if_ether.h revision 1.58 1 /* $NetBSD: if_ether.h,v 1.58 2010/05/19 20:41:59 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)if_ether.h 8.1 (Berkeley) 6/10/93
32 */
33
34 #ifndef _NET_IF_ETHER_H_
35 #define _NET_IF_ETHER_H_
36
37 #ifdef _KERNEL
38 #ifdef _KERNEL_OPT
39 #include "opt_mbuftrace.h"
40 #endif
41 #include <sys/mbuf.h>
42 #endif
43
44 /*
45 * Some basic Ethernet constants.
46 */
47 #define ETHER_ADDR_LEN 6 /* length of an Ethernet address */
48 #define ETHER_TYPE_LEN 2 /* length of the Ethernet type field */
49 #define ETHER_CRC_LEN 4 /* length of the Ethernet CRC */
50 #define ETHER_HDR_LEN ((ETHER_ADDR_LEN * 2) + ETHER_TYPE_LEN)
51 #define ETHER_MIN_LEN 64 /* minimum frame length, including CRC */
52 #define ETHER_MAX_LEN 1518 /* maximum frame length, including CRC */
53 #define ETHER_MAX_LEN_JUMBO 9018 /* maximum jumbo frame len, including CRC */
54
55 /*
56 * Some Ethernet extensions.
57 */
58 #define ETHER_VLAN_ENCAP_LEN 4 /* length of 802.1Q VLAN encapsulation */
59 #define ETHER_PPPOE_ENCAP_LEN 8 /* length of PPPoE encapsulation */
60
61 /*
62 * Ethernet address - 6 octets
63 * this is only used by the ethers(3) functions.
64 */
65 struct ether_addr {
66 uint8_t ether_addr_octet[ETHER_ADDR_LEN];
67 } __packed;
68
69 /*
70 * Structure of a 10Mb/s Ethernet header.
71 */
72 struct ether_header {
73 uint8_t ether_dhost[ETHER_ADDR_LEN];
74 uint8_t ether_shost[ETHER_ADDR_LEN];
75 uint16_t ether_type;
76 } __packed;
77
78 #include <net/ethertypes.h>
79
80 #define ETHER_IS_MULTICAST(addr) (*(addr) & 0x01) /* is address mcast/bcast? */
81 #define ETHER_IS_LOCAL(addr) (*(addr) & 0x02) /* is address local? */
82
83 #define ETHERMTU_JUMBO (ETHER_MAX_LEN_JUMBO - ETHER_HDR_LEN - ETHER_CRC_LEN)
84 #define ETHERMTU (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN)
85 #define ETHERMIN (ETHER_MIN_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN)
86
87 /*
88 * Compute the maximum frame size based on ethertype (i.e. possible
89 * encapsulation) and whether or not an FCS is present.
90 */
91 #define ETHER_MAX_FRAME(ifp, etype, hasfcs) \
92 ((ifp)->if_mtu + ETHER_HDR_LEN + \
93 ((hasfcs) ? ETHER_CRC_LEN : 0) + \
94 (((etype) == ETHERTYPE_VLAN) ? ETHER_VLAN_ENCAP_LEN : 0) + \
95 (((etype) == ETHERTYPE_PPPOE) ? ETHER_PPPOE_ENCAP_LEN : 0))
96
97 /*
98 * Ethernet CRC32 polynomials (big- and little-endian verions).
99 */
100 #define ETHER_CRC_POLY_LE 0xedb88320
101 #define ETHER_CRC_POLY_BE 0x04c11db6
102
103 #ifndef _STANDALONE
104
105 /*
106 * Ethernet-specific mbuf flags.
107 */
108 #define M_HASFCS M_LINK0 /* FCS included at end of frame */
109 #define M_PROMISC M_LINK1 /* this packet is not for us */
110
111 #ifdef _KERNEL
112 /*
113 * Macro to map an IP multicast address to an Ethernet multicast address.
114 * The high-order 25 bits of the Ethernet address are statically assigned,
115 * and the low-order 23 bits are taken from the low end of the IP address.
116 */
117 #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \
118 /* const struct in_addr *ipaddr; */ \
119 /* uint8_t enaddr[ETHER_ADDR_LEN]; */ \
120 do { \
121 (enaddr)[0] = 0x01; \
122 (enaddr)[1] = 0x00; \
123 (enaddr)[2] = 0x5e; \
124 (enaddr)[3] = ((const uint8_t *)ipaddr)[1] & 0x7f; \
125 (enaddr)[4] = ((const uint8_t *)ipaddr)[2]; \
126 (enaddr)[5] = ((const uint8_t *)ipaddr)[3]; \
127 } while (/*CONSTCOND*/0)
128 /*
129 * Macro to map an IP6 multicast address to an Ethernet multicast address.
130 * The high-order 16 bits of the Ethernet address are statically assigned,
131 * and the low-order 32 bits are taken from the low end of the IP6 address.
132 */
133 #define ETHER_MAP_IPV6_MULTICAST(ip6addr, enaddr) \
134 /* struct in6_addr *ip6addr; */ \
135 /* uint8_t enaddr[ETHER_ADDR_LEN]; */ \
136 { \
137 (enaddr)[0] = 0x33; \
138 (enaddr)[1] = 0x33; \
139 (enaddr)[2] = ((const uint8_t *)ip6addr)[12]; \
140 (enaddr)[3] = ((const uint8_t *)ip6addr)[13]; \
141 (enaddr)[4] = ((const uint8_t *)ip6addr)[14]; \
142 (enaddr)[5] = ((const uint8_t *)ip6addr)[15]; \
143 }
144 #endif
145
146 struct mii_data;
147
148 struct ethercom;
149
150 typedef int (*ether_cb_t)(struct ethercom *);
151
152 /*
153 * Structure shared between the ethernet driver modules and
154 * the multicast list code. For example, each ec_softc or il_softc
155 * begins with this structure.
156 */
157 struct ethercom {
158 struct ifnet ec_if; /* network-visible interface */
159 LIST_HEAD(, ether_multi) ec_multiaddrs; /* list of ether multicast
160 addrs */
161 int ec_multicnt; /* length of ec_multiaddrs
162 list */
163 int ec_capabilities; /* capabilities, provided by
164 driver */
165 int ec_capenable; /* tells hardware which
166 capabilities to enable */
167
168 int ec_nvlans; /* # VLANs on this interface */
169 /* The device handle for the MII bus child device. */
170 struct mii_data *ec_mii;
171 /* Called after a change to ec_if.if_flags. Returns
172 * ENETRESET if the device should be reinitialized with
173 * ec_if.if_init, 0 on success, not 0 on failure.
174 */
175 ether_cb_t ec_ifflags_cb;
176 #ifdef MBUFTRACE
177 struct mowner ec_rx_mowner; /* mbufs received */
178 struct mowner ec_tx_mowner; /* mbufs transmitted */
179 #endif
180 };
181
182 #define ETHERCAP_VLAN_MTU 0x00000001 /* VLAN-compatible MTU */
183 #define ETHERCAP_VLAN_HWTAGGING 0x00000002 /* hardware VLAN tag support */
184 #define ETHERCAP_JUMBO_MTU 0x00000004 /* 9000 byte MTU supported */
185
186 #ifdef _KERNEL
187 extern const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN];
188 extern const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN];
189 extern const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN];
190 extern const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN];
191
192 void ether_set_ifflags_cb(struct ethercom *, ether_cb_t);
193 int ether_ioctl(struct ifnet *, u_long, void *);
194 int ether_addmulti(const struct sockaddr *, struct ethercom *);
195 int ether_delmulti(const struct sockaddr *, struct ethercom *);
196 int ether_multiaddr(const struct sockaddr *, uint8_t[], uint8_t[]);
197 #endif /* _KERNEL */
198
199 /*
200 * Ethernet multicast address structure. There is one of these for each
201 * multicast address or range of multicast addresses that we are supposed
202 * to listen to on a particular interface. They are kept in a linked list,
203 * rooted in the interface's ethercom structure.
204 */
205 struct ether_multi {
206 uint8_t enm_addrlo[ETHER_ADDR_LEN]; /* low or only address of range */
207 uint8_t enm_addrhi[ETHER_ADDR_LEN]; /* high or only address of range */
208 u_int enm_refcount; /* no. claims to this addr/range */
209 LIST_ENTRY(ether_multi) enm_list;
210 };
211
212 /*
213 * Structure used by macros below to remember position when stepping through
214 * all of the ether_multi records.
215 */
216 struct ether_multistep {
217 struct ether_multi *e_enm;
218 };
219
220 /*
221 * Macro for looking up the ether_multi record for a given range of Ethernet
222 * multicast addresses connected to a given ethercom structure. If no matching
223 * record is found, "enm" returns NULL.
224 */
225 #define ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, enm) \
226 /* uint8_t addrlo[ETHER_ADDR_LEN]; */ \
227 /* uint8_t addrhi[ETHER_ADDR_LEN]; */ \
228 /* struct ethercom *ec; */ \
229 /* struct ether_multi *enm; */ \
230 { \
231 for ((enm) = LIST_FIRST(&(ec)->ec_multiaddrs); \
232 (enm) != NULL && \
233 (memcmp((enm)->enm_addrlo, (addrlo), ETHER_ADDR_LEN) != 0 || \
234 memcmp((enm)->enm_addrhi, (addrhi), ETHER_ADDR_LEN) != 0); \
235 (enm) = LIST_NEXT((enm), enm_list)); \
236 }
237
238 /*
239 * Macro to step through all of the ether_multi records, one at a time.
240 * The current position is remembered in "step", which the caller must
241 * provide. ETHER_FIRST_MULTI(), below, must be called to initialize "step"
242 * and get the first record. Both macros return a NULL "enm" when there
243 * are no remaining records.
244 */
245 #define ETHER_NEXT_MULTI(step, enm) \
246 /* struct ether_multistep step; */ \
247 /* struct ether_multi *enm; */ \
248 { \
249 if (((enm) = (step).e_enm) != NULL) \
250 (step).e_enm = LIST_NEXT((enm), enm_list); \
251 }
252
253 #define ETHER_FIRST_MULTI(step, ec, enm) \
254 /* struct ether_multistep step; */ \
255 /* struct ethercom *ec; */ \
256 /* struct ether_multi *enm; */ \
257 { \
258 (step).e_enm = LIST_FIRST(&(ec)->ec_multiaddrs); \
259 ETHER_NEXT_MULTI((step), (enm)); \
260 }
261
262 #ifdef _KERNEL
263
264 /*
265 * Ethernet 802.1Q VLAN structures.
266 */
267
268 /* add VLAN tag to input/received packet */
269 static inline int vlan_input_tag(struct ifnet *, struct mbuf *, u_int);
270 static inline int
271 vlan_input_tag(struct ifnet *ifp, struct mbuf *m, u_int vlanid)
272 {
273 struct m_tag *mtag;
274 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
275 if (mtag == NULL) {
276 ifp->if_ierrors++;
277 printf("%s: unable to allocate VLAN tag\n", ifp->if_xname);
278 m_freem(m);
279 return 1;
280 }
281 *(u_int *)(mtag + 1) = vlanid;
282 m_tag_prepend(m, mtag);
283 return 0;
284 }
285
286 #define VLAN_INPUT_TAG(ifp, m, vlanid, _errcase) \
287 if (vlan_input_tag(ifp, m, vlanid) != 0) { \
288 _errcase; \
289 }
290
291 /* extract VLAN tag from output/trasmit packet */
292 #define VLAN_OUTPUT_TAG(ec, m0) \
293 (VLAN_ATTACHED(ec) ? m_tag_find((m0), PACKET_TAG_VLAN, NULL) : NULL)
294
295 /* extract VLAN ID value from a VLAN tag */
296 #define VLAN_TAG_VALUE(mtag) \
297 ((*(u_int *)(mtag + 1)) & 4095)
298
299 /* test if any VLAN is configured for this interface */
300 #define VLAN_ATTACHED(ec) ((ec)->ec_nvlans > 0)
301
302 void ether_ifattach(struct ifnet *, const uint8_t *);
303 void ether_ifdetach(struct ifnet *);
304 int ether_mediachange(struct ifnet *);
305 void ether_mediastatus(struct ifnet *, struct ifmediareq *);
306
307 char *ether_sprintf(const uint8_t *);
308 char *ether_snprintf(char *, size_t, const uint8_t *);
309
310 uint32_t ether_crc32_le(const uint8_t *, size_t);
311 uint32_t ether_crc32_be(const uint8_t *, size_t);
312
313 int ether_aton_r(u_char *, size_t, const char *);
314 #else
315 /*
316 * Prototype ethers(3) functions.
317 */
318 #include <sys/cdefs.h>
319 __BEGIN_DECLS
320 char * ether_ntoa(const struct ether_addr *);
321 struct ether_addr *
322 ether_aton(const char *);
323 int ether_ntohost(char *, const struct ether_addr *);
324 int ether_hostton(const char *, struct ether_addr *);
325 int ether_line(const char *, struct ether_addr *, char *);
326 __END_DECLS
327 #endif
328
329 #endif /* _STANDALONE */
330
331 #endif /* !_NET_IF_ETHER_H_ */
332