2735 return e;
2736 }
2737
2738 /*
2739 * if_ioctl(ifp, cmd, data)
2740 *
2741 * Apply an ioctl command to the interface. Returns 0 on success,
2742 * nonzero errno(3) number on failure.
2743 *
2744 * For SIOCADDMULTI/SIOCDELMULTI, caller need not hold locks -- it
2745 * is the driver's responsibility to take any internal locks.
2746 * (Kernel logic should generally invoke these only through
2747 * if_mcast_op.)
2748 *
2749 * For all other ioctls, caller must hold ifp->if_ioctl_lock,
2750 * a.k.a. IFNET_LOCK. May sleep.
2751 */
2752 int
2753 if_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2754 {
2755
2756 switch (cmd) {
2757 case SIOCADDMULTI:
2758 case SIOCDELMULTI:
2759 break;
2760 default:
2761 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
2762 }
2763
2764 return (*ifp->if_ioctl)(ifp, cmd, data);
2765 }
2766
2767 /*
2768 * if_init(ifp)
2769 *
2770 * Prepare the hardware underlying ifp to process packets
2771 * according to its current configuration. Returns 0 on success,
2772 * nonzero errno(3) number on failure.
2773 *
2774 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a
2775 * IFNET_LOCK.
2776 */
2777 int
2778 if_init(struct ifnet *ifp)
2779 {
2780
2781 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
2782
2783 return (*ifp->if_init)(ifp);
2784 }
2785
2786 /*
2787 * if_stop(ifp, disable)
2788 *
2789 * Stop the hardware underlying ifp from processing packets.
2790 *
2791 * If disable is true, ... XXX(?)
2792 *
2793 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a
2794 * IFNET_LOCK.
2795 */
2796 void
2797 if_stop(struct ifnet *ifp, int disable)
2798 {
2799
2800 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
2801
2802 (*ifp->if_stop)(ifp, disable);
2803 }
2804
2805 /*
2806 * Map interface name to
2807 * interface structure pointer.
2808 */
2809 struct ifnet *
2810 ifunit(const char *name)
2811 {
2812 struct ifnet *ifp;
2813 const char *cp = name;
2814 u_int unit = 0;
2815 u_int i;
2816 int s;
2817
2818 /*
2819 * If the entire name is a number, treat it as an ifindex.
2820 */
2821 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2822 unit = unit * 10 + (*cp - '0');
2823 }
2824
2825 /*
2826 * If the number took all of the name, then it's a valid ifindex.
2827 */
2828 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2829 return if_byindex(unit);
2830
2831 ifp = NULL;
2832 s = pserialize_read_enter();
2833 IFNET_READER_FOREACH(ifp) {
2834 if (if_is_deactivated(ifp))
2835 continue;
2836 if (strcmp(ifp->if_xname, name) == 0)
2837 goto out;
2838 }
2839 out:
2840 pserialize_read_exit(s);
2841 return ifp;
2842 }
2843
2844 /*
2845 * Get a reference of an ifnet object by an interface name.
2846 * The returned reference is protected by psref(9). The caller
2847 * must release a returned reference by if_put after use.
2848 */
2849 struct ifnet *
2850 if_get(const char *name, struct psref *psref)
2851 {
2852 struct ifnet *ifp;
2853 const char *cp = name;
2854 u_int unit = 0;
2855 u_int i;
2856 int s;
2857
2858 /*
2859 * If the entire name is a number, treat it as an ifindex.
2860 */
2861 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
2862 unit = unit * 10 + (*cp - '0');
2863 }
2864
2865 /*
2866 * If the number took all of the name, then it's a valid ifindex.
2867 */
2868 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2869 return if_get_byindex(unit, psref);
2870
2871 ifp = NULL;
2872 s = pserialize_read_enter();
2873 IFNET_READER_FOREACH(ifp) {
2874 if (if_is_deactivated(ifp))
2875 continue;
2876 if (strcmp(ifp->if_xname, name) == 0) {
2877 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2878 psref_acquire(psref, &ifp->if_psref,
2879 ifnet_psref_class);
2880 goto out;
2881 }
2882 }
2883 out:
2884 pserialize_read_exit(s);
2885 return ifp;
2886 }
2887
2888 /*
2889 * Release a reference of an ifnet object given by if_get, if_get_byindex
2890 * or if_get_bylla.
2891 */
2892 void
2893 if_put(const struct ifnet *ifp, struct psref *psref)
2894 {
2895
2896 if (ifp == NULL)
2897 return;
2898
2899 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2900 }
2901
2902 /*
2903 * Return ifp having idx. Return NULL if not found. Normally if_byindex
2904 * should be used.
2905 */
2906 ifnet_t *
2907 _if_byindex(u_int idx)
2908 {
2909
2910 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2911 }
2912
2913 /*
2914 * Return ifp having idx. Return NULL if not found or the found ifp is
2915 * already deactivated.
2916 */
2917 ifnet_t *
2918 if_byindex(u_int idx)
2919 {
2920 ifnet_t *ifp;
2921
2922 ifp = _if_byindex(idx);
2923 if (ifp != NULL && if_is_deactivated(ifp))
2924 ifp = NULL;
2925 return ifp;
2926 }
2927
2928 /*
2929 * Get a reference of an ifnet object by an interface index.
2930 * The returned reference is protected by psref(9). The caller
2931 * must release a returned reference by if_put after use.
2932 */
2933 ifnet_t *
2934 if_get_byindex(u_int idx, struct psref *psref)
2935 {
2936 ifnet_t *ifp;
2937 int s;
2938
2939 s = pserialize_read_enter();
2940 ifp = if_byindex(idx);
2941 if (__predict_true(ifp != NULL)) {
2942 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2943 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2944 }
2945 pserialize_read_exit(s);
2946
2947 return ifp;
2948 }
2949
2950 ifnet_t *
2951 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
2952 {
2953 ifnet_t *ifp;
2954 int s;
2955
2956 s = pserialize_read_enter();
2957 IFNET_READER_FOREACH(ifp) {
2958 if (if_is_deactivated(ifp))
2959 continue;
2960 if (ifp->if_addrlen != lla_len)
2961 continue;
2962 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
2963 psref_acquire(psref, &ifp->if_psref,
2964 ifnet_psref_class);
2965 break;
2966 }
2967 }
2968 pserialize_read_exit(s);
2969
2970 return ifp;
2971 }
2972
2973 /*
2974 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
2975 * for example using pserialize or the ifp is already held or some other
2976 * object is held which guarantes the ifp to not be freed indirectly.
2977 */
2978 void
2979 if_acquire(struct ifnet *ifp, struct psref *psref)
2980 {
2981
2982 KASSERT(ifp->if_index != 0);
2983 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
2984 }
2985
2986 bool
2987 if_held(struct ifnet *ifp)
2988 {
2989
2990 return psref_held(&ifp->if_psref, ifnet_psref_class);
2991 }
2992
2993 /*
2994 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
2995 * Check the tunnel nesting count.
2996 * Return > 0, if tunnel nesting count is more than limit.
2997 * Return 0, if tunnel nesting count is equal or less than limit.
2998 */
2999 int
3000 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
3001 {
3002 struct m_tag *mtag;
3003 int *count;
3004
3005 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO);
3006 if (mtag != NULL) {
3007 count = (int *)(mtag + 1);
3008 if (++(*count) > limit) {
3009 log(LOG_NOTICE,
3010 "%s: recursively called too many times(%d)\n",
3011 ifp->if_xname, *count);
3012 return EIO;
3013 }
3014 } else {
3015 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
3016 M_NOWAIT);
3017 if (mtag != NULL) {
3018 m_tag_prepend(m, mtag);
3019 count = (int *)(mtag + 1);
3020 *count = 0;
3021 } else {
3022 log(LOG_DEBUG,
3023 "%s: m_tag_get() failed, recursion calls are not prevented.\n",
3024 ifp->if_xname);
3025 }
3026 }
3027
3028 return 0;
3029 }
3030
3031 static void
3032 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
3033 {
3034 struct tunnel_ro *tro = p;
3035
3036 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP);
3037 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3038 }
3039
3040 static void
3041 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
3042 {
3043 struct tunnel_ro *tro = p;
3044
3045 rtcache_free(tro->tr_ro);
3046 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro));
3047
3048 mutex_obj_free(tro->tr_lock);
3049 }
3050
3051 percpu_t *
3052 if_tunnel_alloc_ro_percpu(void)
3053 {
3054
3055 return percpu_create(sizeof(struct tunnel_ro),
3056 if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL);
3057 }
3058
3059 void
3060 if_tunnel_free_ro_percpu(percpu_t *ro_percpu)
3061 {
3062
3063 percpu_free(ro_percpu, sizeof(struct tunnel_ro));
3064 }
3065
3066
3067 static void
3068 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
3069 {
3070 struct tunnel_ro *tro = p;
3071
3072 mutex_enter(tro->tr_lock);
3073 rtcache_free(tro->tr_ro);
3074 mutex_exit(tro->tr_lock);
3075 }
3076
3077 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu)
3078 {
3079
3080 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL);
3081 }
3082
3083 void
3084 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats)
3085 {
3086
3087 /* Collet the volatile stats first; this zeros *ifi. */
3088 if_stats_to_if_data(ifp, ifi, zero_stats);
3089
3090 ifi->ifi_type = ifp->if_type;
3091 ifi->ifi_addrlen = ifp->if_addrlen;
3092 ifi->ifi_hdrlen = ifp->if_hdrlen;
3093 ifi->ifi_link_state = ifp->if_link_state;
3094 ifi->ifi_mtu = ifp->if_mtu;
3095 ifi->ifi_metric = ifp->if_metric;
3096 ifi->ifi_baudrate = ifp->if_baudrate;
3097 ifi->ifi_lastchange = ifp->if_lastchange;
3098 }
3099
3100 /* common */
3101 int
3102 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
3103 {
3104 int s;
3105 struct ifreq *ifr;
3106 struct ifcapreq *ifcr;
3107 struct ifdatareq *ifdr;
3108 unsigned short flags;
3109 char *descr;
3110 int error;
3111
3112 switch (cmd) {
3113 case SIOCSIFCAP:
3114 ifcr = data;
3115 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
3116 return EINVAL;
3117
3118 if (ifcr->ifcr_capenable == ifp->if_capenable)
3119 return 0;
3120
3121 ifp->if_capenable = ifcr->ifcr_capenable;
3122
3123 /* Pre-compute the checksum flags mask. */
3124 ifp->if_csum_flags_tx = 0;
3125 ifp->if_csum_flags_rx = 0;
3126 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
3127 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
3128 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3129 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
3130
3131 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx)
3132 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
3133 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
3134 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
3135
3136 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx)
3137 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
3138 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
3139 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
3140
3141 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx)
3142 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
3143 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx)
3144 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
3145
3146 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx)
3147 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
3148 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx)
3149 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
3150
3151 if (ifp->if_capenable & IFCAP_TSOv4)
3152 ifp->if_csum_flags_tx |= M_CSUM_TSOv4;
3153 if (ifp->if_capenable & IFCAP_TSOv6)
3154 ifp->if_csum_flags_tx |= M_CSUM_TSOv6;
3155
3156 #if NBRIDGE > 0
3157 if (ifp->if_bridge != NULL)
3158 bridge_calc_csum_flags(ifp->if_bridge);
3159 #endif
3160
3161 if (ifp->if_flags & IFF_UP)
3162 return ENETRESET;
3163 return 0;
3164 case SIOCSIFFLAGS:
3165 ifr = data;
3166 /*
3167 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
3168 * and if_down aren't MP-safe yet, so we must hold the lock.
3169 */
3170 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3171 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
3172 s = splsoftnet();
3173 if_down_locked(ifp);
3174 splx(s);
3175 }
3176 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
3177 s = splsoftnet();
3178 if_up_locked(ifp);
3179 splx(s);
3180 }
3181 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3182 flags = (ifp->if_flags & IFF_CANTCHANGE) |
3183 (ifr->ifr_flags &~ IFF_CANTCHANGE);
3184 if (ifp->if_flags != flags) {
3185 ifp->if_flags = flags;
3186 /* Notify that the flags have changed. */
3187 rt_ifmsg(ifp);
3188 }
3189 break;
3190 case SIOCGIFFLAGS:
3191 ifr = data;
3192 ifr->ifr_flags = ifp->if_flags;
3193 break;
3194
3195 case SIOCGIFMETRIC:
3196 ifr = data;
3197 ifr->ifr_metric = ifp->if_metric;
3198 break;
3199
3200 case SIOCGIFMTU:
3201 ifr = data;
3202 ifr->ifr_mtu = ifp->if_mtu;
3203 break;
3204
3205 case SIOCGIFDLT:
3206 ifr = data;
3207 ifr->ifr_dlt = ifp->if_dlt;
3208 break;
3209
3210 case SIOCGIFCAP:
3211 ifcr = data;
3212 ifcr->ifcr_capabilities = ifp->if_capabilities;
3213 ifcr->ifcr_capenable = ifp->if_capenable;
3214 break;
3215
3216 case SIOCSIFMETRIC:
3217 ifr = data;
3218 ifp->if_metric = ifr->ifr_metric;
3219 break;
3220
3221 case SIOCGIFDATA:
3222 ifdr = data;
3223 if_export_if_data(ifp, &ifdr->ifdr_data, false);
3224 break;
3225
3226 case SIOCGIFINDEX:
3227 ifr = data;
3228 ifr->ifr_index = ifp->if_index;
3229 break;
3230
3231 case SIOCZIFDATA:
3232 ifdr = data;
3233 if_export_if_data(ifp, &ifdr->ifdr_data, true);
3234 getnanotime(&ifp->if_lastchange);
3235 break;
3236 case SIOCSIFMTU:
3237 ifr = data;
3238 if (ifp->if_mtu == ifr->ifr_mtu)
3239 break;
3240 ifp->if_mtu = ifr->ifr_mtu;
3241 return ENETRESET;
3242 case SIOCSIFDESCR:
3243 error = kauth_authorize_network(kauth_cred_get(),
3244 KAUTH_NETWORK_INTERFACE,
3245 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
3246 NULL);
3247 if (error)
3248 return error;
3249
3250 ifr = data;
3251
3252 if (ifr->ifr_buflen > IFDESCRSIZE)
3253 return ENAMETOOLONG;
3254
3255 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) {
3256 /* unset description */
3257 descr = NULL;
3258 } else {
3259 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP);
3260 /*
3261 * copy (IFDESCRSIZE - 1) bytes to ensure
3262 * terminating nul
3263 */
3264 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1);
3265 if (error) {
3266 kmem_free(descr, IFDESCRSIZE);
3267 return error;
3268 }
3269 }
3270
3271 if (ifp->if_description != NULL)
3272 kmem_free(ifp->if_description, IFDESCRSIZE);
3273
3274 ifp->if_description = descr;
3275 break;
3276
3277 case SIOCGIFDESCR:
3278 ifr = data;
3279 descr = ifp->if_description;
3280
3281 if (descr == NULL)
3282 return ENOMSG;
3283
3284 if (ifr->ifr_buflen < IFDESCRSIZE)
3285 return EINVAL;
3286
3287 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE);
3288 if (error)
3289 return error;
3290 break;
3291
3292 default:
3293 return ENOTTY;
3294 }
3295 return 0;
3296 }
3297
3298 int
3299 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3300 {
3301 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3302 struct ifaddr *ifa;
3303 const struct sockaddr *any, *sa;
3304 union {
3305 struct sockaddr sa;
3306 struct sockaddr_storage ss;
3307 } u, v;
3308 int s, error = 0;
3309
3310 switch (cmd) {
3311 case SIOCSIFADDRPREF:
3312 error = kauth_authorize_network(kauth_cred_get(),
3313 KAUTH_NETWORK_INTERFACE,
3314 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
3315 NULL);
3316 if (error)
3317 return error;
3318 break;
3319 case SIOCGIFADDRPREF:
3320 break;
3321 default:
3322 return EOPNOTSUPP;
3323 }
3324
3325 /* sanity checks */
3326 if (data == NULL || ifp == NULL) {
3327 panic("invalid argument to %s", __func__);
3328 /*NOTREACHED*/
3329 }
3330
3331 /* address must be specified on ADD and DELETE */
3332 sa = sstocsa(&ifap->ifap_addr);
3333 if (sa->sa_family != sofamily(so))
3334 return EINVAL;
3335 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3336 return EINVAL;
3337
3338 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3339
3340 s = pserialize_read_enter();
3341 IFADDR_READER_FOREACH(ifa, ifp) {
3342 if (ifa->ifa_addr->sa_family != sa->sa_family)
3343 continue;
3344 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3345 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3346 break;
3347 }
3348 if (ifa == NULL) {
3349 error = EADDRNOTAVAIL;
3350 goto out;
3351 }
3352
3353 switch (cmd) {
3354 case SIOCSIFADDRPREF:
3355 ifa->ifa_preference = ifap->ifap_preference;
3356 goto out;
3357 case SIOCGIFADDRPREF:
3358 /* fill in the if_laddrreq structure */
3359 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3360 sizeof(ifap->ifap_addr), ifa->ifa_addr);
3361 ifap->ifap_preference = ifa->ifa_preference;
3362 goto out;
3363 default:
3364 error = EOPNOTSUPP;
3365 }
3366 out:
3367 pserialize_read_exit(s);
3368 return error;
3369 }
3370
3371 /*
3372 * Interface ioctls.
3373 */
3374 static int
3375 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3376 {
3377 struct ifnet *ifp;
3378 struct ifreq *ifr;
3379 int error = 0;
3380 u_long ocmd = cmd;
3381 u_short oif_flags;
3382 struct ifreq ifrb;
3383 struct oifreq *oifr = NULL;
3384 int r;
3385 struct psref psref;
3386 int bound;
3387 bool do_if43_post = false;
3388 bool do_ifm80_post = false;
3389
3390 switch (cmd) {
3391 case SIOCGIFCONF:
3392 return ifconf(cmd, data);
3393 case SIOCINITIFADDR:
3394 return EPERM;
3395 default:
3396 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(),
3397 error);
3398 if (error != ENOSYS)
3399 return error;
3400 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data),
3401 enosys(), error);
3402 if (error != ENOSYS)
3403 return error;
3404 error = 0;
3405 break;
3406 }
3407
3408 ifr = data;
3409 /* Pre-conversion */
3410 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error);
3411 if (cmd != ocmd) {
3412 oifr = data;
3413 data = ifr = &ifrb;
3414 IFREQO2N_43(oifr, ifr);
3415 do_if43_post = true;
3416 }
3417 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post),
3418 enosys(), error);
3419
3420 switch (cmd) {
3421 case SIOCIFCREATE:
3422 case SIOCIFDESTROY:
3423 bound = curlwp_bind();
3424 if (l != NULL) {
3425 ifp = if_get(ifr->ifr_name, &psref);
3426 error = kauth_authorize_network(l->l_cred,
3427 KAUTH_NETWORK_INTERFACE,
3428 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3429 KAUTH_ARG(cmd), NULL);
3430 if (ifp != NULL)
3431 if_put(ifp, &psref);
3432 if (error != 0) {
3433 curlwp_bindx(bound);
3434 return error;
3435 }
3436 }
3437 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3438 mutex_enter(&if_clone_mtx);
3439 r = (cmd == SIOCIFCREATE) ?
3440 if_clone_create(ifr->ifr_name) :
3441 if_clone_destroy(ifr->ifr_name);
3442 mutex_exit(&if_clone_mtx);
3443 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3444 curlwp_bindx(bound);
3445 return r;
3446
3447 case SIOCIFGCLONERS:
3448 {
3449 struct if_clonereq *req = (struct if_clonereq *)data;
3450 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3451 &req->ifcr_total);
3452 }
3453 }
3454
3455 if ((cmd & IOC_IN) == 0 || IOCPARM_LEN(cmd) < sizeof(ifr->ifr_name))
3456 return EINVAL;
3457
3458 bound = curlwp_bind();
3459 ifp = if_get(ifr->ifr_name, &psref);
3460 if (ifp == NULL) {
3461 curlwp_bindx(bound);
3462 return ENXIO;
3463 }
3464
3465 switch (cmd) {
3466 case SIOCALIFADDR:
3467 case SIOCDLIFADDR:
3468 case SIOCSIFADDRPREF:
3469 case SIOCSIFFLAGS:
3470 case SIOCSIFCAP:
3471 case SIOCSIFMETRIC:
3472 case SIOCZIFDATA:
3473 case SIOCSIFMTU:
3474 case SIOCSIFPHYADDR:
3475 case SIOCDIFPHYADDR:
3476 #ifdef INET6
3477 case SIOCSIFPHYADDR_IN6:
3478 #endif
3479 case SIOCSLIFPHYADDR:
3480 case SIOCADDMULTI:
3481 case SIOCDELMULTI:
3482 case SIOCSETHERCAP:
3483 case SIOCSIFMEDIA:
3484 case SIOCSDRVSPEC:
3485 case SIOCG80211:
3486 case SIOCS80211:
3487 case SIOCS80211NWID:
3488 case SIOCS80211NWKEY:
3489 case SIOCS80211POWER:
3490 case SIOCS80211BSSID:
3491 case SIOCS80211CHANNEL:
3492 case SIOCSLINKSTR:
3493 if (l != NULL) {
3494 error = kauth_authorize_network(l->l_cred,
3495 KAUTH_NETWORK_INTERFACE,
3496 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3497 KAUTH_ARG(cmd), NULL);
3498 if (error != 0)
3499 goto out;
3500 }
3501 }
3502
3503 oif_flags = ifp->if_flags;
3504
3505 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3506 IFNET_LOCK(ifp);
3507
3508 error = if_ioctl(ifp, cmd, data);
3509 if (error != ENOTTY)
3510 ;
3511 else if (so->so_proto == NULL)
3512 error = EOPNOTSUPP;
3513 else {
3514 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3515 MODULE_HOOK_CALL(if_ifioctl_43_hook,
3516 (so, ocmd, cmd, data, l), enosys(), error);
3517 if (error == ENOSYS)
3518 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3519 cmd, data, ifp);
3520 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3521 }
3522
3523 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3524 if ((ifp->if_flags & IFF_UP) != 0) {
3525 int s = splsoftnet();
3526 if_up_locked(ifp);
3527 splx(s);
3528 }
3529 }
3530
3531 /* Post-conversion */
3532 if (do_ifm80_post && (error == 0))
3533 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd),
3534 enosys(), error);
3535 if (do_if43_post)
3536 IFREQN2O_43(oifr, ifr);
3537
3538 IFNET_UNLOCK(ifp);
3539 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3540 out:
3541 if_put(ifp, &psref);
3542 curlwp_bindx(bound);
3543 return error;
3544 }
3545
3546 /*
3547 * Return interface configuration
3548 * of system. List may be used
3549 * in later ioctl's (above) to get
3550 * other information.
3551 *
3552 * Each record is a struct ifreq. Before the addition of
3553 * sockaddr_storage, the API rule was that sockaddr flavors that did
3554 * not fit would extend beyond the struct ifreq, with the next struct
3555 * ifreq starting sa_len beyond the struct sockaddr. Because the
3556 * union in struct ifreq includes struct sockaddr_storage, every kind
3557 * of sockaddr must fit. Thus, there are no longer any overlength
3558 * records.
3559 *
3560 * Records are added to the user buffer if they fit, and ifc_len is
3561 * adjusted to the length that was written. Thus, the user is only
3562 * assured of getting the complete list if ifc_len on return is at
3563 * least sizeof(struct ifreq) less than it was on entry.
3564 *
3565 * If the user buffer pointer is NULL, this routine copies no data and
3566 * returns the amount of space that would be needed.
3567 *
3568 * Invariants:
3569 * ifrp points to the next part of the user's buffer to be used. If
3570 * ifrp != NULL, space holds the number of bytes remaining that we may
3571 * write at ifrp. Otherwise, space holds the number of bytes that
3572 * would have been written had there been adequate space.
3573 */
3574 /*ARGSUSED*/
3575 static int
3576 ifconf(u_long cmd, void *data)
3577 {
3578 struct ifconf *ifc = (struct ifconf *)data;
3579 struct ifnet *ifp;
3580 struct ifaddr *ifa;
3581 struct ifreq ifr, *ifrp = NULL;
3582 int space = 0, error = 0;
3583 const int sz = (int)sizeof(struct ifreq);
3584 const bool docopy = ifc->ifc_req != NULL;
3585 int s;
3586 int bound;
3587 struct psref psref;
3588
3589 if (docopy) {
3590 if (ifc->ifc_len < 0)
3591 return EINVAL;
3592
3593 space = ifc->ifc_len;
3594 ifrp = ifc->ifc_req;
3595 }
3596 memset(&ifr, 0, sizeof(ifr));
3597
3598 bound = curlwp_bind();
3599 s = pserialize_read_enter();
3600 IFNET_READER_FOREACH(ifp) {
3601 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3602 pserialize_read_exit(s);
3603
3604 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3605 sizeof(ifr.ifr_name));
3606 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3607 error = ENAMETOOLONG;
3608 goto release_exit;
3609 }
3610 if (IFADDR_READER_EMPTY(ifp)) {
3611 /* Interface with no addresses - send zero sockaddr. */
3612 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3613 if (!docopy) {
3614 space += sz;
3615 goto next;
3616 }
3617 if (space >= sz) {
3618 error = copyout(&ifr, ifrp, sz);
3619 if (error != 0)
3620 goto release_exit;
3621 ifrp++;
3622 space -= sz;
3623 }
3624 }
3625
3626 s = pserialize_read_enter();
3627 IFADDR_READER_FOREACH(ifa, ifp) {
3628 struct sockaddr *sa = ifa->ifa_addr;
3629 /* all sockaddrs must fit in sockaddr_storage */
3630 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3631
3632 if (!docopy) {
3633 space += sz;
3634 continue;
3635 }
3636 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3637 pserialize_read_exit(s);
3638
3639 if (space >= sz) {
3640 error = copyout(&ifr, ifrp, sz);
3641 if (error != 0)
3642 goto release_exit;
3643 ifrp++; space -= sz;
3644 }
3645 s = pserialize_read_enter();
3646 }
3647 pserialize_read_exit(s);
3648
3649 next:
3650 s = pserialize_read_enter();
3651 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3652 }
3653 pserialize_read_exit(s);
3654 curlwp_bindx(bound);
3655
3656 if (docopy) {
3657 KASSERT(0 <= space && space <= ifc->ifc_len);
3658 ifc->ifc_len -= space;
3659 } else {
3660 KASSERT(space >= 0);
3661 ifc->ifc_len = space;
3662 }
3663 return (0);
3664
3665 release_exit:
3666 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3667 curlwp_bindx(bound);
3668 return error;
3669 }
3670
3671 int
3672 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3673 {
3674 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
3675 struct ifreq ifrb;
3676 struct oifreq *oifr = NULL;
3677 u_long ocmd = cmd;
3678 int hook;
3679
3680 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
3681 if (hook != ENOSYS) {
3682 if (cmd != ocmd) {
3683 oifr = (struct oifreq *)(void *)ifr;
3684 ifr = &ifrb;
3685 IFREQO2N_43(oifr, ifr);
3686 len = sizeof(oifr->ifr_addr);
3687 }
3688 }
3689
3690 if (len < sa->sa_len)
3691 return EFBIG;
3692
3693 memset(&ifr->ifr_addr, 0, len);
3694 sockaddr_copy(&ifr->ifr_addr, len, sa);
3695
3696 if (cmd != ocmd)
3697 IFREQN2O_43(oifr, ifr);
3698 return 0;
3699 }
3700
3701 /*
3702 * wrapper function for the drivers which doesn't have if_transmit().
3703 */
3704 static int
3705 if_transmit(struct ifnet *ifp, struct mbuf *m)
3706 {
3707 int s, error;
3708 size_t pktlen = m->m_pkthdr.len;
3709 bool mcast = (m->m_flags & M_MCAST) != 0;
3710
3711 s = splnet();
3712
3713 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3714 if (error != 0) {
3715 /* mbuf is already freed */
3716 goto out;
3717 }
3718
3719 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
3720 if_statadd_ref(nsr, if_obytes, pktlen);
3721 if (mcast)
3722 if_statinc_ref(nsr, if_omcasts);
3723 IF_STAT_PUTREF(ifp);
3724
3725 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3726 if_start_lock(ifp);
3727 out:
3728 splx(s);
3729
3730 return error;
3731 }
3732
3733 int
3734 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3735 {
3736 int error;
3737
3738 kmsan_check_mbuf(m);
3739
3740 #ifdef ALTQ
3741 KERNEL_LOCK(1, NULL);
3742 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3743 error = if_transmit(ifp, m);
3744 KERNEL_UNLOCK_ONE(NULL);
3745 } else {
3746 KERNEL_UNLOCK_ONE(NULL);
3747 error = (*ifp->if_transmit)(ifp, m);
3748 /* mbuf is already freed */
3749 }
3750 #else /* !ALTQ */
3751 error = (*ifp->if_transmit)(ifp, m);
3752 /* mbuf is already freed */
3753 #endif /* !ALTQ */
3754
3755 return error;
3756 }
3757
3758 /*
3759 * Queue message on interface, and start output if interface
3760 * not yet active.
3761 */
3762 int
3763 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3764 {
3765
3766 return if_transmit_lock(ifp, m);
3767 }
3768
3769 /*
3770 * Queue message on interface, possibly using a second fast queue
3771 */
3772 int
3773 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3774 {
3775 int error = 0;
3776
3777 if (ifq != NULL
3778 #ifdef ALTQ
3779 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3780 #endif
3781 ) {
3782 if (IF_QFULL(ifq)) {
3783 IF_DROP(&ifp->if_snd);
3784 m_freem(m);
3785 if (error == 0)
3786 error = ENOBUFS;
3787 } else
3788 IF_ENQUEUE(ifq, m);
3789 } else
3790 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3791 if (error != 0) {
3792 if_statinc(ifp, if_oerrors);
3793 return error;
3794 }
3795 return 0;
3796 }
3797
3798 int
3799 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3800 {
3801 int rc;
3802
3803 KASSERT(IFNET_LOCKED(ifp));
3804 if (ifp->if_initaddr != NULL)
3805 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3806 else if (src ||
3807 (rc = if_ioctl(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3808 rc = if_ioctl(ifp, SIOCINITIFADDR, ifa);
3809
3810 return rc;
3811 }
3812
3813 int
3814 if_do_dad(struct ifnet *ifp)
3815 {
3816 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3817 return 0;
3818
3819 switch (ifp->if_type) {
3820 case IFT_FAITH:
3821 /*
3822 * These interfaces do not have the IFF_LOOPBACK flag,
3823 * but loop packets back. We do not have to do DAD on such
3824 * interfaces. We should even omit it, because loop-backed
3825 * responses would confuse the DAD procedure.
3826 */
3827 return 0;
3828 default:
3829 /*
3830 * Our DAD routine requires the interface up and running.
3831 * However, some interfaces can be up before the RUNNING
3832 * status. Additionally, users may try to assign addresses
3833 * before the interface becomes up (or running).
3834 * We simply skip DAD in such a case as a work around.
3835 * XXX: we should rather mark "tentative" on such addresses,
3836 * and do DAD after the interface becomes ready.
3837 */
3838 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
3839 (IFF_UP | IFF_RUNNING))
3840 return 0;
3841
3842 return 1;
3843 }
3844 }
3845
3846 /*
3847 * if_flags_set(ifp, flags)
3848 *
3849 * Ask ifp to change ifp->if_flags to flags, as if with the
3850 * SIOCSIFFLAGS ioctl command.
3851 *
3852 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a
3853 * IFNET_LOCK.
3854 */
3855 int
3856 if_flags_set(ifnet_t *ifp, const u_short flags)
3857 {
3858 int rc;
3859
3860 KASSERT(IFNET_LOCKED(ifp));
3861
3862 if (ifp->if_setflags != NULL)
3863 rc = (*ifp->if_setflags)(ifp, flags);
3864 else {
3865 u_short cantflags, chgdflags;
3866 struct ifreq ifr;
3867
3868 chgdflags = ifp->if_flags ^ flags;
3869 cantflags = chgdflags & IFF_CANTCHANGE;
3870
3871 if (cantflags != 0)
3872 ifp->if_flags ^= cantflags;
3873
3874 /*
3875 * Traditionally, we do not call if_ioctl after
3876 * setting/clearing only IFF_PROMISC if the interface
3877 * isn't IFF_UP. Uphold that tradition.
3878 */
3879 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3880 return 0;
3881
3882 memset(&ifr, 0, sizeof(ifr));
3883
3884 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3885 rc = if_ioctl(ifp, SIOCSIFFLAGS, &ifr);
3886
3887 if (rc != 0 && cantflags != 0)
3888 ifp->if_flags ^= cantflags;
3889 }
3890
3891 return rc;
3892 }
3893
3894 /*
3895 * if_mcast_op(ifp, cmd, sa)
3896 *
3897 * Apply a multicast command, SIOCADDMULTI/SIOCDELMULTI, to the
3898 * interface. Returns 0 on success, nonzero errno(3) number on
3899 * failure.
3900 *
3901 * May sleep.
3902 *
3903 * Use this, not if_ioctl, for the multicast commands.
3904 */
3905 int
3906 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3907 {
3908 int rc;
3909 struct ifreq ifr;
3910
3911 switch (cmd) {
3912 case SIOCADDMULTI:
3913 case SIOCDELMULTI:
3914 break;
3915 default:
3916 panic("invalid ifnet multicast command: 0x%lx", cmd);
3917 }
3918
3919 ifreq_setaddr(cmd, &ifr, sa);
3920 rc = if_ioctl(ifp, cmd, &ifr);
3921
3922 return rc;
3923 }
3924
3925 static void
3926 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3927 struct ifaltq *ifq)
3928 {
3929 const struct sysctlnode *cnode, *rnode;
3930
3931 if (sysctl_createv(clog, 0, NULL, &rnode,
3932 CTLFLAG_PERMANENT,
3933 CTLTYPE_NODE, "interfaces",
3934 SYSCTL_DESCR("Per-interface controls"),
3935 NULL, 0, NULL, 0,
3936 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
3937 goto bad;
3938
3939 if (sysctl_createv(clog, 0, &rnode, &rnode,
3940 CTLFLAG_PERMANENT,
3941 CTLTYPE_NODE, ifname,
3942 SYSCTL_DESCR("Interface controls"),
3943 NULL, 0, NULL, 0,
3944 CTL_CREATE, CTL_EOL) != 0)
3945 goto bad;
3946
3947 if (sysctl_createv(clog, 0, &rnode, &rnode,
3948 CTLFLAG_PERMANENT,
3949 CTLTYPE_NODE, "sndq",
3950 SYSCTL_DESCR("Interface output queue controls"),
3951 NULL, 0, NULL, 0,
3952 CTL_CREATE, CTL_EOL) != 0)
3953 goto bad;
3954
3955 if (sysctl_createv(clog, 0, &rnode, &cnode,
3956 CTLFLAG_PERMANENT,
3957 CTLTYPE_INT, "len",
3958 SYSCTL_DESCR("Current output queue length"),
3959 NULL, 0, &ifq->ifq_len, 0,
3960 CTL_CREATE, CTL_EOL) != 0)
3961 goto bad;
3962
3963 if (sysctl_createv(clog, 0, &rnode, &cnode,
3964 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
3965 CTLTYPE_INT, "maxlen",
3966 SYSCTL_DESCR("Maximum allowed output queue length"),
3967 NULL, 0, &ifq->ifq_maxlen, 0,
3968 CTL_CREATE, CTL_EOL) != 0)
3969 goto bad;
3970
3971 if (sysctl_createv(clog, 0, &rnode, &cnode,
3972 CTLFLAG_PERMANENT,
3973 CTLTYPE_INT, "drops",
3974 SYSCTL_DESCR("Packets dropped due to full output queue"),
3975 NULL, 0, &ifq->ifq_drops, 0,
3976 CTL_CREATE, CTL_EOL) != 0)
3977 goto bad;
3978
3979 return;
3980 bad:
3981 printf("%s: could not attach sysctl nodes\n", ifname);
3982 return;
3983 }
3984
3985 #if defined(INET) || defined(INET6)
3986
3987 #define SYSCTL_NET_PKTQ(q, cn, c) \
3988 static int \
3989 sysctl_net_##q##_##cn(SYSCTLFN_ARGS) \
3990 { \
3991 return sysctl_pktq_count(SYSCTLFN_CALL(rnode), q, c); \
3992 }
3993
3994 #if defined(INET)
3995 static int
3996 sysctl_net_ip_pktq_maxlen(SYSCTLFN_ARGS)
3997 {
3998 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip_pktq);
3999 }
4000 SYSCTL_NET_PKTQ(ip_pktq, items, PKTQ_NITEMS)
4001 SYSCTL_NET_PKTQ(ip_pktq, drops, PKTQ_DROPS)
4002 #endif
4003
4004 #if defined(INET6)
4005 static int
4006 sysctl_net_ip6_pktq_maxlen(SYSCTLFN_ARGS)
4007 {
4008 return sysctl_pktq_maxlen(SYSCTLFN_CALL(rnode), ip6_pktq);
4009 }
4010 SYSCTL_NET_PKTQ(ip6_pktq, items, PKTQ_NITEMS)
4011 SYSCTL_NET_PKTQ(ip6_pktq, drops, PKTQ_DROPS)
4012 #endif
4013
4014 static void
4015 sysctl_net_pktq_setup(struct sysctllog **clog, int pf)
4016 {
4017 sysctlfn len_func = NULL, maxlen_func = NULL, drops_func = NULL;
4018 const char *pfname = NULL, *ipname = NULL;
4019 int ipn = 0, qid = 0;
4020
4021 switch (pf) {
4022 #if defined(INET)
4023 case PF_INET:
4024 len_func = sysctl_net_ip_pktq_items;
4025 maxlen_func = sysctl_net_ip_pktq_maxlen;
4026 drops_func = sysctl_net_ip_pktq_drops;
4027 pfname = "inet", ipn = IPPROTO_IP;
4028 ipname = "ip", qid = IPCTL_IFQ;
4029 break;
4030 #endif
4031 #if defined(INET6)
4032 case PF_INET6:
4033 len_func = sysctl_net_ip6_pktq_items;
4034 maxlen_func = sysctl_net_ip6_pktq_maxlen;
4035 drops_func = sysctl_net_ip6_pktq_drops;
4036 pfname = "inet6", ipn = IPPROTO_IPV6;
4037 ipname = "ip6", qid = IPV6CTL_IFQ;
4038 break;
4039 #endif
4040 default:
4041 KASSERT(false);
4042 }
4043
4044 sysctl_createv(clog, 0, NULL, NULL,
4045 CTLFLAG_PERMANENT,
4046 CTLTYPE_NODE, pfname, NULL,
4047 NULL, 0, NULL, 0,
4048 CTL_NET, pf, CTL_EOL);
4049 sysctl_createv(clog, 0, NULL, NULL,
4050 CTLFLAG_PERMANENT,
4051 CTLTYPE_NODE, ipname, NULL,
4052 NULL, 0, NULL, 0,
4053 CTL_NET, pf, ipn, CTL_EOL);
4054 sysctl_createv(clog, 0, NULL, NULL,
4055 CTLFLAG_PERMANENT,
4056 CTLTYPE_NODE, "ifq",
4057 SYSCTL_DESCR("Protocol input queue controls"),
4058 NULL, 0, NULL, 0,
4059 CTL_NET, pf, ipn, qid, CTL_EOL);
4060
4061 sysctl_createv(clog, 0, NULL, NULL,
4062 CTLFLAG_PERMANENT,
4063 CTLTYPE_QUAD, "len",
4064 SYSCTL_DESCR("Current input queue length"),
4065 len_func, 0, NULL, 0,
4066 CTL_NET, pf, ipn, qid, IFQCTL_LEN, CTL_EOL);
4067 sysctl_createv(clog, 0, NULL, NULL,
4068 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
4069 CTLTYPE_INT, "maxlen",
4070 SYSCTL_DESCR("Maximum allowed input queue length"),
4071 maxlen_func, 0, NULL, 0,
4072 CTL_NET, pf, ipn, qid, IFQCTL_MAXLEN, CTL_EOL);
4073 sysctl_createv(clog, 0, NULL, NULL,
4074 CTLFLAG_PERMANENT,
4075 CTLTYPE_QUAD, "drops",
4076 SYSCTL_DESCR("Packets dropped due to full input queue"),
4077 drops_func, 0, NULL, 0,
4078 CTL_NET, pf, ipn, qid, IFQCTL_DROPS, CTL_EOL);
4079 }
4080 #endif /* INET || INET6 */
4081
4082 static int
4083 if_sdl_sysctl(SYSCTLFN_ARGS)
4084 {
4085 struct ifnet *ifp;
4086 const struct sockaddr_dl *sdl;
4087 struct psref psref;
4088 int error = 0;
4089 int bound;
4090
4091 if (namelen != 1)
4092 return EINVAL;
4093
4094 bound = curlwp_bind();
4095 ifp = if_get_byindex(name[0], &psref);
4096 if (ifp == NULL) {
4097 error = ENODEV;
4098 goto out0;
4099 }
4100
4101 sdl = ifp->if_sadl;
4102 if (sdl == NULL) {
4103 *oldlenp = 0;
4104 goto out1;
4105 }
4106
4107 if (oldp == NULL) {
4108 *oldlenp = sdl->sdl_alen;
4109 goto out1;
4110 }
4111
4112 if (*oldlenp >= sdl->sdl_alen)
4113 *oldlenp = sdl->sdl_alen;
4114 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
4115 out1:
4116 if_put(ifp, &psref);
4117 out0:
4118 curlwp_bindx(bound);
4119 return error;
4120 }
4121
4122 static void
4123 if_sysctl_setup(struct sysctllog **clog)
4124 {
4125 const struct sysctlnode *rnode = NULL;
4126
4127 sysctl_createv(clog, 0, NULL, &rnode,
4128 CTLFLAG_PERMANENT,
4129 CTLTYPE_NODE, "sdl",
4130 SYSCTL_DESCR("Get active link-layer address"),
4131 if_sdl_sysctl, 0, NULL, 0,
4132 CTL_NET, CTL_CREATE, CTL_EOL);
4133
4134 #if defined(INET)
4135 sysctl_net_pktq_setup(NULL, PF_INET);
4136 #endif
4137 #ifdef INET6
4138 if (in6_present)
4139 sysctl_net_pktq_setup(NULL, PF_INET6);
4140 #endif
4141 }
4142