if_ether.h revision 1.59 1 /* $NetBSD: if_ether.h,v 1.59 2012/09/30 05:08:08 dholland Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)if_ether.h 8.1 (Berkeley) 6/10/93
32 */
33
34 #ifndef _NET_IF_ETHER_H_
35 #define _NET_IF_ETHER_H_
36
37 #ifdef _KERNEL
38 #ifdef _KERNEL_OPT
39 #include "opt_mbuftrace.h"
40 #endif
41 #include <sys/mbuf.h>
42 #endif
43
44 #ifndef _STANDALONE
45 #include <net/if.h>
46 #endif
47
48 /*
49 * Some basic Ethernet constants.
50 */
51 #define ETHER_ADDR_LEN 6 /* length of an Ethernet address */
52 #define ETHER_TYPE_LEN 2 /* length of the Ethernet type field */
53 #define ETHER_CRC_LEN 4 /* length of the Ethernet CRC */
54 #define ETHER_HDR_LEN ((ETHER_ADDR_LEN * 2) + ETHER_TYPE_LEN)
55 #define ETHER_MIN_LEN 64 /* minimum frame length, including CRC */
56 #define ETHER_MAX_LEN 1518 /* maximum frame length, including CRC */
57 #define ETHER_MAX_LEN_JUMBO 9018 /* maximum jumbo frame len, including CRC */
58
59 /*
60 * Some Ethernet extensions.
61 */
62 #define ETHER_VLAN_ENCAP_LEN 4 /* length of 802.1Q VLAN encapsulation */
63 #define ETHER_PPPOE_ENCAP_LEN 8 /* length of PPPoE encapsulation */
64
65 /*
66 * Ethernet address - 6 octets
67 * this is only used by the ethers(3) functions.
68 */
69 struct ether_addr {
70 uint8_t ether_addr_octet[ETHER_ADDR_LEN];
71 } __packed;
72
73 /*
74 * Structure of a 10Mb/s Ethernet header.
75 */
76 struct ether_header {
77 uint8_t ether_dhost[ETHER_ADDR_LEN];
78 uint8_t ether_shost[ETHER_ADDR_LEN];
79 uint16_t ether_type;
80 } __packed;
81
82 #include <net/ethertypes.h>
83
84 #define ETHER_IS_MULTICAST(addr) (*(addr) & 0x01) /* is address mcast/bcast? */
85 #define ETHER_IS_LOCAL(addr) (*(addr) & 0x02) /* is address local? */
86
87 #define ETHERMTU_JUMBO (ETHER_MAX_LEN_JUMBO - ETHER_HDR_LEN - ETHER_CRC_LEN)
88 #define ETHERMTU (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN)
89 #define ETHERMIN (ETHER_MIN_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN)
90
91 /*
92 * Compute the maximum frame size based on ethertype (i.e. possible
93 * encapsulation) and whether or not an FCS is present.
94 */
95 #define ETHER_MAX_FRAME(ifp, etype, hasfcs) \
96 ((ifp)->if_mtu + ETHER_HDR_LEN + \
97 ((hasfcs) ? ETHER_CRC_LEN : 0) + \
98 (((etype) == ETHERTYPE_VLAN) ? ETHER_VLAN_ENCAP_LEN : 0) + \
99 (((etype) == ETHERTYPE_PPPOE) ? ETHER_PPPOE_ENCAP_LEN : 0))
100
101 /*
102 * Ethernet CRC32 polynomials (big- and little-endian verions).
103 */
104 #define ETHER_CRC_POLY_LE 0xedb88320
105 #define ETHER_CRC_POLY_BE 0x04c11db6
106
107 #ifndef _STANDALONE
108
109 /*
110 * Ethernet-specific mbuf flags.
111 */
112 #define M_HASFCS M_LINK0 /* FCS included at end of frame */
113 #define M_PROMISC M_LINK1 /* this packet is not for us */
114
115 #ifdef _KERNEL
116 /*
117 * Macro to map an IP multicast address to an Ethernet multicast address.
118 * The high-order 25 bits of the Ethernet address are statically assigned,
119 * and the low-order 23 bits are taken from the low end of the IP address.
120 */
121 #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \
122 /* const struct in_addr *ipaddr; */ \
123 /* uint8_t enaddr[ETHER_ADDR_LEN]; */ \
124 do { \
125 (enaddr)[0] = 0x01; \
126 (enaddr)[1] = 0x00; \
127 (enaddr)[2] = 0x5e; \
128 (enaddr)[3] = ((const uint8_t *)ipaddr)[1] & 0x7f; \
129 (enaddr)[4] = ((const uint8_t *)ipaddr)[2]; \
130 (enaddr)[5] = ((const uint8_t *)ipaddr)[3]; \
131 } while (/*CONSTCOND*/0)
132 /*
133 * Macro to map an IP6 multicast address to an Ethernet multicast address.
134 * The high-order 16 bits of the Ethernet address are statically assigned,
135 * and the low-order 32 bits are taken from the low end of the IP6 address.
136 */
137 #define ETHER_MAP_IPV6_MULTICAST(ip6addr, enaddr) \
138 /* struct in6_addr *ip6addr; */ \
139 /* uint8_t enaddr[ETHER_ADDR_LEN]; */ \
140 { \
141 (enaddr)[0] = 0x33; \
142 (enaddr)[1] = 0x33; \
143 (enaddr)[2] = ((const uint8_t *)ip6addr)[12]; \
144 (enaddr)[3] = ((const uint8_t *)ip6addr)[13]; \
145 (enaddr)[4] = ((const uint8_t *)ip6addr)[14]; \
146 (enaddr)[5] = ((const uint8_t *)ip6addr)[15]; \
147 }
148 #endif
149
150 struct mii_data;
151
152 struct ethercom;
153
154 typedef int (*ether_cb_t)(struct ethercom *);
155
156 /*
157 * Structure shared between the ethernet driver modules and
158 * the multicast list code. For example, each ec_softc or il_softc
159 * begins with this structure.
160 */
161 struct ethercom {
162 struct ifnet ec_if; /* network-visible interface */
163 LIST_HEAD(, ether_multi) ec_multiaddrs; /* list of ether multicast
164 addrs */
165 int ec_multicnt; /* length of ec_multiaddrs
166 list */
167 int ec_capabilities; /* capabilities, provided by
168 driver */
169 int ec_capenable; /* tells hardware which
170 capabilities to enable */
171
172 int ec_nvlans; /* # VLANs on this interface */
173 /* The device handle for the MII bus child device. */
174 struct mii_data *ec_mii;
175 /* Called after a change to ec_if.if_flags. Returns
176 * ENETRESET if the device should be reinitialized with
177 * ec_if.if_init, 0 on success, not 0 on failure.
178 */
179 ether_cb_t ec_ifflags_cb;
180 #ifdef MBUFTRACE
181 struct mowner ec_rx_mowner; /* mbufs received */
182 struct mowner ec_tx_mowner; /* mbufs transmitted */
183 #endif
184 };
185
186 #define ETHERCAP_VLAN_MTU 0x00000001 /* VLAN-compatible MTU */
187 #define ETHERCAP_VLAN_HWTAGGING 0x00000002 /* hardware VLAN tag support */
188 #define ETHERCAP_JUMBO_MTU 0x00000004 /* 9000 byte MTU supported */
189
190 #ifdef _KERNEL
191 extern const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN];
192 extern const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN];
193 extern const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN];
194 extern const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN];
195
196 void ether_set_ifflags_cb(struct ethercom *, ether_cb_t);
197 int ether_ioctl(struct ifnet *, u_long, void *);
198 int ether_addmulti(const struct sockaddr *, struct ethercom *);
199 int ether_delmulti(const struct sockaddr *, struct ethercom *);
200 int ether_multiaddr(const struct sockaddr *, uint8_t[], uint8_t[]);
201 #endif /* _KERNEL */
202
203 /*
204 * Ethernet multicast address structure. There is one of these for each
205 * multicast address or range of multicast addresses that we are supposed
206 * to listen to on a particular interface. They are kept in a linked list,
207 * rooted in the interface's ethercom structure.
208 */
209 struct ether_multi {
210 uint8_t enm_addrlo[ETHER_ADDR_LEN]; /* low or only address of range */
211 uint8_t enm_addrhi[ETHER_ADDR_LEN]; /* high or only address of range */
212 u_int enm_refcount; /* no. claims to this addr/range */
213 LIST_ENTRY(ether_multi) enm_list;
214 };
215
216 /*
217 * Structure used by macros below to remember position when stepping through
218 * all of the ether_multi records.
219 */
220 struct ether_multistep {
221 struct ether_multi *e_enm;
222 };
223
224 /*
225 * Macro for looking up the ether_multi record for a given range of Ethernet
226 * multicast addresses connected to a given ethercom structure. If no matching
227 * record is found, "enm" returns NULL.
228 */
229 #define ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, enm) \
230 /* uint8_t addrlo[ETHER_ADDR_LEN]; */ \
231 /* uint8_t addrhi[ETHER_ADDR_LEN]; */ \
232 /* struct ethercom *ec; */ \
233 /* struct ether_multi *enm; */ \
234 { \
235 for ((enm) = LIST_FIRST(&(ec)->ec_multiaddrs); \
236 (enm) != NULL && \
237 (memcmp((enm)->enm_addrlo, (addrlo), ETHER_ADDR_LEN) != 0 || \
238 memcmp((enm)->enm_addrhi, (addrhi), ETHER_ADDR_LEN) != 0); \
239 (enm) = LIST_NEXT((enm), enm_list)); \
240 }
241
242 /*
243 * Macro to step through all of the ether_multi records, one at a time.
244 * The current position is remembered in "step", which the caller must
245 * provide. ETHER_FIRST_MULTI(), below, must be called to initialize "step"
246 * and get the first record. Both macros return a NULL "enm" when there
247 * are no remaining records.
248 */
249 #define ETHER_NEXT_MULTI(step, enm) \
250 /* struct ether_multistep step; */ \
251 /* struct ether_multi *enm; */ \
252 { \
253 if (((enm) = (step).e_enm) != NULL) \
254 (step).e_enm = LIST_NEXT((enm), enm_list); \
255 }
256
257 #define ETHER_FIRST_MULTI(step, ec, enm) \
258 /* struct ether_multistep step; */ \
259 /* struct ethercom *ec; */ \
260 /* struct ether_multi *enm; */ \
261 { \
262 (step).e_enm = LIST_FIRST(&(ec)->ec_multiaddrs); \
263 ETHER_NEXT_MULTI((step), (enm)); \
264 }
265
266 #ifdef _KERNEL
267
268 /*
269 * Ethernet 802.1Q VLAN structures.
270 */
271
272 /* add VLAN tag to input/received packet */
273 static inline int vlan_input_tag(struct ifnet *, struct mbuf *, u_int);
274 static inline int
275 vlan_input_tag(struct ifnet *ifp, struct mbuf *m, u_int vlanid)
276 {
277 struct m_tag *mtag;
278 mtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int), M_NOWAIT);
279 if (mtag == NULL) {
280 ifp->if_ierrors++;
281 printf("%s: unable to allocate VLAN tag\n", ifp->if_xname);
282 m_freem(m);
283 return 1;
284 }
285 *(u_int *)(mtag + 1) = vlanid;
286 m_tag_prepend(m, mtag);
287 return 0;
288 }
289
290 #define VLAN_INPUT_TAG(ifp, m, vlanid, _errcase) \
291 if (vlan_input_tag(ifp, m, vlanid) != 0) { \
292 _errcase; \
293 }
294
295 /* extract VLAN tag from output/trasmit packet */
296 #define VLAN_OUTPUT_TAG(ec, m0) \
297 (VLAN_ATTACHED(ec) ? m_tag_find((m0), PACKET_TAG_VLAN, NULL) : NULL)
298
299 /* extract VLAN ID value from a VLAN tag */
300 #define VLAN_TAG_VALUE(mtag) \
301 ((*(u_int *)(mtag + 1)) & 4095)
302
303 /* test if any VLAN is configured for this interface */
304 #define VLAN_ATTACHED(ec) ((ec)->ec_nvlans > 0)
305
306 void ether_ifattach(struct ifnet *, const uint8_t *);
307 void ether_ifdetach(struct ifnet *);
308 int ether_mediachange(struct ifnet *);
309 void ether_mediastatus(struct ifnet *, struct ifmediareq *);
310
311 char *ether_sprintf(const uint8_t *);
312 char *ether_snprintf(char *, size_t, const uint8_t *);
313
314 uint32_t ether_crc32_le(const uint8_t *, size_t);
315 uint32_t ether_crc32_be(const uint8_t *, size_t);
316
317 int ether_aton_r(u_char *, size_t, const char *);
318 #else
319 /*
320 * Prototype ethers(3) functions.
321 */
322 #include <sys/cdefs.h>
323 __BEGIN_DECLS
324 char * ether_ntoa(const struct ether_addr *);
325 struct ether_addr *
326 ether_aton(const char *);
327 int ether_ntohost(char *, const struct ether_addr *);
328 int ether_hostton(const char *, struct ether_addr *);
329 int ether_line(const char *, struct ether_addr *, char *);
330 __END_DECLS
331 #endif
332
333 #endif /* _STANDALONE */
334
335 #endif /* !_NET_IF_ETHER_H_ */
336