if_ether.h revision 1.77 1 /* $NetBSD: if_ether.h,v 1.77 2019/03/05 08:25:03 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)if_ether.h 8.1 (Berkeley) 6/10/93
32 */
33
34 #ifndef _NET_IF_ETHER_H_
35 #define _NET_IF_ETHER_H_
36
37 #ifdef _KERNEL
38 #ifdef _KERNEL_OPT
39 #include "opt_mbuftrace.h"
40 #endif
41 #include <sys/mbuf.h>
42 #endif
43
44 #ifndef _STANDALONE
45 #include <net/if.h>
46 #endif
47
48 /*
49 * Some basic Ethernet constants.
50 */
51 #define ETHER_ADDR_LEN 6 /* length of an Ethernet address */
52 #define ETHER_TYPE_LEN 2 /* length of the Ethernet type field */
53 #define ETHER_CRC_LEN 4 /* length of the Ethernet CRC */
54 #define ETHER_HDR_LEN ((ETHER_ADDR_LEN * 2) + ETHER_TYPE_LEN)
55 #define ETHER_MIN_LEN 64 /* minimum frame length, including CRC */
56 #define ETHER_MAX_LEN 1518 /* maximum frame length, including CRC */
57 #define ETHER_MAX_LEN_JUMBO 9018 /* maximum jumbo frame len, including CRC */
58
59 /*
60 * Some Ethernet extensions.
61 */
62 #define ETHER_VLAN_ENCAP_LEN 4 /* length of 802.1Q VLAN encapsulation */
63 #define EVL_VLANOFTAG(tag) ((tag) & 4095) /* VLAN ID */
64 #define EVL_PRIOFTAG(tag) (((tag) >> 13) & 7) /* Priority */
65 #define EVL_CFIOFTAG(tag) (((tag) >> 12) & 1) /* CFI */
66 #define ETHER_PPPOE_ENCAP_LEN 8 /* length of PPPoE encapsulation */
67
68 /*
69 * Mbuf adjust factor to force 32-bit alignment of IP header.
70 * Drivers should do m_adj(m, ETHER_ALIGN) when setting up a
71 * receive so the upper layers get the IP header properly aligned
72 * past the 14-byte Ethernet header.
73 */
74 #define ETHER_ALIGN 2 /* driver adjust for IP hdr alignment */
75
76 /*
77 * Ethernet address - 6 octets
78 * this is only used by the ethers(3) functions.
79 */
80 struct ether_addr {
81 uint8_t ether_addr_octet[ETHER_ADDR_LEN];
82 } __packed;
83
84 /*
85 * Structure of a 10Mb/s Ethernet header.
86 */
87 struct ether_header {
88 uint8_t ether_dhost[ETHER_ADDR_LEN];
89 uint8_t ether_shost[ETHER_ADDR_LEN];
90 uint16_t ether_type;
91 } __packed;
92
93 #include <net/ethertypes.h>
94
95 #define ETHER_IS_MULTICAST(addr) (*(addr) & 0x01) /* is address mcast/bcast? */
96 #define ETHER_IS_LOCAL(addr) (*(addr) & 0x02) /* is address local? */
97
98 #define ETHERMTU_JUMBO (ETHER_MAX_LEN_JUMBO - ETHER_HDR_LEN - ETHER_CRC_LEN)
99 #define ETHERMTU (ETHER_MAX_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN)
100 #define ETHERMIN (ETHER_MIN_LEN - ETHER_HDR_LEN - ETHER_CRC_LEN)
101
102 /*
103 * Compute the maximum frame size based on ethertype (i.e. possible
104 * encapsulation) and whether or not an FCS is present.
105 */
106 #define ETHER_MAX_FRAME(ifp, etype, hasfcs) \
107 ((ifp)->if_mtu + ETHER_HDR_LEN + \
108 ((hasfcs) ? ETHER_CRC_LEN : 0) + \
109 (((etype) == ETHERTYPE_VLAN) ? ETHER_VLAN_ENCAP_LEN : 0) + \
110 (((etype) == ETHERTYPE_PPPOE) ? ETHER_PPPOE_ENCAP_LEN : 0))
111
112 /*
113 * Ethernet CRC32 polynomials (big- and little-endian verions).
114 */
115 #define ETHER_CRC_POLY_LE 0xedb88320
116 #define ETHER_CRC_POLY_BE 0x04c11db6
117
118 #ifndef _STANDALONE
119
120 /*
121 * Ethernet-specific mbuf flags.
122 */
123 #define M_HASFCS M_LINK0 /* FCS included at end of frame */
124 #define M_PROMISC M_LINK1 /* this packet is not for us */
125
126 #ifdef _KERNEL
127 /*
128 * Macro to map an IP multicast address to an Ethernet multicast address.
129 * The high-order 25 bits of the Ethernet address are statically assigned,
130 * and the low-order 23 bits are taken from the low end of the IP address.
131 */
132 #define ETHER_MAP_IP_MULTICAST(ipaddr, enaddr) \
133 /* const struct in_addr *ipaddr; */ \
134 /* uint8_t enaddr[ETHER_ADDR_LEN]; */ \
135 do { \
136 (enaddr)[0] = 0x01; \
137 (enaddr)[1] = 0x00; \
138 (enaddr)[2] = 0x5e; \
139 (enaddr)[3] = ((const uint8_t *)ipaddr)[1] & 0x7f; \
140 (enaddr)[4] = ((const uint8_t *)ipaddr)[2]; \
141 (enaddr)[5] = ((const uint8_t *)ipaddr)[3]; \
142 } while (/*CONSTCOND*/0)
143 /*
144 * Macro to map an IP6 multicast address to an Ethernet multicast address.
145 * The high-order 16 bits of the Ethernet address are statically assigned,
146 * and the low-order 32 bits are taken from the low end of the IP6 address.
147 */
148 #define ETHER_MAP_IPV6_MULTICAST(ip6addr, enaddr) \
149 /* struct in6_addr *ip6addr; */ \
150 /* uint8_t enaddr[ETHER_ADDR_LEN]; */ \
151 { \
152 (enaddr)[0] = 0x33; \
153 (enaddr)[1] = 0x33; \
154 (enaddr)[2] = ((const uint8_t *)ip6addr)[12]; \
155 (enaddr)[3] = ((const uint8_t *)ip6addr)[13]; \
156 (enaddr)[4] = ((const uint8_t *)ip6addr)[14]; \
157 (enaddr)[5] = ((const uint8_t *)ip6addr)[15]; \
158 }
159 #endif
160
161 struct mii_data;
162
163 struct ethercom;
164
165 typedef int (*ether_cb_t)(struct ethercom *);
166
167 /*
168 * Structure shared between the ethernet driver modules and
169 * the multicast list code. For example, each ec_softc or il_softc
170 * begins with this structure.
171 */
172 struct ethercom {
173 struct ifnet ec_if; /* network-visible interface */
174 LIST_HEAD(, ether_multi) ec_multiaddrs; /* list of ether multicast
175 addrs */
176 int ec_multicnt; /* length of ec_multiaddrs
177 list */
178 int ec_capabilities; /* capabilities, provided by
179 driver */
180 int ec_capenable; /* tells hardware which
181 capabilities to enable */
182
183 int ec_nvlans; /* # VLANs on this interface */
184 /* The device handle for the MII bus child device. */
185 struct mii_data *ec_mii;
186 /* Called after a change to ec_if.if_flags. Returns
187 * ENETRESET if the device should be reinitialized with
188 * ec_if.if_init, 0 on success, not 0 on failure.
189 */
190 ether_cb_t ec_ifflags_cb;
191 kmutex_t *ec_lock;
192 #ifdef MBUFTRACE
193 struct mowner ec_rx_mowner; /* mbufs received */
194 struct mowner ec_tx_mowner; /* mbufs transmitted */
195 #endif
196 };
197
198 #define ETHERCAP_VLAN_MTU 0x00000001 /* VLAN-compatible MTU */
199 #define ETHERCAP_VLAN_HWTAGGING 0x00000002 /* hardware VLAN tag support */
200 #define ETHERCAP_JUMBO_MTU 0x00000004 /* 9000 byte MTU supported */
201 #define ETHERCAP_VLAN_HWFILTER 0x00000008 /* iface hw can filter vlan tag */
202 #define ETHERCAP_EEE 0x00000010 /* Energy Efficiency Ethernet */
203 #define ETHERCAP_MASK 0x0000001f
204
205 #define ECCAPBITS \
206 "\020" \
207 "\1VLAN_MTU" \
208 "\2VLAN_HWTAGGING" \
209 "\3JUMBO_MTU" \
210 "\4VLAN_HWFILTER" \
211 "\5EEE"
212
213 /* ioctl() for Ethernet capabilities */
214 struct eccapreq {
215 char eccr_name[IFNAMSIZ]; /* if name, e.g. "en0" */
216 int eccr_capabilities; /* supported capabiliites */
217 int eccr_capenable; /* capabilities enabled */
218 };
219
220 /* sysctl for Ethernet multicast addresses */
221 struct ether_multi_sysctl {
222 u_int enm_refcount;
223 uint8_t enm_addrlo[ETHER_ADDR_LEN];
224 uint8_t enm_addrhi[ETHER_ADDR_LEN];
225 };
226
227 #ifdef _KERNEL
228 extern const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN];
229 extern const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN];
230 extern const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN];
231 extern const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN];
232
233 void ether_set_ifflags_cb(struct ethercom *, ether_cb_t);
234 int ether_ioctl(struct ifnet *, u_long, void *);
235 int ether_addmulti(const struct sockaddr *, struct ethercom *);
236 int ether_delmulti(const struct sockaddr *, struct ethercom *);
237 int ether_multiaddr(const struct sockaddr *, uint8_t[], uint8_t[]);
238 void ether_input(struct ifnet *, struct mbuf *);
239
240 /*
241 * Ethernet multicast address structure. There is one of these for each
242 * multicast address or range of multicast addresses that we are supposed
243 * to listen to on a particular interface. They are kept in a linked list,
244 * rooted in the interface's ethercom structure.
245 */
246 struct ether_multi {
247 uint8_t enm_addrlo[ETHER_ADDR_LEN]; /* low or only address of range */
248 uint8_t enm_addrhi[ETHER_ADDR_LEN]; /* high or only address of range */
249 u_int enm_refcount; /* no. claims to this addr/range */
250 LIST_ENTRY(ether_multi) enm_list;
251 };
252
253 /*
254 * Structure used by macros below to remember position when stepping through
255 * all of the ether_multi records.
256 */
257 struct ether_multistep {
258 struct ether_multi *e_enm;
259 };
260
261 /*
262 * lookup the ether_multi record for a given range of Ethernet
263 * multicast addresses connected to a given ethercom structure.
264 * If no matching record is found, NULL is returned.
265 */
266 static __inline struct ether_multi *
267 ether_lookup_multi(const uint8_t *addrlo, const uint8_t *addrhi,
268 const struct ethercom *ec)
269 {
270 struct ether_multi *enm;
271
272 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
273 if (memcmp(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN) != 0)
274 continue;
275 if (memcmp(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN) != 0)
276 continue;
277
278 break;
279 }
280
281 return enm;
282 }
283
284 /*
285 * step through all of the ether_multi records, one at a time.
286 * The current position is remembered in "step", which the caller must
287 * provide. ether_first_multi(), below, must be called to initialize "step"
288 * and get the first record. Both functions return a NULL when there
289 * are no remaining records.
290 */
291 static __inline struct ether_multi *
292 ether_next_multi(struct ether_multistep *step)
293 {
294 struct ether_multi *enm;
295
296 enm = step->e_enm;
297 if (enm != NULL)
298 step->e_enm = LIST_NEXT(enm, enm_list);
299
300 return enm;
301 }
302 #define ETHER_NEXT_MULTI(step, enm) \
303 /* struct ether_multistep step; */ \
304 /* struct ether_multi *enm; */ \
305 (enm) = ether_next_multi(&(step))
306
307 static __inline struct ether_multi *
308 ether_first_multi(struct ether_multistep *step, const struct ethercom *ec)
309 {
310
311 step->e_enm = LIST_FIRST(&ec->ec_multiaddrs);
312
313 return ether_next_multi(step);
314 }
315
316 #define ETHER_FIRST_MULTI(step, ec, enm) \
317 /* struct ether_multistep step; */ \
318 /* struct ethercom *ec; */ \
319 /* struct ether_multi *enm; */ \
320 (enm) = ether_first_multi(&(step), (ec))
321
322 #define ETHER_LOCK(ec) mutex_enter((ec)->ec_lock)
323 #define ETHER_UNLOCK(ec) mutex_exit((ec)->ec_lock)
324
325 /*
326 * Ethernet 802.1Q VLAN structures.
327 */
328
329 /* add VLAN tag to input/received packet */
330 static __inline void
331 vlan_set_tag(struct mbuf *m, uint16_t vlantag)
332 {
333 /* VLAN tag contains priority, CFI and VLAN ID */
334 KASSERT((m->m_flags & M_PKTHDR) != 0);
335 m->m_pkthdr.ether_vtag = vlantag;
336 m->m_flags |= M_VLANTAG;
337 return;
338 }
339
340 static __inline bool
341 vlan_has_tag(struct mbuf *m)
342 {
343 return (m->m_flags & M_VLANTAG) != 0;
344 }
345
346 /* extract VLAN ID value from a VLAN tag */
347 static __inline uint16_t
348 vlan_get_tag(struct mbuf *m)
349 {
350 KASSERT((m->m_flags & M_PKTHDR) != 0);
351 KASSERT(m->m_flags & M_VLANTAG);
352 return m->m_pkthdr.ether_vtag;
353 }
354
355 /* test if any VLAN is configured for this interface */
356 #define VLAN_ATTACHED(ec) ((ec)->ec_nvlans > 0)
357
358 void etherinit(void);
359 void ether_ifattach(struct ifnet *, const uint8_t *);
360 void ether_ifdetach(struct ifnet *);
361 int ether_mediachange(struct ifnet *);
362 void ether_mediastatus(struct ifnet *, struct ifmediareq *);
363
364 char *ether_sprintf(const uint8_t *);
365 char *ether_snprintf(char *, size_t, const uint8_t *);
366
367 uint32_t ether_crc32_le(const uint8_t *, size_t);
368 uint32_t ether_crc32_be(const uint8_t *, size_t);
369
370 int ether_aton_r(u_char *, size_t, const char *);
371 int ether_enable_vlan_mtu(struct ifnet *);
372 int ether_disable_vlan_mtu(struct ifnet *);
373 #else
374 /*
375 * Prototype ethers(3) functions.
376 */
377 #include <sys/cdefs.h>
378 __BEGIN_DECLS
379 char * ether_ntoa(const struct ether_addr *);
380 struct ether_addr *
381 ether_aton(const char *);
382 int ether_ntohost(char *, const struct ether_addr *);
383 int ether_hostton(const char *, struct ether_addr *);
384 int ether_line(const char *, struct ether_addr *, char *);
385 __END_DECLS
386 #endif
387
388 #endif /* _STANDALONE */
389
390 #endif /* !_NET_IF_ETHER_H_ */
391