if.c revision 1.531 1 /* $NetBSD: if.c,v 1.531 2024/12/16 05:18:37 ozaki-r Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by William Studenmund and Jason R. Thorpe.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the project nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 */
60
61 /*
62 * Copyright (c) 1980, 1986, 1993
63 * The Regents of the University of California. All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 * notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 * notice, this list of conditions and the following disclaimer in the
72 * documentation and/or other materials provided with the distribution.
73 * 3. Neither the name of the University nor the names of its contributors
74 * may be used to endorse or promote products derived from this software
75 * without specific prior written permission.
76 *
77 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
78 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
79 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
80 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
81 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
82 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
83 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
84 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
85 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
86 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
87 * SUCH DAMAGE.
88 *
89 * @(#)if.c 8.5 (Berkeley) 1/9/95
90 */
91
92 #include <sys/cdefs.h>
93 __KERNEL_RCSID(0, "$NetBSD: if.c,v 1.531 2024/12/16 05:18:37 ozaki-r Exp $");
94
95 #if defined(_KERNEL_OPT)
96 #include "opt_inet.h"
97 #include "opt_ipsec.h"
98 #include "opt_atalk.h"
99 #include "opt_wlan.h"
100 #include "opt_net_mpsafe.h"
101 #include "opt_mrouting.h"
102 #endif
103
104 #include <sys/param.h>
105 #include <sys/mbuf.h>
106 #include <sys/systm.h>
107 #include <sys/callout.h>
108 #include <sys/proc.h>
109 #include <sys/socket.h>
110 #include <sys/socketvar.h>
111 #include <sys/domain.h>
112 #include <sys/protosw.h>
113 #include <sys/kernel.h>
114 #include <sys/ioctl.h>
115 #include <sys/sysctl.h>
116 #include <sys/syslog.h>
117 #include <sys/kauth.h>
118 #include <sys/kmem.h>
119 #include <sys/xcall.h>
120 #include <sys/cpu.h>
121 #include <sys/intr.h>
122 #include <sys/module_hook.h>
123 #include <sys/compat_stub.h>
124 #include <sys/msan.h>
125 #include <sys/hook.h>
126
127 #include <net/if.h>
128 #include <net/if_dl.h>
129 #include <net/if_ether.h>
130 #include <net/if_media.h>
131 #include <net80211/ieee80211.h>
132 #include <net80211/ieee80211_ioctl.h>
133 #include <net/if_types.h>
134 #include <net/route.h>
135 #include <sys/module.h>
136 #ifdef NETATALK
137 #include <netatalk/at_extern.h>
138 #include <netatalk/at.h>
139 #endif
140 #include <net/pfil.h>
141 #include <netinet/in.h>
142 #include <netinet/in_var.h>
143 #include <netinet/ip_encap.h>
144 #include <net/bpf.h>
145
146 #ifdef INET6
147 #include <netinet6/in6_var.h>
148 #include <netinet6/nd6.h>
149 #endif
150
151 #include "ether.h"
152
153 #include "bridge.h"
154 #if NBRIDGE > 0
155 #include <net/if_bridgevar.h>
156 #endif
157
158 #include "carp.h"
159 #if NCARP > 0
160 #include <netinet/ip_carp.h>
161 #endif
162
163 #include <compat/sys/sockio.h>
164
165 MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
166 MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
167
168 /*
169 * XXX reusing (ifp)->if_snd->ifq_lock rather than having another spin mutex
170 * for each ifnet. It doesn't matter because:
171 * - if IFEF_MPSAFE is enabled, if_snd isn't used and lock contentions on
172 * ifq_lock don't happen
173 * - if IFEF_MPSAFE is disabled, there is no lock contention on ifq_lock
174 * because if_snd, if_link_state_change and if_link_state_change_process
175 * are all called with KERNEL_LOCK
176 */
177 #define IF_LINK_STATE_CHANGE_LOCK(ifp) \
178 mutex_enter((ifp)->if_snd.ifq_lock)
179 #define IF_LINK_STATE_CHANGE_UNLOCK(ifp) \
180 mutex_exit((ifp)->if_snd.ifq_lock)
181
182 /*
183 * Global list of interfaces.
184 */
185 /* DEPRECATED. Remove it once kvm(3) users disappeared */
186 struct ifnet_head ifnet_list;
187
188 struct pslist_head ifnet_pslist;
189 static ifnet_t ** ifindex2ifnet = NULL;
190 static u_int if_index = 1;
191 static size_t if_indexlim = 0;
192 static uint64_t index_gen;
193 /* Mutex to protect the above objects. */
194 kmutex_t ifnet_mtx __cacheline_aligned;
195 static struct psref_class *ifnet_psref_class __read_mostly;
196 static pserialize_t ifnet_psz;
197 static struct workqueue *ifnet_link_state_wq __read_mostly;
198
199 static struct workqueue *if_slowtimo_wq __read_mostly;
200
201 static kmutex_t if_clone_mtx;
202
203 struct ifnet *lo0ifp;
204 int ifqmaxlen = IFQ_MAXLEN;
205
206 struct psref_class *ifa_psref_class __read_mostly;
207
208 static int if_delroute_matcher(struct rtentry *, void *);
209
210 static bool if_is_unit(const char *);
211 static struct if_clone *if_clone_lookup(const char *, int *);
212
213 static LIST_HEAD(, if_clone) if_cloners = LIST_HEAD_INITIALIZER(if_cloners);
214 static int if_cloners_count;
215
216 /* Packet filtering hook for interfaces. */
217 pfil_head_t * if_pfil __read_mostly;
218
219 static kauth_listener_t if_listener;
220
221 static int doifioctl(struct socket *, u_long, void *, struct lwp *);
222 static void sysctl_sndq_setup(struct sysctllog **, const char *,
223 struct ifaltq *);
224 static void if_slowtimo_intr(void *);
225 static void if_slowtimo_work(struct work *, void *);
226 static int sysctl_if_watchdog(SYSCTLFN_PROTO);
227 static void sysctl_watchdog_setup(struct ifnet *);
228 static void if_attachdomain1(struct ifnet *);
229 static int ifconf(u_long, void *);
230 static int if_transmit(struct ifnet *, struct mbuf *);
231 static int if_clone_create(const char *);
232 static int if_clone_destroy(const char *);
233 static void if_link_state_change_work(struct work *, void *);
234 static void if_up_locked(struct ifnet *);
235 static void _if_down(struct ifnet *);
236 static void if_down_deactivated(struct ifnet *);
237
238 struct if_percpuq {
239 struct ifnet *ipq_ifp;
240 void *ipq_si;
241 struct percpu *ipq_ifqs; /* struct ifqueue */
242 };
243
244 static struct mbuf *if_percpuq_dequeue(struct if_percpuq *);
245
246 static void if_percpuq_drops(void *, void *, struct cpu_info *);
247 static int sysctl_percpuq_drops_handler(SYSCTLFN_PROTO);
248 static void sysctl_percpuq_setup(struct sysctllog **, const char *,
249 struct if_percpuq *);
250
251 struct if_deferred_start {
252 struct ifnet *ids_ifp;
253 void (*ids_if_start)(struct ifnet *);
254 void *ids_si;
255 };
256
257 static void if_deferred_start_softint(void *);
258 static void if_deferred_start_common(struct ifnet *);
259 static void if_deferred_start_destroy(struct ifnet *);
260
261 struct if_slowtimo_data {
262 kmutex_t isd_lock;
263 struct callout isd_ch;
264 struct work isd_work;
265 struct ifnet *isd_ifp;
266 bool isd_queued;
267 bool isd_dying;
268 bool isd_trigger;
269 };
270
271 /*
272 * Hook for if_vlan - needed by if_agr
273 */
274 struct if_vlan_vlan_input_hook_t if_vlan_vlan_input_hook;
275
276 static void if_sysctl_setup(struct sysctllog **);
277
278 static int
279 if_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
280 void *arg0, void *arg1, void *arg2, void *arg3)
281 {
282 int result;
283 enum kauth_network_req req;
284
285 result = KAUTH_RESULT_DEFER;
286 req = (enum kauth_network_req)(uintptr_t)arg1;
287
288 if (action != KAUTH_NETWORK_INTERFACE)
289 return result;
290
291 if ((req == KAUTH_REQ_NETWORK_INTERFACE_GET) ||
292 (req == KAUTH_REQ_NETWORK_INTERFACE_SET))
293 result = KAUTH_RESULT_ALLOW;
294
295 return result;
296 }
297
298 /*
299 * Network interface utility routines.
300 *
301 * Routines with ifa_ifwith* names take sockaddr *'s as
302 * parameters.
303 */
304 void
305 ifinit(void)
306 {
307
308 #if (defined(INET) || defined(INET6))
309 encapinit();
310 #endif
311
312 if_listener = kauth_listen_scope(KAUTH_SCOPE_NETWORK,
313 if_listener_cb, NULL);
314
315 /* interfaces are available, inform socket code */
316 ifioctl = doifioctl;
317 }
318
319 /*
320 * XXX Initialization before configure().
321 * XXX hack to get pfil_add_hook working in autoconf.
322 */
323 void
324 ifinit1(void)
325 {
326 int error __diagused;
327
328 #ifdef NET_MPSAFE
329 printf("NET_MPSAFE enabled\n");
330 #endif
331
332 mutex_init(&if_clone_mtx, MUTEX_DEFAULT, IPL_NONE);
333
334 TAILQ_INIT(&ifnet_list);
335 mutex_init(&ifnet_mtx, MUTEX_DEFAULT, IPL_NONE);
336 ifnet_psz = pserialize_create();
337 ifnet_psref_class = psref_class_create("ifnet", IPL_SOFTNET);
338 ifa_psref_class = psref_class_create("ifa", IPL_SOFTNET);
339 error = workqueue_create(&ifnet_link_state_wq, "iflnkst",
340 if_link_state_change_work, NULL, PRI_SOFTNET, IPL_NET,
341 WQ_MPSAFE);
342 KASSERT(error == 0);
343 PSLIST_INIT(&ifnet_pslist);
344
345 error = workqueue_create(&if_slowtimo_wq, "ifwdog",
346 if_slowtimo_work, NULL, PRI_SOFTNET, IPL_SOFTCLOCK, WQ_MPSAFE);
347 KASSERTMSG(error == 0, "error=%d", error);
348
349 if_indexlim = 8;
350
351 if_pfil = pfil_head_create(PFIL_TYPE_IFNET, NULL);
352 KASSERT(if_pfil != NULL);
353
354 #if NETHER > 0 || defined(NETATALK) || defined(WLAN)
355 etherinit();
356 #endif
357 }
358
359 /* XXX must be after domaininit() */
360 void
361 ifinit_post(void)
362 {
363
364 if_sysctl_setup(NULL);
365 }
366
367 ifnet_t *
368 if_alloc(u_char type)
369 {
370
371 return kmem_zalloc(sizeof(ifnet_t), KM_SLEEP);
372 }
373
374 void
375 if_free(ifnet_t *ifp)
376 {
377
378 kmem_free(ifp, sizeof(ifnet_t));
379 }
380
381 void
382 if_initname(struct ifnet *ifp, const char *name, int unit)
383 {
384
385 (void)snprintf(ifp->if_xname, sizeof(ifp->if_xname),
386 "%s%d", name, unit);
387 }
388
389 /*
390 * Null routines used while an interface is going away. These routines
391 * just return an error.
392 */
393
394 int
395 if_nulloutput(struct ifnet *ifp, struct mbuf *m,
396 const struct sockaddr *so, const struct rtentry *rt)
397 {
398
399 return ENXIO;
400 }
401
402 void
403 if_nullinput(struct ifnet *ifp, struct mbuf *m)
404 {
405
406 /* Nothing. */
407 }
408
409 void
410 if_nullstart(struct ifnet *ifp)
411 {
412
413 /* Nothing. */
414 }
415
416 int
417 if_nulltransmit(struct ifnet *ifp, struct mbuf *m)
418 {
419
420 m_freem(m);
421 return ENXIO;
422 }
423
424 int
425 if_nullioctl(struct ifnet *ifp, u_long cmd, void *data)
426 {
427
428 return ENXIO;
429 }
430
431 int
432 if_nullinit(struct ifnet *ifp)
433 {
434
435 return ENXIO;
436 }
437
438 void
439 if_nullstop(struct ifnet *ifp, int disable)
440 {
441
442 /* Nothing. */
443 }
444
445 void
446 if_nullslowtimo(struct ifnet *ifp)
447 {
448
449 /* Nothing. */
450 }
451
452 void
453 if_nulldrain(struct ifnet *ifp)
454 {
455
456 /* Nothing. */
457 }
458
459 void
460 if_set_sadl(struct ifnet *ifp, const void *lla, u_char addrlen, bool factory)
461 {
462 struct ifaddr *ifa;
463 struct sockaddr_dl *sdl;
464
465 ifp->if_addrlen = addrlen;
466 if_alloc_sadl(ifp);
467 ifa = ifp->if_dl;
468 sdl = satosdl(ifa->ifa_addr);
469
470 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lla, ifp->if_addrlen);
471 if (factory) {
472 KASSERT(ifp->if_hwdl == NULL);
473 ifp->if_hwdl = ifp->if_dl;
474 ifaref(ifp->if_hwdl);
475 }
476 /* TBD routing socket */
477 }
478
479 struct ifaddr *
480 if_dl_create(const struct ifnet *ifp, const struct sockaddr_dl **sdlp)
481 {
482 unsigned socksize, ifasize;
483 int addrlen, namelen;
484 struct sockaddr_dl *mask, *sdl;
485 struct ifaddr *ifa;
486
487 namelen = strlen(ifp->if_xname);
488 addrlen = ifp->if_addrlen;
489 socksize = roundup(sockaddr_dl_measure(namelen, addrlen),
490 sizeof(long));
491 ifasize = sizeof(*ifa) + 2 * socksize;
492 ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
493
494 sdl = (struct sockaddr_dl *)(ifa + 1);
495 mask = (struct sockaddr_dl *)(socksize + (char *)sdl);
496
497 sockaddr_dl_init(sdl, socksize, ifp->if_index, ifp->if_type,
498 ifp->if_xname, namelen, NULL, addrlen);
499 mask->sdl_family = AF_LINK;
500 mask->sdl_len = sockaddr_dl_measure(namelen, 0);
501 memset(&mask->sdl_data[0], 0xff, namelen);
502 ifa->ifa_rtrequest = link_rtrequest;
503 ifa->ifa_addr = (struct sockaddr *)sdl;
504 ifa->ifa_netmask = (struct sockaddr *)mask;
505 ifa_psref_init(ifa);
506
507 *sdlp = sdl;
508
509 return ifa;
510 }
511
512 static void
513 if_sadl_setrefs(struct ifnet *ifp, struct ifaddr *ifa)
514 {
515 const struct sockaddr_dl *sdl;
516
517 ifp->if_dl = ifa;
518 ifaref(ifa);
519 sdl = satosdl(ifa->ifa_addr);
520 ifp->if_sadl = sdl;
521 }
522
523 /*
524 * Allocate the link level name for the specified interface. This
525 * is an attachment helper. It must be called after ifp->if_addrlen
526 * is initialized, which may not be the case when if_attach() is
527 * called.
528 */
529 void
530 if_alloc_sadl(struct ifnet *ifp)
531 {
532 struct ifaddr *ifa;
533 const struct sockaddr_dl *sdl;
534
535 /*
536 * If the interface already has a link name, release it
537 * now. This is useful for interfaces that can change
538 * link types, and thus switch link names often.
539 */
540 if (ifp->if_sadl != NULL)
541 if_free_sadl(ifp, 0);
542
543 ifa = if_dl_create(ifp, &sdl);
544
545 ifa_insert(ifp, ifa);
546 if_sadl_setrefs(ifp, ifa);
547 }
548
549 static void
550 if_deactivate_sadl(struct ifnet *ifp)
551 {
552 struct ifaddr *ifa;
553
554 KASSERT(ifp->if_dl != NULL);
555
556 ifa = ifp->if_dl;
557
558 ifp->if_sadl = NULL;
559
560 ifp->if_dl = NULL;
561 ifafree(ifa);
562 }
563
564 static void
565 if_replace_sadl(struct ifnet *ifp, struct ifaddr *ifa)
566 {
567 struct ifaddr *old;
568
569 KASSERT(ifp->if_dl != NULL);
570
571 old = ifp->if_dl;
572
573 ifaref(ifa);
574 /* XXX Update if_dl and if_sadl atomically */
575 ifp->if_dl = ifa;
576 ifp->if_sadl = satosdl(ifa->ifa_addr);
577
578 ifafree(old);
579 }
580
581 void
582 if_activate_sadl(struct ifnet *ifp, struct ifaddr *ifa0,
583 const struct sockaddr_dl *sdl)
584 {
585 struct ifaddr *ifa;
586 const int bound = curlwp_bind();
587
588 KASSERT(ifa_held(ifa0));
589
590 const int s = splsoftnet();
591
592 if_replace_sadl(ifp, ifa0);
593
594 int ss = pserialize_read_enter();
595 IFADDR_READER_FOREACH(ifa, ifp) {
596 struct psref psref;
597 ifa_acquire(ifa, &psref);
598 pserialize_read_exit(ss);
599
600 rtinit(ifa, RTM_LLINFO_UPD, 0);
601
602 ss = pserialize_read_enter();
603 ifa_release(ifa, &psref);
604 }
605 pserialize_read_exit(ss);
606
607 splx(s);
608 curlwp_bindx(bound);
609 }
610
611 /*
612 * Free the link level name for the specified interface. This is
613 * a detach helper. This is called from if_detach().
614 */
615 void
616 if_free_sadl(struct ifnet *ifp, int factory)
617 {
618 struct ifaddr *ifa;
619
620 if (factory && ifp->if_hwdl != NULL) {
621 ifa = ifp->if_hwdl;
622 ifp->if_hwdl = NULL;
623 ifafree(ifa);
624 }
625
626 ifa = ifp->if_dl;
627 if (ifa == NULL) {
628 KASSERT(ifp->if_sadl == NULL);
629 return;
630 }
631
632 KASSERT(ifp->if_sadl != NULL);
633
634 const int s = splsoftnet();
635 KASSERT(ifa->ifa_addr->sa_family == AF_LINK);
636 ifa_remove(ifp, ifa);
637 if_deactivate_sadl(ifp);
638 splx(s);
639 }
640
641 static void
642 if_getindex(ifnet_t *ifp)
643 {
644 bool hitlimit = false;
645 char xnamebuf[HOOKNAMSIZ];
646
647 ifp->if_index_gen = index_gen++;
648 snprintf(xnamebuf, sizeof(xnamebuf), "%s-lshk", ifp->if_xname);
649 ifp->if_linkstate_hooks = simplehook_create(IPL_NET,
650 xnamebuf);
651
652 ifp->if_index = if_index;
653 if (ifindex2ifnet == NULL) {
654 if_index++;
655 goto skip;
656 }
657 while (if_byindex(ifp->if_index)) {
658 /*
659 * If we hit USHRT_MAX, we skip back to 0 since
660 * there are a number of places where the value
661 * of if_index or if_index itself is compared
662 * to or stored in an unsigned short. By
663 * jumping back, we won't botch those assignments
664 * or comparisons.
665 */
666 if (++if_index == 0) {
667 if_index = 1;
668 } else if (if_index == USHRT_MAX) {
669 /*
670 * However, if we have to jump back to
671 * zero *twice* without finding an empty
672 * slot in ifindex2ifnet[], then there
673 * there are too many (>65535) interfaces.
674 */
675 if (hitlimit)
676 panic("too many interfaces");
677 hitlimit = true;
678 if_index = 1;
679 }
680 ifp->if_index = if_index;
681 }
682 skip:
683 /*
684 * ifindex2ifnet is indexed by if_index. Since if_index will
685 * grow dynamically, it should grow too.
686 */
687 if (ifindex2ifnet == NULL || ifp->if_index >= if_indexlim) {
688 size_t m, n, oldlim;
689 void *q;
690
691 oldlim = if_indexlim;
692 while (ifp->if_index >= if_indexlim)
693 if_indexlim <<= 1;
694
695 /* grow ifindex2ifnet */
696 m = oldlim * sizeof(struct ifnet *);
697 n = if_indexlim * sizeof(struct ifnet *);
698 q = malloc(n, M_IFADDR, M_WAITOK | M_ZERO);
699 if (ifindex2ifnet != NULL) {
700 memcpy(q, ifindex2ifnet, m);
701 free(ifindex2ifnet, M_IFADDR);
702 }
703 ifindex2ifnet = (struct ifnet **)q;
704 }
705 ifindex2ifnet[ifp->if_index] = ifp;
706 }
707
708 /*
709 * Initialize an interface and assign an index for it.
710 *
711 * It must be called prior to a device specific attach routine
712 * (e.g., ether_ifattach and ieee80211_ifattach) or if_alloc_sadl,
713 * and be followed by if_register:
714 *
715 * if_initialize(ifp);
716 * ether_ifattach(ifp, enaddr);
717 * if_register(ifp);
718 */
719 void
720 if_initialize(ifnet_t *ifp)
721 {
722
723 KASSERT(if_indexlim > 0);
724 TAILQ_INIT(&ifp->if_addrlist);
725
726 /*
727 * Link level name is allocated later by a separate call to
728 * if_alloc_sadl().
729 */
730
731 if (ifp->if_snd.ifq_maxlen == 0)
732 ifp->if_snd.ifq_maxlen = ifqmaxlen;
733
734 ifp->if_broadcastaddr = 0; /* reliably crash if used uninitialized */
735
736 ifp->if_link_state = LINK_STATE_UNKNOWN;
737 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
738 ifp->if_link_scheduled = false;
739
740 ifp->if_capenable = 0;
741 ifp->if_csum_flags_tx = 0;
742 ifp->if_csum_flags_rx = 0;
743
744 #ifdef ALTQ
745 ifp->if_snd.altq_type = 0;
746 ifp->if_snd.altq_disc = NULL;
747 ifp->if_snd.altq_flags &= ALTQF_CANTCHANGE;
748 ifp->if_snd.altq_tbr = NULL;
749 ifp->if_snd.altq_ifp = ifp;
750 #endif
751
752 IFQ_LOCK_INIT(&ifp->if_snd);
753
754 ifp->if_pfil = pfil_head_create(PFIL_TYPE_IFNET, ifp);
755 pfil_run_ifhooks(if_pfil, PFIL_IFNET_ATTACH, ifp);
756
757 IF_AFDATA_LOCK_INIT(ifp);
758
759 PSLIST_ENTRY_INIT(ifp, if_pslist_entry);
760 PSLIST_INIT(&ifp->if_addr_pslist);
761 psref_target_init(&ifp->if_psref, ifnet_psref_class);
762 ifp->if_ioctl_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
763 LIST_INIT(&ifp->if_multiaddrs);
764 if_stats_init(ifp);
765
766 IFNET_GLOBAL_LOCK();
767 if_getindex(ifp);
768 IFNET_GLOBAL_UNLOCK();
769 }
770
771 /*
772 * Register an interface to the list of "active" interfaces.
773 */
774 void
775 if_register(ifnet_t *ifp)
776 {
777 /*
778 * If the driver has not supplied its own if_ioctl or if_stop,
779 * then supply the default.
780 */
781 if (ifp->if_ioctl == NULL)
782 ifp->if_ioctl = ifioctl_common;
783 if (ifp->if_stop == NULL)
784 ifp->if_stop = if_nullstop;
785
786 sysctl_sndq_setup(&ifp->if_sysctl_log, ifp->if_xname, &ifp->if_snd);
787
788 if (!STAILQ_EMPTY(&domains))
789 if_attachdomain1(ifp);
790
791 /* Announce the interface. */
792 rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
793
794 if (ifp->if_slowtimo != NULL) {
795 struct if_slowtimo_data *isd;
796
797 isd = kmem_zalloc(sizeof(*isd), KM_SLEEP);
798 mutex_init(&isd->isd_lock, MUTEX_DEFAULT, IPL_SOFTCLOCK);
799 callout_init(&isd->isd_ch, CALLOUT_MPSAFE);
800 callout_setfunc(&isd->isd_ch, if_slowtimo_intr, ifp);
801 isd->isd_ifp = ifp;
802
803 ifp->if_slowtimo_data = isd;
804
805 if_slowtimo_intr(ifp);
806
807 sysctl_watchdog_setup(ifp);
808 }
809
810 if (ifp->if_transmit == NULL || ifp->if_transmit == if_nulltransmit)
811 ifp->if_transmit = if_transmit;
812
813 IFNET_GLOBAL_LOCK();
814 TAILQ_INSERT_TAIL(&ifnet_list, ifp, if_list);
815 IFNET_WRITER_INSERT_TAIL(ifp);
816 IFNET_GLOBAL_UNLOCK();
817 }
818
819 /*
820 * The if_percpuq framework
821 *
822 * It allows network device drivers to execute the network stack
823 * in softint (so called softint-based if_input). It utilizes
824 * softint and percpu ifqueue. It doesn't distribute any packets
825 * between CPUs, unlike pktqueue(9).
826 *
827 * Currently we support two options for device drivers to apply the framework:
828 * - Use it implicitly with less changes
829 * - If you use if_attach in driver's _attach function and if_input in
830 * driver's Rx interrupt handler, a packet is queued and a softint handles
831 * the packet implicitly
832 * - Use it explicitly in each driver (recommended)
833 * - You can use if_percpuq_* directly in your driver
834 * - In this case, you need to allocate struct if_percpuq in driver's softc
835 * - See wm(4) as a reference implementation
836 */
837
838 static void
839 if_percpuq_softint(void *arg)
840 {
841 struct if_percpuq *ipq = arg;
842 struct ifnet *ifp = ipq->ipq_ifp;
843 struct mbuf *m;
844
845 while ((m = if_percpuq_dequeue(ipq)) != NULL) {
846 if_statinc(ifp, if_ipackets);
847 bpf_mtap(ifp, m, BPF_D_IN);
848
849 ifp->_if_input(ifp, m);
850 }
851 }
852
853 static void
854 if_percpuq_init_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
855 {
856 struct ifqueue *const ifq = p;
857
858 memset(ifq, 0, sizeof(*ifq));
859 ifq->ifq_maxlen = IFQ_MAXLEN;
860 }
861
862 struct if_percpuq *
863 if_percpuq_create(struct ifnet *ifp)
864 {
865 struct if_percpuq *ipq;
866 u_int flags = SOFTINT_NET;
867
868 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
869
870 ipq = kmem_zalloc(sizeof(*ipq), KM_SLEEP);
871 ipq->ipq_ifp = ifp;
872 ipq->ipq_si = softint_establish(flags, if_percpuq_softint, ipq);
873 ipq->ipq_ifqs = percpu_alloc(sizeof(struct ifqueue));
874 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_init_ifq, NULL);
875
876 sysctl_percpuq_setup(&ifp->if_sysctl_log, ifp->if_xname, ipq);
877
878 return ipq;
879 }
880
881 static struct mbuf *
882 if_percpuq_dequeue(struct if_percpuq *ipq)
883 {
884 struct mbuf *m;
885 struct ifqueue *ifq;
886
887 const int s = splnet();
888 ifq = percpu_getref(ipq->ipq_ifqs);
889 IF_DEQUEUE(ifq, m);
890 percpu_putref(ipq->ipq_ifqs);
891 splx(s);
892
893 return m;
894 }
895
896 static void
897 if_percpuq_purge_ifq(void *p, void *arg __unused, struct cpu_info *ci __unused)
898 {
899 struct ifqueue *const ifq = p;
900
901 IF_PURGE(ifq);
902 }
903
904 void
905 if_percpuq_destroy(struct if_percpuq *ipq)
906 {
907
908 /* if_detach may already destroy it */
909 if (ipq == NULL)
910 return;
911
912 softint_disestablish(ipq->ipq_si);
913 percpu_foreach(ipq->ipq_ifqs, &if_percpuq_purge_ifq, NULL);
914 percpu_free(ipq->ipq_ifqs, sizeof(struct ifqueue));
915 kmem_free(ipq, sizeof(*ipq));
916 }
917
918 void
919 if_percpuq_enqueue(struct if_percpuq *ipq, struct mbuf *m)
920 {
921 struct ifqueue *ifq;
922
923 KASSERT(ipq != NULL);
924
925 const int s = splnet();
926 ifq = percpu_getref(ipq->ipq_ifqs);
927 if (IF_QFULL(ifq)) {
928 IF_DROP(ifq);
929 percpu_putref(ipq->ipq_ifqs);
930 if_statinc(ipq->ipq_ifp, if_iqdrops);
931 m_freem(m);
932 goto out;
933 }
934 IF_ENQUEUE(ifq, m);
935 percpu_putref(ipq->ipq_ifqs);
936
937 softint_schedule(ipq->ipq_si);
938 out:
939 splx(s);
940 }
941
942 static void
943 if_percpuq_drops(void *p, void *arg, struct cpu_info *ci __unused)
944 {
945 struct ifqueue *const ifq = p;
946 uint64_t *sum = arg;
947
948 *sum += ifq->ifq_drops;
949 }
950
951 static int
952 sysctl_percpuq_drops_handler(SYSCTLFN_ARGS)
953 {
954 struct sysctlnode node;
955 struct if_percpuq *ipq;
956 uint64_t sum = 0;
957 int error;
958
959 node = *rnode;
960 ipq = node.sysctl_data;
961
962 percpu_foreach(ipq->ipq_ifqs, if_percpuq_drops, &sum);
963
964 node.sysctl_data = ∑
965 error = sysctl_lookup(SYSCTLFN_CALL(&node));
966 if (error != 0 || newp == NULL)
967 return error;
968
969 return 0;
970 }
971
972 static void
973 sysctl_percpuq_setup(struct sysctllog **clog, const char* ifname,
974 struct if_percpuq *ipq)
975 {
976 const struct sysctlnode *cnode, *rnode;
977
978 if (sysctl_createv(clog, 0, NULL, &rnode,
979 CTLFLAG_PERMANENT,
980 CTLTYPE_NODE, "interfaces",
981 SYSCTL_DESCR("Per-interface controls"),
982 NULL, 0, NULL, 0,
983 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
984 goto bad;
985
986 if (sysctl_createv(clog, 0, &rnode, &rnode,
987 CTLFLAG_PERMANENT,
988 CTLTYPE_NODE, ifname,
989 SYSCTL_DESCR("Interface controls"),
990 NULL, 0, NULL, 0,
991 CTL_CREATE, CTL_EOL) != 0)
992 goto bad;
993
994 if (sysctl_createv(clog, 0, &rnode, &rnode,
995 CTLFLAG_PERMANENT,
996 CTLTYPE_NODE, "rcvq",
997 SYSCTL_DESCR("Interface input queue controls"),
998 NULL, 0, NULL, 0,
999 CTL_CREATE, CTL_EOL) != 0)
1000 goto bad;
1001
1002 #ifdef NOTYET
1003 /* XXX Should show each per-CPU queue length? */
1004 if (sysctl_createv(clog, 0, &rnode, &rnode,
1005 CTLFLAG_PERMANENT,
1006 CTLTYPE_INT, "len",
1007 SYSCTL_DESCR("Current input queue length"),
1008 sysctl_percpuq_len, 0, NULL, 0,
1009 CTL_CREATE, CTL_EOL) != 0)
1010 goto bad;
1011
1012 if (sysctl_createv(clog, 0, &rnode, &cnode,
1013 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1014 CTLTYPE_INT, "maxlen",
1015 SYSCTL_DESCR("Maximum allowed input queue length"),
1016 sysctl_percpuq_maxlen_handler, 0, (void *)ipq, 0,
1017 CTL_CREATE, CTL_EOL) != 0)
1018 goto bad;
1019 #endif
1020
1021 if (sysctl_createv(clog, 0, &rnode, &cnode,
1022 CTLFLAG_PERMANENT,
1023 CTLTYPE_QUAD, "drops",
1024 SYSCTL_DESCR("Total packets dropped due to full input queue"),
1025 sysctl_percpuq_drops_handler, 0, (void *)ipq, 0,
1026 CTL_CREATE, CTL_EOL) != 0)
1027 goto bad;
1028
1029 return;
1030 bad:
1031 printf("%s: could not attach sysctl nodes\n", ifname);
1032 return;
1033 }
1034
1035 /*
1036 * The deferred if_start framework
1037 *
1038 * The common APIs to defer if_start to softint when if_start is requested
1039 * from a device driver running in hardware interrupt context.
1040 */
1041 /*
1042 * Call ifp->if_start (or equivalent) in a dedicated softint for
1043 * deferred if_start.
1044 */
1045 static void
1046 if_deferred_start_softint(void *arg)
1047 {
1048 struct if_deferred_start *ids = arg;
1049 struct ifnet *ifp = ids->ids_ifp;
1050
1051 ids->ids_if_start(ifp);
1052 }
1053
1054 /*
1055 * The default callback function for deferred if_start.
1056 */
1057 static void
1058 if_deferred_start_common(struct ifnet *ifp)
1059 {
1060 const int s = splnet();
1061 if_start_lock(ifp);
1062 splx(s);
1063 }
1064
1065 static inline bool
1066 if_snd_is_used(struct ifnet *ifp)
1067 {
1068
1069 return ALTQ_IS_ENABLED(&ifp->if_snd) ||
1070 ifp->if_transmit == if_transmit ||
1071 ifp->if_transmit == NULL ||
1072 ifp->if_transmit == if_nulltransmit;
1073 }
1074
1075 /*
1076 * Schedule deferred if_start.
1077 */
1078 void
1079 if_schedule_deferred_start(struct ifnet *ifp)
1080 {
1081
1082 KASSERT(ifp->if_deferred_start != NULL);
1083
1084 if (if_snd_is_used(ifp) && IFQ_IS_EMPTY(&ifp->if_snd))
1085 return;
1086
1087 softint_schedule(ifp->if_deferred_start->ids_si);
1088 }
1089
1090 /*
1091 * Create an instance of deferred if_start. A driver should call the function
1092 * only if the driver needs deferred if_start. Drivers can setup their own
1093 * deferred if_start function via 2nd argument.
1094 */
1095 void
1096 if_deferred_start_init(struct ifnet *ifp, void (*func)(struct ifnet *))
1097 {
1098 struct if_deferred_start *ids;
1099 u_int flags = SOFTINT_NET;
1100
1101 flags |= if_is_mpsafe(ifp) ? SOFTINT_MPSAFE : 0;
1102
1103 ids = kmem_zalloc(sizeof(*ids), KM_SLEEP);
1104 ids->ids_ifp = ifp;
1105 ids->ids_si = softint_establish(flags, if_deferred_start_softint, ids);
1106 if (func != NULL)
1107 ids->ids_if_start = func;
1108 else
1109 ids->ids_if_start = if_deferred_start_common;
1110
1111 ifp->if_deferred_start = ids;
1112 }
1113
1114 static void
1115 if_deferred_start_destroy(struct ifnet *ifp)
1116 {
1117
1118 if (ifp->if_deferred_start == NULL)
1119 return;
1120
1121 softint_disestablish(ifp->if_deferred_start->ids_si);
1122 kmem_free(ifp->if_deferred_start, sizeof(*ifp->if_deferred_start));
1123 ifp->if_deferred_start = NULL;
1124 }
1125
1126 /*
1127 * The common interface input routine that is called by device drivers,
1128 * which should be used only when the driver's rx handler already runs
1129 * in softint.
1130 */
1131 void
1132 if_input(struct ifnet *ifp, struct mbuf *m)
1133 {
1134
1135 KASSERT(ifp->if_percpuq == NULL);
1136 KASSERT(!cpu_intr_p());
1137
1138 if_statinc(ifp, if_ipackets);
1139 bpf_mtap(ifp, m, BPF_D_IN);
1140
1141 ifp->_if_input(ifp, m);
1142 }
1143
1144 /*
1145 * DEPRECATED. Use if_initialize and if_register instead.
1146 * See the above comment of if_initialize.
1147 *
1148 * Note that it implicitly enables if_percpuq to make drivers easy to
1149 * migrate softint-based if_input without much changes. If you don't
1150 * want to enable it, use if_initialize instead.
1151 */
1152 void
1153 if_attach(ifnet_t *ifp)
1154 {
1155
1156 if_initialize(ifp);
1157 ifp->if_percpuq = if_percpuq_create(ifp);
1158 if_register(ifp);
1159 }
1160
1161 void
1162 if_attachdomain(void)
1163 {
1164 struct ifnet *ifp;
1165 const int bound = curlwp_bind();
1166
1167 int s = pserialize_read_enter();
1168 IFNET_READER_FOREACH(ifp) {
1169 struct psref psref;
1170 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
1171 pserialize_read_exit(s);
1172 if_attachdomain1(ifp);
1173 s = pserialize_read_enter();
1174 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
1175 }
1176 pserialize_read_exit(s);
1177 curlwp_bindx(bound);
1178 }
1179
1180 static void
1181 if_attachdomain1(struct ifnet *ifp)
1182 {
1183 struct domain *dp;
1184 const int s = splsoftnet();
1185
1186 /* address family dependent data region */
1187 memset(ifp->if_afdata, 0, sizeof(ifp->if_afdata));
1188 DOMAIN_FOREACH(dp) {
1189 if (dp->dom_ifattach != NULL)
1190 ifp->if_afdata[dp->dom_family] =
1191 (*dp->dom_ifattach)(ifp);
1192 }
1193
1194 splx(s);
1195 }
1196
1197 /*
1198 * Deactivate an interface. This points all of the procedure
1199 * handles at error stubs. May be called from interrupt context.
1200 */
1201 void
1202 if_deactivate(struct ifnet *ifp)
1203 {
1204 const int s = splsoftnet();
1205
1206 ifp->if_output = if_nulloutput;
1207 ifp->_if_input = if_nullinput;
1208 ifp->if_start = if_nullstart;
1209 ifp->if_transmit = if_nulltransmit;
1210 ifp->if_ioctl = if_nullioctl;
1211 ifp->if_init = if_nullinit;
1212 ifp->if_stop = if_nullstop;
1213 if (ifp->if_slowtimo)
1214 ifp->if_slowtimo = if_nullslowtimo;
1215 ifp->if_drain = if_nulldrain;
1216
1217 /* No more packets may be enqueued. */
1218 ifp->if_snd.ifq_maxlen = 0;
1219
1220 splx(s);
1221 }
1222
1223 bool
1224 if_is_deactivated(const struct ifnet *ifp)
1225 {
1226
1227 return ifp->if_output == if_nulloutput;
1228 }
1229
1230 void
1231 if_purgeaddrs(struct ifnet *ifp, int family,
1232 void (*purgeaddr)(struct ifaddr *))
1233 {
1234 struct ifaddr *ifa, *nifa;
1235 int s;
1236
1237 s = pserialize_read_enter();
1238 for (ifa = IFADDR_READER_FIRST(ifp); ifa; ifa = nifa) {
1239 nifa = IFADDR_READER_NEXT(ifa);
1240 if (ifa->ifa_addr->sa_family != family)
1241 continue;
1242 pserialize_read_exit(s);
1243
1244 (*purgeaddr)(ifa);
1245
1246 s = pserialize_read_enter();
1247 }
1248 pserialize_read_exit(s);
1249 }
1250
1251 #ifdef IFAREF_DEBUG
1252 static struct ifaddr **ifa_list;
1253 static int ifa_list_size;
1254
1255 /* Depends on only one if_attach runs at once */
1256 static void
1257 if_build_ifa_list(struct ifnet *ifp)
1258 {
1259 struct ifaddr *ifa;
1260 int i;
1261
1262 KASSERT(ifa_list == NULL);
1263 KASSERT(ifa_list_size == 0);
1264
1265 IFADDR_READER_FOREACH(ifa, ifp)
1266 ifa_list_size++;
1267
1268 ifa_list = kmem_alloc(sizeof(*ifa) * ifa_list_size, KM_SLEEP);
1269 i = 0;
1270 IFADDR_READER_FOREACH(ifa, ifp) {
1271 ifa_list[i++] = ifa;
1272 ifaref(ifa);
1273 }
1274 }
1275
1276 static void
1277 if_check_and_free_ifa_list(struct ifnet *ifp)
1278 {
1279 int i;
1280 struct ifaddr *ifa;
1281
1282 if (ifa_list == NULL)
1283 return;
1284
1285 for (i = 0; i < ifa_list_size; i++) {
1286 char buf[64];
1287
1288 ifa = ifa_list[i];
1289 sockaddr_format(ifa->ifa_addr, buf, sizeof(buf));
1290 if (ifa->ifa_refcnt > 1) {
1291 log(LOG_WARNING,
1292 "ifa(%s) still referenced (refcnt=%d)\n",
1293 buf, ifa->ifa_refcnt - 1);
1294 } else
1295 log(LOG_DEBUG,
1296 "ifa(%s) not referenced (refcnt=%d)\n",
1297 buf, ifa->ifa_refcnt - 1);
1298 ifafree(ifa);
1299 }
1300
1301 kmem_free(ifa_list, sizeof(*ifa) * ifa_list_size);
1302 ifa_list = NULL;
1303 ifa_list_size = 0;
1304 }
1305 #endif
1306
1307 /*
1308 * Detach an interface from the list of "active" interfaces,
1309 * freeing any resources as we go along.
1310 *
1311 * NOTE: This routine must be called with a valid thread context,
1312 * as it may block.
1313 */
1314 void
1315 if_detach(struct ifnet *ifp)
1316 {
1317 struct socket so;
1318 struct ifaddr *ifa;
1319 #ifdef IFAREF_DEBUG
1320 struct ifaddr *last_ifa = NULL;
1321 #endif
1322 struct domain *dp;
1323 const struct protosw *pr;
1324 int i, family, purged;
1325
1326 #ifdef IFAREF_DEBUG
1327 if_build_ifa_list(ifp);
1328 #endif
1329 /*
1330 * XXX It's kind of lame that we have to have the
1331 * XXX socket structure...
1332 */
1333 memset(&so, 0, sizeof(so));
1334
1335 const int s = splnet();
1336
1337 sysctl_teardown(&ifp->if_sysctl_log);
1338
1339 IFNET_LOCK(ifp);
1340
1341 /*
1342 * Unset all queued link states and pretend a
1343 * link state change is scheduled.
1344 * This stops any more link state changes occurring for this
1345 * interface while it's being detached so it's safe
1346 * to drain the workqueue.
1347 */
1348 IF_LINK_STATE_CHANGE_LOCK(ifp);
1349 ifp->if_link_queue = -1; /* all bits set, see link_state_change() */
1350 ifp->if_link_scheduled = true;
1351 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
1352 workqueue_wait(ifnet_link_state_wq, &ifp->if_link_work);
1353
1354 if_deactivate(ifp);
1355 IFNET_UNLOCK(ifp);
1356
1357 /*
1358 * Unlink from the list and wait for all readers to leave
1359 * from pserialize read sections. Note that we can't do
1360 * psref_target_destroy here. See below.
1361 */
1362 IFNET_GLOBAL_LOCK();
1363 ifindex2ifnet[ifp->if_index] = NULL;
1364 TAILQ_REMOVE(&ifnet_list, ifp, if_list);
1365 IFNET_WRITER_REMOVE(ifp);
1366 pserialize_perform(ifnet_psz);
1367 IFNET_GLOBAL_UNLOCK();
1368
1369 if (ifp->if_slowtimo != NULL) {
1370 struct if_slowtimo_data *isd = ifp->if_slowtimo_data;
1371
1372 mutex_enter(&isd->isd_lock);
1373 isd->isd_dying = true;
1374 mutex_exit(&isd->isd_lock);
1375 callout_halt(&isd->isd_ch, NULL);
1376 workqueue_wait(if_slowtimo_wq, &isd->isd_work);
1377 callout_destroy(&isd->isd_ch);
1378 mutex_destroy(&isd->isd_lock);
1379 kmem_free(isd, sizeof(*isd));
1380
1381 ifp->if_slowtimo_data = NULL; /* paraonia */
1382 ifp->if_slowtimo = NULL; /* paranoia */
1383 }
1384 if_deferred_start_destroy(ifp);
1385
1386 /*
1387 * Do an if_down() to give protocols a chance to do something.
1388 */
1389 if_down_deactivated(ifp);
1390
1391 #ifdef ALTQ
1392 if (ALTQ_IS_ENABLED(&ifp->if_snd))
1393 altq_disable(&ifp->if_snd);
1394 if (ALTQ_IS_ATTACHED(&ifp->if_snd))
1395 altq_detach(&ifp->if_snd);
1396 #endif
1397
1398 #if NCARP > 0
1399 /* Remove the interface from any carp group it is a part of. */
1400 if (ifp->if_carp != NULL && ifp->if_type != IFT_CARP)
1401 carp_ifdetach(ifp);
1402 #endif
1403
1404 /*
1405 * Ensure that all packets on protocol input pktqueues have been
1406 * processed, or, at least, removed from the queues.
1407 *
1408 * A cross-call will ensure that the interrupts have completed.
1409 * FIXME: not quite..
1410 */
1411 pktq_ifdetach();
1412 xc_barrier(0);
1413
1414 /*
1415 * Rip all the addresses off the interface. This should make
1416 * all of the routes go away.
1417 *
1418 * pr_usrreq calls can remove an arbitrary number of ifaddrs
1419 * from the list, including our "cursor", ifa. For safety,
1420 * and to honor the TAILQ abstraction, I just restart the
1421 * loop after each removal. Note that the loop will exit
1422 * when all of the remaining ifaddrs belong to the AF_LINK
1423 * family. I am counting on the historical fact that at
1424 * least one pr_usrreq in each address domain removes at
1425 * least one ifaddr.
1426 */
1427 again:
1428 /*
1429 * At this point, no other one tries to remove ifa in the list,
1430 * so we don't need to take a lock or psref. Avoid using
1431 * IFADDR_READER_FOREACH to pass over an inspection of contract
1432 * violations of pserialize.
1433 */
1434 IFADDR_WRITER_FOREACH(ifa, ifp) {
1435 family = ifa->ifa_addr->sa_family;
1436 #ifdef IFAREF_DEBUG
1437 printf("if_detach: ifaddr %p, family %d, refcnt %d\n",
1438 ifa, family, ifa->ifa_refcnt);
1439 if (last_ifa != NULL && ifa == last_ifa)
1440 panic("if_detach: loop detected");
1441 last_ifa = ifa;
1442 #endif
1443 if (family == AF_LINK)
1444 continue;
1445 dp = pffinddomain(family);
1446 KASSERTMSG(dp != NULL, "no domain for AF %d", family);
1447 /*
1448 * XXX These PURGEIF calls are redundant with the
1449 * purge-all-families calls below, but are left in for
1450 * now both to make a smaller change, and to avoid
1451 * unplanned interactions with clearing of
1452 * ifp->if_addrlist.
1453 */
1454 purged = 0;
1455 for (pr = dp->dom_protosw;
1456 pr < dp->dom_protoswNPROTOSW; pr++) {
1457 so.so_proto = pr;
1458 if (pr->pr_usrreqs) {
1459 (void) (*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1460 purged = 1;
1461 }
1462 }
1463 if (purged == 0) {
1464 /*
1465 * XXX What's really the best thing to do
1466 * XXX here? --thorpej (at) NetBSD.org
1467 */
1468 printf("if_detach: WARNING: AF %d not purged\n",
1469 family);
1470 ifa_remove(ifp, ifa);
1471 }
1472 goto again;
1473 }
1474
1475 if_free_sadl(ifp, 1);
1476
1477 restart:
1478 IFADDR_WRITER_FOREACH(ifa, ifp) {
1479 family = ifa->ifa_addr->sa_family;
1480 KASSERT(family == AF_LINK);
1481 ifa_remove(ifp, ifa);
1482 goto restart;
1483 }
1484
1485 /* Delete stray routes from the routing table. */
1486 for (i = 0; i <= AF_MAX; i++)
1487 rt_delete_matched_entries(i, if_delroute_matcher, ifp, false);
1488
1489 DOMAIN_FOREACH(dp) {
1490 if (dp->dom_ifdetach != NULL && ifp->if_afdata[dp->dom_family])
1491 {
1492 void *p = ifp->if_afdata[dp->dom_family];
1493 if (p) {
1494 ifp->if_afdata[dp->dom_family] = NULL;
1495 (*dp->dom_ifdetach)(ifp, p);
1496 }
1497 }
1498
1499 /*
1500 * One would expect multicast memberships (INET and
1501 * INET6) on UDP sockets to be purged by the PURGEIF
1502 * calls above, but if all addresses were removed from
1503 * the interface prior to destruction, the calls will
1504 * not be made (e.g. ppp, for which pppd(8) generally
1505 * removes addresses before destroying the interface).
1506 * Because there is no invariant that multicast
1507 * memberships only exist for interfaces with IPv4
1508 * addresses, we must call PURGEIF regardless of
1509 * addresses. (Protocols which might store ifnet
1510 * pointers are marked with PR_PURGEIF.)
1511 */
1512 for (pr = dp->dom_protosw; pr < dp->dom_protoswNPROTOSW; pr++)
1513 {
1514 so.so_proto = pr;
1515 if (pr->pr_usrreqs && pr->pr_flags & PR_PURGEIF)
1516 (void)(*pr->pr_usrreqs->pr_purgeif)(&so, ifp);
1517 }
1518 }
1519
1520 /*
1521 * Must be done after the above pr_purgeif because if_psref may be
1522 * still used in pr_purgeif.
1523 */
1524 psref_target_destroy(&ifp->if_psref, ifnet_psref_class);
1525 PSLIST_ENTRY_DESTROY(ifp, if_pslist_entry);
1526
1527 pfil_run_ifhooks(if_pfil, PFIL_IFNET_DETACH, ifp);
1528 (void)pfil_head_destroy(ifp->if_pfil);
1529
1530 /* Announce that the interface is gone. */
1531 rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
1532
1533 IF_AFDATA_LOCK_DESTROY(ifp);
1534
1535 if (ifp->if_percpuq != NULL) {
1536 if_percpuq_destroy(ifp->if_percpuq);
1537 ifp->if_percpuq = NULL;
1538 }
1539
1540 mutex_obj_free(ifp->if_ioctl_lock);
1541 ifp->if_ioctl_lock = NULL;
1542 mutex_obj_free(ifp->if_snd.ifq_lock);
1543 if_stats_fini(ifp);
1544 KASSERT(!simplehook_has_hooks(ifp->if_linkstate_hooks));
1545 simplehook_destroy(ifp->if_linkstate_hooks);
1546
1547 splx(s);
1548
1549 #ifdef IFAREF_DEBUG
1550 if_check_and_free_ifa_list(ifp);
1551 #endif
1552 }
1553
1554 /*
1555 * Callback for a radix tree walk to delete all references to an
1556 * ifnet.
1557 */
1558 static int
1559 if_delroute_matcher(struct rtentry *rt, void *v)
1560 {
1561 struct ifnet *ifp = (struct ifnet *)v;
1562
1563 if (rt->rt_ifp == ifp)
1564 return 1;
1565 else
1566 return 0;
1567 }
1568
1569 /*
1570 * Create a clone network interface.
1571 */
1572 static int
1573 if_clone_create(const char *name)
1574 {
1575 struct if_clone *ifc;
1576 struct ifnet *ifp;
1577 struct psref psref;
1578 int unit;
1579
1580 KASSERT(mutex_owned(&if_clone_mtx));
1581
1582 ifc = if_clone_lookup(name, &unit);
1583 if (ifc == NULL)
1584 return EINVAL;
1585
1586 ifp = if_get(name, &psref);
1587 if (ifp != NULL) {
1588 if_put(ifp, &psref);
1589 return EEXIST;
1590 }
1591
1592 return (*ifc->ifc_create)(ifc, unit);
1593 }
1594
1595 /*
1596 * Destroy a clone network interface.
1597 */
1598 static int
1599 if_clone_destroy(const char *name)
1600 {
1601 struct if_clone *ifc;
1602 struct ifnet *ifp;
1603 struct psref psref;
1604 int error;
1605 int (*if_ioctlfn)(struct ifnet *, u_long, void *);
1606
1607 KASSERT(mutex_owned(&if_clone_mtx));
1608
1609 ifc = if_clone_lookup(name, NULL);
1610 if (ifc == NULL)
1611 return EINVAL;
1612
1613 if (ifc->ifc_destroy == NULL)
1614 return EOPNOTSUPP;
1615
1616 ifp = if_get(name, &psref);
1617 if (ifp == NULL)
1618 return ENXIO;
1619
1620 /* We have to disable ioctls here */
1621 IFNET_LOCK(ifp);
1622 if_ioctlfn = ifp->if_ioctl;
1623 ifp->if_ioctl = if_nullioctl;
1624 IFNET_UNLOCK(ifp);
1625
1626 /*
1627 * We cannot call ifc_destroy with holding ifp.
1628 * Releasing ifp here is safe thanks to if_clone_mtx.
1629 */
1630 if_put(ifp, &psref);
1631
1632 error = (*ifc->ifc_destroy)(ifp);
1633
1634 if (error != 0) {
1635 /* We have to restore if_ioctl on error */
1636 IFNET_LOCK(ifp);
1637 ifp->if_ioctl = if_ioctlfn;
1638 IFNET_UNLOCK(ifp);
1639 }
1640
1641 return error;
1642 }
1643
1644 static bool
1645 if_is_unit(const char *name)
1646 {
1647
1648 while (*name != '\0') {
1649 if (*name < '0' || *name > '9')
1650 return false;
1651 name++;
1652 }
1653
1654 return true;
1655 }
1656
1657 /*
1658 * Look up a network interface cloner.
1659 */
1660 static struct if_clone *
1661 if_clone_lookup(const char *name, int *unitp)
1662 {
1663 struct if_clone *ifc;
1664 const char *cp;
1665 char *dp, ifname[IFNAMSIZ + 3];
1666 int unit;
1667
1668 KASSERT(mutex_owned(&if_clone_mtx));
1669
1670 strcpy(ifname, "if_");
1671 /* separate interface name from unit */
1672 /* TODO: search unit number from backward */
1673 for (dp = ifname + 3, cp = name; cp - name < IFNAMSIZ &&
1674 *cp && !if_is_unit(cp);)
1675 *dp++ = *cp++;
1676
1677 if (cp == name || cp - name == IFNAMSIZ || !*cp)
1678 return NULL; /* No name or unit number */
1679 *dp++ = '\0';
1680
1681 again:
1682 LIST_FOREACH(ifc, &if_cloners, ifc_list) {
1683 if (strcmp(ifname + 3, ifc->ifc_name) == 0)
1684 break;
1685 }
1686
1687 if (ifc == NULL) {
1688 int error;
1689 if (*ifname == '\0')
1690 return NULL;
1691 mutex_exit(&if_clone_mtx);
1692 error = module_autoload(ifname, MODULE_CLASS_DRIVER);
1693 mutex_enter(&if_clone_mtx);
1694 if (error)
1695 return NULL;
1696 *ifname = '\0';
1697 goto again;
1698 }
1699
1700 unit = 0;
1701 while (cp - name < IFNAMSIZ && *cp) {
1702 if (*cp < '0' || *cp > '9' || unit >= INT_MAX / 10) {
1703 /* Bogus unit number. */
1704 return NULL;
1705 }
1706 unit = (unit * 10) + (*cp++ - '0');
1707 }
1708
1709 if (unitp != NULL)
1710 *unitp = unit;
1711 return ifc;
1712 }
1713
1714 /*
1715 * Register a network interface cloner.
1716 */
1717 void
1718 if_clone_attach(struct if_clone *ifc)
1719 {
1720
1721 mutex_enter(&if_clone_mtx);
1722 LIST_INSERT_HEAD(&if_cloners, ifc, ifc_list);
1723 if_cloners_count++;
1724 mutex_exit(&if_clone_mtx);
1725 }
1726
1727 /*
1728 * Unregister a network interface cloner.
1729 */
1730 void
1731 if_clone_detach(struct if_clone *ifc)
1732 {
1733
1734 mutex_enter(&if_clone_mtx);
1735 LIST_REMOVE(ifc, ifc_list);
1736 if_cloners_count--;
1737 mutex_exit(&if_clone_mtx);
1738 }
1739
1740 /*
1741 * Provide list of interface cloners to userspace.
1742 */
1743 int
1744 if_clone_list(int buf_count, char *buffer, int *total)
1745 {
1746 char outbuf[IFNAMSIZ], *dst;
1747 struct if_clone *ifc;
1748 int count, error = 0;
1749
1750 mutex_enter(&if_clone_mtx);
1751 *total = if_cloners_count;
1752 if ((dst = buffer) == NULL) {
1753 /* Just asking how many there are. */
1754 goto out;
1755 }
1756
1757 if (buf_count < 0) {
1758 error = EINVAL;
1759 goto out;
1760 }
1761
1762 count = (if_cloners_count < buf_count) ? if_cloners_count : buf_count;
1763
1764 for (ifc = LIST_FIRST(&if_cloners); ifc != NULL && count != 0;
1765 ifc = LIST_NEXT(ifc, ifc_list), count--, dst += IFNAMSIZ) {
1766 (void)strncpy(outbuf, ifc->ifc_name, sizeof(outbuf));
1767 if (outbuf[sizeof(outbuf) - 1] != '\0') {
1768 error = ENAMETOOLONG;
1769 goto out;
1770 }
1771 error = copyout(outbuf, dst, sizeof(outbuf));
1772 if (error != 0)
1773 break;
1774 }
1775
1776 out:
1777 mutex_exit(&if_clone_mtx);
1778 return error;
1779 }
1780
1781 void
1782 ifa_psref_init(struct ifaddr *ifa)
1783 {
1784
1785 psref_target_init(&ifa->ifa_psref, ifa_psref_class);
1786 }
1787
1788 void
1789 ifaref(struct ifaddr *ifa)
1790 {
1791
1792 atomic_inc_uint(&ifa->ifa_refcnt);
1793 }
1794
1795 void
1796 ifafree(struct ifaddr *ifa)
1797 {
1798 KASSERT(ifa != NULL);
1799 KASSERTMSG(ifa->ifa_refcnt > 0, "ifa_refcnt=%d", ifa->ifa_refcnt);
1800
1801 membar_release();
1802 if (atomic_dec_uint_nv(&ifa->ifa_refcnt) != 0)
1803 return;
1804 membar_acquire();
1805 free(ifa, M_IFADDR);
1806 }
1807
1808 bool
1809 ifa_is_destroying(struct ifaddr *ifa)
1810 {
1811
1812 return ISSET(ifa->ifa_flags, IFA_DESTROYING);
1813 }
1814
1815 void
1816 ifa_insert(struct ifnet *ifp, struct ifaddr *ifa)
1817 {
1818
1819 ifa->ifa_ifp = ifp;
1820
1821 /*
1822 * Check MP-safety for IFEF_MPSAFE drivers.
1823 * Check !IFF_RUNNING for initialization routines that normally don't
1824 * take IFNET_LOCK but it's safe because there is no competitor.
1825 * XXX there are false positive cases because IFF_RUNNING can be off on
1826 * if_stop.
1827 */
1828 KASSERT(!if_is_mpsafe(ifp) || !ISSET(ifp->if_flags, IFF_RUNNING) ||
1829 IFNET_LOCKED(ifp));
1830
1831 TAILQ_INSERT_TAIL(&ifp->if_addrlist, ifa, ifa_list);
1832 IFADDR_ENTRY_INIT(ifa);
1833 IFADDR_WRITER_INSERT_TAIL(ifp, ifa);
1834
1835 ifaref(ifa);
1836 }
1837
1838 void
1839 ifa_remove(struct ifnet *ifp, struct ifaddr *ifa)
1840 {
1841
1842 KASSERT(ifa->ifa_ifp == ifp);
1843 /*
1844 * Check MP-safety for IFEF_MPSAFE drivers.
1845 * if_is_deactivated indicates ifa_remove is called from if_detach
1846 * where it is safe even if IFNET_LOCK isn't held.
1847 */
1848 KASSERT(!if_is_mpsafe(ifp) || if_is_deactivated(ifp) ||
1849 IFNET_LOCKED(ifp));
1850
1851 TAILQ_REMOVE(&ifp->if_addrlist, ifa, ifa_list);
1852 IFADDR_WRITER_REMOVE(ifa);
1853 #ifdef NET_MPSAFE
1854 IFNET_GLOBAL_LOCK();
1855 pserialize_perform(ifnet_psz);
1856 IFNET_GLOBAL_UNLOCK();
1857 #endif
1858
1859 #ifdef NET_MPSAFE
1860 psref_target_destroy(&ifa->ifa_psref, ifa_psref_class);
1861 #endif
1862 IFADDR_ENTRY_DESTROY(ifa);
1863 ifafree(ifa);
1864 }
1865
1866 void
1867 ifa_acquire(struct ifaddr *ifa, struct psref *psref)
1868 {
1869
1870 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
1871 psref_acquire(psref, &ifa->ifa_psref, ifa_psref_class);
1872 }
1873
1874 void
1875 ifa_release(struct ifaddr *ifa, struct psref *psref)
1876 {
1877
1878 if (ifa == NULL)
1879 return;
1880
1881 psref_release(psref, &ifa->ifa_psref, ifa_psref_class);
1882 }
1883
1884 bool
1885 ifa_held(struct ifaddr *ifa)
1886 {
1887
1888 return psref_held(&ifa->ifa_psref, ifa_psref_class);
1889 }
1890
1891 static inline int
1892 equal(const struct sockaddr *sa1, const struct sockaddr *sa2)
1893 {
1894
1895 return sockaddr_cmp(sa1, sa2) == 0;
1896 }
1897
1898 /*
1899 * Locate an interface based on a complete address.
1900 */
1901 /*ARGSUSED*/
1902 struct ifaddr *
1903 ifa_ifwithaddr(const struct sockaddr *addr)
1904 {
1905 struct ifnet *ifp;
1906 struct ifaddr *ifa;
1907
1908 IFNET_READER_FOREACH(ifp) {
1909 if (if_is_deactivated(ifp))
1910 continue;
1911 IFADDR_READER_FOREACH(ifa, ifp) {
1912 if (ifa->ifa_addr->sa_family != addr->sa_family)
1913 continue;
1914 if (equal(addr, ifa->ifa_addr))
1915 return ifa;
1916 if ((ifp->if_flags & IFF_BROADCAST) &&
1917 ifa->ifa_broadaddr &&
1918 /* IP6 doesn't have broadcast */
1919 ifa->ifa_broadaddr->sa_len != 0 &&
1920 equal(ifa->ifa_broadaddr, addr))
1921 return ifa;
1922 }
1923 }
1924 return NULL;
1925 }
1926
1927 struct ifaddr *
1928 ifa_ifwithaddr_psref(const struct sockaddr *addr, struct psref *psref)
1929 {
1930 struct ifaddr *ifa;
1931 int s = pserialize_read_enter();
1932
1933 ifa = ifa_ifwithaddr(addr);
1934 if (ifa != NULL)
1935 ifa_acquire(ifa, psref);
1936 pserialize_read_exit(s);
1937
1938 return ifa;
1939 }
1940
1941 /*
1942 * Locate the point to point interface with a given destination address.
1943 */
1944 /*ARGSUSED*/
1945 struct ifaddr *
1946 ifa_ifwithdstaddr(const struct sockaddr *addr)
1947 {
1948 struct ifnet *ifp;
1949 struct ifaddr *ifa;
1950
1951 IFNET_READER_FOREACH(ifp) {
1952 if (if_is_deactivated(ifp))
1953 continue;
1954 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1955 continue;
1956 IFADDR_READER_FOREACH(ifa, ifp) {
1957 if (ifa->ifa_addr->sa_family != addr->sa_family ||
1958 ifa->ifa_dstaddr == NULL)
1959 continue;
1960 if (equal(addr, ifa->ifa_dstaddr))
1961 return ifa;
1962 }
1963 }
1964
1965 return NULL;
1966 }
1967
1968 struct ifaddr *
1969 ifa_ifwithdstaddr_psref(const struct sockaddr *addr, struct psref *psref)
1970 {
1971 struct ifaddr *ifa;
1972 int s;
1973
1974 s = pserialize_read_enter();
1975 ifa = ifa_ifwithdstaddr(addr);
1976 if (ifa != NULL)
1977 ifa_acquire(ifa, psref);
1978 pserialize_read_exit(s);
1979
1980 return ifa;
1981 }
1982
1983 /*
1984 * Find an interface on a specific network. If many, choice
1985 * is most specific found.
1986 */
1987 struct ifaddr *
1988 ifa_ifwithnet(const struct sockaddr *addr)
1989 {
1990 struct ifnet *ifp;
1991 struct ifaddr *ifa, *ifa_maybe = NULL;
1992 const struct sockaddr_dl *sdl;
1993 u_int af = addr->sa_family;
1994 const char *addr_data = addr->sa_data, *cplim;
1995
1996 if (af == AF_LINK) {
1997 sdl = satocsdl(addr);
1998 if (sdl->sdl_index && sdl->sdl_index < if_indexlim &&
1999 ifindex2ifnet[sdl->sdl_index] &&
2000 !if_is_deactivated(ifindex2ifnet[sdl->sdl_index])) {
2001 return ifindex2ifnet[sdl->sdl_index]->if_dl;
2002 }
2003 }
2004 #ifdef NETATALK
2005 if (af == AF_APPLETALK) {
2006 const struct sockaddr_at *sat, *sat2;
2007 sat = (const struct sockaddr_at *)addr;
2008 IFNET_READER_FOREACH(ifp) {
2009 if (if_is_deactivated(ifp))
2010 continue;
2011 ifa = at_ifawithnet((const struct sockaddr_at *)addr,
2012 ifp);
2013 if (ifa == NULL)
2014 continue;
2015 sat2 = (struct sockaddr_at *)ifa->ifa_addr;
2016 if (sat2->sat_addr.s_net == sat->sat_addr.s_net)
2017 return ifa; /* exact match */
2018 if (ifa_maybe == NULL) {
2019 /* else keep the if with the right range */
2020 ifa_maybe = ifa;
2021 }
2022 }
2023 return ifa_maybe;
2024 }
2025 #endif
2026 IFNET_READER_FOREACH(ifp) {
2027 if (if_is_deactivated(ifp))
2028 continue;
2029 IFADDR_READER_FOREACH(ifa, ifp) {
2030 const char *cp, *cp2, *cp3;
2031
2032 if (ifa->ifa_addr->sa_family != af ||
2033 ifa->ifa_netmask == NULL)
2034 next: continue;
2035 cp = addr_data;
2036 cp2 = ifa->ifa_addr->sa_data;
2037 cp3 = ifa->ifa_netmask->sa_data;
2038 cplim = (const char *)ifa->ifa_netmask +
2039 ifa->ifa_netmask->sa_len;
2040 while (cp3 < cplim) {
2041 if ((*cp++ ^ *cp2++) & *cp3++) {
2042 /* want to continue for() loop */
2043 goto next;
2044 }
2045 }
2046 if (ifa_maybe == NULL ||
2047 rt_refines(ifa->ifa_netmask,
2048 ifa_maybe->ifa_netmask))
2049 ifa_maybe = ifa;
2050 }
2051 }
2052 return ifa_maybe;
2053 }
2054
2055 struct ifaddr *
2056 ifa_ifwithnet_psref(const struct sockaddr *addr, struct psref *psref)
2057 {
2058 struct ifaddr *ifa;
2059 int s;
2060
2061 s = pserialize_read_enter();
2062 ifa = ifa_ifwithnet(addr);
2063 if (ifa != NULL)
2064 ifa_acquire(ifa, psref);
2065 pserialize_read_exit(s);
2066
2067 return ifa;
2068 }
2069
2070 /*
2071 * Find the interface of the address.
2072 */
2073 struct ifaddr *
2074 ifa_ifwithladdr(const struct sockaddr *addr)
2075 {
2076 struct ifaddr *ia;
2077
2078 if ((ia = ifa_ifwithaddr(addr)) || (ia = ifa_ifwithdstaddr(addr)) ||
2079 (ia = ifa_ifwithnet(addr)))
2080 return ia;
2081 return NULL;
2082 }
2083
2084 struct ifaddr *
2085 ifa_ifwithladdr_psref(const struct sockaddr *addr, struct psref *psref)
2086 {
2087 struct ifaddr *ifa;
2088 int s;
2089
2090 s = pserialize_read_enter();
2091 ifa = ifa_ifwithladdr(addr);
2092 if (ifa != NULL)
2093 ifa_acquire(ifa, psref);
2094 pserialize_read_exit(s);
2095
2096 return ifa;
2097 }
2098
2099 /*
2100 * Find an interface using a specific address family
2101 */
2102 struct ifaddr *
2103 ifa_ifwithaf(int af)
2104 {
2105 struct ifnet *ifp;
2106 struct ifaddr *ifa = NULL;
2107 int s;
2108
2109 s = pserialize_read_enter();
2110 IFNET_READER_FOREACH(ifp) {
2111 if (if_is_deactivated(ifp))
2112 continue;
2113 IFADDR_READER_FOREACH(ifa, ifp) {
2114 if (ifa->ifa_addr->sa_family == af)
2115 goto out;
2116 }
2117 }
2118 out:
2119 pserialize_read_exit(s);
2120 return ifa;
2121 }
2122
2123 /*
2124 * Find an interface address specific to an interface best matching
2125 * a given address.
2126 */
2127 struct ifaddr *
2128 ifaof_ifpforaddr(const struct sockaddr *addr, struct ifnet *ifp)
2129 {
2130 struct ifaddr *ifa;
2131 const char *cp, *cp2, *cp3;
2132 const char *cplim;
2133 struct ifaddr *ifa_maybe = 0;
2134 u_int af = addr->sa_family;
2135
2136 if (if_is_deactivated(ifp))
2137 return NULL;
2138
2139 if (af >= AF_MAX)
2140 return NULL;
2141
2142 IFADDR_READER_FOREACH(ifa, ifp) {
2143 if (ifa->ifa_addr->sa_family != af)
2144 continue;
2145 ifa_maybe = ifa;
2146 if (ifa->ifa_netmask == NULL) {
2147 if (equal(addr, ifa->ifa_addr) ||
2148 (ifa->ifa_dstaddr &&
2149 equal(addr, ifa->ifa_dstaddr)))
2150 return ifa;
2151 continue;
2152 }
2153 cp = addr->sa_data;
2154 cp2 = ifa->ifa_addr->sa_data;
2155 cp3 = ifa->ifa_netmask->sa_data;
2156 cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
2157 for (; cp3 < cplim; cp3++) {
2158 if ((*cp++ ^ *cp2++) & *cp3)
2159 break;
2160 }
2161 if (cp3 == cplim)
2162 return ifa;
2163 }
2164 return ifa_maybe;
2165 }
2166
2167 struct ifaddr *
2168 ifaof_ifpforaddr_psref(const struct sockaddr *addr, struct ifnet *ifp,
2169 struct psref *psref)
2170 {
2171 struct ifaddr *ifa;
2172 int s;
2173
2174 s = pserialize_read_enter();
2175 ifa = ifaof_ifpforaddr(addr, ifp);
2176 if (ifa != NULL)
2177 ifa_acquire(ifa, psref);
2178 pserialize_read_exit(s);
2179
2180 return ifa;
2181 }
2182
2183 /*
2184 * Default action when installing a route with a Link Level gateway.
2185 * Lookup an appropriate real ifa to point to.
2186 * This should be moved to /sys/net/link.c eventually.
2187 */
2188 void
2189 link_rtrequest(int cmd, struct rtentry *rt, const struct rt_addrinfo *info)
2190 {
2191 struct ifaddr *ifa;
2192 const struct sockaddr *dst;
2193 struct ifnet *ifp;
2194 struct psref psref;
2195
2196 if (cmd != RTM_ADD || ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2197 return;
2198 ifp = rt->rt_ifa->ifa_ifp;
2199 dst = rt_getkey(rt);
2200 if ((ifa = ifaof_ifpforaddr_psref(dst, ifp, &psref)) != NULL) {
2201 rt_replace_ifa(rt, ifa);
2202 if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
2203 ifa->ifa_rtrequest(cmd, rt, info);
2204 ifa_release(ifa, &psref);
2205 }
2206 }
2207
2208 /*
2209 * bitmask macros to manage a densely packed link_state change queue.
2210 * Because we need to store LINK_STATE_UNKNOWN(0), LINK_STATE_DOWN(1) and
2211 * LINK_STATE_UP(2) we need 2 bits for each state change.
2212 * As a state change to store is 0, treat all bits set as an unset item.
2213 */
2214 #define LQ_ITEM_BITS 2
2215 #define LQ_ITEM_MASK ((1 << LQ_ITEM_BITS) - 1)
2216 #define LQ_MASK(i) (LQ_ITEM_MASK << (i) * LQ_ITEM_BITS)
2217 #define LINK_STATE_UNSET LQ_ITEM_MASK
2218 #define LQ_ITEM(q, i) (((q) & LQ_MASK((i))) >> (i) * LQ_ITEM_BITS)
2219 #define LQ_STORE(q, i, v) \
2220 do { \
2221 (q) &= ~LQ_MASK((i)); \
2222 (q) |= (v) << (i) * LQ_ITEM_BITS; \
2223 } while (0 /* CONSTCOND */)
2224 #define LQ_MAX(q) ((sizeof((q)) * NBBY) / LQ_ITEM_BITS)
2225 #define LQ_POP(q, v) \
2226 do { \
2227 (v) = LQ_ITEM((q), 0); \
2228 (q) >>= LQ_ITEM_BITS; \
2229 (q) |= LINK_STATE_UNSET << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2230 } while (0 /* CONSTCOND */)
2231 #define LQ_PUSH(q, v) \
2232 do { \
2233 (q) >>= LQ_ITEM_BITS; \
2234 (q) |= (v) << (LQ_MAX((q)) - 1) * LQ_ITEM_BITS; \
2235 } while (0 /* CONSTCOND */)
2236 #define LQ_FIND_UNSET(q, i) \
2237 for ((i) = 0; i < LQ_MAX((q)); (i)++) { \
2238 if (LQ_ITEM((q), (i)) == LINK_STATE_UNSET) \
2239 break; \
2240 }
2241
2242 /*
2243 * Handle a change in the interface link state and
2244 * queue notifications.
2245 */
2246 void
2247 if_link_state_change(struct ifnet *ifp, int link_state)
2248 {
2249 int idx;
2250
2251 /* Ensure change is to a valid state */
2252 switch (link_state) {
2253 case LINK_STATE_UNKNOWN: /* FALLTHROUGH */
2254 case LINK_STATE_DOWN: /* FALLTHROUGH */
2255 case LINK_STATE_UP:
2256 break;
2257 default:
2258 #ifdef DEBUG
2259 printf("%s: invalid link state %d\n",
2260 ifp->if_xname, link_state);
2261 #endif
2262 return;
2263 }
2264
2265 IF_LINK_STATE_CHANGE_LOCK(ifp);
2266
2267 /* Find the last unset event in the queue. */
2268 LQ_FIND_UNSET(ifp->if_link_queue, idx);
2269
2270 if (idx == 0) {
2271 /*
2272 * There is no queue of link state changes.
2273 * As we have the lock we can safely compare against the
2274 * current link state and return if the same.
2275 * Otherwise, if scheduled is true then the interface is being
2276 * detached and the queue is being drained so we need
2277 * to avoid queuing more work.
2278 */
2279 if (ifp->if_link_state == link_state ||
2280 ifp->if_link_scheduled)
2281 goto out;
2282 } else {
2283 /* Ensure link_state doesn't match the last queued state. */
2284 if (LQ_ITEM(ifp->if_link_queue, idx - 1)
2285 == (uint8_t)link_state)
2286 goto out;
2287 }
2288
2289 /* Handle queue overflow. */
2290 if (idx == LQ_MAX(ifp->if_link_queue)) {
2291 uint8_t lost;
2292
2293 /*
2294 * The DOWN state must be protected from being pushed off
2295 * the queue to ensure that userland will always be
2296 * in a sane state.
2297 * Because DOWN is protected, there is no need to protect
2298 * UNKNOWN.
2299 * It should be invalid to change from any other state to
2300 * UNKNOWN anyway ...
2301 */
2302 lost = LQ_ITEM(ifp->if_link_queue, 0);
2303 LQ_PUSH(ifp->if_link_queue, (uint8_t)link_state);
2304 if (lost == LINK_STATE_DOWN) {
2305 lost = LQ_ITEM(ifp->if_link_queue, 0);
2306 LQ_STORE(ifp->if_link_queue, 0, LINK_STATE_DOWN);
2307 }
2308 printf("%s: lost link state change %s\n",
2309 ifp->if_xname,
2310 lost == LINK_STATE_UP ? "UP" :
2311 lost == LINK_STATE_DOWN ? "DOWN" :
2312 "UNKNOWN");
2313 } else
2314 LQ_STORE(ifp->if_link_queue, idx, (uint8_t)link_state);
2315
2316 if (ifp->if_link_scheduled)
2317 goto out;
2318
2319 ifp->if_link_scheduled = true;
2320 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work, NULL);
2321
2322 out:
2323 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2324 }
2325
2326 /*
2327 * Handle interface link state change notifications.
2328 */
2329 static void
2330 if_link_state_change_process(struct ifnet *ifp, int link_state)
2331 {
2332 struct domain *dp;
2333 const int s = splnet();
2334 bool notify;
2335
2336 KASSERT(!cpu_intr_p());
2337
2338 IF_LINK_STATE_CHANGE_LOCK(ifp);
2339
2340 /* Ensure the change is still valid. */
2341 if (ifp->if_link_state == link_state) {
2342 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2343 splx(s);
2344 return;
2345 }
2346
2347 #ifdef DEBUG
2348 log(LOG_DEBUG, "%s: link state %s (was %s)\n", ifp->if_xname,
2349 link_state == LINK_STATE_UP ? "UP" :
2350 link_state == LINK_STATE_DOWN ? "DOWN" :
2351 "UNKNOWN",
2352 ifp->if_link_state == LINK_STATE_UP ? "UP" :
2353 ifp->if_link_state == LINK_STATE_DOWN ? "DOWN" :
2354 "UNKNOWN");
2355 #endif
2356
2357 /*
2358 * When going from UNKNOWN to UP, we need to mark existing
2359 * addresses as tentative and restart DAD as we may have
2360 * erroneously not found a duplicate.
2361 *
2362 * This needs to happen before rt_ifmsg to avoid a race where
2363 * listeners would have an address and expect it to work right
2364 * away.
2365 */
2366 notify = (link_state == LINK_STATE_UP &&
2367 ifp->if_link_state == LINK_STATE_UNKNOWN);
2368 ifp->if_link_state = link_state;
2369 /* The following routines may sleep so release the spin mutex */
2370 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2371
2372 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2373 if (notify) {
2374 DOMAIN_FOREACH(dp) {
2375 if (dp->dom_if_link_state_change != NULL)
2376 dp->dom_if_link_state_change(ifp,
2377 LINK_STATE_DOWN);
2378 }
2379 }
2380
2381 /* Notify that the link state has changed. */
2382 rt_ifmsg(ifp);
2383
2384 simplehook_dohooks(ifp->if_linkstate_hooks);
2385
2386 DOMAIN_FOREACH(dp) {
2387 if (dp->dom_if_link_state_change != NULL)
2388 dp->dom_if_link_state_change(ifp, link_state);
2389 }
2390 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2391 splx(s);
2392 }
2393
2394 /*
2395 * Process the interface link state change queue.
2396 */
2397 static void
2398 if_link_state_change_work(struct work *work, void *arg)
2399 {
2400 struct ifnet *ifp = container_of(work, struct ifnet, if_link_work);
2401 uint8_t state;
2402
2403 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2404 const int s = splnet();
2405
2406 /*
2407 * Pop a link state change from the queue and process it.
2408 * If there is nothing to process then if_detach() has been called.
2409 * We keep if_link_scheduled = true so the queue can safely drain
2410 * without more work being queued.
2411 */
2412 IF_LINK_STATE_CHANGE_LOCK(ifp);
2413 LQ_POP(ifp->if_link_queue, state);
2414 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2415 if (state == LINK_STATE_UNSET)
2416 goto out;
2417
2418 if_link_state_change_process(ifp, state);
2419
2420 /* If there is a link state change to come, schedule it. */
2421 IF_LINK_STATE_CHANGE_LOCK(ifp);
2422 if (LQ_ITEM(ifp->if_link_queue, 0) != LINK_STATE_UNSET) {
2423 ifp->if_link_scheduled = true;
2424 workqueue_enqueue(ifnet_link_state_wq, &ifp->if_link_work,
2425 NULL);
2426 } else
2427 ifp->if_link_scheduled = false;
2428 IF_LINK_STATE_CHANGE_UNLOCK(ifp);
2429
2430 out:
2431 splx(s);
2432 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2433 }
2434
2435 void *
2436 if_linkstate_change_establish(struct ifnet *ifp, void (*fn)(void *), void *arg)
2437 {
2438 khook_t *hk;
2439
2440 hk = simplehook_establish(ifp->if_linkstate_hooks, fn, arg);
2441
2442 return (void *)hk;
2443 }
2444
2445 void
2446 if_linkstate_change_disestablish(struct ifnet *ifp, void *vhook,
2447 kmutex_t *lock)
2448 {
2449
2450 simplehook_disestablish(ifp->if_linkstate_hooks, vhook, lock);
2451 }
2452
2453 /*
2454 * Used to mark addresses on an interface as DETATCHED or TENTATIVE
2455 * and thus start Duplicate Address Detection without changing the
2456 * real link state.
2457 */
2458 void
2459 if_domain_link_state_change(struct ifnet *ifp, int link_state)
2460 {
2461 struct domain *dp;
2462
2463 const int s = splnet();
2464 KERNEL_LOCK_UNLESS_NET_MPSAFE();
2465
2466 DOMAIN_FOREACH(dp) {
2467 if (dp->dom_if_link_state_change != NULL)
2468 dp->dom_if_link_state_change(ifp, link_state);
2469 }
2470
2471 splx(s);
2472 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2473 }
2474
2475 /*
2476 * Default action when installing a local route on a point-to-point
2477 * interface.
2478 */
2479 void
2480 p2p_rtrequest(int req, struct rtentry *rt,
2481 __unused const struct rt_addrinfo *info)
2482 {
2483 struct ifnet *ifp = rt->rt_ifp;
2484 struct ifaddr *ifa, *lo0ifa;
2485 int s = pserialize_read_enter();
2486
2487 switch (req) {
2488 case RTM_ADD:
2489 if ((rt->rt_flags & RTF_LOCAL) == 0)
2490 break;
2491
2492 rt->rt_ifp = lo0ifp;
2493
2494 if (ISSET(info->rti_flags, RTF_DONTCHANGEIFA))
2495 break;
2496
2497 IFADDR_READER_FOREACH(ifa, ifp) {
2498 if (equal(rt_getkey(rt), ifa->ifa_addr))
2499 break;
2500 }
2501 if (ifa == NULL)
2502 break;
2503
2504 /*
2505 * Ensure lo0 has an address of the same family.
2506 */
2507 IFADDR_READER_FOREACH(lo0ifa, lo0ifp) {
2508 if (lo0ifa->ifa_addr->sa_family ==
2509 ifa->ifa_addr->sa_family)
2510 break;
2511 }
2512 if (lo0ifa == NULL)
2513 break;
2514
2515 /*
2516 * Make sure to set rt->rt_ifa to the interface
2517 * address we are using, otherwise we will have trouble
2518 * with source address selection.
2519 */
2520 if (ifa != rt->rt_ifa)
2521 rt_replace_ifa(rt, ifa);
2522 break;
2523 case RTM_DELETE:
2524 default:
2525 break;
2526 }
2527 pserialize_read_exit(s);
2528 }
2529
2530 static void
2531 _if_down(struct ifnet *ifp)
2532 {
2533 struct ifaddr *ifa;
2534 struct domain *dp;
2535 struct psref psref;
2536
2537 ifp->if_flags &= ~IFF_UP;
2538 nanotime(&ifp->if_lastchange);
2539
2540 const int bound = curlwp_bind();
2541 int s = pserialize_read_enter();
2542 IFADDR_READER_FOREACH(ifa, ifp) {
2543 ifa_acquire(ifa, &psref);
2544 pserialize_read_exit(s);
2545
2546 pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
2547
2548 s = pserialize_read_enter();
2549 ifa_release(ifa, &psref);
2550 }
2551 pserialize_read_exit(s);
2552 curlwp_bindx(bound);
2553
2554 IFQ_PURGE(&ifp->if_snd);
2555 #if NCARP > 0
2556 if (ifp->if_carp)
2557 carp_carpdev_state(ifp);
2558 #endif
2559 rt_ifmsg(ifp);
2560 DOMAIN_FOREACH(dp) {
2561 if (dp->dom_if_down)
2562 dp->dom_if_down(ifp);
2563 }
2564 }
2565
2566 static void
2567 if_down_deactivated(struct ifnet *ifp)
2568 {
2569
2570 KASSERT(if_is_deactivated(ifp));
2571 _if_down(ifp);
2572 }
2573
2574 void
2575 if_down_locked(struct ifnet *ifp)
2576 {
2577
2578 KASSERT(IFNET_LOCKED(ifp));
2579 _if_down(ifp);
2580 }
2581
2582 /*
2583 * Mark an interface down and notify protocols of
2584 * the transition.
2585 * NOTE: must be called at splsoftnet or equivalent.
2586 */
2587 void
2588 if_down(struct ifnet *ifp)
2589 {
2590
2591 IFNET_LOCK(ifp);
2592 if_down_locked(ifp);
2593 IFNET_UNLOCK(ifp);
2594 }
2595
2596 /*
2597 * Must be called with holding if_ioctl_lock.
2598 */
2599 static void
2600 if_up_locked(struct ifnet *ifp)
2601 {
2602 #ifdef notyet
2603 struct ifaddr *ifa;
2604 #endif
2605 struct domain *dp;
2606
2607 KASSERT(IFNET_LOCKED(ifp));
2608
2609 KASSERT(!if_is_deactivated(ifp));
2610 ifp->if_flags |= IFF_UP;
2611 nanotime(&ifp->if_lastchange);
2612 #ifdef notyet
2613 /* this has no effect on IP, and will kill all ISO connections XXX */
2614 IFADDR_READER_FOREACH(ifa, ifp)
2615 pfctlinput(PRC_IFUP, ifa->ifa_addr);
2616 #endif
2617 #if NCARP > 0
2618 if (ifp->if_carp)
2619 carp_carpdev_state(ifp);
2620 #endif
2621 rt_ifmsg(ifp);
2622 DOMAIN_FOREACH(dp) {
2623 if (dp->dom_if_up)
2624 dp->dom_if_up(ifp);
2625 }
2626 }
2627
2628 /*
2629 * Handle interface slowtimo timer routine. Called
2630 * from softclock, we decrement timer (if set) and
2631 * call the appropriate interface routine on expiration.
2632 */
2633 static bool
2634 if_slowtimo_countdown(struct ifnet *ifp)
2635 {
2636 bool fire = false;
2637 const int s = splnet();
2638
2639 KERNEL_LOCK(1, NULL);
2640 if (ifp->if_timer != 0 && --ifp->if_timer == 0)
2641 fire = true;
2642 KERNEL_UNLOCK_ONE(NULL);
2643 splx(s);
2644
2645 return fire;
2646 }
2647
2648 static void
2649 if_slowtimo_intr(void *arg)
2650 {
2651 struct ifnet *ifp = arg;
2652 struct if_slowtimo_data *isd = ifp->if_slowtimo_data;
2653
2654 mutex_enter(&isd->isd_lock);
2655 if (!isd->isd_dying) {
2656 if (isd->isd_trigger || if_slowtimo_countdown(ifp)) {
2657 if (!isd->isd_queued) {
2658 isd->isd_queued = true;
2659 workqueue_enqueue(if_slowtimo_wq,
2660 &isd->isd_work, NULL);
2661 }
2662 } else
2663 callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ);
2664 }
2665 mutex_exit(&isd->isd_lock);
2666 }
2667
2668 static void
2669 if_slowtimo_work(struct work *work, void *arg)
2670 {
2671 struct if_slowtimo_data *isd =
2672 container_of(work, struct if_slowtimo_data, isd_work);
2673 struct ifnet *ifp = isd->isd_ifp;
2674 const int s = splnet();
2675
2676 KERNEL_LOCK(1, NULL);
2677 (*ifp->if_slowtimo)(ifp);
2678 KERNEL_UNLOCK_ONE(NULL);
2679 splx(s);
2680
2681 mutex_enter(&isd->isd_lock);
2682 if (isd->isd_trigger) {
2683 isd->isd_trigger = false;
2684 printf("%s: watchdog triggered\n", ifp->if_xname);
2685 }
2686 isd->isd_queued = false;
2687 if (!isd->isd_dying)
2688 callout_schedule(&isd->isd_ch, hz / IFNET_SLOWHZ);
2689 mutex_exit(&isd->isd_lock);
2690 }
2691
2692 static int
2693 sysctl_if_watchdog(SYSCTLFN_ARGS)
2694 {
2695 struct sysctlnode node = *rnode;
2696 struct ifnet *ifp = node.sysctl_data;
2697 struct if_slowtimo_data *isd = ifp->if_slowtimo_data;
2698 int arg = 0;
2699 int error;
2700
2701 node.sysctl_data = &arg;
2702 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2703 if (error || newp == NULL)
2704 return error;
2705 if (arg) {
2706 mutex_enter(&isd->isd_lock);
2707 KASSERT(!isd->isd_dying);
2708 isd->isd_trigger = true;
2709 callout_schedule(&isd->isd_ch, 0);
2710 mutex_exit(&isd->isd_lock);
2711 }
2712
2713 return 0;
2714 }
2715
2716 static void
2717 sysctl_watchdog_setup(struct ifnet *ifp)
2718 {
2719 struct sysctllog **clog = &ifp->if_sysctl_log;
2720 const struct sysctlnode *rnode;
2721
2722 if (sysctl_createv(clog, 0, NULL, &rnode,
2723 CTLFLAG_PERMANENT, CTLTYPE_NODE, "interfaces",
2724 SYSCTL_DESCR("Per-interface controls"),
2725 NULL, 0, NULL, 0,
2726 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
2727 goto bad;
2728 if (sysctl_createv(clog, 0, &rnode, &rnode,
2729 CTLFLAG_PERMANENT, CTLTYPE_NODE, ifp->if_xname,
2730 SYSCTL_DESCR("Interface controls"),
2731 NULL, 0, NULL, 0,
2732 CTL_CREATE, CTL_EOL) != 0)
2733 goto bad;
2734 if (sysctl_createv(clog, 0, &rnode, &rnode,
2735 CTLFLAG_PERMANENT, CTLTYPE_NODE, "watchdog",
2736 SYSCTL_DESCR("Interface watchdog controls"),
2737 NULL, 0, NULL, 0,
2738 CTL_CREATE, CTL_EOL) != 0)
2739 goto bad;
2740 if (sysctl_createv(clog, 0, &rnode, NULL,
2741 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "trigger",
2742 SYSCTL_DESCR("Trigger watchdog timeout"),
2743 sysctl_if_watchdog, 0, (int *)ifp, 0,
2744 CTL_CREATE, CTL_EOL) != 0)
2745 goto bad;
2746
2747 return;
2748
2749 bad:
2750 printf("%s: could not attach sysctl watchdog nodes\n", ifp->if_xname);
2751 }
2752
2753 /*
2754 * Mark an interface up and notify protocols of
2755 * the transition.
2756 * NOTE: must be called at splsoftnet or equivalent.
2757 */
2758 void
2759 if_up(struct ifnet *ifp)
2760 {
2761
2762 IFNET_LOCK(ifp);
2763 if_up_locked(ifp);
2764 IFNET_UNLOCK(ifp);
2765 }
2766
2767 /*
2768 * Set/clear promiscuous mode on interface ifp based on the truth value
2769 * of pswitch. The calls are reference counted so that only the first
2770 * "on" request actually has an effect, as does the final "off" request.
2771 * Results are undefined if the "off" and "on" requests are not matched.
2772 */
2773 int
2774 ifpromisc_locked(struct ifnet *ifp, int pswitch)
2775 {
2776 int pcount, ret = 0;
2777 u_short nflags;
2778
2779 KASSERT(IFNET_LOCKED(ifp));
2780
2781 pcount = ifp->if_pcount;
2782 if (pswitch) {
2783 /*
2784 * Allow the device to be "placed" into promiscuous
2785 * mode even if it is not configured up. It will
2786 * consult IFF_PROMISC when it is brought up.
2787 */
2788 if (ifp->if_pcount++ != 0)
2789 goto out;
2790 nflags = ifp->if_flags | IFF_PROMISC;
2791 } else {
2792 if (--ifp->if_pcount > 0)
2793 goto out;
2794 nflags = ifp->if_flags & ~IFF_PROMISC;
2795 }
2796 ret = if_flags_set(ifp, nflags);
2797 /* Restore interface state if not successful. */
2798 if (ret != 0)
2799 ifp->if_pcount = pcount;
2800
2801 out:
2802 return ret;
2803 }
2804
2805 int
2806 ifpromisc(struct ifnet *ifp, int pswitch)
2807 {
2808 int e;
2809
2810 IFNET_LOCK(ifp);
2811 e = ifpromisc_locked(ifp, pswitch);
2812 IFNET_UNLOCK(ifp);
2813
2814 return e;
2815 }
2816
2817 /*
2818 * if_ioctl(ifp, cmd, data)
2819 *
2820 * Apply an ioctl command to the interface. Returns 0 on success,
2821 * nonzero errno(3) number on failure.
2822 *
2823 * For SIOCADDMULTI/SIOCDELMULTI, caller need not hold locks -- it
2824 * is the driver's responsibility to take any internal locks.
2825 * (Kernel logic should generally invoke these only through
2826 * if_mcast_op.)
2827 *
2828 * For all other ioctls, caller must hold ifp->if_ioctl_lock,
2829 * a.k.a. IFNET_LOCK. May sleep.
2830 */
2831 int
2832 if_ioctl(struct ifnet *ifp, u_long cmd, void *data)
2833 {
2834
2835 switch (cmd) {
2836 case SIOCADDMULTI:
2837 case SIOCDELMULTI:
2838 break;
2839 default:
2840 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
2841 }
2842
2843 return (*ifp->if_ioctl)(ifp, cmd, data);
2844 }
2845
2846 /*
2847 * if_init(ifp)
2848 *
2849 * Prepare the hardware underlying ifp to process packets
2850 * according to its current configuration. Returns 0 on success,
2851 * nonzero errno(3) number on failure.
2852 *
2853 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a
2854 * IFNET_LOCK.
2855 */
2856 int
2857 if_init(struct ifnet *ifp)
2858 {
2859
2860 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
2861
2862 return (*ifp->if_init)(ifp);
2863 }
2864
2865 /*
2866 * if_stop(ifp, disable)
2867 *
2868 * Stop the hardware underlying ifp from processing packets.
2869 *
2870 * If disable is true, ... XXX(?)
2871 *
2872 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a
2873 * IFNET_LOCK.
2874 */
2875 void
2876 if_stop(struct ifnet *ifp, int disable)
2877 {
2878
2879 KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
2880
2881 (*ifp->if_stop)(ifp, disable);
2882 }
2883
2884 /*
2885 * Map interface name to
2886 * interface structure pointer.
2887 */
2888 struct ifnet *
2889 ifunit(const char *name)
2890 {
2891 struct ifnet *ifp;
2892 const char *cp = name;
2893 u_int unit = 0;
2894 u_int i;
2895
2896 /*
2897 * If the entire name is a number, treat it as an ifindex.
2898 */
2899 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++)
2900 unit = unit * 10 + (*cp - '0');
2901
2902 /*
2903 * If the number took all of the name, then it's a valid ifindex.
2904 */
2905 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2906 return if_byindex(unit);
2907
2908 ifp = NULL;
2909 const int s = pserialize_read_enter();
2910 IFNET_READER_FOREACH(ifp) {
2911 if (if_is_deactivated(ifp))
2912 continue;
2913 if (strcmp(ifp->if_xname, name) == 0)
2914 goto out;
2915 }
2916 out:
2917 pserialize_read_exit(s);
2918 return ifp;
2919 }
2920
2921 /*
2922 * Get a reference of an ifnet object by an interface name.
2923 * The returned reference is protected by psref(9). The caller
2924 * must release a returned reference by if_put after use.
2925 */
2926 struct ifnet *
2927 if_get(const char *name, struct psref *psref)
2928 {
2929 struct ifnet *ifp;
2930 const char *cp = name;
2931 u_int unit = 0;
2932 u_int i;
2933
2934 /*
2935 * If the entire name is a number, treat it as an ifindex.
2936 */
2937 for (i = 0; i < IFNAMSIZ && *cp >= '0' && *cp <= '9'; i++, cp++)
2938 unit = unit * 10 + (*cp - '0');
2939
2940 /*
2941 * If the number took all of the name, then it's a valid ifindex.
2942 */
2943 if (i == IFNAMSIZ || (cp != name && *cp == '\0'))
2944 return if_get_byindex(unit, psref);
2945
2946 ifp = NULL;
2947 const int s = pserialize_read_enter();
2948 IFNET_READER_FOREACH(ifp) {
2949 if (if_is_deactivated(ifp))
2950 continue;
2951 if (strcmp(ifp->if_xname, name) == 0) {
2952 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
2953 psref_acquire(psref, &ifp->if_psref,
2954 ifnet_psref_class);
2955 goto out;
2956 }
2957 }
2958 out:
2959 pserialize_read_exit(s);
2960 return ifp;
2961 }
2962
2963 /*
2964 * Release a reference of an ifnet object given by if_get, if_get_byindex
2965 * or if_get_bylla.
2966 */
2967 void
2968 if_put(const struct ifnet *ifp, struct psref *psref)
2969 {
2970
2971 if (ifp == NULL)
2972 return;
2973
2974 psref_release(psref, &ifp->if_psref, ifnet_psref_class);
2975 }
2976
2977 /*
2978 * Return ifp having idx. Return NULL if not found. Normally if_byindex
2979 * should be used.
2980 */
2981 ifnet_t *
2982 _if_byindex(u_int idx)
2983 {
2984
2985 return (__predict_true(idx < if_indexlim)) ? ifindex2ifnet[idx] : NULL;
2986 }
2987
2988 /*
2989 * Return ifp having idx. Return NULL if not found or the found ifp is
2990 * already deactivated.
2991 */
2992 ifnet_t *
2993 if_byindex(u_int idx)
2994 {
2995 ifnet_t *ifp;
2996
2997 ifp = _if_byindex(idx);
2998 if (ifp != NULL && if_is_deactivated(ifp))
2999 ifp = NULL;
3000 return ifp;
3001 }
3002
3003 /*
3004 * Get a reference of an ifnet object by an interface index.
3005 * The returned reference is protected by psref(9). The caller
3006 * must release a returned reference by if_put after use.
3007 */
3008 ifnet_t *
3009 if_get_byindex(u_int idx, struct psref *psref)
3010 {
3011 ifnet_t *ifp;
3012
3013 const int s = pserialize_read_enter();
3014 ifp = if_byindex(idx);
3015 if (__predict_true(ifp != NULL)) {
3016 PSREF_DEBUG_FILL_RETURN_ADDRESS(psref);
3017 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
3018 }
3019 pserialize_read_exit(s);
3020
3021 return ifp;
3022 }
3023
3024 ifnet_t *
3025 if_get_bylla(const void *lla, unsigned char lla_len, struct psref *psref)
3026 {
3027 ifnet_t *ifp;
3028
3029 const int s = pserialize_read_enter();
3030 IFNET_READER_FOREACH(ifp) {
3031 if (if_is_deactivated(ifp))
3032 continue;
3033 if (ifp->if_addrlen != lla_len)
3034 continue;
3035 if (memcmp(lla, CLLADDR(ifp->if_sadl), lla_len) == 0) {
3036 psref_acquire(psref, &ifp->if_psref,
3037 ifnet_psref_class);
3038 break;
3039 }
3040 }
3041 pserialize_read_exit(s);
3042
3043 return ifp;
3044 }
3045
3046 /*
3047 * Note that it's safe only if the passed ifp is guaranteed to not be freed,
3048 * for example using pserialize or the ifp is already held or some other
3049 * object is held which guarantes the ifp to not be freed indirectly.
3050 */
3051 void
3052 if_acquire(struct ifnet *ifp, struct psref *psref)
3053 {
3054
3055 KASSERT(ifp->if_index != 0);
3056 psref_acquire(psref, &ifp->if_psref, ifnet_psref_class);
3057 }
3058
3059 bool
3060 if_held(struct ifnet *ifp)
3061 {
3062
3063 return psref_held(&ifp->if_psref, ifnet_psref_class);
3064 }
3065
3066 /*
3067 * Some tunnel interfaces can nest, e.g. IPv4 over IPv4 gif(4) tunnel over
3068 * IPv4. Check the tunnel nesting count.
3069 * Return > 0, if tunnel nesting count is more than limit.
3070 * Return 0, if tunnel nesting count is equal or less than limit.
3071 */
3072 int
3073 if_tunnel_check_nesting(struct ifnet *ifp, struct mbuf *m, int limit)
3074 {
3075 struct m_tag *mtag;
3076 int *count;
3077
3078 mtag = m_tag_find(m, PACKET_TAG_TUNNEL_INFO);
3079 if (mtag != NULL) {
3080 count = (int *)(mtag + 1);
3081 if (++(*count) > limit) {
3082 log(LOG_NOTICE,
3083 "%s: recursively called too many times(%d)\n",
3084 ifp->if_xname, *count);
3085 return EIO;
3086 }
3087 } else {
3088 mtag = m_tag_get(PACKET_TAG_TUNNEL_INFO, sizeof(*count),
3089 M_NOWAIT);
3090 if (mtag != NULL) {
3091 m_tag_prepend(m, mtag);
3092 count = (int *)(mtag + 1);
3093 *count = 0;
3094 } else {
3095 log(LOG_DEBUG, "%s: m_tag_get() failed, "
3096 "recursion calls are not prevented.\n",
3097 ifp->if_xname);
3098 }
3099 }
3100
3101 return 0;
3102 }
3103
3104 static void
3105 if_tunnel_ro_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
3106 {
3107 struct tunnel_ro *tro = p;
3108
3109 tro->tr_ro = kmem_zalloc(sizeof(*tro->tr_ro), KM_SLEEP);
3110 tro->tr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
3111 }
3112
3113 static void
3114 if_tunnel_ro_fini_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
3115 {
3116 struct tunnel_ro *tro = p;
3117
3118 rtcache_free(tro->tr_ro);
3119 kmem_free(tro->tr_ro, sizeof(*tro->tr_ro));
3120
3121 mutex_obj_free(tro->tr_lock);
3122 }
3123
3124 percpu_t *
3125 if_tunnel_alloc_ro_percpu(void)
3126 {
3127
3128 return percpu_create(sizeof(struct tunnel_ro),
3129 if_tunnel_ro_init_pc, if_tunnel_ro_fini_pc, NULL);
3130 }
3131
3132 void
3133 if_tunnel_free_ro_percpu(percpu_t *ro_percpu)
3134 {
3135
3136 percpu_free(ro_percpu, sizeof(struct tunnel_ro));
3137 }
3138
3139
3140 static void
3141 if_tunnel_rtcache_free_pc(void *p, void *arg __unused,
3142 struct cpu_info *ci __unused)
3143 {
3144 struct tunnel_ro *tro = p;
3145
3146 mutex_enter(tro->tr_lock);
3147 rtcache_free(tro->tr_ro);
3148 mutex_exit(tro->tr_lock);
3149 }
3150
3151 void if_tunnel_ro_percpu_rtcache_free(percpu_t *ro_percpu)
3152 {
3153
3154 percpu_foreach(ro_percpu, if_tunnel_rtcache_free_pc, NULL);
3155 }
3156
3157 void
3158 if_export_if_data(ifnet_t * const ifp, struct if_data *ifi, bool zero_stats)
3159 {
3160
3161 /* Collect the volatile stats first; this zeros *ifi. */
3162 if_stats_to_if_data(ifp, ifi, zero_stats);
3163
3164 ifi->ifi_type = ifp->if_type;
3165 ifi->ifi_addrlen = ifp->if_addrlen;
3166 ifi->ifi_hdrlen = ifp->if_hdrlen;
3167 ifi->ifi_link_state = ifp->if_link_state;
3168 ifi->ifi_mtu = ifp->if_mtu;
3169 ifi->ifi_metric = ifp->if_metric;
3170 ifi->ifi_baudrate = ifp->if_baudrate;
3171 ifi->ifi_lastchange = ifp->if_lastchange;
3172 }
3173
3174 /* common */
3175 int
3176 ifioctl_common(struct ifnet *ifp, u_long cmd, void *data)
3177 {
3178 struct ifreq *ifr;
3179 struct ifcapreq *ifcr;
3180 struct ifdatareq *ifdr;
3181 unsigned short flags;
3182 char *descr;
3183 int error;
3184
3185 switch (cmd) {
3186 case SIOCSIFCAP:
3187 ifcr = data;
3188 if ((ifcr->ifcr_capenable & ~ifp->if_capabilities) != 0)
3189 return EINVAL;
3190
3191 if (ifcr->ifcr_capenable == ifp->if_capenable)
3192 return 0;
3193
3194 ifp->if_capenable = ifcr->ifcr_capenable;
3195
3196 /* Pre-compute the checksum flags mask. */
3197 ifp->if_csum_flags_tx = 0;
3198 ifp->if_csum_flags_rx = 0;
3199 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Tx)
3200 ifp->if_csum_flags_tx |= M_CSUM_IPv4;
3201 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
3202 ifp->if_csum_flags_rx |= M_CSUM_IPv4;
3203
3204 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Tx)
3205 ifp->if_csum_flags_tx |= M_CSUM_TCPv4;
3206 if (ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx)
3207 ifp->if_csum_flags_rx |= M_CSUM_TCPv4;
3208
3209 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Tx)
3210 ifp->if_csum_flags_tx |= M_CSUM_UDPv4;
3211 if (ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx)
3212 ifp->if_csum_flags_rx |= M_CSUM_UDPv4;
3213
3214 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Tx)
3215 ifp->if_csum_flags_tx |= M_CSUM_TCPv6;
3216 if (ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx)
3217 ifp->if_csum_flags_rx |= M_CSUM_TCPv6;
3218
3219 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Tx)
3220 ifp->if_csum_flags_tx |= M_CSUM_UDPv6;
3221 if (ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx)
3222 ifp->if_csum_flags_rx |= M_CSUM_UDPv6;
3223
3224 if (ifp->if_capenable & IFCAP_TSOv4)
3225 ifp->if_csum_flags_tx |= M_CSUM_TSOv4;
3226 if (ifp->if_capenable & IFCAP_TSOv6)
3227 ifp->if_csum_flags_tx |= M_CSUM_TSOv6;
3228
3229 #if NBRIDGE > 0
3230 if (ifp->if_bridge != NULL)
3231 bridge_calc_csum_flags(ifp->if_bridge);
3232 #endif
3233
3234 if (ifp->if_flags & IFF_UP)
3235 return ENETRESET;
3236 return 0;
3237 case SIOCSIFFLAGS:
3238 ifr = data;
3239 /*
3240 * If if_is_mpsafe(ifp), KERNEL_LOCK isn't held here, but if_up
3241 * and if_down aren't MP-safe yet, so we must hold the lock.
3242 */
3243 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3244 if (ifp->if_flags & IFF_UP && (ifr->ifr_flags & IFF_UP) == 0) {
3245 const int s = splsoftnet();
3246 if_down_locked(ifp);
3247 splx(s);
3248 }
3249 if (ifr->ifr_flags & IFF_UP && (ifp->if_flags & IFF_UP) == 0) {
3250 const int s = splsoftnet();
3251 if_up_locked(ifp);
3252 splx(s);
3253 }
3254 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3255 flags = (ifp->if_flags & IFF_CANTCHANGE) |
3256 (ifr->ifr_flags &~ IFF_CANTCHANGE);
3257 if (ifp->if_flags != flags) {
3258 ifp->if_flags = flags;
3259 /* Notify that the flags have changed. */
3260 rt_ifmsg(ifp);
3261 }
3262 break;
3263 case SIOCGIFFLAGS:
3264 ifr = data;
3265 ifr->ifr_flags = ifp->if_flags;
3266 break;
3267
3268 case SIOCGIFMETRIC:
3269 ifr = data;
3270 ifr->ifr_metric = ifp->if_metric;
3271 break;
3272
3273 case SIOCGIFMTU:
3274 ifr = data;
3275 ifr->ifr_mtu = ifp->if_mtu;
3276 break;
3277
3278 case SIOCGIFDLT:
3279 ifr = data;
3280 ifr->ifr_dlt = ifp->if_dlt;
3281 break;
3282
3283 case SIOCGIFCAP:
3284 ifcr = data;
3285 ifcr->ifcr_capabilities = ifp->if_capabilities;
3286 ifcr->ifcr_capenable = ifp->if_capenable;
3287 break;
3288
3289 case SIOCSIFMETRIC:
3290 ifr = data;
3291 ifp->if_metric = ifr->ifr_metric;
3292 break;
3293
3294 case SIOCGIFDATA:
3295 ifdr = data;
3296 if_export_if_data(ifp, &ifdr->ifdr_data, false);
3297 break;
3298
3299 case SIOCGIFINDEX:
3300 ifr = data;
3301 ifr->ifr_index = ifp->if_index;
3302 break;
3303
3304 case SIOCZIFDATA:
3305 ifdr = data;
3306 if_export_if_data(ifp, &ifdr->ifdr_data, true);
3307 getnanotime(&ifp->if_lastchange);
3308 break;
3309 case SIOCSIFMTU:
3310 ifr = data;
3311 if (ifp->if_mtu == ifr->ifr_mtu)
3312 break;
3313 ifp->if_mtu = ifr->ifr_mtu;
3314 return ENETRESET;
3315 case SIOCSIFDESCR:
3316 error = kauth_authorize_network(kauth_cred_get(),
3317 KAUTH_NETWORK_INTERFACE,
3318 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
3319 NULL);
3320 if (error)
3321 return error;
3322
3323 ifr = data;
3324
3325 if (ifr->ifr_buflen > IFDESCRSIZE)
3326 return ENAMETOOLONG;
3327
3328 if (ifr->ifr_buf == NULL || ifr->ifr_buflen == 0) {
3329 /* unset description */
3330 descr = NULL;
3331 } else {
3332 descr = kmem_zalloc(IFDESCRSIZE, KM_SLEEP);
3333 /*
3334 * copy (IFDESCRSIZE - 1) bytes to ensure
3335 * terminating nul
3336 */
3337 error = copyin(ifr->ifr_buf, descr, IFDESCRSIZE - 1);
3338 if (error) {
3339 kmem_free(descr, IFDESCRSIZE);
3340 return error;
3341 }
3342 }
3343
3344 if (ifp->if_description != NULL)
3345 kmem_free(ifp->if_description, IFDESCRSIZE);
3346
3347 ifp->if_description = descr;
3348 break;
3349
3350 case SIOCGIFDESCR:
3351 ifr = data;
3352 descr = ifp->if_description;
3353
3354 if (descr == NULL)
3355 return ENOMSG;
3356
3357 if (ifr->ifr_buflen < IFDESCRSIZE)
3358 return EINVAL;
3359
3360 error = copyout(descr, ifr->ifr_buf, IFDESCRSIZE);
3361 if (error)
3362 return error;
3363 break;
3364
3365 default:
3366 return ENOTTY;
3367 }
3368 return 0;
3369 }
3370
3371 int
3372 ifaddrpref_ioctl(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
3373 {
3374 struct if_addrprefreq *ifap = (struct if_addrprefreq *)data;
3375 struct ifaddr *ifa;
3376 const struct sockaddr *any, *sa;
3377 union {
3378 struct sockaddr sa;
3379 struct sockaddr_storage ss;
3380 } u, v;
3381 int s, error = 0;
3382
3383 switch (cmd) {
3384 case SIOCSIFADDRPREF:
3385 error = kauth_authorize_network(kauth_cred_get(),
3386 KAUTH_NETWORK_INTERFACE,
3387 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
3388 NULL);
3389 if (error)
3390 return error;
3391 break;
3392 case SIOCGIFADDRPREF:
3393 break;
3394 default:
3395 return EOPNOTSUPP;
3396 }
3397
3398 /* sanity checks */
3399 if (data == NULL || ifp == NULL) {
3400 panic("invalid argument to %s", __func__);
3401 /*NOTREACHED*/
3402 }
3403
3404 /* address must be specified on ADD and DELETE */
3405 sa = sstocsa(&ifap->ifap_addr);
3406 if (sa->sa_family != sofamily(so))
3407 return EINVAL;
3408 if ((any = sockaddr_any(sa)) == NULL || sa->sa_len != any->sa_len)
3409 return EINVAL;
3410
3411 sockaddr_externalize(&v.sa, sizeof(v.ss), sa);
3412
3413 s = pserialize_read_enter();
3414 IFADDR_READER_FOREACH(ifa, ifp) {
3415 if (ifa->ifa_addr->sa_family != sa->sa_family)
3416 continue;
3417 sockaddr_externalize(&u.sa, sizeof(u.ss), ifa->ifa_addr);
3418 if (sockaddr_cmp(&u.sa, &v.sa) == 0)
3419 break;
3420 }
3421 if (ifa == NULL) {
3422 error = EADDRNOTAVAIL;
3423 goto out;
3424 }
3425
3426 switch (cmd) {
3427 case SIOCSIFADDRPREF:
3428 ifa->ifa_preference = ifap->ifap_preference;
3429 goto out;
3430 case SIOCGIFADDRPREF:
3431 /* fill in the if_laddrreq structure */
3432 (void)sockaddr_copy(sstosa(&ifap->ifap_addr),
3433 sizeof(ifap->ifap_addr), ifa->ifa_addr);
3434 ifap->ifap_preference = ifa->ifa_preference;
3435 goto out;
3436 default:
3437 error = EOPNOTSUPP;
3438 }
3439 out:
3440 pserialize_read_exit(s);
3441 return error;
3442 }
3443
3444 /*
3445 * Interface ioctls.
3446 */
3447 static int
3448 doifioctl(struct socket *so, u_long cmd, void *data, struct lwp *l)
3449 {
3450 struct ifnet *ifp;
3451 struct ifreq *ifr;
3452 int error = 0;
3453 u_long ocmd = cmd;
3454 u_short oif_flags;
3455 struct ifreq ifrb;
3456 struct oifreq *oifr = NULL;
3457 int r;
3458 struct psref psref;
3459 bool do_if43_post = false;
3460 bool do_ifm80_post = false;
3461
3462 switch (cmd) {
3463 case SIOCGIFCONF:
3464 return ifconf(cmd, data);
3465 case SIOCINITIFADDR:
3466 return EPERM;
3467 default:
3468 MODULE_HOOK_CALL(uipc_syscalls_40_hook, (cmd, data), enosys(),
3469 error);
3470 if (error != ENOSYS)
3471 return error;
3472 MODULE_HOOK_CALL(uipc_syscalls_50_hook, (l, cmd, data),
3473 enosys(), error);
3474 if (error != ENOSYS)
3475 return error;
3476 error = 0;
3477 break;
3478 }
3479
3480 ifr = data;
3481 /* Pre-conversion */
3482 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), error);
3483 if (cmd != ocmd) {
3484 oifr = data;
3485 data = ifr = &ifrb;
3486 IFREQO2N_43(oifr, ifr);
3487 do_if43_post = true;
3488 }
3489 MODULE_HOOK_CALL(ifmedia_80_pre_hook, (ifr, &cmd, &do_ifm80_post),
3490 enosys(), error);
3491
3492 switch (cmd) {
3493 case SIOCIFCREATE:
3494 case SIOCIFDESTROY: {
3495 const int bound = curlwp_bind();
3496 if (l != NULL) {
3497 ifp = if_get(ifr->ifr_name, &psref);
3498 error = kauth_authorize_network(l->l_cred,
3499 KAUTH_NETWORK_INTERFACE,
3500 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3501 KAUTH_ARG(cmd), NULL);
3502 if (ifp != NULL)
3503 if_put(ifp, &psref);
3504 if (error != 0) {
3505 curlwp_bindx(bound);
3506 return error;
3507 }
3508 }
3509 KERNEL_LOCK_UNLESS_NET_MPSAFE();
3510 mutex_enter(&if_clone_mtx);
3511 r = (cmd == SIOCIFCREATE) ?
3512 if_clone_create(ifr->ifr_name) :
3513 if_clone_destroy(ifr->ifr_name);
3514 mutex_exit(&if_clone_mtx);
3515 KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
3516 curlwp_bindx(bound);
3517 return r;
3518 }
3519 case SIOCIFGCLONERS: {
3520 struct if_clonereq *req = (struct if_clonereq *)data;
3521 return if_clone_list(req->ifcr_count, req->ifcr_buffer,
3522 &req->ifcr_total);
3523 }
3524 }
3525
3526 if ((cmd & IOC_IN) == 0 || IOCPARM_LEN(cmd) < sizeof(ifr->ifr_name))
3527 return EINVAL;
3528
3529 const int bound = curlwp_bind();
3530 ifp = if_get(ifr->ifr_name, &psref);
3531 if (ifp == NULL) {
3532 curlwp_bindx(bound);
3533 return ENXIO;
3534 }
3535
3536 switch (cmd) {
3537 case SIOCALIFADDR:
3538 case SIOCDLIFADDR:
3539 case SIOCSIFADDRPREF:
3540 case SIOCSIFFLAGS:
3541 case SIOCSIFCAP:
3542 case SIOCSIFMETRIC:
3543 case SIOCZIFDATA:
3544 case SIOCSIFMTU:
3545 case SIOCSIFPHYADDR:
3546 case SIOCDIFPHYADDR:
3547 #ifdef INET6
3548 case SIOCSIFPHYADDR_IN6:
3549 #endif
3550 case SIOCSLIFPHYADDR:
3551 case SIOCADDMULTI:
3552 case SIOCDELMULTI:
3553 case SIOCSETHERCAP:
3554 case SIOCSIFMEDIA:
3555 case SIOCSDRVSPEC:
3556 case SIOCG80211:
3557 case SIOCS80211:
3558 case SIOCS80211NWID:
3559 case SIOCS80211NWKEY:
3560 case SIOCS80211POWER:
3561 case SIOCS80211BSSID:
3562 case SIOCS80211CHANNEL:
3563 case SIOCSLINKSTR:
3564 if (l != NULL) {
3565 error = kauth_authorize_network(l->l_cred,
3566 KAUTH_NETWORK_INTERFACE,
3567 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
3568 KAUTH_ARG(cmd), NULL);
3569 if (error != 0)
3570 goto out;
3571 }
3572 }
3573
3574 oif_flags = ifp->if_flags;
3575
3576 KERNEL_LOCK_UNLESS_IFP_MPSAFE(ifp);
3577 IFNET_LOCK(ifp);
3578
3579 error = if_ioctl(ifp, cmd, data);
3580 if (error != ENOTTY)
3581 ;
3582 else if (so->so_proto == NULL)
3583 error = EOPNOTSUPP;
3584 else {
3585 KERNEL_LOCK_IF_IFP_MPSAFE(ifp);
3586 MODULE_HOOK_CALL(if_ifioctl_43_hook,
3587 (so, ocmd, cmd, data, l), enosys(), error);
3588 if (error == ENOSYS)
3589 error = (*so->so_proto->pr_usrreqs->pr_ioctl)(so,
3590 cmd, data, ifp);
3591 KERNEL_UNLOCK_IF_IFP_MPSAFE(ifp);
3592 }
3593
3594 if (((oif_flags ^ ifp->if_flags) & IFF_UP) != 0) {
3595 if ((ifp->if_flags & IFF_UP) != 0) {
3596 const int s = splsoftnet();
3597 if_up_locked(ifp);
3598 splx(s);
3599 }
3600 }
3601
3602 /* Post-conversion */
3603 if (do_ifm80_post && (error == 0))
3604 MODULE_HOOK_CALL(ifmedia_80_post_hook, (ifr, cmd),
3605 enosys(), error);
3606 if (do_if43_post)
3607 IFREQN2O_43(oifr, ifr);
3608
3609 IFNET_UNLOCK(ifp);
3610 KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(ifp);
3611 out:
3612 if_put(ifp, &psref);
3613 curlwp_bindx(bound);
3614 return error;
3615 }
3616
3617 /*
3618 * Return interface configuration
3619 * of system. List may be used
3620 * in later ioctl's (above) to get
3621 * other information.
3622 *
3623 * Each record is a struct ifreq. Before the addition of
3624 * sockaddr_storage, the API rule was that sockaddr flavors that did
3625 * not fit would extend beyond the struct ifreq, with the next struct
3626 * ifreq starting sa_len beyond the struct sockaddr. Because the
3627 * union in struct ifreq includes struct sockaddr_storage, every kind
3628 * of sockaddr must fit. Thus, there are no longer any overlength
3629 * records.
3630 *
3631 * Records are added to the user buffer if they fit, and ifc_len is
3632 * adjusted to the length that was written. Thus, the user is only
3633 * assured of getting the complete list if ifc_len on return is at
3634 * least sizeof(struct ifreq) less than it was on entry.
3635 *
3636 * If the user buffer pointer is NULL, this routine copies no data and
3637 * returns the amount of space that would be needed.
3638 *
3639 * Invariants:
3640 * ifrp points to the next part of the user's buffer to be used. If
3641 * ifrp != NULL, space holds the number of bytes remaining that we may
3642 * write at ifrp. Otherwise, space holds the number of bytes that
3643 * would have been written had there been adequate space.
3644 */
3645 /*ARGSUSED*/
3646 static int
3647 ifconf(u_long cmd, void *data)
3648 {
3649 struct ifconf *ifc = (struct ifconf *)data;
3650 struct ifnet *ifp;
3651 struct ifaddr *ifa;
3652 struct ifreq ifr, *ifrp = NULL;
3653 int space = 0, error = 0;
3654 const int sz = (int)sizeof(struct ifreq);
3655 const bool docopy = ifc->ifc_req != NULL;
3656 struct psref psref;
3657
3658 if (docopy) {
3659 if (ifc->ifc_len < 0)
3660 return EINVAL;
3661
3662 space = ifc->ifc_len;
3663 ifrp = ifc->ifc_req;
3664 }
3665 memset(&ifr, 0, sizeof(ifr));
3666
3667 const int bound = curlwp_bind();
3668 int s = pserialize_read_enter();
3669 IFNET_READER_FOREACH(ifp) {
3670 psref_acquire(&psref, &ifp->if_psref, ifnet_psref_class);
3671 pserialize_read_exit(s);
3672
3673 (void)strncpy(ifr.ifr_name, ifp->if_xname,
3674 sizeof(ifr.ifr_name));
3675 if (ifr.ifr_name[sizeof(ifr.ifr_name) - 1] != '\0') {
3676 error = ENAMETOOLONG;
3677 goto release_exit;
3678 }
3679 if (IFADDR_READER_EMPTY(ifp)) {
3680 /* Interface with no addresses - send zero sockaddr. */
3681 memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
3682 if (!docopy) {
3683 space += sz;
3684 goto next;
3685 }
3686 if (space >= sz) {
3687 error = copyout(&ifr, ifrp, sz);
3688 if (error != 0)
3689 goto release_exit;
3690 ifrp++;
3691 space -= sz;
3692 }
3693 }
3694
3695 s = pserialize_read_enter();
3696 IFADDR_READER_FOREACH(ifa, ifp) {
3697 struct sockaddr *sa = ifa->ifa_addr;
3698 /* all sockaddrs must fit in sockaddr_storage */
3699 KASSERT(sa->sa_len <= sizeof(ifr.ifr_ifru));
3700
3701 if (!docopy) {
3702 space += sz;
3703 continue;
3704 }
3705 memcpy(&ifr.ifr_space, sa, sa->sa_len);
3706 pserialize_read_exit(s);
3707
3708 if (space >= sz) {
3709 error = copyout(&ifr, ifrp, sz);
3710 if (error != 0)
3711 goto release_exit;
3712 ifrp++; space -= sz;
3713 }
3714 s = pserialize_read_enter();
3715 }
3716 pserialize_read_exit(s);
3717
3718 next:
3719 s = pserialize_read_enter();
3720 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3721 }
3722 pserialize_read_exit(s);
3723 curlwp_bindx(bound);
3724
3725 if (docopy) {
3726 KASSERT(0 <= space && space <= ifc->ifc_len);
3727 ifc->ifc_len -= space;
3728 } else {
3729 KASSERT(space >= 0);
3730 ifc->ifc_len = space;
3731 }
3732 return 0;
3733
3734 release_exit:
3735 psref_release(&psref, &ifp->if_psref, ifnet_psref_class);
3736 curlwp_bindx(bound);
3737 return error;
3738 }
3739
3740 int
3741 ifreq_setaddr(u_long cmd, struct ifreq *ifr, const struct sockaddr *sa)
3742 {
3743 uint8_t len = sizeof(ifr->ifr_ifru.ifru_space);
3744 struct ifreq ifrb;
3745 struct oifreq *oifr = NULL;
3746 u_long ocmd = cmd;
3747 int hook;
3748
3749 MODULE_HOOK_CALL(if_cvtcmd_43_hook, (&cmd, ocmd), enosys(), hook);
3750 if (hook != ENOSYS) {
3751 if (cmd != ocmd) {
3752 oifr = (struct oifreq *)(void *)ifr;
3753 ifr = &ifrb;
3754 IFREQO2N_43(oifr, ifr);
3755 len = sizeof(oifr->ifr_addr);
3756 }
3757 }
3758
3759 if (len < sa->sa_len)
3760 return EFBIG;
3761
3762 memset(&ifr->ifr_addr, 0, len);
3763 sockaddr_copy(&ifr->ifr_addr, len, sa);
3764
3765 if (cmd != ocmd)
3766 IFREQN2O_43(oifr, ifr);
3767 return 0;
3768 }
3769
3770 /*
3771 * wrapper function for the drivers which doesn't have if_transmit().
3772 */
3773 static int
3774 if_transmit(struct ifnet *ifp, struct mbuf *m)
3775 {
3776 int error;
3777 size_t pktlen = m->m_pkthdr.len;
3778 bool mcast = (m->m_flags & M_MCAST) != 0;
3779
3780 const int s = splnet();
3781
3782 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3783 if (error != 0) {
3784 /* mbuf is already freed */
3785 goto out;
3786 }
3787
3788 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
3789 if_statadd_ref(ifp, nsr, if_obytes, pktlen);
3790 if (mcast)
3791 if_statinc_ref(ifp, nsr, if_omcasts);
3792 IF_STAT_PUTREF(ifp);
3793
3794 if ((ifp->if_flags & IFF_OACTIVE) == 0)
3795 if_start_lock(ifp);
3796 out:
3797 splx(s);
3798
3799 return error;
3800 }
3801
3802 int
3803 if_transmit_lock(struct ifnet *ifp, struct mbuf *m)
3804 {
3805 int error;
3806
3807 kmsan_check_mbuf(m);
3808
3809 #ifdef ALTQ
3810 KERNEL_LOCK(1, NULL);
3811 if (ALTQ_IS_ENABLED(&ifp->if_snd)) {
3812 error = if_transmit(ifp, m);
3813 KERNEL_UNLOCK_ONE(NULL);
3814 } else {
3815 KERNEL_UNLOCK_ONE(NULL);
3816 error = (*ifp->if_transmit)(ifp, m);
3817 /* mbuf is already freed */
3818 }
3819 #else /* !ALTQ */
3820 error = (*ifp->if_transmit)(ifp, m);
3821 /* mbuf is already freed */
3822 #endif /* !ALTQ */
3823
3824 return error;
3825 }
3826
3827 /*
3828 * Queue message on interface, and start output if interface
3829 * not yet active.
3830 */
3831 int
3832 ifq_enqueue(struct ifnet *ifp, struct mbuf *m)
3833 {
3834
3835 return if_transmit_lock(ifp, m);
3836 }
3837
3838 /*
3839 * Queue message on interface, possibly using a second fast queue
3840 */
3841 int
3842 ifq_enqueue2(struct ifnet *ifp, struct ifqueue *ifq, struct mbuf *m)
3843 {
3844 int error = 0;
3845
3846 if (ifq != NULL
3847 #ifdef ALTQ
3848 && ALTQ_IS_ENABLED(&ifp->if_snd) == 0
3849 #endif
3850 ) {
3851 if (IF_QFULL(ifq)) {
3852 IF_DROP(&ifp->if_snd);
3853 m_freem(m);
3854 if (error == 0)
3855 error = ENOBUFS;
3856 } else
3857 IF_ENQUEUE(ifq, m);
3858 } else
3859 IFQ_ENQUEUE(&ifp->if_snd, m, error);
3860 if (error != 0) {
3861 if_statinc(ifp, if_oerrors);
3862 return error;
3863 }
3864 return 0;
3865 }
3866
3867 int
3868 if_addr_init(ifnet_t *ifp, struct ifaddr *ifa, const bool src)
3869 {
3870 int rc;
3871
3872 KASSERT(IFNET_LOCKED(ifp));
3873 if (ifp->if_initaddr != NULL)
3874 rc = (*ifp->if_initaddr)(ifp, ifa, src);
3875 else if (src || (rc = if_ioctl(ifp, SIOCSIFDSTADDR, ifa)) == ENOTTY)
3876 rc = if_ioctl(ifp, SIOCINITIFADDR, ifa);
3877
3878 return rc;
3879 }
3880
3881 int
3882 if_do_dad(struct ifnet *ifp)
3883 {
3884 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
3885 return 0;
3886
3887 switch (ifp->if_type) {
3888 case IFT_FAITH:
3889 /*
3890 * These interfaces do not have the IFF_LOOPBACK flag,
3891 * but loop packets back. We do not have to do DAD on such
3892 * interfaces. We should even omit it, because loop-backed
3893 * responses would confuse the DAD procedure.
3894 */
3895 return 0;
3896 default:
3897 /*
3898 * Our DAD routine requires the interface up and running.
3899 * However, some interfaces can be up before the RUNNING
3900 * status. Additionally, users may try to assign addresses
3901 * before the interface becomes up (or running).
3902 * We simply skip DAD in such a case as a work around.
3903 * XXX: we should rather mark "tentative" on such addresses,
3904 * and do DAD after the interface becomes ready.
3905 */
3906 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
3907 (IFF_UP | IFF_RUNNING))
3908 return 0;
3909
3910 return 1;
3911 }
3912 }
3913
3914 /*
3915 * if_flags_set(ifp, flags)
3916 *
3917 * Ask ifp to change ifp->if_flags to flags, as if with the
3918 * SIOCSIFFLAGS ioctl command.
3919 *
3920 * May sleep. Caller must hold ifp->if_ioctl_lock, a.k.a
3921 * IFNET_LOCK.
3922 */
3923 int
3924 if_flags_set(ifnet_t *ifp, const u_short flags)
3925 {
3926 int rc;
3927
3928 KASSERT(IFNET_LOCKED(ifp));
3929
3930 if (ifp->if_setflags != NULL)
3931 rc = (*ifp->if_setflags)(ifp, flags);
3932 else {
3933 u_short cantflags, chgdflags;
3934 struct ifreq ifr;
3935
3936 chgdflags = ifp->if_flags ^ flags;
3937 cantflags = chgdflags & IFF_CANTCHANGE;
3938
3939 if (cantflags != 0)
3940 ifp->if_flags ^= cantflags;
3941
3942 /*
3943 * Traditionally, we do not call if_ioctl after
3944 * setting/clearing only IFF_PROMISC if the interface
3945 * isn't IFF_UP. Uphold that tradition.
3946 */
3947 if (chgdflags == IFF_PROMISC && (ifp->if_flags & IFF_UP) == 0)
3948 return 0;
3949
3950 memset(&ifr, 0, sizeof(ifr));
3951
3952 ifr.ifr_flags = flags & ~IFF_CANTCHANGE;
3953 rc = if_ioctl(ifp, SIOCSIFFLAGS, &ifr);
3954
3955 if (rc != 0 && cantflags != 0)
3956 ifp->if_flags ^= cantflags;
3957 }
3958
3959 return rc;
3960 }
3961
3962 /*
3963 * if_mcast_op(ifp, cmd, sa)
3964 *
3965 * Apply a multicast command, SIOCADDMULTI/SIOCDELMULTI, to the
3966 * interface. Returns 0 on success, nonzero errno(3) number on
3967 * failure.
3968 *
3969 * May sleep.
3970 *
3971 * Use this, not if_ioctl, for the multicast commands.
3972 */
3973 int
3974 if_mcast_op(ifnet_t *ifp, const unsigned long cmd, const struct sockaddr *sa)
3975 {
3976 int rc;
3977 struct ifreq ifr;
3978
3979 switch (cmd) {
3980 case SIOCADDMULTI:
3981 case SIOCDELMULTI:
3982 break;
3983 default:
3984 panic("invalid ifnet multicast command: 0x%lx", cmd);
3985 }
3986
3987 ifreq_setaddr(cmd, &ifr, sa);
3988 rc = if_ioctl(ifp, cmd, &ifr);
3989
3990 return rc;
3991 }
3992
3993 static void
3994 sysctl_sndq_setup(struct sysctllog **clog, const char *ifname,
3995 struct ifaltq *ifq)
3996 {
3997 const struct sysctlnode *cnode, *rnode;
3998
3999 if (sysctl_createv(clog, 0, NULL, &rnode,
4000 CTLFLAG_PERMANENT,
4001 CTLTYPE_NODE, "interfaces",
4002 SYSCTL_DESCR("Per-interface controls"),
4003 NULL, 0, NULL, 0,
4004 CTL_NET, CTL_CREATE, CTL_EOL) != 0)
4005 goto bad;
4006
4007 if (sysctl_createv(clog, 0, &rnode, &rnode,
4008 CTLFLAG_PERMANENT,
4009 CTLTYPE_NODE, ifname,
4010 SYSCTL_DESCR("Interface controls"),
4011 NULL, 0, NULL, 0,
4012 CTL_CREATE, CTL_EOL) != 0)
4013 goto bad;
4014
4015 if (sysctl_createv(clog, 0, &rnode, &rnode,
4016 CTLFLAG_PERMANENT,
4017 CTLTYPE_NODE, "sndq",
4018 SYSCTL_DESCR("Interface output queue controls"),
4019 NULL, 0, NULL, 0,
4020 CTL_CREATE, CTL_EOL) != 0)
4021 goto bad;
4022
4023 if (sysctl_createv(clog, 0, &rnode, &cnode,
4024 CTLFLAG_PERMANENT,
4025 CTLTYPE_INT, "len",
4026 SYSCTL_DESCR("Current output queue length"),
4027 NULL, 0, &ifq->ifq_len, 0,
4028 CTL_CREATE, CTL_EOL) != 0)
4029 goto bad;
4030
4031 if (sysctl_createv(clog, 0, &rnode, &cnode,
4032 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
4033 CTLTYPE_INT, "maxlen",
4034 SYSCTL_DESCR("Maximum allowed output queue length"),
4035 NULL, 0, &ifq->ifq_maxlen, 0,
4036 CTL_CREATE, CTL_EOL) != 0)
4037 goto bad;
4038
4039 if (sysctl_createv(clog, 0, &rnode, &cnode,
4040 CTLFLAG_PERMANENT,
4041 CTLTYPE_QUAD, "drops",
4042 SYSCTL_DESCR("Packets dropped due to full output queue"),
4043 NULL, 0, &ifq->ifq_drops, 0,
4044 CTL_CREATE, CTL_EOL) != 0)
4045 goto bad;
4046
4047 return;
4048 bad:
4049 printf("%s: could not attach sysctl nodes\n", ifname);
4050 return;
4051 }
4052
4053 static int
4054 if_sdl_sysctl(SYSCTLFN_ARGS)
4055 {
4056 struct ifnet *ifp;
4057 const struct sockaddr_dl *sdl;
4058 struct psref psref;
4059 int error = 0;
4060
4061 if (namelen != 1)
4062 return EINVAL;
4063
4064 const int bound = curlwp_bind();
4065 ifp = if_get_byindex(name[0], &psref);
4066 if (ifp == NULL) {
4067 error = ENODEV;
4068 goto out0;
4069 }
4070
4071 sdl = ifp->if_sadl;
4072 if (sdl == NULL) {
4073 *oldlenp = 0;
4074 goto out1;
4075 }
4076
4077 if (oldp == NULL) {
4078 *oldlenp = sdl->sdl_alen;
4079 goto out1;
4080 }
4081
4082 if (*oldlenp >= sdl->sdl_alen)
4083 *oldlenp = sdl->sdl_alen;
4084 error = sysctl_copyout(l, &sdl->sdl_data[sdl->sdl_nlen],
4085 oldp, *oldlenp);
4086 out1:
4087 if_put(ifp, &psref);
4088 out0:
4089 curlwp_bindx(bound);
4090 return error;
4091 }
4092
4093 static void
4094 if_sysctl_setup(struct sysctllog **clog)
4095 {
4096 const struct sysctlnode *rnode = NULL;
4097
4098 sysctl_createv(clog, 0, NULL, &rnode,
4099 CTLFLAG_PERMANENT,
4100 CTLTYPE_NODE, "sdl",
4101 SYSCTL_DESCR("Get active link-layer address"),
4102 if_sdl_sysctl, 0, NULL, 0,
4103 CTL_NET, CTL_CREATE, CTL_EOL);
4104 }
4105