Home | History | Annotate | Line # | Download | only in net
if.c revision 1.522
      1 /*	$NetBSD: if.c,v 1.522 2022/09/02 04:34:58 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by William Studenmund and Jason R. Thorpe.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     34  * All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the project nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  */
     60 
     61 /*
     62  * Copyright (c) 1980, 1986, 1993
     63  *	The Regents of the University of California.  All rights reserved.
     64  *
     65  * Redistribution and use in source and binary forms, with or without
     66  * modification, are permitted provided that the following conditions
     67  * are met:
     68  * 1. Redistributions of source code must retain the above copyright
     69  *    notice, this list of conditions and the following disclaimer.
     70  * 2. Redistributions in binary form must reproduce the above copyright
     71  *    notice, this list of conditions and the following disclaimer in the
     72  *    documentation and/or other materials provided with the distribution.
     73  * 3. Neither the name of the University nor the names of its contributors
     74  *    may be used to endorse or promote products derived from this software
     75  *    without specific prior written permission.
     76  *
     77  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     78  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     79  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     80  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     81  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     82  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     83  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     84  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     85  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     86  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     87  * SUCH DAMAGE.
     88  *
     89  *	@(#)if.c	8.5 (Berkeley) 1/9/95
     90  */
     91 
     92 #include <sys/cdefs.h>
     93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.522 2022/09/02 04:34:58 thorpej Exp $");
     94 
     95 #if defined(_KERNEL_OPT)
     96 #include "opt_inet.h"
     97 #include "opt_ipsec.h"
     98 #include "opt_atalk.h"
     99 #include "opt_wlan.h"
    100 #include "opt_net_mpsafe.h"
    101 #include "opt_mrouting.h"
    102 #endif
    103 
    104 #include <sys/param.h>
    105 #include <sys/mbuf.h>
    106 #include <sys/systm.h>
    107 #include <sys/callout.h>
    108 #include <sys/proc.h>
    109 #include <sys/socket.h>
    110 #include <sys/socketvar.h>
    111 #include <sys/domain.h>
    112 #include <sys/protosw.h>
    113 #include <sys/kernel.h>
    114 #include <sys/ioctl.h>
    115 #include <sys/sysctl.h>
    116 #include <sys/syslog.h>
    117 #include <sys/kauth.h>
    118 #include <sys/kmem.h>
    119 #include <sys/xcall.h>
    120 #include <sys/cpu.h>
    121 #include <sys/intr.h>
    122 #include <sys/module_hook.h>
    123 #include <sys/compat_stub.h>
    124 #include <sys/msan.h>
    125 #include <sys/hook.h>
    126 
    127 #include <net/if.h>
    128 #include <net/if_dl.h>
    129 #include <net/if_ether.h>
    130 #include <net/if_media.h>
    131 #include <net80211/ieee80211.h>
    132 #include <net80211/ieee80211_ioctl.h>
    133 #include <net/if_types.h>
    134 #include <net/route.h>
    135 #include <net/netisr.h>
    136 #include <sys/module.h>
    137 #ifdef NETATALK
    138 #include <netatalk/at_extern.h>
    139 #include <netatalk/at.h>
    140 #endif
    141 #include <net/pfil.h>
    142 #include <netinet/in.h>
    143 #include <netinet/in_var.h>
    144 #include <netinet/ip_encap.h>
    145 #include <net/bpf.h>
    146 
    147 #ifdef INET6
    148 #include <netinet6/in6_var.h>
    149 #include <netinet6/nd6.h>
    150 #endif
    151 
    152 #include "ether.h"
    153 
    154 #include "bridge.h"
    155 #if NBRIDGE > 0
    156 #include <net/if_bridgevar.h>
    157 #endif
    158 
    159 #include "carp.h"
    160 #if NCARP > 0
    161 #include <netinet/ip_carp.h>
    162 #endif
    163 
    164 #include <compat/sys/sockio.h>
    165 
    166 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
    167 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
    168 
    169 /*
    170  * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
    171  * for each ifnet.  It doesn't matter because:
    172  * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
    173  *   ifq_lock don't happen
    174  * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
    175  *   because if_snd, if_link_state_change and if_link_state_change_process
    176  *   are all called with KERNEL_LOCK
    177  */
    178 #define IF_LINK_STATE_CHANGE_LOCK(ifp)		\
    179 	mutex_enter((ifp)->if_snd.ifq_lock)
    180 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp)	\
    181 	mutex_exit((ifp)->if_snd.ifq_lock)
    182 
    183 /*
    184  * Global list of interfaces.
    185  */
    186 /* DEPRECATED. Remove it once kvm(3) users disappeared */
    187 struct ifnet_head		ifnet_list;
    188 
    189 struct pslist_head		ifnet_pslist;
    190 static ifnet_t **		ifindex2ifnet = NULL;
    191 static u_int			if_index = 1;
    192 static size_t			if_indexlim = 0;
    193 static uint64_t			index_gen;
    194 /* Mutex to protect the above objects. */
    195 kmutex_t			ifnet_mtx __cacheline_aligned;
    196 static struct psref_class	*ifnet_psref_class __read_mostly;
    197 static pserialize_t		ifnet_psz;
    198 static struct workqueue		*ifnet_link_state_wq __read_mostly;
    199 
    200 static struct workqueue		*if_slowtimo_wq __read_mostly;
    201 
    202 static kmutex_t			if_clone_mtx;
    203 
    204 struct ifnet *lo0ifp;
    205 int	ifqmaxlen = IFQ_MAXLEN;
    206 
    207 struct psref_class		*ifa_psref_class __read_mostly;
    208 
    209 static int	if_delroute_matcher(struct rtentry *, void *);
    210 
    211 static bool if_is_unit(const char *);
    212 static struct if_clone *if_clone_lookup(const char *, int *);
    213 
    214 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
    215 static int if_cloners_count;
    216 
    217 /* Packet filtering hook for interfaces. */
    218 pfil_head_t *			if_pfil __read_mostly;
    219 
    220 static kauth_listener_t if_listener;
    221 
    222 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
    223 static void if_detach_queues(struct ifnet *, struct ifqueue *);
    224 static void sysctl_sndq_setup(struct sysctllog **, const char *,
    225     struct ifaltq *);
    226 static void if_slowtimo_intr(void *);
    227 static void if_slowtimo_work(struct work *, void *);
    228 static int sysctl_if_watchdog(SYSCTLFN_PROTO);
    229 static void sysctl_watchdog_setup(struct ifnet *);
    230 static void if_attachdomain1(struct ifnet *);
    231 static int ifconf(u_long, void *);
    232 static int if_transmit(struct ifnet *, struct mbuf *);
    233 static int if_clone_create(const char *);
    234 static int if_clone_destroy(const char *);
    235 static void if_link_state_change_work(struct work *, void *);
    236 static void if_up_locked(struct ifnet *);
    237 static void _if_down(struct ifnet *);
    238 static void if_down_deactivated(struct ifnet *);
    239 
    240 struct if_percpuq {
    241 	struct ifnet	*ipq_ifp;
    242 	void		*ipq_si;
    243 	struct percpu	*ipq_ifqs;	/* struct ifqueue */
    244 };
    245 
    246 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
    247 
    248 static void if_percpuq_drops(void *, void *, struct cpu_info *);
    249 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
    250 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
    251     struct if_percpuq *);
    252 
    253 struct if_deferred_start {
    254 	struct ifnet	*ids_ifp;
    255 	void		(*ids_if_start)(struct ifnet *);
    256 	void		*ids_si;
    257 };
    258 
    259 static void if_deferred_start_softint(void *);
    260 static void if_deferred_start_common(struct ifnet *);
    261 static void if_deferred_start_destroy(struct ifnet *);
    262 
    263 struct if_slowtimo_data {
    264 	kmutex_t		isd_lock;
    265 	struct callout		isd_ch;
    266 	struct work		isd_work;
    267 	struct ifnet		*isd_ifp;
    268 	bool			isd_queued;
    269 	bool			isd_dying;
    270 	bool			isd_trigger;
    271 };
    272 
    273 /*
    274  * Hook for if_vlan - needed by if_agr
    275  */
    276 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook;
    277 
    278 static void if_sysctl_setup(struct sysctllog **);
    279 
    280 static int
    281 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
    282     void *arg0, void *arg1, void *arg2, void *arg3)
    283 {
    284 	int result;
    285 	enum kauth_network_req req;
    286 
    287 	result = KAUTH_RESULT_DEFER;
    288 	req = (enum kauth_network_req)(uintptr_t)arg1;
    289 
    290 	if (action != KAUTH_NETWORK_INTERFACE)
    291 		return result;
    292 
    293 	if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
    294 	    (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
    295 		result = KAUTH_RESULT_ALLOW;
    296 
    297 	return result;
    298 }
    299 
    300 /*
    301  * Network interface utility routines.
    302  *
    303  * Routines with ifa_ifwith* names take sockaddr *'s as
    304  * parameters.
    305  */
    306 void
    307 ifinit(void)
    308 {
    309 
    310 #if (defined(INET) || defined(INET6))
    311 	encapinit();
    312 #endif
    313 
    314 	if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
    315 	    if_listener_cb, NULL);
    316 
    317 	/* interfaces are available, inform socket code */
    318 	ifioctl = doifioctl;
    319 }
    320 
    321 /*
    322  * XXX Initialization before configure().
    323  * XXX hack to get pfil_add_hook working in autoconf.
    324  */
    325 void
    326 ifinit1(void)
    327 {
    328 	int error __diagused;
    329 
    330 #ifdef NET_MPSAFE
    331 	printf("NET_MPSAFE enabled\n");
    332 #endif
    333 
    334 	mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
    335 
    336 	TAILQ_INIT(&ifnet_list);
    337 	mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
    338 	ifnet_psz = pserialize_create();
    339 	ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
    340 	ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
    341 	error = workqueue_create(&ifnet_link_state_wq, "iflnkst",
    342 	    if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET,
    343 	    WQ_MPSAFE);
    344 	KASSERT(error == 0);
    345 	PSLIST_INIT(&ifnet_pslist);
    346 
    347 	error = workqueue_create(&if_slowtimo_wq, "ifwdog",
    348 	    if_slowtimo_work, NULL, PRI_SOFTNET, IPL_SOFTCLOCK, WQ_MPSAFE);
    349 	KASSERTMSG(error == 0, "error=%d", error);
    350 
    351 	if_indexlim = 8;
    352 
    353 	if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
    354 	KASSERT(if_pfil != NULL);
    355 
    356 #if NETHER > 0 || defined(NETATALK) || defined(WLAN)
    357 	etherinit();
    358 #endif
    359 }
    360 
    361 /* XXX must be after domaininit() */
    362 void
    363 ifinit_post(void)
    364 {
    365 
    366 	if_sysctl_setup(NULL);
    367 }
    368 
    369 ifnet_t *
    370 if_alloc(u_char type)
    371 {
    372 	return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
    373 }
    374 
    375 void
    376 if_free(ifnet_t *ifp)
    377 {
    378 	kmem_free(ifp, sizeof(ifnet_t));
    379 }
    380 
    381 void
    382 if_initname(struct ifnet *ifp, const char *name, int unit)
    383 {
    384 	(void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
    385 	    "%s%d", name, unit);
    386 }
    387 
    388 /*
    389  * Null routines used while an interface is going away.  These routines
    390  * just return an error.
    391  */
    392 
    393 int
    394 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
    395     const struct sockaddr *so, const struct rtentry *rt)
    396 {
    397 
    398 	return ENXIO;
    399 }
    400 
    401 void
    402 if_nullinput(struct ifnet *ifp, struct mbuf *m)
    403 {
    404 
    405 	/* Nothing. */
    406 }
    407 
    408 void
    409 if_nullstart(struct ifnet *ifp)
    410 {
    411 
    412 	/* Nothing. */
    413 }
    414 
    415 int
    416 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
    417 {
    418 
    419 	m_freem(m);
    420 	return ENXIO;
    421 }
    422 
    423 int
    424 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
    425 {
    426 
    427 	return ENXIO;
    428 }
    429 
    430 int
    431 if_nullinit(struct ifnet *ifp)
    432 {
    433 
    434 	return ENXIO;
    435 }
    436 
    437 void
    438 if_nullstop(struct ifnet *ifp, int disable)
    439 {
    440 
    441 	/* Nothing. */
    442 }
    443 
    444 void
    445 if_nullslowtimo(struct ifnet *ifp)
    446 {
    447 
    448 	/* Nothing. */
    449 }
    450 
    451 void
    452 if_nulldrain(struct ifnet *ifp)
    453 {
    454 
    455 	/* Nothing. */
    456 }
    457 
    458 void
    459 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
    460 {
    461 	struct ifaddr *ifa;
    462 	struct sockaddr_dl *sdl;
    463 
    464 	ifp->if_addrlen = addrlen;
    465 	if_alloc_sadl(ifp);
    466 	ifa = ifp->if_dl;
    467 	sdl = satosdl(ifa->ifa_addr);
    468 
    469 	(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
    470 	if (factory) {
    471 		KASSERT(ifp->if_hwdl == NULL);
    472 		ifp->if_hwdl = ifp->if_dl;
    473 		ifaref(ifp->if_hwdl);
    474 	}
    475 	/* TBD routing socket */
    476 }
    477 
    478 struct ifaddr *
    479 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
    480 {
    481 	unsigned socksize, ifasize;
    482 	int addrlen, namelen;
    483 	struct sockaddr_dl *mask, *sdl;
    484 	struct ifaddr *ifa;
    485 
    486 	namelen = strlen(ifp->if_xname);
    487 	addrlen = ifp->if_addrlen;
    488 	socksize = roundup(sockaddr_dl_measure(namelen, addrlen), sizeof(long));
    489 	ifasize = sizeof(*ifa) + 2 * socksize;
    490 	ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
    491 
    492 	sdl = (struct sockaddr_dl *)(ifa + 1);
    493 	mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
    494 
    495 	sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
    496 	    ifp->if_xname, namelen, NULL, addrlen);
    497 	mask->sdl_family = AF_LINK;
    498 	mask->sdl_len = sockaddr_dl_measure(namelen, 0);
    499 	memset(&mask->sdl_data[0], 0xff, namelen);
    500 	ifa->ifa_rtrequest = link_rtrequest;
    501 	ifa->ifa_addr = (struct sockaddr *)sdl;
    502 	ifa->ifa_netmask = (struct sockaddr *)mask;
    503 	ifa_psref_init(ifa);
    504 
    505 	*sdlp = sdl;
    506 
    507 	return ifa;
    508 }
    509 
    510 static void
    511 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
    512 {
    513 	const struct sockaddr_dl *sdl;
    514 
    515 	ifp->if_dl = ifa;
    516 	ifaref(ifa);
    517 	sdl = satosdl(ifa->ifa_addr);
    518 	ifp->if_sadl = sdl;
    519 }
    520 
    521 /*
    522  * Allocate the link level name for the specified interface.  This
    523  * is an attachment helper.  It must be called after ifp->if_addrlen
    524  * is initialized, which may not be the case when if_attach() is
    525  * called.
    526  */
    527 void
    528 if_alloc_sadl(struct ifnet *ifp)
    529 {
    530 	struct ifaddr *ifa;
    531 	const struct sockaddr_dl *sdl;
    532 
    533 	/*
    534 	 * If the interface already has a link name, release it
    535 	 * now.  This is useful for interfaces that can change
    536 	 * link types, and thus switch link names often.
    537 	 */
    538 	if (ifp->if_sadl != NULL)
    539 		if_free_sadl(ifp, 0);
    540 
    541 	ifa = if_dl_create(ifp, &sdl);
    542 
    543 	ifa_insert(ifp, ifa);
    544 	if_sadl_setrefs(ifp, ifa);
    545 }
    546 
    547 static void
    548 if_deactivate_sadl(struct ifnet *ifp)
    549 {
    550 	struct ifaddr *ifa;
    551 
    552 	KASSERT(ifp->if_dl != NULL);
    553 
    554 	ifa = ifp->if_dl;
    555 
    556 	ifp->if_sadl = NULL;
    557 
    558 	ifp->if_dl = NULL;
    559 	ifafree(ifa);
    560 }
    561 
    562 static void
    563 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
    564 {
    565 	struct ifaddr *old;
    566 
    567 	KASSERT(ifp->if_dl != NULL);
    568 
    569 	old = ifp->if_dl;
    570 
    571 	ifaref(ifa);
    572 	/* XXX Update if_dl and if_sadl atomically */
    573 	ifp->if_dl = ifa;
    574 	ifp->if_sadl = satosdl(ifa->ifa_addr);
    575 
    576 	ifafree(old);
    577 }
    578 
    579 void
    580 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
    581     const struct sockaddr_dl *sdl)
    582 {
    583 	struct ifaddr *ifa;
    584 	const int bound = curlwp_bind();
    585 
    586 	KASSERT(ifa_held(ifa0));
    587 
    588 	const int s = splsoftnet();
    589 
    590 	if_replace_sadl(ifp, ifa0);
    591 
    592 	int ss = pserialize_read_enter();
    593 	IFADDR_READER_FOREACH(ifa, ifp) {
    594 		struct psref psref;
    595 		ifa_acquire(ifa, &psref);
    596 		pserialize_read_exit(ss);
    597 
    598 		rtinit(ifa, RTM_LLINFO_UPD, 0);
    599 
    600 		ss = pserialize_read_enter();
    601 		ifa_release(ifa, &psref);
    602 	}
    603 	pserialize_read_exit(ss);
    604 
    605 	splx(s);
    606 	curlwp_bindx(bound);
    607 }
    608 
    609 /*
    610  * Free the link level name for the specified interface.  This is
    611  * a detach helper.  This is called from if_detach().
    612  */
    613 void
    614 if_free_sadl(struct ifnet *ifp, int factory)
    615 {
    616 	struct ifaddr *ifa;
    617 
    618 	if (factory && ifp->if_hwdl != NULL) {
    619 		ifa = ifp->if_hwdl;
    620 		ifp->if_hwdl = NULL;
    621 		ifafree(ifa);
    622 	}
    623 
    624 	ifa = ifp->if_dl;
    625 	if (ifa == NULL) {
    626 		KASSERT(ifp->if_sadl == NULL);
    627 		return;
    628 	}
    629 
    630 	KASSERT(ifp->if_sadl != NULL);
    631 
    632 	const int s = splsoftnet();
    633 	KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
    634 	ifa_remove(ifp, ifa);
    635 	if_deactivate_sadl(ifp);
    636 	splx(s);
    637 }
    638 
    639 static void
    640 if_getindex(ifnet_t *ifp)
    641 {
    642 	bool hitlimit = false;
    643 	char xnamebuf[HOOKNAMSIZ];
    644 
    645 	ifp->if_index_gen = index_gen++;
    646 	snprintf(xnamebuf, sizeof(xnamebuf),
    647 	    "%s-lshk", ifp->if_xname);
    648 	ifp->if_linkstate_hooks = simplehook_create(IPL_NET,
    649 	    xnamebuf);
    650 
    651 	ifp->if_index = if_index;
    652 	if (ifindex2ifnet == NULL) {
    653 		if_index++;
    654 		goto skip;
    655 	}
    656 	while (if_byindex(ifp->if_index)) {
    657 		/*
    658 		 * If we hit USHRT_MAX, we skip back to 0 since
    659 		 * there are a number of places where the value
    660 		 * of if_index or if_index itself is compared
    661 		 * to or stored in an unsigned short.  By
    662 		 * jumping back, we won't botch those assignments
    663 		 * or comparisons.
    664 		 */
    665 		if (++if_index == 0) {
    666 			if_index = 1;
    667 		} else if (if_index == USHRT_MAX) {
    668 			/*
    669 			 * However, if we have to jump back to
    670 			 * zero *twice* without finding an empty
    671 			 * slot in ifindex2ifnet[], then there
    672 			 * there are too many (>65535) interfaces.
    673 			 */
    674 			if (hitlimit) {
    675 				panic("too many interfaces");
    676 			}
    677 			hitlimit = true;
    678 			if_index = 1;
    679 		}
    680 		ifp->if_index = if_index;
    681 	}
    682 skip:
    683 	/*
    684 	 * ifindex2ifnet is indexed by if_index. Since if_index will
    685 	 * grow dynamically, it should grow too.
    686 	 */
    687 	if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
    688 		size_t m, n, oldlim;
    689 		void *q;
    690 
    691 		oldlim = if_indexlim;
    692 		while (ifp->if_index >= if_indexlim)
    693 			if_indexlim <<= 1;
    694 
    695 		/* grow ifindex2ifnet */
    696 		m = oldlim * sizeof(struct ifnet *);
    697 		n = if_indexlim * sizeof(struct ifnet *);
    698 		q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO);
    699 		if (ifindex2ifnet != NULL) {
    700 			memcpy(q, ifindex2ifnet, m);
    701 			free(ifindex2ifnet, M_IFADDR);
    702 		}
    703 		ifindex2ifnet = (struct ifnet **)q;
    704 	}
    705 	ifindex2ifnet[ifp->if_index] = ifp;
    706 }
    707 
    708 /*
    709  * Initialize an interface and assign an index for it.
    710  *
    711  * It must be called prior to a device specific attach routine
    712  * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
    713  * and be followed by if_register:
    714  *
    715  *     if_initialize(ifp);
    716  *     ether_ifattach(ifp, enaddr);
    717  *     if_register(ifp);
    718  */
    719 void
    720 if_initialize(ifnet_t *ifp)
    721 {
    722 
    723 	KASSERT(if_indexlim > 0);
    724 	TAILQ_INIT(&ifp->if_addrlist);
    725 
    726 	/*
    727 	 * Link level name is allocated later by a separate call to
    728 	 * if_alloc_sadl().
    729 	 */
    730 
    731 	if (ifp->if_snd.ifq_maxlen == 0)
    732 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
    733 
    734 	ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
    735 
    736 	ifp->if_link_state = LINK_STATE_UNKNOWN;
    737 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
    738 	ifp->if_link_scheduled = false;
    739 
    740 	ifp->if_capenable = 0;
    741 	ifp->if_csum_flags_tx = 0;
    742 	ifp->if_csum_flags_rx = 0;
    743 
    744 #ifdef ALTQ
    745 	ifp->if_snd.altq_type = 0;
    746 	ifp->if_snd.altq_disc = NULL;
    747 	ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
    748 	ifp->if_snd.altq_tbr  = NULL;
    749 	ifp->if_snd.altq_ifp  = ifp;
    750 #endif
    751 
    752 	IFQ_LOCK_INIT(&ifp->if_snd);
    753 
    754 	ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
    755 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
    756 
    757 	IF_AFDATA_LOCK_INIT(ifp);
    758 
    759 	PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
    760 	PSLIST_INIT(&ifp->if_addr_pslist);
    761 	psref_target_init(&ifp->if_psref, ifnet_psref_class);
    762 	ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    763 	LIST_INIT(&ifp->if_multiaddrs);
    764 	if_stats_init(ifp);
    765 
    766 	IFNET_GLOBAL_LOCK();
    767 	if_getindex(ifp);
    768 	IFNET_GLOBAL_UNLOCK();
    769 }
    770 
    771 /*
    772  * Register an interface to the list of "active" interfaces.
    773  */
    774 void
    775 if_register(ifnet_t *ifp)
    776 {
    777 	/*
    778 	 * If the driver has not supplied its own if_ioctl or if_stop,
    779 	 * then supply the default.
    780 	 */
    781 	if (ifp->if_ioctl == NULL)
    782 		ifp->if_ioctl = ifioctl_common;
    783 	if (ifp->if_stop == NULL)
    784 		ifp->if_stop = if_nullstop;
    785 
    786 	sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
    787 
    788 	if (!STAILQ_EMPTY(&domains))
    789 		if_attachdomain1(ifp);
    790 
    791 	/* Announce the interface. */
    792 	rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
    793 
    794 	if (ifp->if_slowtimo != NULL) {
    795 		struct if_slowtimo_data *isd;
    796 
    797 		isd = kmem_zalloc(sizeof(*isd), KM_SLEEP);
    798 		mutex_init(&isd->isd_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK);
    799 		callout_init(&isd->isd_ch, CALLOUT_MPSAFE);
    800 		callout_setfunc(&isd->isd_ch, if_slowtimo_intr, ifp);
    801 		isd->isd_ifp = ifp;
    802 
    803 		ifp->if_slowtimo_data = isd;
    804 
    805 		if_slowtimo_intr(ifp);
    806 
    807 		sysctl_watchdog_setup(ifp);
    808 	}
    809 
    810 	if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
    811 		ifp->if_transmit = if_transmit;
    812 
    813 	IFNET_GLOBAL_LOCK();
    814 	TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
    815 	IFNET_WRITER_INSERT_TAIL(ifp);
    816 	IFNET_GLOBAL_UNLOCK();
    817 }
    818 
    819 /*
    820  * The if_percpuq framework
    821  *
    822  * It allows network device drivers to execute the network stack
    823  * in softint (so called softint-based if_input). It utilizes
    824  * softint and percpu ifqueue. It doesn't distribute any packets
    825  * between CPUs, unlike pktqueue(9).
    826  *
    827  * Currently we support two options for device drivers to apply the framework:
    828  * - Use it implicitly with less changes
    829  *   - If you use if_attach in driver's _attach function and if_input in
    830  *     driver's Rx interrupt handler, a packet is queued and a softint handles
    831  *     the packet implicitly
    832  * - Use it explicitly in each driver (recommended)
    833  *   - You can use if_percpuq_* directly in your driver
    834  *   - In this case, you need to allocate struct if_percpuq in driver's softc
    835  *   - See wm(4) as a reference implementation
    836  */
    837 
    838 static void
    839 if_percpuq_softint(void *arg)
    840 {
    841 	struct if_percpuq *ipq = arg;
    842 	struct ifnet *ifp = ipq->ipq_ifp;
    843 	struct mbuf *m;
    844 
    845 	while ((m = if_percpuq_dequeue(ipq)) != NULL) {
    846 		if_statinc(ifp, if_ipackets);
    847 		bpf_mtap(ifp, m, BPF_D_IN);
    848 
    849 		ifp->_if_input(ifp, m);
    850 	}
    851 }
    852 
    853 static void
    854 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    855 {
    856 	struct ifqueue *const ifq = p;
    857 
    858 	memset(ifq, 0, sizeof(*ifq));
    859 	ifq->ifq_maxlen = IFQ_MAXLEN;
    860 }
    861 
    862 struct if_percpuq *
    863 if_percpuq_create(struct ifnet *ifp)
    864 {
    865 	struct if_percpuq *ipq;
    866 	u_int flags = SOFTINT_NET;
    867 
    868 	flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
    869 
    870 	ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
    871 	ipq->ipq_ifp = ifp;
    872 	ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
    873 	ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
    874 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
    875 
    876 	sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
    877 
    878 	return ipq;
    879 }
    880 
    881 static struct mbuf *
    882 if_percpuq_dequeue(struct if_percpuq *ipq)
    883 {
    884 	struct mbuf *m;
    885 	struct ifqueue *ifq;
    886 
    887 	const int s = splnet();
    888 	ifq = percpu_getref(ipq->ipq_ifqs);
    889 	IF_DEQUEUE(ifq, m);
    890 	percpu_putref(ipq->ipq_ifqs);
    891 	splx(s);
    892 
    893 	return m;
    894 }
    895 
    896 static void
    897 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
    898 {
    899 	struct ifqueue *const ifq = p;
    900 
    901 	IF_PURGE(ifq);
    902 }
    903 
    904 void
    905 if_percpuq_destroy(struct if_percpuq *ipq)
    906 {
    907 
    908 	/* if_detach may already destroy it */
    909 	if (ipq == NULL)
    910 		return;
    911 
    912 	softint_disestablish(ipq->ipq_si);
    913 	percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
    914 	percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
    915 	kmem_free(ipq, sizeof(*ipq));
    916 }
    917 
    918 void
    919 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
    920 {
    921 	struct ifqueue *ifq;
    922 
    923 	KASSERT(ipq != NULL);
    924 
    925 	const int s = splnet();
    926 	ifq = percpu_getref(ipq->ipq_ifqs);
    927 	if (IF_QFULL(ifq)) {
    928 		IF_DROP(ifq);
    929 		percpu_putref(ipq->ipq_ifqs);
    930 		m_freem(m);
    931 		goto out;
    932 	}
    933 	IF_ENQUEUE(ifq, m);
    934 	percpu_putref(ipq->ipq_ifqs);
    935 
    936 	softint_schedule(ipq->ipq_si);
    937 out:
    938 	splx(s);
    939 }
    940 
    941 static void
    942 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
    943 {
    944 	struct ifqueue *const ifq = p;
    945 	int *sum = arg;
    946 
    947 	*sum += ifq->ifq_drops;
    948 }
    949 
    950 static int
    951 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
    952 {
    953 	struct sysctlnode node;
    954 	struct if_percpuq *ipq;
    955 	int sum = 0;
    956 	int error;
    957 
    958 	node = *rnode;
    959 	ipq = node.sysctl_data;
    960 
    961 	percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
    962 
    963 	node.sysctl_data = &sum;
    964 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    965 	if (error != 0 || newp == NULL)
    966 		return error;
    967 
    968 	return 0;
    969 }
    970 
    971 static void
    972 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
    973     struct if_percpuq *ipq)
    974 {
    975 	const struct sysctlnode *cnode, *rnode;
    976 
    977 	if (sysctl_createv(clog, 0, NULL, &rnode,
    978 		       CTLFLAG_PERMANENT,
    979 		       CTLTYPE_NODE, "interfaces",
    980 		       SYSCTL_DESCR("Per-interface controls"),
    981 		       NULL, 0, NULL, 0,
    982 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
    983 		goto bad;
    984 
    985 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    986 		       CTLFLAG_PERMANENT,
    987 		       CTLTYPE_NODE, ifname,
    988 		       SYSCTL_DESCR("Interface controls"),
    989 		       NULL, 0, NULL, 0,
    990 		       CTL_CREATE, CTL_EOL) != 0)
    991 		goto bad;
    992 
    993 	if (sysctl_createv(clog, 0, &rnode, &rnode,
    994 		       CTLFLAG_PERMANENT,
    995 		       CTLTYPE_NODE, "rcvq",
    996 		       SYSCTL_DESCR("Interface input queue controls"),
    997 		       NULL, 0, NULL, 0,
    998 		       CTL_CREATE, CTL_EOL) != 0)
    999 		goto bad;
   1000 
   1001 #ifdef NOTYET
   1002 	/* XXX Should show each per-CPU queue length? */
   1003 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   1004 		       CTLFLAG_PERMANENT,
   1005 		       CTLTYPE_INT, "len",
   1006 		       SYSCTL_DESCR("Current input queue length"),
   1007 		       sysctl_percpuq_len, 0, NULL, 0,
   1008 		       CTL_CREATE, CTL_EOL) != 0)
   1009 		goto bad;
   1010 
   1011 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   1012 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1013 		       CTLTYPE_INT, "maxlen",
   1014 		       SYSCTL_DESCR("Maximum allowed input queue length"),
   1015 		       sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
   1016 		       CTL_CREATE, CTL_EOL) != 0)
   1017 		goto bad;
   1018 #endif
   1019 
   1020 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   1021 		       CTLFLAG_PERMANENT,
   1022 		       CTLTYPE_INT, "drops",
   1023 		       SYSCTL_DESCR("Total packets dropped due to full input queue"),
   1024 		       sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
   1025 		       CTL_CREATE, CTL_EOL) != 0)
   1026 		goto bad;
   1027 
   1028 	return;
   1029 bad:
   1030 	printf("%s: could not attach sysctl nodes\n", ifname);
   1031 	return;
   1032 }
   1033 
   1034 /*
   1035  * The deferred if_start framework
   1036  *
   1037  * The common APIs to defer if_start to softint when if_start is requested
   1038  * from a device driver running in hardware interrupt context.
   1039  */
   1040 /*
   1041  * Call ifp->if_start (or equivalent) in a dedicated softint for
   1042  * deferred if_start.
   1043  */
   1044 static void
   1045 if_deferred_start_softint(void *arg)
   1046 {
   1047 	struct if_deferred_start *ids = arg;
   1048 	struct ifnet *ifp = ids->ids_ifp;
   1049 
   1050 	ids->ids_if_start(ifp);
   1051 }
   1052 
   1053 /*
   1054  * The default callback function for deferred if_start.
   1055  */
   1056 static void
   1057 if_deferred_start_common(struct ifnet *ifp)
   1058 {
   1059 	const int s = splnet();
   1060 	if_start_lock(ifp);
   1061 	splx(s);
   1062 }
   1063 
   1064 static inline bool
   1065 if_snd_is_used(struct ifnet *ifp)
   1066 {
   1067 
   1068 	return ALTQ_IS_ENABLED(&ifp->if_snd) ||
   1069 		ifp->if_transmit == if_transmit ||
   1070 		ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit;
   1071 }
   1072 
   1073 /*
   1074  * Schedule deferred if_start.
   1075  */
   1076 void
   1077 if_schedule_deferred_start(struct ifnet *ifp)
   1078 {
   1079 
   1080 	KASSERT(ifp->if_deferred_start != NULL);
   1081 
   1082 	if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
   1083 		return;
   1084 
   1085 	softint_schedule(ifp->if_deferred_start->ids_si);
   1086 }
   1087 
   1088 /*
   1089  * Create an instance of deferred if_start. A driver should call the function
   1090  * only if the driver needs deferred if_start. Drivers can setup their own
   1091  * deferred if_start function via 2nd argument.
   1092  */
   1093 void
   1094 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
   1095 {
   1096 	struct if_deferred_start *ids;
   1097 	u_int flags = SOFTINT_NET;
   1098 
   1099 	flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
   1100 
   1101 	ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
   1102 	ids->ids_ifp = ifp;
   1103 	ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
   1104 	if (func != NULL)
   1105 		ids->ids_if_start = func;
   1106 	else
   1107 		ids->ids_if_start = if_deferred_start_common;
   1108 
   1109 	ifp->if_deferred_start = ids;
   1110 }
   1111 
   1112 static void
   1113 if_deferred_start_destroy(struct ifnet *ifp)
   1114 {
   1115 
   1116 	if (ifp->if_deferred_start == NULL)
   1117 		return;
   1118 
   1119 	softint_disestablish(ifp->if_deferred_start->ids_si);
   1120 	kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
   1121 	ifp->if_deferred_start = NULL;
   1122 }
   1123 
   1124 /*
   1125  * The common interface input routine that is called by device drivers,
   1126  * which should be used only when the driver's rx handler already runs
   1127  * in softint.
   1128  */
   1129 void
   1130 if_input(struct ifnet *ifp, struct mbuf *m)
   1131 {
   1132 
   1133 	KASSERT(ifp->if_percpuq == NULL);
   1134 	KASSERT(!cpu_intr_p());
   1135 
   1136 	if_statinc(ifp, if_ipackets);
   1137 	bpf_mtap(ifp, m, BPF_D_IN);
   1138 
   1139 	ifp->_if_input(ifp, m);
   1140 }
   1141 
   1142 /*
   1143  * DEPRECATED. Use if_initialize and if_register instead.
   1144  * See the above comment of if_initialize.
   1145  *
   1146  * Note that it implicitly enables if_percpuq to make drivers easy to
   1147  * migrate softint-based if_input without much changes. If you don't
   1148  * want to enable it, use if_initialize instead.
   1149  */
   1150 void
   1151 if_attach(ifnet_t *ifp)
   1152 {
   1153 
   1154 	if_initialize(ifp);
   1155 	ifp->if_percpuq = if_percpuq_create(ifp);
   1156 	if_register(ifp);
   1157 }
   1158 
   1159 void
   1160 if_attachdomain(void)
   1161 {
   1162 	struct ifnet *ifp;
   1163 	const int bound = curlwp_bind();
   1164 
   1165 	int s = pserialize_read_enter();
   1166 	IFNET_READER_FOREACH(ifp) {
   1167 		struct psref psref;
   1168 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   1169 		pserialize_read_exit(s);
   1170 		if_attachdomain1(ifp);
   1171 		s = pserialize_read_enter();
   1172 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   1173 	}
   1174 	pserialize_read_exit(s);
   1175 	curlwp_bindx(bound);
   1176 }
   1177 
   1178 static void
   1179 if_attachdomain1(struct ifnet *ifp)
   1180 {
   1181 	struct domain *dp;
   1182 	const int s = splsoftnet();
   1183 
   1184 	/* address family dependent data region */
   1185 	memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
   1186 	DOMAIN_FOREACH(dp) {
   1187 		if (dp->dom_ifattach != NULL)
   1188 			ifp->if_afdata[dp->dom_family] =
   1189 			    (*dp->dom_ifattach)(ifp);
   1190 	}
   1191 
   1192 	splx(s);
   1193 }
   1194 
   1195 /*
   1196  * Deactivate an interface.  This points all of the procedure
   1197  * handles at error stubs.  May be called from interrupt context.
   1198  */
   1199 void
   1200 if_deactivate(struct ifnet *ifp)
   1201 {
   1202 	const int s = splsoftnet();
   1203 
   1204 	ifp->if_output	 = if_nulloutput;
   1205 	ifp->_if_input	 = if_nullinput;
   1206 	ifp->if_start	 = if_nullstart;
   1207 	ifp->if_transmit = if_nulltransmit;
   1208 	ifp->if_ioctl	 = if_nullioctl;
   1209 	ifp->if_init	 = if_nullinit;
   1210 	ifp->if_stop	 = if_nullstop;
   1211 	if (ifp->if_slowtimo)
   1212 		ifp->if_slowtimo = if_nullslowtimo;
   1213 	ifp->if_drain	 = if_nulldrain;
   1214 
   1215 	/* No more packets may be enqueued. */
   1216 	ifp->if_snd.ifq_maxlen = 0;
   1217 
   1218 	splx(s);
   1219 }
   1220 
   1221 bool
   1222 if_is_deactivated(const struct ifnet *ifp)
   1223 {
   1224 
   1225 	return ifp->if_output == if_nulloutput;
   1226 }
   1227 
   1228 void
   1229 if_purgeaddrs(struct ifnet *ifp, int family, void (*purgeaddr)(struct ifaddr *))
   1230 {
   1231 	struct ifaddr *ifa, *nifa;
   1232 	int s;
   1233 
   1234 	s = pserialize_read_enter();
   1235 	for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
   1236 		nifa = IFADDR_READER_NEXT(ifa);
   1237 		if (ifa->ifa_addr->sa_family != family)
   1238 			continue;
   1239 		pserialize_read_exit(s);
   1240 
   1241 		(*purgeaddr)(ifa);
   1242 
   1243 		s = pserialize_read_enter();
   1244 	}
   1245 	pserialize_read_exit(s);
   1246 }
   1247 
   1248 #ifdef IFAREF_DEBUG
   1249 static struct ifaddr **ifa_list;
   1250 static int ifa_list_size;
   1251 
   1252 /* Depends on only one if_attach runs at once */
   1253 static void
   1254 if_build_ifa_list(struct ifnet *ifp)
   1255 {
   1256 	struct ifaddr *ifa;
   1257 	int i;
   1258 
   1259 	KASSERT(ifa_list == NULL);
   1260 	KASSERT(ifa_list_size == 0);
   1261 
   1262 	IFADDR_READER_FOREACH(ifa, ifp)
   1263 		ifa_list_size++;
   1264 
   1265 	ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
   1266 	i = 0;
   1267 	IFADDR_READER_FOREACH(ifa, ifp) {
   1268 		ifa_list[i++] = ifa;
   1269 		ifaref(ifa);
   1270 	}
   1271 }
   1272 
   1273 static void
   1274 if_check_and_free_ifa_list(struct ifnet *ifp)
   1275 {
   1276 	int i;
   1277 	struct ifaddr *ifa;
   1278 
   1279 	if (ifa_list == NULL)
   1280 		return;
   1281 
   1282 	for (i = 0; i < ifa_list_size; i++) {
   1283 		char buf[64];
   1284 
   1285 		ifa = ifa_list[i];
   1286 		sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
   1287 		if (ifa->ifa_refcnt > 1) {
   1288 			log(LOG_WARNING,
   1289 			    "ifa(%s) still referenced (refcnt=%d)\n",
   1290 			    buf, ifa->ifa_refcnt - 1);
   1291 		} else
   1292 			log(LOG_DEBUG,
   1293 			    "ifa(%s) not referenced (refcnt=%d)\n",
   1294 			    buf, ifa->ifa_refcnt - 1);
   1295 		ifafree(ifa);
   1296 	}
   1297 
   1298 	kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
   1299 	ifa_list = NULL;
   1300 	ifa_list_size = 0;
   1301 }
   1302 #endif
   1303 
   1304 /*
   1305  * Detach an interface from the list of "active" interfaces,
   1306  * freeing any resources as we go along.
   1307  *
   1308  * NOTE: This routine must be called with a valid thread context,
   1309  * as it may block.
   1310  */
   1311 void
   1312 if_detach(struct ifnet *ifp)
   1313 {
   1314 	struct socket so;
   1315 	struct ifaddr *ifa;
   1316 #ifdef IFAREF_DEBUG
   1317 	struct ifaddr *last_ifa = NULL;
   1318 #endif
   1319 	struct domain *dp;
   1320 	const struct protosw *pr;
   1321 	int i, family, purged;
   1322 
   1323 #ifdef IFAREF_DEBUG
   1324 	if_build_ifa_list(ifp);
   1325 #endif
   1326 	/*
   1327 	 * XXX It's kind of lame that we have to have the
   1328 	 * XXX socket structure...
   1329 	 */
   1330 	memset(&so, 0, sizeof(so));
   1331 
   1332 	const int s = splnet();
   1333 
   1334 	sysctl_teardown(&ifp->if_sysctl_log);
   1335 
   1336 	IFNET_LOCK(ifp);
   1337 
   1338 	/*
   1339 	 * Unset all queued link states and pretend a
   1340 	 * link state change is scheduled.
   1341 	 * This stops any more link state changes occurring for this
   1342 	 * interface while it's being detached so it's safe
   1343 	 * to drain the workqueue.
   1344 	 */
   1345 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   1346 	ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
   1347 	ifp->if_link_scheduled = true;
   1348 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   1349 	workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work);
   1350 
   1351 	if_deactivate(ifp);
   1352 	IFNET_UNLOCK(ifp);
   1353 
   1354 	/*
   1355 	 * Unlink from the list and wait for all readers to leave
   1356 	 * from pserialize read sections.  Note that we can't do
   1357 	 * psref_target_destroy here.  See below.
   1358 	 */
   1359 	IFNET_GLOBAL_LOCK();
   1360 	ifindex2ifnet[ifp->if_index] = NULL;
   1361 	TAILQ_REMOVE(&ifnet_list, ifp, if_list);
   1362 	IFNET_WRITER_REMOVE(ifp);
   1363 	pserialize_perform(ifnet_psz);
   1364 	IFNET_GLOBAL_UNLOCK();
   1365 
   1366 	if (ifp->if_slowtimo != NULL) {
   1367 		struct if_slowtimo_data *isd = ifp->if_slowtimo_data;
   1368 
   1369 		mutex_enter(&isd->isd_lock);
   1370 		isd->isd_dying = true;
   1371 		mutex_exit(&isd->isd_lock);
   1372 		callout_halt(&isd->isd_ch, NULL);
   1373 		workqueue_wait(if_slowtimo_wq, &isd->isd_work);
   1374 		callout_destroy(&isd->isd_ch);
   1375 		mutex_destroy(&isd->isd_lock);
   1376 		kmem_free(isd, sizeof(*isd));
   1377 
   1378 		ifp->if_slowtimo_data = NULL; /* paraonia */
   1379 		ifp->if_slowtimo = NULL;      /* paranoia */
   1380 	}
   1381 	if_deferred_start_destroy(ifp);
   1382 
   1383 	/*
   1384 	 * Do an if_down() to give protocols a chance to do something.
   1385 	 */
   1386 	if_down_deactivated(ifp);
   1387 
   1388 #ifdef ALTQ
   1389 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
   1390 		altq_disable(&ifp->if_snd);
   1391 	if (ALTQ_IS_ATTACHED(&ifp->if_snd))
   1392 		altq_detach(&ifp->if_snd);
   1393 #endif
   1394 
   1395 #if NCARP > 0
   1396 	/* Remove the interface from any carp group it is a part of.  */
   1397 	if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
   1398 		carp_ifdetach(ifp);
   1399 #endif
   1400 
   1401 	/*
   1402 	 * remove packets that came from ifp, from software interrupt queues.
   1403 	 */
   1404 	DOMAIN_FOREACH(dp) {
   1405 		for (i = 0; i < __arraycount(dp->dom_ifqueues); i++) {
   1406 			struct ifqueue *iq = dp->dom_ifqueues[i];
   1407 			if (iq == NULL)
   1408 				break;
   1409 			dp->dom_ifqueues[i] = NULL;
   1410 			if_detach_queues(ifp, iq);
   1411 		}
   1412 	}
   1413 
   1414 	/*
   1415 	 * IP queues have to be processed separately: net-queue barrier
   1416 	 * ensures that the packets are dequeued while a cross-call will
   1417 	 * ensure that the interrupts have completed. FIXME: not quite..
   1418 	 */
   1419 #ifdef INET
   1420 	pktq_barrier(ip_pktq);
   1421 #endif
   1422 #ifdef INET6
   1423 	if (in6_present)
   1424 		pktq_barrier(ip6_pktq);
   1425 #endif
   1426 	xc_barrier(0);
   1427 
   1428 	/*
   1429 	 * Rip all the addresses off the interface.  This should make
   1430 	 * all of the routes go away.
   1431 	 *
   1432 	 * pr_usrreq calls can remove an arbitrary number of ifaddrs
   1433 	 * from the list, including our "cursor", ifa.  For safety,
   1434 	 * and to honor the TAILQ abstraction, I just restart the
   1435 	 * loop after each removal.  Note that the loop will exit
   1436 	 * when all of the remaining ifaddrs belong to the AF_LINK
   1437 	 * family.  I am counting on the historical fact that at
   1438 	 * least one pr_usrreq in each address domain removes at
   1439 	 * least one ifaddr.
   1440 	 */
   1441 again:
   1442 	/*
   1443 	 * At this point, no other one tries to remove ifa in the list,
   1444 	 * so we don't need to take a lock or psref.  Avoid using
   1445 	 * IFADDR_READER_FOREACH to pass over an inspection of contract
   1446 	 * violations of pserialize.
   1447 	 */
   1448 	IFADDR_WRITER_FOREACH(ifa, ifp) {
   1449 		family = ifa->ifa_addr->sa_family;
   1450 #ifdef IFAREF_DEBUG
   1451 		printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
   1452 		    ifa, family, ifa->ifa_refcnt);
   1453 		if (last_ifa != NULL && ifa == last_ifa)
   1454 			panic("if_detach: loop detected");
   1455 		last_ifa = ifa;
   1456 #endif
   1457 		if (family == AF_LINK)
   1458 			continue;
   1459 		dp = pffinddomain(family);
   1460 		KASSERTMSG(dp != NULL, "no domain for AF %d", family);
   1461 		/*
   1462 		 * XXX These PURGEIF calls are redundant with the
   1463 		 * purge-all-families calls below, but are left in for
   1464 		 * now both to make a smaller change, and to avoid
   1465 		 * unplanned interactions with clearing of
   1466 		 * ifp->if_addrlist.
   1467 		 */
   1468 		purged = 0;
   1469 		for (pr = dp->dom_protosw;
   1470 		     pr < dp->dom_protoswNPROTOSW; pr++) {
   1471 			so.so_proto = pr;
   1472 			if (pr->pr_usrreqs) {
   1473 				(void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1474 				purged = 1;
   1475 			}
   1476 		}
   1477 		if (purged == 0) {
   1478 			/*
   1479 			 * XXX What's really the best thing to do
   1480 			 * XXX here?  --thorpej (at) NetBSD.org
   1481 			 */
   1482 			printf("if_detach: WARNING: AF %d not purged\n",
   1483 			    family);
   1484 			ifa_remove(ifp, ifa);
   1485 		}
   1486 		goto again;
   1487 	}
   1488 
   1489 	if_free_sadl(ifp, 1);
   1490 
   1491 restart:
   1492 	IFADDR_WRITER_FOREACH(ifa, ifp) {
   1493 		family = ifa->ifa_addr->sa_family;
   1494 		KASSERT(family == AF_LINK);
   1495 		ifa_remove(ifp, ifa);
   1496 		goto restart;
   1497 	}
   1498 
   1499 	/* Delete stray routes from the routing table. */
   1500 	for (i = 0; i <= AF_MAX; i++)
   1501 		rt_delete_matched_entries(i, if_delroute_matcher, ifp);
   1502 
   1503 	DOMAIN_FOREACH(dp) {
   1504 		if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
   1505 		{
   1506 			void *p = ifp->if_afdata[dp->dom_family];
   1507 			if (p) {
   1508 				ifp->if_afdata[dp->dom_family] = NULL;
   1509 				(*dp->dom_ifdetach)(ifp, p);
   1510 			}
   1511 		}
   1512 
   1513 		/*
   1514 		 * One would expect multicast memberships (INET and
   1515 		 * INET6) on UDP sockets to be purged by the PURGEIF
   1516 		 * calls above, but if all addresses were removed from
   1517 		 * the interface prior to destruction, the calls will
   1518 		 * not be made (e.g. ppp, for which pppd(8) generally
   1519 		 * removes addresses before destroying the interface).
   1520 		 * Because there is no invariant that multicast
   1521 		 * memberships only exist for interfaces with IPv4
   1522 		 * addresses, we must call PURGEIF regardless of
   1523 		 * addresses.  (Protocols which might store ifnet
   1524 		 * pointers are marked with PR_PURGEIF.)
   1525 		 */
   1526 		for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++) {
   1527 			so.so_proto = pr;
   1528 			if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
   1529 				(void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
   1530 		}
   1531 	}
   1532 
   1533 	/*
   1534 	 * Must be done after the above pr_purgeif because if_psref may be
   1535 	 * still used in pr_purgeif.
   1536 	 */
   1537 	psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
   1538 	PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
   1539 
   1540 	pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
   1541 	(void)pfil_head_destroy(ifp->if_pfil);
   1542 
   1543 	/* Announce that the interface is gone. */
   1544 	rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
   1545 
   1546 	IF_AFDATA_LOCK_DESTROY(ifp);
   1547 
   1548 	if (ifp->if_percpuq != NULL) {
   1549 		if_percpuq_destroy(ifp->if_percpuq);
   1550 		ifp->if_percpuq = NULL;
   1551 	}
   1552 
   1553 	mutex_obj_free(ifp->if_ioctl_lock);
   1554 	ifp->if_ioctl_lock = NULL;
   1555 	mutex_obj_free(ifp->if_snd.ifq_lock);
   1556 	if_stats_fini(ifp);
   1557 	KASSERT(!simplehook_has_hooks(ifp->if_linkstate_hooks));
   1558 	simplehook_destroy(ifp->if_linkstate_hooks);
   1559 
   1560 	splx(s);
   1561 
   1562 #ifdef IFAREF_DEBUG
   1563 	if_check_and_free_ifa_list(ifp);
   1564 #endif
   1565 }
   1566 
   1567 static void
   1568 if_detach_queues(struct ifnet *ifp, struct ifqueue *q)
   1569 {
   1570 	struct mbuf *m, *prev, *next;
   1571 
   1572 	prev = NULL;
   1573 	for (m = q->ifq_head; m != NULL; m = next) {
   1574 		KASSERT((m->m_flags & M_PKTHDR) != 0);
   1575 
   1576 		next = m->m_nextpkt;
   1577 		if (m->m_pkthdr.rcvif_index != ifp->if_index) {
   1578 			prev = m;
   1579 			continue;
   1580 		}
   1581 
   1582 		if (prev != NULL)
   1583 			prev->m_nextpkt = m->m_nextpkt;
   1584 		else
   1585 			q->ifq_head = m->m_nextpkt;
   1586 		if (q->ifq_tail == m)
   1587 			q->ifq_tail = prev;
   1588 		q->ifq_len--;
   1589 
   1590 		m->m_nextpkt = NULL;
   1591 		m_freem(m);
   1592 		IF_DROP(q);
   1593 	}
   1594 }
   1595 
   1596 /*
   1597  * Callback for a radix tree walk to delete all references to an
   1598  * ifnet.
   1599  */
   1600 static int
   1601 if_delroute_matcher(struct rtentry *rt, void *v)
   1602 {
   1603 	struct ifnet *ifp = (struct ifnet *)v;
   1604 
   1605 	if (rt->rt_ifp == ifp)
   1606 		return 1;
   1607 	else
   1608 		return 0;
   1609 }
   1610 
   1611 /*
   1612  * Create a clone network interface.
   1613  */
   1614 static int
   1615 if_clone_create(const char *name)
   1616 {
   1617 	struct if_clone *ifc;
   1618 	int unit;
   1619 	struct ifnet *ifp;
   1620 	struct psref psref;
   1621 
   1622 	KASSERT(mutex_owned(&if_clone_mtx));
   1623 
   1624 	ifc = if_clone_lookup(name, &unit);
   1625 	if (ifc == NULL)
   1626 		return EINVAL;
   1627 
   1628 	ifp = if_get(name, &psref);
   1629 	if (ifp != NULL) {
   1630 		if_put(ifp, &psref);
   1631 		return EEXIST;
   1632 	}
   1633 
   1634 	return (*ifc->ifc_create)(ifc, unit);
   1635 }
   1636 
   1637 /*
   1638  * Destroy a clone network interface.
   1639  */
   1640 static int
   1641 if_clone_destroy(const char *name)
   1642 {
   1643 	struct if_clone *ifc;
   1644 	struct ifnet *ifp;
   1645 	struct psref psref;
   1646 	int error;
   1647 	int (*if_ioctlfn)(struct ifnet *, u_long, void *);
   1648 
   1649 	KASSERT(mutex_owned(&if_clone_mtx));
   1650 
   1651 	ifc = if_clone_lookup(name, NULL);
   1652 	if (ifc == NULL)
   1653 		return EINVAL;
   1654 
   1655 	if (ifc->ifc_destroy == NULL)
   1656 		return EOPNOTSUPP;
   1657 
   1658 	ifp = if_get(name, &psref);
   1659 	if (ifp == NULL)
   1660 		return ENXIO;
   1661 
   1662 	/* We have to disable ioctls here */
   1663 	IFNET_LOCK(ifp);
   1664 	if_ioctlfn = ifp->if_ioctl;
   1665 	ifp->if_ioctl = if_nullioctl;
   1666 	IFNET_UNLOCK(ifp);
   1667 
   1668 	/*
   1669 	 * We cannot call ifc_destroy with holding ifp.
   1670 	 * Releasing ifp here is safe thanks to if_clone_mtx.
   1671 	 */
   1672 	if_put(ifp, &psref);
   1673 
   1674 	error = (*ifc->ifc_destroy)(ifp);
   1675 
   1676 	if (error != 0) {
   1677 		/* We have to restore if_ioctl on error */
   1678 		IFNET_LOCK(ifp);
   1679 		ifp->if_ioctl = if_ioctlfn;
   1680 		IFNET_UNLOCK(ifp);
   1681 	}
   1682 
   1683 	return error;
   1684 }
   1685 
   1686 static bool
   1687 if_is_unit(const char *name)
   1688 {
   1689 
   1690 	while (*name != '\0') {
   1691 		if (*name < '0' || *name > '9')
   1692 			return false;
   1693 		name++;
   1694 	}
   1695 
   1696 	return true;
   1697 }
   1698 
   1699 /*
   1700  * Look up a network interface cloner.
   1701  */
   1702 static struct if_clone *
   1703 if_clone_lookup(const char *name, int *unitp)
   1704 {
   1705 	struct if_clone *ifc;
   1706 	const char *cp;
   1707 	char *dp, ifname[IFNAMSIZ + 3];
   1708 	int unit;
   1709 
   1710 	KASSERT(mutex_owned(&if_clone_mtx));
   1711 
   1712 	strcpy(ifname, "if_");
   1713 	/* separate interface name from unit */
   1714 	/* TODO: search unit number from backward */
   1715 	for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
   1716 	    *cp && !if_is_unit(cp);)
   1717 		*dp++ = *cp++;
   1718 
   1719 	if (cp == name || cp - name == IFNAMSIZ || !*cp)
   1720 		return NULL;	/* No name or unit number */
   1721 	*dp++ = '\0';
   1722 
   1723 again:
   1724 	LIST_FOREACH(ifc, &if_cloners, ifc_list) {
   1725 		if (strcmp(ifname + 3, ifc->ifc_name) == 0)
   1726 			break;
   1727 	}
   1728 
   1729 	if (ifc == NULL) {
   1730 		int error;
   1731 		if (*ifname == '\0')
   1732 			return NULL;
   1733 		mutex_exit(&if_clone_mtx);
   1734 		error = module_autoload(ifname, MODULE_CLASS_DRIVER);
   1735 		mutex_enter(&if_clone_mtx);
   1736 		if (error)
   1737 			return NULL;
   1738 		*ifname = '\0';
   1739 		goto again;
   1740 	}
   1741 
   1742 	unit = 0;
   1743 	while (cp - name < IFNAMSIZ && *cp) {
   1744 		if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
   1745 			/* Bogus unit number. */
   1746 			return NULL;
   1747 		}
   1748 		unit = (unit * 10) + (*cp++ - '0');
   1749 	}
   1750 
   1751 	if (unitp != NULL)
   1752 		*unitp = unit;
   1753 	return ifc;
   1754 }
   1755 
   1756 /*
   1757  * Register a network interface cloner.
   1758  */
   1759 void
   1760 if_clone_attach(struct if_clone *ifc)
   1761 {
   1762 
   1763 	mutex_enter(&if_clone_mtx);
   1764 	LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
   1765 	if_cloners_count++;
   1766 	mutex_exit(&if_clone_mtx);
   1767 }
   1768 
   1769 /*
   1770  * Unregister a network interface cloner.
   1771  */
   1772 void
   1773 if_clone_detach(struct if_clone *ifc)
   1774 {
   1775 
   1776 	mutex_enter(&if_clone_mtx);
   1777 	LIST_REMOVE(ifc, ifc_list);
   1778 	if_cloners_count--;
   1779 	mutex_exit(&if_clone_mtx);
   1780 }
   1781 
   1782 /*
   1783  * Provide list of interface cloners to userspace.
   1784  */
   1785 int
   1786 if_clone_list(int buf_count, char *buffer, int *total)
   1787 {
   1788 	char outbuf[IFNAMSIZ], *dst;
   1789 	struct if_clone *ifc;
   1790 	int count, error = 0;
   1791 
   1792 	mutex_enter(&if_clone_mtx);
   1793 	*total = if_cloners_count;
   1794 	if ((dst = buffer) == NULL) {
   1795 		/* Just asking how many there are. */
   1796 		goto out;
   1797 	}
   1798 
   1799 	if (buf_count < 0) {
   1800 		error = EINVAL;
   1801 		goto out;
   1802 	}
   1803 
   1804 	count = (if_cloners_count < buf_count) ?
   1805 	    if_cloners_count : buf_count;
   1806 
   1807 	for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
   1808 	     ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
   1809 		(void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
   1810 		if (outbuf[sizeof(outbuf) - 1] != '\0') {
   1811 			error = ENAMETOOLONG;
   1812 			goto out;
   1813 		}
   1814 		error = copyout(outbuf, dst, sizeof(outbuf));
   1815 		if (error != 0)
   1816 			break;
   1817 	}
   1818 
   1819 out:
   1820 	mutex_exit(&if_clone_mtx);
   1821 	return error;
   1822 }
   1823 
   1824 void
   1825 ifa_psref_init(struct ifaddr *ifa)
   1826 {
   1827 
   1828 	psref_target_init(&ifa->ifa_psref, ifa_psref_class);
   1829 }
   1830 
   1831 void
   1832 ifaref(struct ifaddr *ifa)
   1833 {
   1834 
   1835 	atomic_inc_uint(&ifa->ifa_refcnt);
   1836 }
   1837 
   1838 void
   1839 ifafree(struct ifaddr *ifa)
   1840 {
   1841 	KASSERT(ifa != NULL);
   1842 	KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt);
   1843 
   1844 #ifndef __HAVE_ATOMIC_AS_MEMBAR
   1845 	membar_release();
   1846 #endif
   1847 	if (atomic_dec_uint_nv(&ifa->ifa_refcnt) != 0)
   1848 		return;
   1849 #ifndef __HAVE_ATOMIC_AS_MEMBAR
   1850 	membar_acquire();
   1851 #endif
   1852 	free(ifa, M_IFADDR);
   1853 }
   1854 
   1855 bool
   1856 ifa_is_destroying(struct ifaddr *ifa)
   1857 {
   1858 
   1859 	return ISSET(ifa->ifa_flags, IFA_DESTROYING);
   1860 }
   1861 
   1862 void
   1863 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
   1864 {
   1865 
   1866 	ifa->ifa_ifp = ifp;
   1867 
   1868 	/*
   1869 	 * Check MP-safety for IFEF_MPSAFE drivers.
   1870 	 * Check !IFF_RUNNING for initialization routines that normally don't
   1871 	 * take IFNET_LOCK but it's safe because there is no competitor.
   1872 	 * XXX there are false positive cases because IFF_RUNNING can be off on
   1873 	 * if_stop.
   1874 	 */
   1875 	KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
   1876 	    IFNET_LOCKED(ifp));
   1877 
   1878 	TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
   1879 	IFADDR_ENTRY_INIT(ifa);
   1880 	IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
   1881 
   1882 	ifaref(ifa);
   1883 }
   1884 
   1885 void
   1886 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
   1887 {
   1888 
   1889 	KASSERT(ifa->ifa_ifp == ifp);
   1890 	/*
   1891 	 * Check MP-safety for IFEF_MPSAFE drivers.
   1892 	 * if_is_deactivated indicates ifa_remove is called from if_detach
   1893 	 * where it is safe even if IFNET_LOCK isn't held.
   1894 	 */
   1895 	KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) || IFNET_LOCKED(ifp));
   1896 
   1897 	TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
   1898 	IFADDR_WRITER_REMOVE(ifa);
   1899 #ifdef NET_MPSAFE
   1900 	IFNET_GLOBAL_LOCK();
   1901 	pserialize_perform(ifnet_psz);
   1902 	IFNET_GLOBAL_UNLOCK();
   1903 #endif
   1904 
   1905 #ifdef NET_MPSAFE
   1906 	psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
   1907 #endif
   1908 	IFADDR_ENTRY_DESTROY(ifa);
   1909 	ifafree(ifa);
   1910 }
   1911 
   1912 void
   1913 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
   1914 {
   1915 
   1916 	PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
   1917 	psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
   1918 }
   1919 
   1920 void
   1921 ifa_release(struct ifaddr *ifa, struct psref *psref)
   1922 {
   1923 
   1924 	if (ifa == NULL)
   1925 		return;
   1926 
   1927 	psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
   1928 }
   1929 
   1930 bool
   1931 ifa_held(struct ifaddr *ifa)
   1932 {
   1933 
   1934 	return psref_held(&ifa->ifa_psref, ifa_psref_class);
   1935 }
   1936 
   1937 static inline int
   1938 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
   1939 {
   1940 	return sockaddr_cmp(sa1, sa2) == 0;
   1941 }
   1942 
   1943 /*
   1944  * Locate an interface based on a complete address.
   1945  */
   1946 /*ARGSUSED*/
   1947 struct ifaddr *
   1948 ifa_ifwithaddr(const struct sockaddr *addr)
   1949 {
   1950 	struct ifnet *ifp;
   1951 	struct ifaddr *ifa;
   1952 
   1953 	IFNET_READER_FOREACH(ifp) {
   1954 		if (if_is_deactivated(ifp))
   1955 			continue;
   1956 		IFADDR_READER_FOREACH(ifa, ifp) {
   1957 			if (ifa->ifa_addr->sa_family != addr->sa_family)
   1958 				continue;
   1959 			if (equal(addr, ifa->ifa_addr))
   1960 				return ifa;
   1961 			if ((ifp->if_flags & IFF_BROADCAST) &&
   1962 			    ifa->ifa_broadaddr &&
   1963 			    /* IP6 doesn't have broadcast */
   1964 			    ifa->ifa_broadaddr->sa_len != 0 &&
   1965 			    equal(ifa->ifa_broadaddr, addr))
   1966 				return ifa;
   1967 		}
   1968 	}
   1969 	return NULL;
   1970 }
   1971 
   1972 struct ifaddr *
   1973 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
   1974 {
   1975 	struct ifaddr *ifa;
   1976 	int s = pserialize_read_enter();
   1977 
   1978 	ifa = ifa_ifwithaddr(addr);
   1979 	if (ifa != NULL)
   1980 		ifa_acquire(ifa, psref);
   1981 	pserialize_read_exit(s);
   1982 
   1983 	return ifa;
   1984 }
   1985 
   1986 /*
   1987  * Locate the point to point interface with a given destination address.
   1988  */
   1989 /*ARGSUSED*/
   1990 struct ifaddr *
   1991 ifa_ifwithdstaddr(const struct sockaddr *addr)
   1992 {
   1993 	struct ifnet *ifp;
   1994 	struct ifaddr *ifa;
   1995 
   1996 	IFNET_READER_FOREACH(ifp) {
   1997 		if (if_is_deactivated(ifp))
   1998 			continue;
   1999 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   2000 			continue;
   2001 		IFADDR_READER_FOREACH(ifa, ifp) {
   2002 			if (ifa->ifa_addr->sa_family != addr->sa_family ||
   2003 			    ifa->ifa_dstaddr == NULL)
   2004 				continue;
   2005 			if (equal(addr, ifa->ifa_dstaddr))
   2006 				return ifa;
   2007 		}
   2008 	}
   2009 
   2010 	return NULL;
   2011 }
   2012 
   2013 struct ifaddr *
   2014 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
   2015 {
   2016 	struct ifaddr *ifa;
   2017 	int s;
   2018 
   2019 	s = pserialize_read_enter();
   2020 	ifa = ifa_ifwithdstaddr(addr);
   2021 	if (ifa != NULL)
   2022 		ifa_acquire(ifa, psref);
   2023 	pserialize_read_exit(s);
   2024 
   2025 	return ifa;
   2026 }
   2027 
   2028 /*
   2029  * Find an interface on a specific network.  If many, choice
   2030  * is most specific found.
   2031  */
   2032 struct ifaddr *
   2033 ifa_ifwithnet(const struct sockaddr *addr)
   2034 {
   2035 	struct ifnet *ifp;
   2036 	struct ifaddr *ifa, *ifa_maybe = NULL;
   2037 	const struct sockaddr_dl *sdl;
   2038 	u_int af = addr->sa_family;
   2039 	const char *addr_data = addr->sa_data, *cplim;
   2040 
   2041 	if (af == AF_LINK) {
   2042 		sdl = satocsdl(addr);
   2043 		if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
   2044 		    ifindex2ifnet[sdl->sdl_index] &&
   2045 		    !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
   2046 			return ifindex2ifnet[sdl->sdl_index]->if_dl;
   2047 		}
   2048 	}
   2049 #ifdef NETATALK
   2050 	if (af == AF_APPLETALK) {
   2051 		const struct sockaddr_at *sat, *sat2;
   2052 		sat = (const struct sockaddr_at *)addr;
   2053 		IFNET_READER_FOREACH(ifp) {
   2054 			if (if_is_deactivated(ifp))
   2055 				continue;
   2056 			ifa = at_ifawithnet((const struct sockaddr_at *)addr, ifp);
   2057 			if (ifa == NULL)
   2058 				continue;
   2059 			sat2 = (struct sockaddr_at *)ifa->ifa_addr;
   2060 			if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
   2061 				return ifa; /* exact match */
   2062 			if (ifa_maybe == NULL) {
   2063 				/* else keep the if with the right range */
   2064 				ifa_maybe = ifa;
   2065 			}
   2066 		}
   2067 		return ifa_maybe;
   2068 	}
   2069 #endif
   2070 	IFNET_READER_FOREACH(ifp) {
   2071 		if (if_is_deactivated(ifp))
   2072 			continue;
   2073 		IFADDR_READER_FOREACH(ifa, ifp) {
   2074 			const char *cp, *cp2, *cp3;
   2075 
   2076 			if (ifa->ifa_addr->sa_family != af ||
   2077 			    ifa->ifa_netmask == NULL)
   2078  next:				continue;
   2079 			cp = addr_data;
   2080 			cp2 = ifa->ifa_addr->sa_data;
   2081 			cp3 = ifa->ifa_netmask->sa_data;
   2082 			cplim = (const char *)ifa->ifa_netmask +
   2083 			    ifa->ifa_netmask->sa_len;
   2084 			while (cp3 < cplim) {
   2085 				if ((*cp++ ^ *cp2++) & *cp3++) {
   2086 					/* want to continue for() loop */
   2087 					goto next;
   2088 				}
   2089 			}
   2090 			if (ifa_maybe == NULL ||
   2091 			    rt_refines(ifa->ifa_netmask,
   2092 			               ifa_maybe->ifa_netmask))
   2093 				ifa_maybe = ifa;
   2094 		}
   2095 	}
   2096 	return ifa_maybe;
   2097 }
   2098 
   2099 struct ifaddr *
   2100 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
   2101 {
   2102 	struct ifaddr *ifa;
   2103 	int s;
   2104 
   2105 	s = pserialize_read_enter();
   2106 	ifa = ifa_ifwithnet(addr);
   2107 	if (ifa != NULL)
   2108 		ifa_acquire(ifa, psref);
   2109 	pserialize_read_exit(s);
   2110 
   2111 	return ifa;
   2112 }
   2113 
   2114 /*
   2115  * Find the interface of the address.
   2116  */
   2117 struct ifaddr *
   2118 ifa_ifwithladdr(const struct sockaddr *addr)
   2119 {
   2120 	struct ifaddr *ia;
   2121 
   2122 	if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
   2123 	    (ia = ifa_ifwithnet(addr)))
   2124 		return ia;
   2125 	return NULL;
   2126 }
   2127 
   2128 struct ifaddr *
   2129 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
   2130 {
   2131 	struct ifaddr *ifa;
   2132 	int s;
   2133 
   2134 	s = pserialize_read_enter();
   2135 	ifa = ifa_ifwithladdr(addr);
   2136 	if (ifa != NULL)
   2137 		ifa_acquire(ifa, psref);
   2138 	pserialize_read_exit(s);
   2139 
   2140 	return ifa;
   2141 }
   2142 
   2143 /*
   2144  * Find an interface using a specific address family
   2145  */
   2146 struct ifaddr *
   2147 ifa_ifwithaf(int af)
   2148 {
   2149 	struct ifnet *ifp;
   2150 	struct ifaddr *ifa = NULL;
   2151 	int s;
   2152 
   2153 	s = pserialize_read_enter();
   2154 	IFNET_READER_FOREACH(ifp) {
   2155 		if (if_is_deactivated(ifp))
   2156 			continue;
   2157 		IFADDR_READER_FOREACH(ifa, ifp) {
   2158 			if (ifa->ifa_addr->sa_family == af)
   2159 				goto out;
   2160 		}
   2161 	}
   2162 out:
   2163 	pserialize_read_exit(s);
   2164 	return ifa;
   2165 }
   2166 
   2167 /*
   2168  * Find an interface address specific to an interface best matching
   2169  * a given address.
   2170  */
   2171 struct ifaddr *
   2172 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
   2173 {
   2174 	struct ifaddr *ifa;
   2175 	const char *cp, *cp2, *cp3;
   2176 	const char *cplim;
   2177 	struct ifaddr *ifa_maybe = 0;
   2178 	u_int af = addr->sa_family;
   2179 
   2180 	if (if_is_deactivated(ifp))
   2181 		return NULL;
   2182 
   2183 	if (af >= AF_MAX)
   2184 		return NULL;
   2185 
   2186 	IFADDR_READER_FOREACH(ifa, ifp) {
   2187 		if (ifa->ifa_addr->sa_family != af)
   2188 			continue;
   2189 		ifa_maybe = ifa;
   2190 		if (ifa->ifa_netmask == NULL) {
   2191 			if (equal(addr, ifa->ifa_addr) ||
   2192 			    (ifa->ifa_dstaddr &&
   2193 			     equal(addr, ifa->ifa_dstaddr)))
   2194 				return ifa;
   2195 			continue;
   2196 		}
   2197 		cp = addr->sa_data;
   2198 		cp2 = ifa->ifa_addr->sa_data;
   2199 		cp3 = ifa->ifa_netmask->sa_data;
   2200 		cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
   2201 		for (; cp3 < cplim; cp3++) {
   2202 			if ((*cp++ ^ *cp2++) & *cp3)
   2203 				break;
   2204 		}
   2205 		if (cp3 == cplim)
   2206 			return ifa;
   2207 	}
   2208 	return ifa_maybe;
   2209 }
   2210 
   2211 struct ifaddr *
   2212 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
   2213     struct psref *psref)
   2214 {
   2215 	struct ifaddr *ifa;
   2216 	int s;
   2217 
   2218 	s = pserialize_read_enter();
   2219 	ifa = ifaof_ifpforaddr(addr, ifp);
   2220 	if (ifa != NULL)
   2221 		ifa_acquire(ifa, psref);
   2222 	pserialize_read_exit(s);
   2223 
   2224 	return ifa;
   2225 }
   2226 
   2227 /*
   2228  * Default action when installing a route with a Link Level gateway.
   2229  * Lookup an appropriate real ifa to point to.
   2230  * This should be moved to /sys/net/link.c eventually.
   2231  */
   2232 void
   2233 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
   2234 {
   2235 	struct ifaddr *ifa;
   2236 	const struct sockaddr *dst;
   2237 	struct ifnet *ifp;
   2238 	struct psref psref;
   2239 
   2240 	if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
   2241 		return;
   2242 	ifp = rt->rt_ifa->ifa_ifp;
   2243 	dst = rt_getkey(rt);
   2244 	if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
   2245 		rt_replace_ifa(rt, ifa);
   2246 		if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
   2247 			ifa->ifa_rtrequest(cmd, rt, info);
   2248 		ifa_release(ifa, &psref);
   2249 	}
   2250 }
   2251 
   2252 /*
   2253  * bitmask macros to manage a densely packed link_state change queue.
   2254  * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
   2255  * LINK_STATE_UP(2) we need 2 bits for each state change.
   2256  * As a state change to store is 0, treat all bits set as an unset item.
   2257  */
   2258 #define LQ_ITEM_BITS		2
   2259 #define LQ_ITEM_MASK		((1 << LQ_ITEM_BITS) - 1)
   2260 #define LQ_MASK(i)		(LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
   2261 #define LINK_STATE_UNSET	LQ_ITEM_MASK
   2262 #define LQ_ITEM(q, i)		(((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
   2263 #define LQ_STORE(q, i, v)						      \
   2264 	do {								      \
   2265 		(q) &= ~LQ_MASK((i));					      \
   2266 		(q) |= (v) << (i) * LQ_ITEM_BITS;			      \
   2267 	} while (0 /* CONSTCOND */)
   2268 #define LQ_MAX(q)		((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
   2269 #define LQ_POP(q, v)							      \
   2270 	do {								      \
   2271 		(v) = LQ_ITEM((q), 0);					      \
   2272 		(q) >>= LQ_ITEM_BITS;					      \
   2273 		(q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;  \
   2274 	} while (0 /* CONSTCOND */)
   2275 #define LQ_PUSH(q, v)							      \
   2276 	do {								      \
   2277 		(q) >>= LQ_ITEM_BITS;					      \
   2278 		(q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS;		      \
   2279 	} while (0 /* CONSTCOND */)
   2280 #define LQ_FIND_UNSET(q, i)						      \
   2281 	for ((i) = 0; i < LQ_MAX((q)); (i)++) {				      \
   2282 		if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET)		      \
   2283 			break;						      \
   2284 	}
   2285 
   2286 /*
   2287  * Handle a change in the interface link state and
   2288  * queue notifications.
   2289  */
   2290 void
   2291 if_link_state_change(struct ifnet *ifp, int link_state)
   2292 {
   2293 	int idx;
   2294 
   2295 	/* Ensure change is to a valid state */
   2296 	switch (link_state) {
   2297 	case LINK_STATE_UNKNOWN:	/* FALLTHROUGH */
   2298 	case LINK_STATE_DOWN:		/* FALLTHROUGH */
   2299 	case LINK_STATE_UP:
   2300 		break;
   2301 	default:
   2302 #ifdef DEBUG
   2303 		printf("%s: invalid link state %d\n",
   2304 		    ifp->if_xname, link_state);
   2305 #endif
   2306 		return;
   2307 	}
   2308 
   2309 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2310 
   2311 	/* Find the last unset event in the queue. */
   2312 	LQ_FIND_UNSET(ifp->if_link_queue, idx);
   2313 
   2314 	if (idx == 0) {
   2315 		/*
   2316 		 * There is no queue of link state changes.
   2317 		 * As we have the lock we can safely compare against the
   2318 		 * current link state and return if the same.
   2319 		 * Otherwise, if scheduled is true then the interface is being
   2320 		 * detached and the queue is being drained so we need
   2321 		 * to avoid queuing more work.
   2322 		 */
   2323 		 if (ifp->if_link_state == link_state || ifp->if_link_scheduled)
   2324 			goto out;
   2325 	} else {
   2326 		/* Ensure link_state doesn't match the last queued state. */
   2327 		if (LQ_ITEM(ifp->if_link_queue, idx - 1) == (uint8_t)link_state)
   2328 			goto out;
   2329 	}
   2330 
   2331 	/* Handle queue overflow. */
   2332 	if (idx == LQ_MAX(ifp->if_link_queue)) {
   2333 		uint8_t lost;
   2334 
   2335 		/*
   2336 		 * The DOWN state must be protected from being pushed off
   2337 		 * the queue to ensure that userland will always be
   2338 		 * in a sane state.
   2339 		 * Because DOWN is protected, there is no need to protect
   2340 		 * UNKNOWN.
   2341 		 * It should be invalid to change from any other state to
   2342 		 * UNKNOWN anyway ...
   2343 		 */
   2344 		lost = LQ_ITEM(ifp->if_link_queue, 0);
   2345 		LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
   2346 		if (lost == LINK_STATE_DOWN) {
   2347 			lost = LQ_ITEM(ifp->if_link_queue, 0);
   2348 			LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
   2349 		}
   2350 		printf("%s: lost link state change %s\n",
   2351 		    ifp->if_xname,
   2352 		    lost == LINK_STATE_UP ? "UP" :
   2353 		    lost == LINK_STATE_DOWN ? "DOWN" :
   2354 		    "UNKNOWN");
   2355 	} else
   2356 		LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
   2357 
   2358 	if (ifp->if_link_scheduled)
   2359 		goto out;
   2360 
   2361 	ifp->if_link_scheduled = true;
   2362 	workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
   2363 
   2364 out:
   2365 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2366 }
   2367 
   2368 /*
   2369  * Handle interface link state change notifications.
   2370  */
   2371 static void
   2372 if_link_state_change_process(struct ifnet *ifp, int link_state)
   2373 {
   2374 	struct domain *dp;
   2375 	const int s = splnet();
   2376 	bool notify;
   2377 
   2378 	KASSERT(!cpu_intr_p());
   2379 
   2380 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2381 
   2382 	/* Ensure the change is still valid. */
   2383 	if (ifp->if_link_state == link_state) {
   2384 		IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2385 		splx(s);
   2386 		return;
   2387 	}
   2388 
   2389 #ifdef DEBUG
   2390 	log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
   2391 		link_state == LINK_STATE_UP ? "UP" :
   2392 		link_state == LINK_STATE_DOWN ? "DOWN" :
   2393 		"UNKNOWN",
   2394 		ifp->if_link_state == LINK_STATE_UP ? "UP" :
   2395 		ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
   2396 		"UNKNOWN");
   2397 #endif
   2398 
   2399 	/*
   2400 	 * When going from UNKNOWN to UP, we need to mark existing
   2401 	 * addresses as tentative and restart DAD as we may have
   2402 	 * erroneously not found a duplicate.
   2403 	 *
   2404 	 * This needs to happen before rt_ifmsg to avoid a race where
   2405 	 * listeners would have an address and expect it to work right
   2406 	 * away.
   2407 	 */
   2408 	notify = (link_state == LINK_STATE_UP &&
   2409 	    ifp->if_link_state == LINK_STATE_UNKNOWN);
   2410 	ifp->if_link_state = link_state;
   2411 	/* The following routines may sleep so release the spin mutex */
   2412 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2413 
   2414 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2415 	if (notify) {
   2416 		DOMAIN_FOREACH(dp) {
   2417 			if (dp->dom_if_link_state_change != NULL)
   2418 				dp->dom_if_link_state_change(ifp,
   2419 				    LINK_STATE_DOWN);
   2420 		}
   2421 	}
   2422 
   2423 	/* Notify that the link state has changed. */
   2424 	rt_ifmsg(ifp);
   2425 
   2426 	simplehook_dohooks(ifp->if_linkstate_hooks);
   2427 
   2428 	DOMAIN_FOREACH(dp) {
   2429 		if (dp->dom_if_link_state_change != NULL)
   2430 			dp->dom_if_link_state_change(ifp, link_state);
   2431 	}
   2432 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2433 	splx(s);
   2434 }
   2435 
   2436 /*
   2437  * Process the interface link state change queue.
   2438  */
   2439 static void
   2440 if_link_state_change_work(struct work *work, void *arg)
   2441 {
   2442 	struct ifnet *ifp = container_of(work, struct ifnet, if_link_work);
   2443 	uint8_t state;
   2444 
   2445 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2446 	const int s = splnet();
   2447 
   2448 	/*
   2449 	 * Pop a link state change from the queue and process it.
   2450 	 * If there is nothing to process then if_detach() has been called.
   2451 	 * We keep if_link_scheduled = true so the queue can safely drain
   2452 	 * without more work being queued.
   2453 	 */
   2454 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2455 	LQ_POP(ifp->if_link_queue, state);
   2456 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2457 	if (state == LINK_STATE_UNSET)
   2458 		goto out;
   2459 
   2460 	if_link_state_change_process(ifp, state);
   2461 
   2462 	/* If there is a link state change to come, schedule it. */
   2463 	IF_LINK_STATE_CHANGE_LOCK(ifp);
   2464 	if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) {
   2465 		ifp->if_link_scheduled = true;
   2466 		workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
   2467 	} else
   2468 		ifp->if_link_scheduled = false;
   2469 	IF_LINK_STATE_CHANGE_UNLOCK(ifp);
   2470 
   2471 out:
   2472 	splx(s);
   2473 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2474 }
   2475 
   2476 void *
   2477 if_linkstate_change_establish(struct ifnet *ifp, void (*fn)(void *), void *arg)
   2478 {
   2479 	khook_t *hk;
   2480 
   2481 	hk = simplehook_establish(ifp->if_linkstate_hooks, fn, arg);
   2482 
   2483 	return (void *)hk;
   2484 }
   2485 
   2486 void
   2487 if_linkstate_change_disestablish(struct ifnet *ifp, void *vhook, kmutex_t *lock)
   2488 {
   2489 
   2490 	simplehook_disestablish(ifp->if_linkstate_hooks, vhook, lock);
   2491 }
   2492 
   2493 /*
   2494  * Used to mark addresses on an interface as DETATCHED or TENTATIVE
   2495  * and thus start Duplicate Address Detection without changing the
   2496  * real link state.
   2497  */
   2498 void
   2499 if_domain_link_state_change(struct ifnet *ifp, int link_state)
   2500 {
   2501 	struct domain *dp;
   2502 
   2503 	const int s = splnet();
   2504 	KERNEL_LOCK_UNLESS_NET_MPSAFE();
   2505 
   2506 	DOMAIN_FOREACH(dp) {
   2507 		if (dp->dom_if_link_state_change != NULL)
   2508 			dp->dom_if_link_state_change(ifp, link_state);
   2509 	}
   2510 
   2511 	splx(s);
   2512 	KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   2513 }
   2514 
   2515 /*
   2516  * Default action when installing a local route on a point-to-point
   2517  * interface.
   2518  */
   2519 void
   2520 p2p_rtrequest(int req, struct rtentry *rt,
   2521     __unused const struct rt_addrinfo *info)
   2522 {
   2523 	struct ifnet *ifp = rt->rt_ifp;
   2524 	struct ifaddr *ifa, *lo0ifa;
   2525 	int s = pserialize_read_enter();
   2526 
   2527 	switch (req) {
   2528 	case RTM_ADD:
   2529 		if ((rt->rt_flags & RTF_LOCAL) == 0)
   2530 			break;
   2531 
   2532 		rt->rt_ifp = lo0ifp;
   2533 
   2534 		if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
   2535 			break;
   2536 
   2537 		IFADDR_READER_FOREACH(ifa, ifp) {
   2538 			if (equal(rt_getkey(rt), ifa->ifa_addr))
   2539 				break;
   2540 		}
   2541 		if (ifa == NULL)
   2542 			break;
   2543 
   2544 		/*
   2545 		 * Ensure lo0 has an address of the same family.
   2546 		 */
   2547 		IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
   2548 			if (lo0ifa->ifa_addr->sa_family ==
   2549 			    ifa->ifa_addr->sa_family)
   2550 				break;
   2551 		}
   2552 		if (lo0ifa == NULL)
   2553 			break;
   2554 
   2555 		/*
   2556 		 * Make sure to set rt->rt_ifa to the interface
   2557 		 * address we are using, otherwise we will have trouble
   2558 		 * with source address selection.
   2559 		 */
   2560 		if (ifa != rt->rt_ifa)
   2561 			rt_replace_ifa(rt, ifa);
   2562 		break;
   2563 	case RTM_DELETE:
   2564 	default:
   2565 		break;
   2566 	}
   2567 	pserialize_read_exit(s);
   2568 }
   2569 
   2570 static void
   2571 _if_down(struct ifnet *ifp)
   2572 {
   2573 	struct ifaddr *ifa;
   2574 	struct domain *dp;
   2575 	struct psref psref;
   2576 
   2577 	ifp->if_flags &= ~IFF_UP;
   2578 	nanotime(&ifp->if_lastchange);
   2579 
   2580 	const int bound = curlwp_bind();
   2581 	int s = pserialize_read_enter();
   2582 	IFADDR_READER_FOREACH(ifa, ifp) {
   2583 		ifa_acquire(ifa, &psref);
   2584 		pserialize_read_exit(s);
   2585 
   2586 		pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
   2587 
   2588 		s = pserialize_read_enter();
   2589 		ifa_release(ifa, &psref);
   2590 	}
   2591 	pserialize_read_exit(s);
   2592 	curlwp_bindx(bound);
   2593 
   2594 	IFQ_PURGE(&ifp->if_snd);
   2595 #if NCARP > 0
   2596 	if (ifp->if_carp)
   2597 		carp_carpdev_state(ifp);
   2598 #endif
   2599 	rt_ifmsg(ifp);
   2600 	DOMAIN_FOREACH(dp) {
   2601 		if (dp->dom_if_down)
   2602 			dp->dom_if_down(ifp);
   2603 	}
   2604 }
   2605 
   2606 static void
   2607 if_down_deactivated(struct ifnet *ifp)
   2608 {
   2609 
   2610 	KASSERT(if_is_deactivated(ifp));
   2611 	_if_down(ifp);
   2612 }
   2613 
   2614 void
   2615 if_down_locked(struct ifnet *ifp)
   2616 {
   2617 
   2618 	KASSERT(IFNET_LOCKED(ifp));
   2619 	_if_down(ifp);
   2620 }
   2621 
   2622 /*
   2623  * Mark an interface down and notify protocols of
   2624  * the transition.
   2625  * NOTE: must be called at splsoftnet or equivalent.
   2626  */
   2627 void
   2628 if_down(struct ifnet *ifp)
   2629 {
   2630 
   2631 	IFNET_LOCK(ifp);
   2632 	if_down_locked(ifp);
   2633 	IFNET_UNLOCK(ifp);
   2634 }
   2635 
   2636 /*
   2637  * Must be called with holding if_ioctl_lock.
   2638  */
   2639 static void
   2640 if_up_locked(struct ifnet *ifp)
   2641 {
   2642 #ifdef notyet
   2643 	struct ifaddr *ifa;
   2644 #endif
   2645 	struct domain *dp;
   2646 
   2647 	KASSERT(IFNET_LOCKED(ifp));
   2648 
   2649 	KASSERT(!if_is_deactivated(ifp));
   2650 	ifp->if_flags |= IFF_UP;
   2651 	nanotime(&ifp->if_lastchange);
   2652 #ifdef notyet
   2653 	/* this has no effect on IP, and will kill all ISO connections XXX */
   2654 	IFADDR_READER_FOREACH(ifa, ifp)
   2655 		pfctlinput(PRC_IFUP, ifa->ifa_addr);
   2656 #endif
   2657 #if NCARP > 0
   2658 	if (ifp->if_carp)
   2659 		carp_carpdev_state(ifp);
   2660 #endif
   2661 	rt_ifmsg(ifp);
   2662 	DOMAIN_FOREACH(dp) {
   2663 		if (dp->dom_if_up)
   2664 			dp->dom_if_up(ifp);
   2665 	}
   2666 }
   2667 
   2668 /*
   2669  * Handle interface slowtimo timer routine.  Called
   2670  * from softclock, we decrement timer (if set) and
   2671  * call the appropriate interface routine on expiration.
   2672  */
   2673 static bool
   2674 if_slowtimo_countdown(struct ifnet *ifp)
   2675 {
   2676 	bool fire = false;
   2677 	const int s = splnet();
   2678 	KERNEL_LOCK(1, NULL);
   2679 	if (ifp->if_timer != 0 && --ifp->if_timer == 0)
   2680 		fire = true;
   2681 	KERNEL_UNLOCK_ONE(NULL);
   2682 	splx(s);
   2683 
   2684 	return fire;
   2685 }
   2686 
   2687 static void
   2688 if_slowtimo_intr(void *arg)
   2689 {
   2690 	struct ifnet *ifp = arg;
   2691 	struct if_slowtimo_data *isd = ifp->if_slowtimo_data;
   2692 
   2693 	mutex_enter(&isd->isd_lock);
   2694 	if (!isd->isd_dying) {
   2695 		if (isd->isd_trigger || if_slowtimo_countdown(ifp)) {
   2696 			if (!isd->isd_queued) {
   2697 				isd->isd_queued = true;
   2698 				workqueue_enqueue(if_slowtimo_wq,
   2699 				    &isd->isd_work, NULL);
   2700 			}
   2701 		} else {
   2702 			callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ);
   2703 		}
   2704 	}
   2705 	mutex_exit(&isd->isd_lock);
   2706 }
   2707 
   2708 static void
   2709 if_slowtimo_work(struct work *work, void *arg)
   2710 {
   2711 	struct if_slowtimo_data *isd =
   2712 	    container_of(work, struct if_slowtimo_data, isd_work);
   2713 	struct ifnet *ifp = isd->isd_ifp;
   2714 	const int s = splnet();
   2715 	KERNEL_LOCK(1, NULL);
   2716 	(*ifp->if_slowtimo)(ifp);
   2717 	KERNEL_UNLOCK_ONE(NULL);
   2718 	splx(s);
   2719 
   2720 	mutex_enter(&isd->isd_lock);
   2721 	if (isd->isd_trigger) {
   2722 		isd->isd_trigger = false;
   2723 		printf("%s: watchdog triggered\n", ifp->if_xname);
   2724 	}
   2725 	isd->isd_queued = false;
   2726 	if (!isd->isd_dying)
   2727 		callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ);
   2728 	mutex_exit(&isd->isd_lock);
   2729 }
   2730 
   2731 static int
   2732 sysctl_if_watchdog(SYSCTLFN_ARGS)
   2733 {
   2734 	struct sysctlnode node = *rnode;
   2735 	struct ifnet *ifp = node.sysctl_data;
   2736 	struct if_slowtimo_data *isd = ifp->if_slowtimo_data;
   2737 	int arg = 0;
   2738 	int error;
   2739 
   2740 	node.sysctl_data = &arg;
   2741 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   2742 	if (error || newp == NULL)
   2743 		return error;
   2744 	if (arg) {
   2745 		mutex_enter(&isd->isd_lock);
   2746 		KASSERT(!isd->isd_dying);
   2747 		isd->isd_trigger = true;
   2748 		callout_schedule(&isd->isd_ch, 0);
   2749 		mutex_exit(&isd->isd_lock);
   2750 	}
   2751 
   2752 	return 0;
   2753 }
   2754 
   2755 static void
   2756 sysctl_watchdog_setup(struct ifnet *ifp)
   2757 {
   2758 	struct sysctllog **clog = &ifp->if_sysctl_log;
   2759 	const struct sysctlnode *rnode;
   2760 
   2761 	if (sysctl_createv(clog, 0, NULL, &rnode,
   2762 		CTLFLAG_PERMANENT, CTLTYPE_NODE, "interfaces",
   2763 		SYSCTL_DESCR("Per-interface controls"),
   2764 		NULL, 0, NULL, 0,
   2765 		CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   2766 		goto bad;
   2767 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   2768 		CTLFLAG_PERMANENT, CTLTYPE_NODE, ifp->if_xname,
   2769 		SYSCTL_DESCR("Interface controls"),
   2770 		NULL, 0, NULL, 0,
   2771 		CTL_CREATE, CTL_EOL) != 0)
   2772 		goto bad;
   2773 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   2774 		CTLFLAG_PERMANENT, CTLTYPE_NODE, "watchdog",
   2775 		SYSCTL_DESCR("Interface watchdog controls"),
   2776 		NULL, 0, NULL, 0,
   2777 		CTL_CREATE, CTL_EOL) != 0)
   2778 		goto bad;
   2779 	if (sysctl_createv(clog, 0, &rnode, NULL,
   2780 		CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "trigger",
   2781 		SYSCTL_DESCR("Trigger watchdog timeout"),
   2782 		sysctl_if_watchdog, 0, (int *)ifp, 0,
   2783 		CTL_CREATE, CTL_EOL) != 0)
   2784 		goto bad;
   2785 
   2786 	return;
   2787 
   2788 bad:
   2789 	printf("%s: could not attach sysctl watchdog nodes\n", ifp->if_xname);
   2790 }
   2791 
   2792 /*
   2793  * Mark an interface up and notify protocols of
   2794  * the transition.
   2795  * NOTE: must be called at splsoftnet or equivalent.
   2796  */
   2797 void
   2798 if_up(struct ifnet *ifp)
   2799 {
   2800 
   2801 	IFNET_LOCK(ifp);
   2802 	if_up_locked(ifp);
   2803 	IFNET_UNLOCK(ifp);
   2804 }
   2805 
   2806 /*
   2807  * Set/clear promiscuous mode on interface ifp based on the truth value
   2808  * of pswitch.  The calls are reference counted so that only the first
   2809  * "on" request actually has an effect, as does the final "off" request.
   2810  * Results are undefined if the "off" and "on" requests are not matched.
   2811  */
   2812 int
   2813 ifpromisc_locked(struct ifnet *ifp, int pswitch)
   2814 {
   2815 	int pcount, ret = 0;
   2816 	u_short nflags;
   2817 
   2818 	KASSERT(IFNET_LOCKED(ifp));
   2819 
   2820 	pcount = ifp->if_pcount;
   2821 	if (pswitch) {
   2822 		/*
   2823 		 * Allow the device to be "placed" into promiscuous
   2824 		 * mode even if it is not configured up.  It will
   2825 		 * consult IFF_PROMISC when it is brought up.
   2826 		 */
   2827 		if (ifp->if_pcount++ != 0)
   2828 			goto out;
   2829 		nflags = ifp->if_flags | IFF_PROMISC;
   2830 	} else {
   2831 		if (--ifp->if_pcount > 0)
   2832 			goto out;
   2833 		nflags = ifp->if_flags & ~IFF_PROMISC;
   2834 	}
   2835 	ret = if_flags_set(ifp, nflags);
   2836 	/* Restore interface state if not successful. */
   2837 	if (ret != 0) {
   2838 		ifp->if_pcount = pcount;
   2839 	}
   2840 out:
   2841 	return ret;
   2842 }
   2843 
   2844 int
   2845 ifpromisc(struct ifnet *ifp, int pswitch)
   2846 {
   2847 	int e;
   2848 
   2849 	IFNET_LOCK(ifp);
   2850 	e = ifpromisc_locked(ifp, pswitch);
   2851 	IFNET_UNLOCK(ifp);
   2852 
   2853 	return e;
   2854 }
   2855 
   2856 /*
   2857  * if_ioctl(ifp, cmd, data)
   2858  *
   2859  *	Apply an ioctl command to the interface.  Returns 0 on success,
   2860  *	nonzero errno(3) number on failure.
   2861  *
   2862  *	For SIOCADDMULTI/SIOCDELMULTI, caller need not hold locks -- it
   2863  *	is the driver's responsibility to take any internal locks.
   2864  *	(Kernel logic should generally invoke these only through
   2865  *	if_mcast_op.)
   2866  *
   2867  *	For all other ioctls, caller must hold ifp->if_ioctl_lock,
   2868  *	a.k.a. IFNET_LOCK.  May sleep.
   2869  */
   2870 int
   2871 if_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   2872 {
   2873 
   2874 	switch (cmd) {
   2875 	case SIOCADDMULTI:
   2876 	case SIOCDELMULTI:
   2877 		break;
   2878 	default:
   2879 		KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
   2880 	}
   2881 
   2882 	return (*ifp->if_ioctl)(ifp, cmd, data);
   2883 }
   2884 
   2885 /*
   2886  * if_init(ifp)
   2887  *
   2888  *	Prepare the hardware underlying ifp to process packets
   2889  *	according to its current configuration.  Returns 0 on success,
   2890  *	nonzero errno(3) number on failure.
   2891  *
   2892  *	May sleep.  Caller must hold ifp->if_ioctl_lock, a.k.a
   2893  *	IFNET_LOCK.
   2894  */
   2895 int
   2896 if_init(struct ifnet *ifp)
   2897 {
   2898 
   2899 	KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
   2900 
   2901 	return (*ifp->if_init)(ifp);
   2902 }
   2903 
   2904 /*
   2905  * if_stop(ifp, disable)
   2906  *
   2907  *	Stop the hardware underlying ifp from processing packets.
   2908  *
   2909  *	If disable is true, ... XXX(?)
   2910  *
   2911  *	May sleep.  Caller must hold ifp->if_ioctl_lock, a.k.a
   2912  *	IFNET_LOCK.
   2913  */
   2914 void
   2915 if_stop(struct ifnet *ifp, int disable)
   2916 {
   2917 
   2918 	KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
   2919 
   2920 	(*ifp->if_stop)(ifp, disable);
   2921 }
   2922 
   2923 /*
   2924  * Map interface name to
   2925  * interface structure pointer.
   2926  */
   2927 struct ifnet *
   2928 ifunit(const char *name)
   2929 {
   2930 	struct ifnet *ifp;
   2931 	const char *cp = name;
   2932 	u_int unit = 0;
   2933 	u_int i;
   2934 
   2935 	/*
   2936 	 * If the entire name is a number, treat it as an ifindex.
   2937 	 */
   2938 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2939 		unit = unit * 10 + (*cp - '0');
   2940 	}
   2941 
   2942 	/*
   2943 	 * If the number took all of the name, then it's a valid ifindex.
   2944 	 */
   2945 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2946 		return if_byindex(unit);
   2947 
   2948 	ifp = NULL;
   2949 	const int s = pserialize_read_enter();
   2950 	IFNET_READER_FOREACH(ifp) {
   2951 		if (if_is_deactivated(ifp))
   2952 			continue;
   2953 	 	if (strcmp(ifp->if_xname, name) == 0)
   2954 			goto out;
   2955 	}
   2956 out:
   2957 	pserialize_read_exit(s);
   2958 	return ifp;
   2959 }
   2960 
   2961 /*
   2962  * Get a reference of an ifnet object by an interface name.
   2963  * The returned reference is protected by psref(9). The caller
   2964  * must release a returned reference by if_put after use.
   2965  */
   2966 struct ifnet *
   2967 if_get(const char *name, struct psref *psref)
   2968 {
   2969 	struct ifnet *ifp;
   2970 	const char *cp = name;
   2971 	u_int unit = 0;
   2972 	u_int i;
   2973 
   2974 	/*
   2975 	 * If the entire name is a number, treat it as an ifindex.
   2976 	 */
   2977 	for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++) {
   2978 		unit = unit * 10 + (*cp - '0');
   2979 	}
   2980 
   2981 	/*
   2982 	 * If the number took all of the name, then it's a valid ifindex.
   2983 	 */
   2984 	if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
   2985 		return if_get_byindex(unit, psref);
   2986 
   2987 	ifp = NULL;
   2988 	const int s = pserialize_read_enter();
   2989 	IFNET_READER_FOREACH(ifp) {
   2990 		if (if_is_deactivated(ifp))
   2991 			continue;
   2992 		if (strcmp(ifp->if_xname, name) == 0) {
   2993 			PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
   2994 			psref_acquire(psref, &ifp->if_psref,
   2995 			    ifnet_psref_class);
   2996 			goto out;
   2997 		}
   2998 	}
   2999 out:
   3000 	pserialize_read_exit(s);
   3001 	return ifp;
   3002 }
   3003 
   3004 /*
   3005  * Release a reference of an ifnet object given by if_get, if_get_byindex
   3006  * or if_get_bylla.
   3007  */
   3008 void
   3009 if_put(const struct ifnet *ifp, struct psref *psref)
   3010 {
   3011 
   3012 	if (ifp == NULL)
   3013 		return;
   3014 
   3015 	psref_release(psref, &ifp->if_psref, ifnet_psref_class);
   3016 }
   3017 
   3018 /*
   3019  * Return ifp having idx. Return NULL if not found.  Normally if_byindex
   3020  * should be used.
   3021  */
   3022 ifnet_t *
   3023 _if_byindex(u_int idx)
   3024 {
   3025 
   3026 	return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
   3027 }
   3028 
   3029 /*
   3030  * Return ifp having idx. Return NULL if not found or the found ifp is
   3031  * already deactivated.
   3032  */
   3033 ifnet_t *
   3034 if_byindex(u_int idx)
   3035 {
   3036 	ifnet_t *ifp;
   3037 
   3038 	ifp = _if_byindex(idx);
   3039 	if (ifp != NULL && if_is_deactivated(ifp))
   3040 		ifp = NULL;
   3041 	return ifp;
   3042 }
   3043 
   3044 /*
   3045  * Get a reference of an ifnet object by an interface index.
   3046  * The returned reference is protected by psref(9). The caller
   3047  * must release a returned reference by if_put after use.
   3048  */
   3049 ifnet_t *
   3050 if_get_byindex(u_int idx, struct psref *psref)
   3051 {
   3052 	ifnet_t *ifp;
   3053 
   3054 	const int s = pserialize_read_enter();
   3055 	ifp = if_byindex(idx);
   3056 	if (__predict_true(ifp != NULL)) {
   3057 		PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
   3058 		psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   3059 	}
   3060 	pserialize_read_exit(s);
   3061 
   3062 	return ifp;
   3063 }
   3064 
   3065 ifnet_t *
   3066 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
   3067 {
   3068 	ifnet_t *ifp;
   3069 
   3070 	const int s = pserialize_read_enter();
   3071 	IFNET_READER_FOREACH(ifp) {
   3072 		if (if_is_deactivated(ifp))
   3073 			continue;
   3074 		if (ifp->if_addrlen != lla_len)
   3075 			continue;
   3076 		if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
   3077 			psref_acquire(psref, &ifp->if_psref,
   3078 			    ifnet_psref_class);
   3079 			break;
   3080 		}
   3081 	}
   3082 	pserialize_read_exit(s);
   3083 
   3084 	return ifp;
   3085 }
   3086 
   3087 /*
   3088  * Note that it's safe only if the passed ifp is guaranteed to not be freed,
   3089  * for example using pserialize or the ifp is already held or some other
   3090  * object is held which guarantes the ifp to not be freed indirectly.
   3091  */
   3092 void
   3093 if_acquire(struct ifnet *ifp, struct psref *psref)
   3094 {
   3095 
   3096 	KASSERT(ifp->if_index != 0);
   3097 	psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
   3098 }
   3099 
   3100 bool
   3101 if_held(struct ifnet *ifp)
   3102 {
   3103 
   3104 	return psref_held(&ifp->if_psref, ifnet_psref_class);
   3105 }
   3106 
   3107 /*
   3108  * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over IPv4.
   3109  * Check the tunnel nesting count.
   3110  * Return > 0, if tunnel nesting count is more than limit.
   3111  * Return 0, if tunnel nesting count is equal or less than limit.
   3112  */
   3113 int
   3114 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
   3115 {
   3116 	struct m_tag *mtag;
   3117 	int *count;
   3118 
   3119 	mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO);
   3120 	if (mtag != NULL) {
   3121 		count = (int *)(mtag + 1);
   3122 		if (++(*count) > limit) {
   3123 			log(LOG_NOTICE,
   3124 			    "%s: recursively called too many times(%d)\n",
   3125 			    ifp->if_xname, *count);
   3126 			return EIO;
   3127 		}
   3128 	} else {
   3129 		mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
   3130 		    M_NOWAIT);
   3131 		if (mtag != NULL) {
   3132 			m_tag_prepend(m, mtag);
   3133 			count = (int *)(mtag + 1);
   3134 			*count = 0;
   3135 		} else {
   3136 			log(LOG_DEBUG,
   3137 			    "%s: m_tag_get() failed, recursion calls are not prevented.\n",
   3138 			    ifp->if_xname);
   3139 		}
   3140 	}
   3141 
   3142 	return 0;
   3143 }
   3144 
   3145 static void
   3146 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
   3147 {
   3148 	struct tunnel_ro *tro = p;
   3149 
   3150 	tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP);
   3151 	tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
   3152 }
   3153 
   3154 static void
   3155 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
   3156 {
   3157 	struct tunnel_ro *tro = p;
   3158 
   3159 	rtcache_free(tro->tr_ro);
   3160 	kmem_free(tro->tr_ro, sizeof(*tro->tr_ro));
   3161 
   3162 	mutex_obj_free(tro->tr_lock);
   3163 }
   3164 
   3165 percpu_t *
   3166 if_tunnel_alloc_ro_percpu(void)
   3167 {
   3168 
   3169 	return percpu_create(sizeof(struct tunnel_ro),
   3170 	    if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL);
   3171 }
   3172 
   3173 void
   3174 if_tunnel_free_ro_percpu(percpu_t *ro_percpu)
   3175 {
   3176 
   3177 	percpu_free(ro_percpu, sizeof(struct tunnel_ro));
   3178 }
   3179 
   3180 
   3181 static void
   3182 if_tunnel_rtcache_free_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
   3183 {
   3184 	struct tunnel_ro *tro = p;
   3185 
   3186 	mutex_enter(tro->tr_lock);
   3187 	rtcache_free(tro->tr_ro);
   3188 	mutex_exit(tro->tr_lock);
   3189 }
   3190 
   3191 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu)
   3192 {
   3193 
   3194 	percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL);
   3195 }
   3196 
   3197 void
   3198 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats)
   3199 {
   3200 
   3201 	/* Collect the volatile stats first; this zeros *ifi. */
   3202 	if_stats_to_if_data(ifp, ifi, zero_stats);
   3203 
   3204 	ifi->ifi_type = ifp->if_type;
   3205 	ifi->ifi_addrlen = ifp->if_addrlen;
   3206 	ifi->ifi_hdrlen = ifp->if_hdrlen;
   3207 	ifi->ifi_link_state = ifp->if_link_state;
   3208 	ifi->ifi_mtu = ifp->if_mtu;
   3209 	ifi->ifi_metric = ifp->if_metric;
   3210 	ifi->ifi_baudrate = ifp->if_baudrate;
   3211 	ifi->ifi_lastchange = ifp->if_lastchange;
   3212 }
   3213 
   3214 /* common */
   3215 int
   3216 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
   3217 {
   3218 	struct ifreq *ifr;
   3219 	struct ifcapreq *ifcr;
   3220 	struct ifdatareq *ifdr;
   3221 	unsigned short flags;
   3222 	char *descr;
   3223 	int error;
   3224 
   3225 	switch (cmd) {
   3226 	case SIOCSIFCAP:
   3227 		ifcr = data;
   3228 		if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
   3229 			return EINVAL;
   3230 
   3231 		if (ifcr->ifcr_capenable == ifp->if_capenable)
   3232 			return 0;
   3233 
   3234 		ifp->if_capenable = ifcr->ifcr_capenable;
   3235 
   3236 		/* Pre-compute the checksum flags mask. */
   3237 		ifp->if_csum_flags_tx = 0;
   3238 		ifp->if_csum_flags_rx = 0;
   3239 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
   3240 			ifp->if_csum_flags_tx |= M_CSUM_IPv4;
   3241 		if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   3242 			ifp->if_csum_flags_rx |= M_CSUM_IPv4;
   3243 
   3244 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx)
   3245 			ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
   3246 		if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
   3247 			ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
   3248 
   3249 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx)
   3250 			ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
   3251 		if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
   3252 			ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
   3253 
   3254 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx)
   3255 			ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
   3256 		if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx)
   3257 			ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
   3258 
   3259 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx)
   3260 			ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
   3261 		if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx)
   3262 			ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
   3263 
   3264 		if (ifp->if_capenable & IFCAP_TSOv4)
   3265 			ifp->if_csum_flags_tx |= M_CSUM_TSOv4;
   3266 		if (ifp->if_capenable & IFCAP_TSOv6)
   3267 			ifp->if_csum_flags_tx |= M_CSUM_TSOv6;
   3268 
   3269 #if NBRIDGE > 0
   3270 		if (ifp->if_bridge != NULL)
   3271 			bridge_calc_csum_flags(ifp->if_bridge);
   3272 #endif
   3273 
   3274 		if (ifp->if_flags & IFF_UP)
   3275 			return ENETRESET;
   3276 		return 0;
   3277 	case SIOCSIFFLAGS:
   3278 		ifr = data;
   3279 		/*
   3280 		 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
   3281 		 * and if_down aren't MP-safe yet, so we must hold the lock.
   3282 		 */
   3283 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   3284 		if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
   3285 			const int s = splsoftnet();
   3286 			if_down_locked(ifp);
   3287 			splx(s);
   3288 		}
   3289 		if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
   3290 			const int s = splsoftnet();
   3291 			if_up_locked(ifp);
   3292 			splx(s);
   3293 		}
   3294 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   3295 		flags = (ifp->if_flags & IFF_CANTCHANGE) |
   3296 		    (ifr->ifr_flags &~ IFF_CANTCHANGE);
   3297 		if (ifp->if_flags != flags) {
   3298 			ifp->if_flags = flags;
   3299 			/* Notify that the flags have changed. */
   3300 			rt_ifmsg(ifp);
   3301 		}
   3302 		break;
   3303 	case SIOCGIFFLAGS:
   3304 		ifr = data;
   3305 		ifr->ifr_flags = ifp->if_flags;
   3306 		break;
   3307 
   3308 	case SIOCGIFMETRIC:
   3309 		ifr = data;
   3310 		ifr->ifr_metric = ifp->if_metric;
   3311 		break;
   3312 
   3313 	case SIOCGIFMTU:
   3314 		ifr = data;
   3315 		ifr->ifr_mtu = ifp->if_mtu;
   3316 		break;
   3317 
   3318 	case SIOCGIFDLT:
   3319 		ifr = data;
   3320 		ifr->ifr_dlt = ifp->if_dlt;
   3321 		break;
   3322 
   3323 	case SIOCGIFCAP:
   3324 		ifcr = data;
   3325 		ifcr->ifcr_capabilities = ifp->if_capabilities;
   3326 		ifcr->ifcr_capenable = ifp->if_capenable;
   3327 		break;
   3328 
   3329 	case SIOCSIFMETRIC:
   3330 		ifr = data;
   3331 		ifp->if_metric = ifr->ifr_metric;
   3332 		break;
   3333 
   3334 	case SIOCGIFDATA:
   3335 		ifdr = data;
   3336 		if_export_if_data(ifp, &ifdr->ifdr_data, false);
   3337 		break;
   3338 
   3339 	case SIOCGIFINDEX:
   3340 		ifr = data;
   3341 		ifr->ifr_index = ifp->if_index;
   3342 		break;
   3343 
   3344 	case SIOCZIFDATA:
   3345 		ifdr = data;
   3346 		if_export_if_data(ifp, &ifdr->ifdr_data, true);
   3347 		getnanotime(&ifp->if_lastchange);
   3348 		break;
   3349 	case SIOCSIFMTU:
   3350 		ifr = data;
   3351 		if (ifp->if_mtu == ifr->ifr_mtu)
   3352 			break;
   3353 		ifp->if_mtu = ifr->ifr_mtu;
   3354 		return ENETRESET;
   3355 	case SIOCSIFDESCR:
   3356 		error = kauth_authorize_network(kauth_cred_get(),
   3357 		    KAUTH_NETWORK_INTERFACE,
   3358 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
   3359 		    NULL);
   3360 		if (error)
   3361 			return error;
   3362 
   3363 		ifr = data;
   3364 
   3365 		if (ifr->ifr_buflen > IFDESCRSIZE)
   3366 			return ENAMETOOLONG;
   3367 
   3368 		if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) {
   3369 			/* unset description */
   3370 			descr = NULL;
   3371 		} else {
   3372 			descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP);
   3373 			/*
   3374 			 * copy (IFDESCRSIZE - 1) bytes to ensure
   3375 			 * terminating nul
   3376 			 */
   3377 			error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1);
   3378 			if (error) {
   3379 				kmem_free(descr, IFDESCRSIZE);
   3380 				return error;
   3381 			}
   3382 		}
   3383 
   3384 		if (ifp->if_description != NULL)
   3385 			kmem_free(ifp->if_description, IFDESCRSIZE);
   3386 
   3387 		ifp->if_description = descr;
   3388 		break;
   3389 
   3390  	case SIOCGIFDESCR:
   3391 		ifr = data;
   3392 		descr = ifp->if_description;
   3393 
   3394 		if (descr == NULL)
   3395 			return ENOMSG;
   3396 
   3397 		if (ifr->ifr_buflen < IFDESCRSIZE)
   3398 			return EINVAL;
   3399 
   3400 		error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE);
   3401 		if (error)
   3402 			return error;
   3403  		break;
   3404 
   3405 	default:
   3406 		return ENOTTY;
   3407 	}
   3408 	return 0;
   3409 }
   3410 
   3411 int
   3412 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
   3413 {
   3414 	struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
   3415 	struct ifaddr *ifa;
   3416 	const struct sockaddr *any, *sa;
   3417 	union {
   3418 		struct sockaddr sa;
   3419 		struct sockaddr_storage ss;
   3420 	} u, v;
   3421 	int s, error = 0;
   3422 
   3423 	switch (cmd) {
   3424 	case SIOCSIFADDRPREF:
   3425 		error = kauth_authorize_network(kauth_cred_get(),
   3426 		    KAUTH_NETWORK_INTERFACE,
   3427 		    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
   3428 		    NULL);
   3429 		if (error)
   3430 			return error;
   3431 		break;
   3432 	case SIOCGIFADDRPREF:
   3433 		break;
   3434 	default:
   3435 		return EOPNOTSUPP;
   3436 	}
   3437 
   3438 	/* sanity checks */
   3439 	if (data == NULL || ifp == NULL) {
   3440 		panic("invalid argument to %s", __func__);
   3441 		/*NOTREACHED*/
   3442 	}
   3443 
   3444 	/* address must be specified on ADD and DELETE */
   3445 	sa = sstocsa(&ifap->ifap_addr);
   3446 	if (sa->sa_family != sofamily(so))
   3447 		return EINVAL;
   3448 	if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
   3449 		return EINVAL;
   3450 
   3451 	sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
   3452 
   3453 	s = pserialize_read_enter();
   3454 	IFADDR_READER_FOREACH(ifa, ifp) {
   3455 		if (ifa->ifa_addr->sa_family != sa->sa_family)
   3456 			continue;
   3457 		sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
   3458 		if (sockaddr_cmp(&u.sa, &v.sa) == 0)
   3459 			break;
   3460 	}
   3461 	if (ifa == NULL) {
   3462 		error = EADDRNOTAVAIL;
   3463 		goto out;
   3464 	}
   3465 
   3466 	switch (cmd) {
   3467 	case SIOCSIFADDRPREF:
   3468 		ifa->ifa_preference = ifap->ifap_preference;
   3469 		goto out;
   3470 	case SIOCGIFADDRPREF:
   3471 		/* fill in the if_laddrreq structure */
   3472 		(void)sockaddr_copy(sstosa(&ifap->ifap_addr),
   3473 		    sizeof(ifap->ifap_addr), ifa->ifa_addr);
   3474 		ifap->ifap_preference = ifa->ifa_preference;
   3475 		goto out;
   3476 	default:
   3477 		error = EOPNOTSUPP;
   3478 	}
   3479 out:
   3480 	pserialize_read_exit(s);
   3481 	return error;
   3482 }
   3483 
   3484 /*
   3485  * Interface ioctls.
   3486  */
   3487 static int
   3488 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
   3489 {
   3490 	struct ifnet *ifp;
   3491 	struct ifreq *ifr;
   3492 	int error = 0;
   3493 	u_long ocmd = cmd;
   3494 	u_short oif_flags;
   3495 	struct ifreq ifrb;
   3496 	struct oifreq *oifr = NULL;
   3497 	int r;
   3498 	struct psref psref;
   3499 	bool do_if43_post = false;
   3500 	bool do_ifm80_post = false;
   3501 
   3502 	switch (cmd) {
   3503 	case SIOCGIFCONF:
   3504 		return ifconf(cmd, data);
   3505 	case SIOCINITIFADDR:
   3506 		return EPERM;
   3507 	default:
   3508 		MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(),
   3509 		    error);
   3510 		if (error != ENOSYS)
   3511 			return error;
   3512 		MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data),
   3513 		    enosys(), error);
   3514 		if (error != ENOSYS)
   3515 			return error;
   3516 		error = 0;
   3517 		break;
   3518 	}
   3519 
   3520 	ifr = data;
   3521 	/* Pre-conversion */
   3522 	MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error);
   3523 	if (cmd != ocmd) {
   3524 		oifr = data;
   3525 		data = ifr = &ifrb;
   3526 		IFREQO2N_43(oifr, ifr);
   3527 		do_if43_post = true;
   3528 	}
   3529 	MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post),
   3530 	    enosys(), error);
   3531 
   3532 	switch (cmd) {
   3533 	case SIOCIFCREATE:
   3534 	case SIOCIFDESTROY: {
   3535 		const int bound = curlwp_bind();
   3536 		if (l != NULL) {
   3537 			ifp = if_get(ifr->ifr_name, &psref);
   3538 			error = kauth_authorize_network(l->l_cred,
   3539 			    KAUTH_NETWORK_INTERFACE,
   3540 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3541 			    KAUTH_ARG(cmd), NULL);
   3542 			if (ifp != NULL)
   3543 				if_put(ifp, &psref);
   3544 			if (error != 0) {
   3545 				curlwp_bindx(bound);
   3546 				return error;
   3547 			}
   3548 		}
   3549 		KERNEL_LOCK_UNLESS_NET_MPSAFE();
   3550 		mutex_enter(&if_clone_mtx);
   3551 		r = (cmd == SIOCIFCREATE) ?
   3552 			if_clone_create(ifr->ifr_name) :
   3553 			if_clone_destroy(ifr->ifr_name);
   3554 		mutex_exit(&if_clone_mtx);
   3555 		KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
   3556 		curlwp_bindx(bound);
   3557 		return r;
   3558 	    }
   3559 	case SIOCIFGCLONERS: {
   3560 		struct if_clonereq *req = (struct if_clonereq *)data;
   3561 		return if_clone_list(req->ifcr_count, req->ifcr_buffer,
   3562 		    &req->ifcr_total);
   3563 	    }
   3564 	}
   3565 
   3566 	if ((cmd & IOC_IN) == 0 || IOCPARM_LEN(cmd) < sizeof(ifr->ifr_name))
   3567 		return EINVAL;
   3568 
   3569 	const int bound = curlwp_bind();
   3570 	ifp = if_get(ifr->ifr_name, &psref);
   3571 	if (ifp == NULL) {
   3572 		curlwp_bindx(bound);
   3573 		return ENXIO;
   3574 	}
   3575 
   3576 	switch (cmd) {
   3577 	case SIOCALIFADDR:
   3578 	case SIOCDLIFADDR:
   3579 	case SIOCSIFADDRPREF:
   3580 	case SIOCSIFFLAGS:
   3581 	case SIOCSIFCAP:
   3582 	case SIOCSIFMETRIC:
   3583 	case SIOCZIFDATA:
   3584 	case SIOCSIFMTU:
   3585 	case SIOCSIFPHYADDR:
   3586 	case SIOCDIFPHYADDR:
   3587 #ifdef INET6
   3588 	case SIOCSIFPHYADDR_IN6:
   3589 #endif
   3590 	case SIOCSLIFPHYADDR:
   3591 	case SIOCADDMULTI:
   3592 	case SIOCDELMULTI:
   3593 	case SIOCSETHERCAP:
   3594 	case SIOCSIFMEDIA:
   3595 	case SIOCSDRVSPEC:
   3596 	case SIOCG80211:
   3597 	case SIOCS80211:
   3598 	case SIOCS80211NWID:
   3599 	case SIOCS80211NWKEY:
   3600 	case SIOCS80211POWER:
   3601 	case SIOCS80211BSSID:
   3602 	case SIOCS80211CHANNEL:
   3603 	case SIOCSLINKSTR:
   3604 		if (l != NULL) {
   3605 			error = kauth_authorize_network(l->l_cred,
   3606 			    KAUTH_NETWORK_INTERFACE,
   3607 			    KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
   3608 			    KAUTH_ARG(cmd), NULL);
   3609 			if (error != 0)
   3610 				goto out;
   3611 		}
   3612 	}
   3613 
   3614 	oif_flags = ifp->if_flags;
   3615 
   3616 	KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
   3617 	IFNET_LOCK(ifp);
   3618 
   3619 	error = if_ioctl(ifp, cmd, data);
   3620 	if (error != ENOTTY)
   3621 		;
   3622 	else if (so->so_proto == NULL)
   3623 		error = EOPNOTSUPP;
   3624 	else {
   3625 		KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
   3626 		MODULE_HOOK_CALL(if_ifioctl_43_hook,
   3627 			     (so, ocmd, cmd, data, l), enosys(), error);
   3628 		if (error == ENOSYS)
   3629 			error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
   3630 			    cmd, data, ifp);
   3631 		KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
   3632 	}
   3633 
   3634 	if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
   3635 		if ((ifp->if_flags & IFF_UP) != 0) {
   3636 			const int s = splsoftnet();
   3637 			if_up_locked(ifp);
   3638 			splx(s);
   3639 		}
   3640 	}
   3641 
   3642 	/* Post-conversion */
   3643 	if (do_ifm80_post && (error == 0))
   3644 		MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd),
   3645 		    enosys(), error);
   3646 	if (do_if43_post)
   3647 		IFREQN2O_43(oifr, ifr);
   3648 
   3649 	IFNET_UNLOCK(ifp);
   3650 	KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
   3651 out:
   3652 	if_put(ifp, &psref);
   3653 	curlwp_bindx(bound);
   3654 	return error;
   3655 }
   3656 
   3657 /*
   3658  * Return interface configuration
   3659  * of system.  List may be used
   3660  * in later ioctl's (above) to get
   3661  * other information.
   3662  *
   3663  * Each record is a struct ifreq.  Before the addition of
   3664  * sockaddr_storage, the API rule was that sockaddr flavors that did
   3665  * not fit would extend beyond the struct ifreq, with the next struct
   3666  * ifreq starting sa_len beyond the struct sockaddr.  Because the
   3667  * union in struct ifreq includes struct sockaddr_storage, every kind
   3668  * of sockaddr must fit.  Thus, there are no longer any overlength
   3669  * records.
   3670  *
   3671  * Records are added to the user buffer if they fit, and ifc_len is
   3672  * adjusted to the length that was written.  Thus, the user is only
   3673  * assured of getting the complete list if ifc_len on return is at
   3674  * least sizeof(struct ifreq) less than it was on entry.
   3675  *
   3676  * If the user buffer pointer is NULL, this routine copies no data and
   3677  * returns the amount of space that would be needed.
   3678  *
   3679  * Invariants:
   3680  * ifrp points to the next part of the user's buffer to be used.  If
   3681  * ifrp != NULL, space holds the number of bytes remaining that we may
   3682  * write at ifrp.  Otherwise, space holds the number of bytes that
   3683  * would have been written had there been adequate space.
   3684  */
   3685 /*ARGSUSED*/
   3686 static int
   3687 ifconf(u_long cmd, void *data)
   3688 {
   3689 	struct ifconf *ifc = (struct ifconf *)data;
   3690 	struct ifnet *ifp;
   3691 	struct ifaddr *ifa;
   3692 	struct ifreq ifr, *ifrp = NULL;
   3693 	int space = 0, error = 0;
   3694 	const int sz = (int)sizeof(struct ifreq);
   3695 	const bool docopy = ifc->ifc_req != NULL;
   3696 	struct psref psref;
   3697 
   3698 	if (docopy) {
   3699 		if (ifc->ifc_len < 0)
   3700 			return EINVAL;
   3701 
   3702 		space = ifc->ifc_len;
   3703 		ifrp = ifc->ifc_req;
   3704 	}
   3705 	memset(&ifr, 0, sizeof(ifr));
   3706 
   3707 	const int bound = curlwp_bind();
   3708 	int s = pserialize_read_enter();
   3709 	IFNET_READER_FOREACH(ifp) {
   3710 		psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
   3711 		pserialize_read_exit(s);
   3712 
   3713 		(void)strncpy(ifr.ifr_name, ifp->if_xname,
   3714 		    sizeof(ifr.ifr_name));
   3715 		if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
   3716 			error = ENAMETOOLONG;
   3717 			goto release_exit;
   3718 		}
   3719 		if (IFADDR_READER_EMPTY(ifp)) {
   3720 			/* Interface with no addresses - send zero sockaddr. */
   3721 			memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
   3722 			if (!docopy) {
   3723 				space += sz;
   3724 				goto next;
   3725 			}
   3726 			if (space >= sz) {
   3727 				error = copyout(&ifr, ifrp, sz);
   3728 				if (error != 0)
   3729 					goto release_exit;
   3730 				ifrp++;
   3731 				space -= sz;
   3732 			}
   3733 		}
   3734 
   3735 		s = pserialize_read_enter();
   3736 		IFADDR_READER_FOREACH(ifa, ifp) {
   3737 			struct sockaddr *sa = ifa->ifa_addr;
   3738 			/* all sockaddrs must fit in sockaddr_storage */
   3739 			KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
   3740 
   3741 			if (!docopy) {
   3742 				space += sz;
   3743 				continue;
   3744 			}
   3745 			memcpy(&ifr.ifr_space, sa, sa->sa_len);
   3746 			pserialize_read_exit(s);
   3747 
   3748 			if (space >= sz) {
   3749 				error = copyout(&ifr, ifrp, sz);
   3750 				if (error != 0)
   3751 					goto release_exit;
   3752 				ifrp++; space -= sz;
   3753 			}
   3754 			s = pserialize_read_enter();
   3755 		}
   3756 		pserialize_read_exit(s);
   3757 
   3758         next:
   3759 		s = pserialize_read_enter();
   3760 		psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3761 	}
   3762 	pserialize_read_exit(s);
   3763 	curlwp_bindx(bound);
   3764 
   3765 	if (docopy) {
   3766 		KASSERT(0 <= space && space <= ifc->ifc_len);
   3767 		ifc->ifc_len -= space;
   3768 	} else {
   3769 		KASSERT(space >= 0);
   3770 		ifc->ifc_len = space;
   3771 	}
   3772 	return (0);
   3773 
   3774 release_exit:
   3775 	psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
   3776 	curlwp_bindx(bound);
   3777 	return error;
   3778 }
   3779 
   3780 int
   3781 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
   3782 {
   3783 	uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
   3784 	struct ifreq ifrb;
   3785 	struct oifreq *oifr = NULL;
   3786 	u_long ocmd = cmd;
   3787 	int hook;
   3788 
   3789 	MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
   3790 	if (hook != ENOSYS) {
   3791 		if (cmd != ocmd) {
   3792 			oifr = (struct oifreq *)(void *)ifr;
   3793 			ifr = &ifrb;
   3794 			IFREQO2N_43(oifr, ifr);
   3795 				len = sizeof(oifr->ifr_addr);
   3796 		}
   3797 	}
   3798 
   3799 	if (len < sa->sa_len)
   3800 		return EFBIG;
   3801 
   3802 	memset(&ifr->ifr_addr, 0, len);
   3803 	sockaddr_copy(&ifr->ifr_addr, len, sa);
   3804 
   3805 	if (cmd != ocmd)
   3806 		IFREQN2O_43(oifr, ifr);
   3807 	return 0;
   3808 }
   3809 
   3810 /*
   3811  * wrapper function for the drivers which doesn't have if_transmit().
   3812  */
   3813 static int
   3814 if_transmit(struct ifnet *ifp, struct mbuf *m)
   3815 {
   3816 	int error;
   3817 	size_t pktlen = m->m_pkthdr.len;
   3818 	bool mcast = (m->m_flags & M_MCAST) != 0;
   3819 
   3820 	const int s = splnet();
   3821 
   3822 	IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3823 	if (error != 0) {
   3824 		/* mbuf is already freed */
   3825 		goto out;
   3826 	}
   3827 
   3828 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   3829 	if_statadd_ref(nsr, if_obytes, pktlen);
   3830 	if (mcast)
   3831 		if_statinc_ref(nsr, if_omcasts);
   3832 	IF_STAT_PUTREF(ifp);
   3833 
   3834 	if ((ifp->if_flags & IFF_OACTIVE) == 0)
   3835 		if_start_lock(ifp);
   3836 out:
   3837 	splx(s);
   3838 
   3839 	return error;
   3840 }
   3841 
   3842 int
   3843 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
   3844 {
   3845 	int error;
   3846 
   3847 	kmsan_check_mbuf(m);
   3848 
   3849 #ifdef ALTQ
   3850 	KERNEL_LOCK(1, NULL);
   3851 	if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
   3852 		error = if_transmit(ifp, m);
   3853 		KERNEL_UNLOCK_ONE(NULL);
   3854 	} else {
   3855 		KERNEL_UNLOCK_ONE(NULL);
   3856 		error = (*ifp->if_transmit)(ifp, m);
   3857 		/* mbuf is already freed */
   3858 	}
   3859 #else /* !ALTQ */
   3860 	error = (*ifp->if_transmit)(ifp, m);
   3861 	/* mbuf is already freed */
   3862 #endif /* !ALTQ */
   3863 
   3864 	return error;
   3865 }
   3866 
   3867 /*
   3868  * Queue message on interface, and start output if interface
   3869  * not yet active.
   3870  */
   3871 int
   3872 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
   3873 {
   3874 
   3875 	return if_transmit_lock(ifp, m);
   3876 }
   3877 
   3878 /*
   3879  * Queue message on interface, possibly using a second fast queue
   3880  */
   3881 int
   3882 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
   3883 {
   3884 	int error = 0;
   3885 
   3886 	if (ifq != NULL
   3887 #ifdef ALTQ
   3888 	    && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
   3889 #endif
   3890 	    ) {
   3891 		if (IF_QFULL(ifq)) {
   3892 			IF_DROP(&ifp->if_snd);
   3893 			m_freem(m);
   3894 			if (error == 0)
   3895 				error = ENOBUFS;
   3896 		} else
   3897 			IF_ENQUEUE(ifq, m);
   3898 	} else
   3899 		IFQ_ENQUEUE(&ifp->if_snd, m, error);
   3900 	if (error != 0) {
   3901 		if_statinc(ifp, if_oerrors);
   3902 		return error;
   3903 	}
   3904 	return 0;
   3905 }
   3906 
   3907 int
   3908 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
   3909 {
   3910 	int rc;
   3911 
   3912 	KASSERT(IFNET_LOCKED(ifp));
   3913 	if (ifp->if_initaddr != NULL)
   3914 		rc = (*ifp->if_initaddr)(ifp, ifa, src);
   3915 	else if (src ||
   3916 	         (rc = if_ioctl(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
   3917 		rc = if_ioctl(ifp, SIOCINITIFADDR, ifa);
   3918 
   3919 	return rc;
   3920 }
   3921 
   3922 int
   3923 if_do_dad(struct ifnet *ifp)
   3924 {
   3925 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   3926 		return 0;
   3927 
   3928 	switch (ifp->if_type) {
   3929 	case IFT_FAITH:
   3930 		/*
   3931 		 * These interfaces do not have the IFF_LOOPBACK flag,
   3932 		 * but loop packets back.  We do not have to do DAD on such
   3933 		 * interfaces.  We should even omit it, because loop-backed
   3934 		 * responses would confuse the DAD procedure.
   3935 		 */
   3936 		return 0;
   3937 	default:
   3938 		/*
   3939 		 * Our DAD routine requires the interface up and running.
   3940 		 * However, some interfaces can be up before the RUNNING
   3941 		 * status.  Additionally, users may try to assign addresses
   3942 		 * before the interface becomes up (or running).
   3943 		 * We simply skip DAD in such a case as a work around.
   3944 		 * XXX: we should rather mark "tentative" on such addresses,
   3945 		 * and do DAD after the interface becomes ready.
   3946 		 */
   3947 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   3948 		    (IFF_UP | IFF_RUNNING))
   3949 			return 0;
   3950 
   3951 		return 1;
   3952 	}
   3953 }
   3954 
   3955 /*
   3956  * if_flags_set(ifp, flags)
   3957  *
   3958  *	Ask ifp to change ifp->if_flags to flags, as if with the
   3959  *	SIOCSIFFLAGS ioctl command.
   3960  *
   3961  *	May sleep.  Caller must hold ifp->if_ioctl_lock, a.k.a
   3962  *	IFNET_LOCK.
   3963  */
   3964 int
   3965 if_flags_set(ifnet_t *ifp, const u_short flags)
   3966 {
   3967 	int rc;
   3968 
   3969 	KASSERT(IFNET_LOCKED(ifp));
   3970 
   3971 	if (ifp->if_setflags != NULL)
   3972 		rc = (*ifp->if_setflags)(ifp, flags);
   3973 	else {
   3974 		u_short cantflags, chgdflags;
   3975 		struct ifreq ifr;
   3976 
   3977 		chgdflags = ifp->if_flags ^ flags;
   3978 		cantflags = chgdflags & IFF_CANTCHANGE;
   3979 
   3980 		if (cantflags != 0)
   3981 			ifp->if_flags ^= cantflags;
   3982 
   3983                 /*
   3984 		 * Traditionally, we do not call if_ioctl after
   3985                  * setting/clearing only IFF_PROMISC if the interface
   3986                  * isn't IFF_UP.  Uphold that tradition.
   3987 		 */
   3988 		if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
   3989 			return 0;
   3990 
   3991 		memset(&ifr, 0, sizeof(ifr));
   3992 
   3993 		ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
   3994 		rc = if_ioctl(ifp, SIOCSIFFLAGS, &ifr);
   3995 
   3996 		if (rc != 0 && cantflags != 0)
   3997 			ifp->if_flags ^= cantflags;
   3998 	}
   3999 
   4000 	return rc;
   4001 }
   4002 
   4003 /*
   4004  * if_mcast_op(ifp, cmd, sa)
   4005  *
   4006  *	Apply a multicast command, SIOCADDMULTI/SIOCDELMULTI, to the
   4007  *	interface.  Returns 0 on success, nonzero errno(3) number on
   4008  *	failure.
   4009  *
   4010  *	May sleep.
   4011  *
   4012  *	Use this, not if_ioctl, for the multicast commands.
   4013  */
   4014 int
   4015 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
   4016 {
   4017 	int rc;
   4018 	struct ifreq ifr;
   4019 
   4020 	switch (cmd) {
   4021 	case SIOCADDMULTI:
   4022 	case SIOCDELMULTI:
   4023 		break;
   4024 	default:
   4025 		panic("invalid ifnet multicast command: 0x%lx", cmd);
   4026 	}
   4027 
   4028 	ifreq_setaddr(cmd, &ifr, sa);
   4029 	rc = if_ioctl(ifp, cmd, &ifr);
   4030 
   4031 	return rc;
   4032 }
   4033 
   4034 static void
   4035 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
   4036     struct ifaltq *ifq)
   4037 {
   4038 	const struct sysctlnode *cnode, *rnode;
   4039 
   4040 	if (sysctl_createv(clog, 0, NULL, &rnode,
   4041 		       CTLFLAG_PERMANENT,
   4042 		       CTLTYPE_NODE, "interfaces",
   4043 		       SYSCTL_DESCR("Per-interface controls"),
   4044 		       NULL, 0, NULL, 0,
   4045 		       CTL_NET, CTL_CREATE, CTL_EOL) != 0)
   4046 		goto bad;
   4047 
   4048 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   4049 		       CTLFLAG_PERMANENT,
   4050 		       CTLTYPE_NODE, ifname,
   4051 		       SYSCTL_DESCR("Interface controls"),
   4052 		       NULL, 0, NULL, 0,
   4053 		       CTL_CREATE, CTL_EOL) != 0)
   4054 		goto bad;
   4055 
   4056 	if (sysctl_createv(clog, 0, &rnode, &rnode,
   4057 		       CTLFLAG_PERMANENT,
   4058 		       CTLTYPE_NODE, "sndq",
   4059 		       SYSCTL_DESCR("Interface output queue controls"),
   4060 		       NULL, 0, NULL, 0,
   4061 		       CTL_CREATE, CTL_EOL) != 0)
   4062 		goto bad;
   4063 
   4064 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   4065 		       CTLFLAG_PERMANENT,
   4066 		       CTLTYPE_INT, "len",
   4067 		       SYSCTL_DESCR("Current output queue length"),
   4068 		       NULL, 0, &ifq->ifq_len, 0,
   4069 		       CTL_CREATE, CTL_EOL) != 0)
   4070 		goto bad;
   4071 
   4072 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   4073 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   4074 		       CTLTYPE_INT, "maxlen",
   4075 		       SYSCTL_DESCR("Maximum allowed output queue length"),
   4076 		       NULL, 0, &ifq->ifq_maxlen, 0,
   4077 		       CTL_CREATE, CTL_EOL) != 0)
   4078 		goto bad;
   4079 
   4080 	if (sysctl_createv(clog, 0, &rnode, &cnode,
   4081 		       CTLFLAG_PERMANENT,
   4082 		       CTLTYPE_INT, "drops",
   4083 		       SYSCTL_DESCR("Packets dropped due to full output queue"),
   4084 		       NULL, 0, &ifq->ifq_drops, 0,
   4085 		       CTL_CREATE, CTL_EOL) != 0)
   4086 		goto bad;
   4087 
   4088 	return;
   4089 bad:
   4090 	printf("%s: could not attach sysctl nodes\n", ifname);
   4091 	return;
   4092 }
   4093 
   4094 static int
   4095 if_sdl_sysctl(SYSCTLFN_ARGS)
   4096 {
   4097 	struct ifnet *ifp;
   4098 	const struct sockaddr_dl *sdl;
   4099 	struct psref psref;
   4100 	int error = 0;
   4101 
   4102 	if (namelen != 1)
   4103 		return EINVAL;
   4104 
   4105 	const int bound = curlwp_bind();
   4106 	ifp = if_get_byindex(name[0], &psref);
   4107 	if (ifp == NULL) {
   4108 		error = ENODEV;
   4109 		goto out0;
   4110 	}
   4111 
   4112 	sdl = ifp->if_sadl;
   4113 	if (sdl == NULL) {
   4114 		*oldlenp = 0;
   4115 		goto out1;
   4116 	}
   4117 
   4118 	if (oldp == NULL) {
   4119 		*oldlenp = sdl->sdl_alen;
   4120 		goto out1;
   4121 	}
   4122 
   4123 	if (*oldlenp >= sdl->sdl_alen)
   4124 		*oldlenp = sdl->sdl_alen;
   4125 	error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen], oldp, *oldlenp);
   4126 out1:
   4127 	if_put(ifp, &psref);
   4128 out0:
   4129 	curlwp_bindx(bound);
   4130 	return error;
   4131 }
   4132 
   4133 static void
   4134 if_sysctl_setup(struct sysctllog **clog)
   4135 {
   4136 	const struct sysctlnode *rnode = NULL;
   4137 
   4138 	sysctl_createv(clog, 0, NULL, &rnode,
   4139 		       CTLFLAG_PERMANENT,
   4140 		       CTLTYPE_NODE, "sdl",
   4141 		       SYSCTL_DESCR("Get active link-layer address"),
   4142 		       if_sdl_sysctl, 0, NULL, 0,
   4143 		       CTL_NET, CTL_CREATE, CTL_EOL);
   4144 }
   4145