if_ethersubr.c revision 1.232 1 /* $NetBSD: if_ethersubr.c,v 1.232 2016/12/31 15:07:02 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.232 2016/12/31 15:07:02 ozaki-r Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/malloc.h>
84 #include <sys/mbuf.h>
85 #include <sys/mutex.h>
86 #include <sys/ioctl.h>
87 #include <sys/errno.h>
88 #include <sys/device.h>
89 #include <sys/rnd.h>
90 #include <sys/rndsource.h>
91 #include <sys/cpu.h>
92 #include <sys/kmem.h>
93
94 #include <net/if.h>
95 #include <net/netisr.h>
96 #include <net/route.h>
97 #include <net/if_llc.h>
98 #include <net/if_dl.h>
99 #include <net/if_types.h>
100 #include <net/pktqueue.h>
101
102 #include <net/if_media.h>
103 #include <dev/mii/mii.h>
104 #include <dev/mii/miivar.h>
105
106 #if NARP == 0
107 /*
108 * XXX there should really be a way to issue this warning from within config(8)
109 */
110 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
111 #endif
112
113 #include <net/bpf.h>
114
115 #include <net/if_ether.h>
116 #include <net/if_vlanvar.h>
117
118 #if NPPPOE > 0
119 #include <net/if_pppoe.h>
120 #endif
121
122 #if NAGR > 0
123 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
124 #include <net/agr/ieee8023ad.h>
125 #include <net/agr/if_agrvar.h>
126 #endif
127
128 #if NBRIDGE > 0
129 #include <net/if_bridgevar.h>
130 #endif
131
132 #include <netinet/in.h>
133 #ifdef INET
134 #include <netinet/in_var.h>
135 #endif
136 #include <netinet/if_inarp.h>
137
138 #ifdef INET6
139 #ifndef INET
140 #include <netinet/in.h>
141 #endif
142 #include <netinet6/in6_var.h>
143 #include <netinet6/nd6.h>
144 #endif
145
146
147 #include "carp.h"
148 #if NCARP > 0
149 #include <netinet/ip_carp.h>
150 #endif
151
152 #ifdef NETATALK
153 #include <netatalk/at.h>
154 #include <netatalk/at_var.h>
155 #include <netatalk/at_extern.h>
156
157 #define llc_snap_org_code llc_un.type_snap.org_code
158 #define llc_snap_ether_type llc_un.type_snap.ether_type
159
160 extern u_char at_org_code[3];
161 extern u_char aarp_org_code[3];
162 #endif /* NETATALK */
163
164 #ifdef MPLS
165 #include <netmpls/mpls.h>
166 #include <netmpls/mpls_var.h>
167 #endif
168
169 static struct timeval bigpktppslim_last;
170 static int bigpktppslim = 2; /* XXX */
171 static int bigpktpps_count;
172 static kmutex_t bigpktpps_lock __cacheline_aligned;
173
174
175 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
176 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
177 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
178 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
179 #define senderr(e) { error = (e); goto bad;}
180
181 static int ether_output(struct ifnet *, struct mbuf *,
182 const struct sockaddr *, const struct rtentry *);
183
184 /*
185 * Ethernet output routine.
186 * Encapsulate a packet of type family for the local net.
187 * Assumes that ifp is actually pointer to ethercom structure.
188 */
189 static int
190 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
191 const struct sockaddr * const dst,
192 const struct rtentry *rt)
193 {
194 uint16_t etype = 0;
195 int error = 0, hdrcmplt = 0;
196 uint8_t esrc[6], edst[6];
197 struct mbuf *m = m0;
198 struct mbuf *mcopy = NULL;
199 struct ether_header *eh;
200 struct ifnet *ifp = ifp0;
201 #ifdef INET
202 struct arphdr *ah;
203 #endif /* INET */
204 #ifdef NETATALK
205 struct at_ifaddr *aa;
206 #endif /* NETATALK */
207
208 /*
209 * some paths such as carp_output() call ethr_output() with "ifp"
210 * argument as other than ether ifnet.
211 */
212 KASSERT(ifp->if_output != ether_output
213 || ifp->if_extflags & IFEF_OUTPUT_MPSAFE);
214
215 #ifdef MBUFTRACE
216 m_claimm(m, ifp->if_mowner);
217 #endif
218
219 #if NCARP > 0
220 if (ifp->if_type == IFT_CARP) {
221 struct ifaddr *ifa;
222 int s = pserialize_read_enter();
223
224 /* loop back if this is going to the carp interface */
225 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
226 (ifa = ifa_ifwithaddr(dst)) != NULL) {
227 if (ifa->ifa_ifp == ifp0) {
228 pserialize_read_exit(s);
229 return looutput(ifp0, m, dst, rt);
230 }
231 }
232 pserialize_read_exit(s);
233
234 ifp = ifp->if_carpdev;
235 /* ac = (struct arpcom *)ifp; */
236
237 if ((ifp0->if_flags & (IFF_UP|IFF_RUNNING)) !=
238 (IFF_UP|IFF_RUNNING))
239 senderr(ENETDOWN);
240 }
241 #endif /* NCARP > 0 */
242
243 if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
244 senderr(ENETDOWN);
245
246 switch (dst->sa_family) {
247
248 #ifdef INET
249 case AF_INET:
250 #ifndef NET_MPSAFE
251 KERNEL_LOCK(1, NULL);
252 #endif
253 if (m->m_flags & M_BCAST)
254 (void)memcpy(edst, etherbroadcastaddr, sizeof(edst));
255 else if (m->m_flags & M_MCAST)
256 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
257 else if ((error = arpresolve(ifp, rt, m, dst, edst,
258 sizeof(edst))) != 0) {
259 #ifndef NET_MPSAFE
260 KERNEL_UNLOCK_ONE(NULL);
261 #endif
262 return error == EWOULDBLOCK ? 0 : error;
263 }
264 #ifndef NET_MPSAFE
265 KERNEL_UNLOCK_ONE(NULL);
266 #endif
267 /* If broadcasting on a simplex interface, loopback a copy */
268 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
269 mcopy = m_copy(m, 0, (int)M_COPYALL);
270 etype = htons(ETHERTYPE_IP);
271 break;
272
273 case AF_ARP:
274 ah = mtod(m, struct arphdr *);
275 if (m->m_flags & M_BCAST)
276 (void)memcpy(edst, etherbroadcastaddr, sizeof(edst));
277 else {
278 void *tha = ar_tha(ah);
279
280 if (tha == NULL) {
281 /* fake with ARPHDR_IEEE1394 */
282 return 0;
283 }
284 memcpy(edst, tha, sizeof(edst));
285 }
286
287 ah->ar_hrd = htons(ARPHRD_ETHER);
288
289 switch (ntohs(ah->ar_op)) {
290 case ARPOP_REVREQUEST:
291 case ARPOP_REVREPLY:
292 etype = htons(ETHERTYPE_REVARP);
293 break;
294
295 case ARPOP_REQUEST:
296 case ARPOP_REPLY:
297 default:
298 etype = htons(ETHERTYPE_ARP);
299 }
300
301 break;
302 #endif
303 #ifdef INET6
304 case AF_INET6:
305 if (!nd6_storelladdr(ifp, rt, m, dst, edst, sizeof(edst))){
306 /* something bad happened */
307 return (0);
308 }
309 etype = htons(ETHERTYPE_IPV6);
310 break;
311 #endif
312 #ifdef NETATALK
313 case AF_APPLETALK: {
314 struct ifaddr *ifa;
315 int s;
316
317 KERNEL_LOCK(1, NULL);
318 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
319 #ifdef NETATALKDEBUG
320 printf("aarpresolv failed\n");
321 #endif /* NETATALKDEBUG */
322 KERNEL_UNLOCK_ONE(NULL);
323 return (0);
324 }
325 /*
326 * ifaddr is the first thing in at_ifaddr
327 */
328 s = pserialize_read_enter();
329 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
330 if (ifa == NULL) {
331 pserialize_read_exit(s);
332 KERNEL_UNLOCK_ONE(NULL);
333 goto bad;
334 }
335 aa = (struct at_ifaddr *)ifa;
336
337 /*
338 * In the phase 2 case, we need to prepend an mbuf for the
339 * llc header. Since we must preserve the value of m,
340 * which is passed to us by value, we m_copy() the first
341 * mbuf, and use it for our llc header.
342 */
343 if (aa->aa_flags & AFA_PHASE2) {
344 struct llc llc;
345
346 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
347 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
348 llc.llc_control = LLC_UI;
349 memcpy(llc.llc_snap_org_code, at_org_code,
350 sizeof(llc.llc_snap_org_code));
351 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
352 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
353 } else {
354 etype = htons(ETHERTYPE_ATALK);
355 }
356 pserialize_read_exit(s);
357 KERNEL_UNLOCK_ONE(NULL);
358 break;
359 }
360 #endif /* NETATALK */
361 case pseudo_AF_HDRCMPLT:
362 hdrcmplt = 1;
363 memcpy(esrc,
364 ((const struct ether_header *)dst->sa_data)->ether_shost,
365 sizeof(esrc));
366 /* FALLTHROUGH */
367
368 case AF_UNSPEC:
369 memcpy(edst,
370 ((const struct ether_header *)dst->sa_data)->ether_dhost,
371 sizeof(edst));
372 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
373 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
374 break;
375
376 default:
377 printf("%s: can't handle af%d\n", ifp->if_xname,
378 dst->sa_family);
379 senderr(EAFNOSUPPORT);
380 }
381
382 #ifdef MPLS
383 KERNEL_LOCK(1, NULL);
384 {
385 struct m_tag *mtag;
386 mtag = m_tag_find(m, PACKET_TAG_MPLS, NULL);
387 if (mtag != NULL) {
388 /* Having the tag itself indicates it's MPLS */
389 etype = htons(ETHERTYPE_MPLS);
390 m_tag_delete(m, mtag);
391 }
392 }
393 KERNEL_UNLOCK_ONE(NULL);
394 #endif
395
396 if (mcopy)
397 (void)looutput(ifp, mcopy, dst, rt);
398
399 /* If no ether type is set, this must be a 802.2 formatted packet.
400 */
401 if (etype == 0)
402 etype = htons(m->m_pkthdr.len);
403 /*
404 * Add local net header. If no space in first mbuf,
405 * allocate another.
406 */
407 M_PREPEND(m, sizeof (struct ether_header), M_DONTWAIT);
408 if (m == 0)
409 senderr(ENOBUFS);
410 eh = mtod(m, struct ether_header *);
411 /* Note: etype is already in network byte order. */
412 (void)memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
413 memcpy(eh->ether_dhost, edst, sizeof(edst));
414 if (hdrcmplt)
415 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
416 else
417 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
418 sizeof(eh->ether_shost));
419
420 #if NCARP > 0
421 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
422 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
423 sizeof(eh->ether_shost));
424 }
425 #endif /* NCARP > 0 */
426
427 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
428 return (error);
429 if (m == NULL)
430 return (0);
431
432 #if NBRIDGE > 0
433 /*
434 * Bridges require special output handling.
435 */
436 if (ifp->if_bridge)
437 return (bridge_output(ifp, m, NULL, NULL));
438 #endif
439
440 #if NCARP > 0
441 if (ifp != ifp0)
442 ifp0->if_obytes += m->m_pkthdr.len + ETHER_HDR_LEN;
443 #endif /* NCARP > 0 */
444
445 #ifdef ALTQ
446 KERNEL_LOCK(1, NULL);
447 /*
448 * If ALTQ is enabled on the parent interface, do
449 * classification; the queueing discipline might not
450 * require classification, but might require the
451 * address family/header pointer in the pktattr.
452 */
453 if (ALTQ_IS_ENABLED(&ifp->if_snd))
454 altq_etherclassify(&ifp->if_snd, m);
455 KERNEL_UNLOCK_ONE(NULL);
456 #endif
457 return ifq_enqueue(ifp, m);
458
459 bad:
460 if (m)
461 m_freem(m);
462 return (error);
463 }
464
465 #ifdef ALTQ
466 /*
467 * This routine is a slight hack to allow a packet to be classified
468 * if the Ethernet headers are present. It will go away when ALTQ's
469 * classification engine understands link headers.
470 */
471 void
472 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
473 {
474 struct ether_header *eh;
475 uint16_t ether_type;
476 int hlen, af, hdrsize;
477 void *hdr;
478
479 hlen = ETHER_HDR_LEN;
480 eh = mtod(m, struct ether_header *);
481
482 ether_type = htons(eh->ether_type);
483
484 if (ether_type < ETHERMTU) {
485 /* LLC/SNAP */
486 struct llc *llc = (struct llc *)(eh + 1);
487 hlen += 8;
488
489 if (m->m_len < hlen ||
490 llc->llc_dsap != LLC_SNAP_LSAP ||
491 llc->llc_ssap != LLC_SNAP_LSAP ||
492 llc->llc_control != LLC_UI) {
493 /* Not SNAP. */
494 goto bad;
495 }
496
497 ether_type = htons(llc->llc_un.type_snap.ether_type);
498 }
499
500 switch (ether_type) {
501 case ETHERTYPE_IP:
502 af = AF_INET;
503 hdrsize = 20; /* sizeof(struct ip) */
504 break;
505
506 case ETHERTYPE_IPV6:
507 af = AF_INET6;
508 hdrsize = 40; /* sizeof(struct ip6_hdr) */
509 break;
510
511 default:
512 af = AF_UNSPEC;
513 hdrsize = 0;
514 break;
515 }
516
517 while (m->m_len <= hlen) {
518 hlen -= m->m_len;
519 m = m->m_next;
520 }
521 if (m->m_len < (hlen + hdrsize)) {
522 /*
523 * protocol header not in a single mbuf.
524 * We can't cope with this situation right
525 * now (but it shouldn't ever happen, really, anyhow).
526 */
527 #ifdef DEBUG
528 printf("altq_etherclassify: headers span multiple mbufs: "
529 "%d < %d\n", m->m_len, (hlen + hdrsize));
530 #endif
531 goto bad;
532 }
533
534 m->m_data += hlen;
535 m->m_len -= hlen;
536
537 hdr = mtod(m, void *);
538
539 if (ALTQ_NEEDS_CLASSIFY(ifq))
540 m->m_pkthdr.pattr_class =
541 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
542 m->m_pkthdr.pattr_af = af;
543 m->m_pkthdr.pattr_hdr = hdr;
544
545 m->m_data -= hlen;
546 m->m_len += hlen;
547
548 return;
549
550 bad:
551 m->m_pkthdr.pattr_class = NULL;
552 m->m_pkthdr.pattr_hdr = NULL;
553 m->m_pkthdr.pattr_af = AF_UNSPEC;
554 }
555 #endif /* ALTQ */
556
557 /*
558 * Process a received Ethernet packet;
559 * the packet is in the mbuf chain m with
560 * the ether header.
561 */
562 void
563 ether_input(struct ifnet *ifp, struct mbuf *m)
564 {
565 struct ethercom *ec = (struct ethercom *) ifp;
566 pktqueue_t *pktq = NULL;
567 struct ifqueue *inq = NULL;
568 uint16_t etype;
569 struct ether_header *eh;
570 size_t ehlen;
571 static int earlypkts;
572 int isr = 0;
573 #if defined (LLC) || defined(NETATALK)
574 struct llc *l;
575 #endif
576
577 KASSERT(!cpu_intr_p());
578
579 if ((ifp->if_flags & IFF_UP) == 0) {
580 m_freem(m);
581 return;
582 }
583
584 #ifdef MBUFTRACE
585 m_claimm(m, &ec->ec_rx_mowner);
586 #endif
587 eh = mtod(m, struct ether_header *);
588 etype = ntohs(eh->ether_type);
589 ehlen = sizeof(*eh);
590
591 if(__predict_false(earlypkts < 100 || !rnd_initial_entropy)) {
592 rnd_add_data(NULL, eh, ehlen, 0);
593 earlypkts++;
594 }
595
596 /*
597 * Determine if the packet is within its size limits.
598 */
599 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
600 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
601 mutex_enter(&bigpktpps_lock);
602 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
603 bigpktppslim)) {
604 printf("%s: discarding oversize frame (len=%d)\n",
605 ifp->if_xname, m->m_pkthdr.len);
606 }
607 mutex_exit(&bigpktpps_lock);
608 m_freem(m);
609 return;
610 }
611
612 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
613 /*
614 * If this is not a simplex interface, drop the packet
615 * if it came from us.
616 */
617 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
618 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
619 ETHER_ADDR_LEN) == 0) {
620 m_freem(m);
621 return;
622 }
623
624 if (memcmp(etherbroadcastaddr,
625 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
626 m->m_flags |= M_BCAST;
627 else
628 m->m_flags |= M_MCAST;
629 ifp->if_imcasts++;
630 }
631
632 /* If the CRC is still on the packet, trim it off. */
633 if (m->m_flags & M_HASFCS) {
634 m_adj(m, -ETHER_CRC_LEN);
635 m->m_flags &= ~M_HASFCS;
636 }
637
638 ifp->if_ibytes += m->m_pkthdr.len;
639
640 #if NCARP > 0
641 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
642 /*
643 * clear M_PROMISC, in case the packets comes from a
644 * vlan
645 */
646 m->m_flags &= ~M_PROMISC;
647 if (carp_input(m, (uint8_t *)&eh->ether_shost,
648 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
649 return;
650 }
651 #endif /* NCARP > 0 */
652 if ((m->m_flags & (M_BCAST|M_MCAST|M_PROMISC)) == 0 &&
653 (ifp->if_flags & IFF_PROMISC) != 0 &&
654 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
655 ETHER_ADDR_LEN) != 0) {
656 m->m_flags |= M_PROMISC;
657 }
658
659 if ((m->m_flags & M_PROMISC) == 0) {
660 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
661 return;
662 if (m == NULL)
663 return;
664
665 eh = mtod(m, struct ether_header *);
666 etype = ntohs(eh->ether_type);
667 ehlen = sizeof(*eh);
668 }
669
670 #if NAGR > 0
671 if (ifp->if_agrprivate &&
672 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
673 m->m_flags &= ~M_PROMISC;
674 agr_input(ifp, m);
675 return;
676 }
677 #endif /* NAGR > 0 */
678
679 /*
680 * If VLANs are configured on the interface, check to
681 * see if the device performed the decapsulation and
682 * provided us with the tag.
683 */
684 if (ec->ec_nvlans && m_tag_find(m, PACKET_TAG_VLAN, NULL) != NULL) {
685 #if NVLAN > 0
686 /*
687 * vlan_input() will either recursively call ether_input()
688 * or drop the packet.
689 */
690 vlan_input(ifp, m);
691 #else
692 m_freem(m);
693 #endif
694 return;
695 }
696
697 /*
698 * Handle protocols that expect to have the Ethernet header
699 * (and possibly FCS) intact.
700 */
701 switch (etype) {
702 case ETHERTYPE_VLAN: {
703 struct ether_vlan_header *evl = (void *)eh;
704 /*
705 * If there is a tag of 0, then the VLAN header was probably
706 * just being used to store the priority. Extract the ether
707 * type, and if IP or IPV6, let them deal with it.
708 */
709 if (m->m_len <= sizeof(*evl)
710 && EVL_VLANOFTAG(evl->evl_tag) == 0) {
711 etype = ntohs(evl->evl_proto);
712 ehlen = sizeof(*evl);
713 if ((m->m_flags & M_PROMISC) == 0
714 && (etype == ETHERTYPE_IP
715 || etype == ETHERTYPE_IPV6))
716 break;
717 }
718 #if NVLAN > 0
719 /*
720 * vlan_input() will either recursively call ether_input()
721 * or drop the packet.
722 */
723 if (((struct ethercom *)ifp)->ec_nvlans != 0)
724 vlan_input(ifp, m);
725 else
726 #endif /* NVLAN > 0 */
727 m_freem(m);
728 return;
729 }
730 #if NPPPOE > 0
731 case ETHERTYPE_PPPOEDISC:
732 pppoedisc_input(ifp, m);
733 return;
734 case ETHERTYPE_PPPOE:
735 pppoe_input(ifp, m);
736 return;
737 #endif /* NPPPOE > 0 */
738 case ETHERTYPE_SLOWPROTOCOLS: {
739 uint8_t subtype;
740
741 #if defined(DIAGNOSTIC)
742 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) {
743 panic("ether_input: too short slow protocol packet");
744 }
745 #endif
746 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
747 switch (subtype) {
748 #if NAGR > 0
749 case SLOWPROTOCOLS_SUBTYPE_LACP:
750 if (ifp->if_agrprivate) {
751 ieee8023ad_lacp_input(ifp, m);
752 return;
753 }
754 break;
755
756 case SLOWPROTOCOLS_SUBTYPE_MARKER:
757 if (ifp->if_agrprivate) {
758 ieee8023ad_marker_input(ifp, m);
759 return;
760 }
761 break;
762 #endif /* NAGR > 0 */
763 default:
764 if (subtype == 0 || subtype > 10) {
765 /* illegal value */
766 m_freem(m);
767 return;
768 }
769 /* unknown subtype */
770 break;
771 }
772 /* FALLTHROUGH */
773 }
774 default:
775 if (m->m_flags & M_PROMISC) {
776 m_freem(m);
777 return;
778 }
779 }
780
781 /* If the CRC is still on the packet, trim it off. */
782 if (m->m_flags & M_HASFCS) {
783 m_adj(m, -ETHER_CRC_LEN);
784 m->m_flags &= ~M_HASFCS;
785 }
786
787 if (etype > ETHERMTU + sizeof (struct ether_header)) {
788 /* Strip off the Ethernet header. */
789 m_adj(m, ehlen);
790
791 switch (etype) {
792 #ifdef INET
793 case ETHERTYPE_IP:
794 #ifdef GATEWAY
795 if (ipflow_fastforward(m))
796 return;
797 #endif
798 pktq = ip_pktq;
799 break;
800
801 case ETHERTYPE_ARP:
802 isr = NETISR_ARP;
803 inq = &arpintrq;
804 break;
805
806 case ETHERTYPE_REVARP:
807 revarpinput(m); /* XXX queue? */
808 return;
809 #endif
810 #ifdef INET6
811 case ETHERTYPE_IPV6:
812 if (__predict_false(!in6_present)) {
813 m_freem(m);
814 return;
815 }
816 #ifdef GATEWAY
817 if (ip6flow_fastforward(&m))
818 return;
819 #endif
820 pktq = ip6_pktq;
821 break;
822 #endif
823 #ifdef NETATALK
824 case ETHERTYPE_ATALK:
825 isr = NETISR_ATALK;
826 inq = &atintrq1;
827 break;
828 case ETHERTYPE_AARP:
829 /* probably this should be done with a NETISR as well */
830 aarpinput(ifp, m); /* XXX */
831 return;
832 #endif /* NETATALK */
833 #ifdef MPLS
834 case ETHERTYPE_MPLS:
835 isr = NETISR_MPLS;
836 inq = &mplsintrq;
837 break;
838 #endif
839 default:
840 m_freem(m);
841 return;
842 }
843 } else {
844 #if defined (LLC) || defined (NETATALK)
845 l = (struct llc *)(eh+1);
846 switch (l->llc_dsap) {
847 #ifdef NETATALK
848 case LLC_SNAP_LSAP:
849 switch (l->llc_control) {
850 case LLC_UI:
851 if (l->llc_ssap != LLC_SNAP_LSAP) {
852 goto dropanyway;
853 }
854
855 if (memcmp(&(l->llc_snap_org_code)[0],
856 at_org_code, sizeof(at_org_code)) == 0 &&
857 ntohs(l->llc_snap_ether_type) ==
858 ETHERTYPE_ATALK) {
859 inq = &atintrq2;
860 m_adj(m, sizeof(struct ether_header)
861 + sizeof(struct llc));
862 isr = NETISR_ATALK;
863 break;
864 }
865
866 if (memcmp(&(l->llc_snap_org_code)[0],
867 aarp_org_code,
868 sizeof(aarp_org_code)) == 0 &&
869 ntohs(l->llc_snap_ether_type) ==
870 ETHERTYPE_AARP) {
871 m_adj( m, sizeof(struct ether_header)
872 + sizeof(struct llc));
873 aarpinput(ifp, m); /* XXX */
874 return;
875 }
876
877 default:
878 goto dropanyway;
879 }
880 break;
881 dropanyway:
882 #endif
883 default:
884 m_freem(m);
885 return;
886 }
887 #else /* ISO || LLC || NETATALK*/
888 m_freem(m);
889 return;
890 #endif /* ISO || LLC || NETATALK*/
891 }
892
893 if (__predict_true(pktq)) {
894 #ifdef NET_MPSAFE
895 const u_int h = curcpu()->ci_index;
896 #else
897 const uint32_t h = pktq_rps_hash(m);
898 #endif
899 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
900 m_freem(m);
901 }
902 return;
903 }
904
905 if (__predict_false(!inq)) {
906 /* Should not happen. */
907 m_freem(m);
908 return;
909 }
910
911 IFQ_LOCK(inq);
912 if (IF_QFULL(inq)) {
913 IF_DROP(inq);
914 IFQ_UNLOCK(inq);
915 m_freem(m);
916 } else {
917 IF_ENQUEUE(inq, m);
918 IFQ_UNLOCK(inq);
919 schednetisr(isr);
920 }
921 }
922
923 /*
924 * Convert Ethernet address to printable (loggable) representation.
925 */
926 char *
927 ether_sprintf(const u_char *ap)
928 {
929 static char etherbuf[3 * ETHER_ADDR_LEN];
930 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
931 }
932
933 char *
934 ether_snprintf(char *buf, size_t len, const u_char *ap)
935 {
936 char *cp = buf;
937 size_t i;
938
939 for (i = 0; i < len / 3; i++) {
940 *cp++ = hexdigits[*ap >> 4];
941 *cp++ = hexdigits[*ap++ & 0xf];
942 *cp++ = ':';
943 }
944 *--cp = '\0';
945 return buf;
946 }
947
948 /*
949 * Perform common duties while attaching to interface list
950 */
951 void
952 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
953 {
954 struct ethercom *ec = (struct ethercom *)ifp;
955
956 ifp->if_extflags |= IFEF_OUTPUT_MPSAFE;
957 ifp->if_type = IFT_ETHER;
958 ifp->if_hdrlen = ETHER_HDR_LEN;
959 ifp->if_dlt = DLT_EN10MB;
960 ifp->if_mtu = ETHERMTU;
961 ifp->if_output = ether_output;
962 ifp->_if_input = ether_input;
963 if (ifp->if_baudrate == 0)
964 ifp->if_baudrate = IF_Mbps(10); /* just a default */
965
966 if (lla != NULL)
967 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
968
969 LIST_INIT(&ec->ec_multiaddrs);
970 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
971 ifp->if_broadcastaddr = etherbroadcastaddr;
972 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
973 #ifdef MBUFTRACE
974 strlcpy(ec->ec_tx_mowner.mo_name, ifp->if_xname,
975 sizeof(ec->ec_tx_mowner.mo_name));
976 strlcpy(ec->ec_tx_mowner.mo_descr, "tx",
977 sizeof(ec->ec_tx_mowner.mo_descr));
978 strlcpy(ec->ec_rx_mowner.mo_name, ifp->if_xname,
979 sizeof(ec->ec_rx_mowner.mo_name));
980 strlcpy(ec->ec_rx_mowner.mo_descr, "rx",
981 sizeof(ec->ec_rx_mowner.mo_descr));
982 MOWNER_ATTACH(&ec->ec_tx_mowner);
983 MOWNER_ATTACH(&ec->ec_rx_mowner);
984 ifp->if_mowner = &ec->ec_tx_mowner;
985 #endif
986 }
987
988 void
989 ether_ifdetach(struct ifnet *ifp)
990 {
991 struct ethercom *ec = (void *) ifp;
992 struct ether_multi *enm;
993 int s;
994
995 /*
996 * Prevent further calls to ioctl (for example turning off
997 * promiscuous mode from the bridge code), which eventually can
998 * call if_init() which can cause panics because the interface
999 * is in the process of being detached. Return device not configured
1000 * instead.
1001 */
1002 ifp->if_ioctl = (int (*)(struct ifnet *, u_long, void *))enxio;
1003
1004 #if NBRIDGE > 0
1005 if (ifp->if_bridge)
1006 bridge_ifdetach(ifp);
1007 #endif
1008
1009 bpf_detach(ifp);
1010
1011 #if NVLAN > 0
1012 if (ec->ec_nvlans)
1013 vlan_ifdetach(ifp);
1014 #endif
1015
1016 s = splnet();
1017 mutex_enter(ec->ec_lock);
1018 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1019 LIST_REMOVE(enm, enm_list);
1020 kmem_free(enm, sizeof(*enm));
1021 ec->ec_multicnt--;
1022 }
1023 mutex_exit(ec->ec_lock);
1024 splx(s);
1025
1026 mutex_destroy(ec->ec_lock);
1027
1028 ifp->if_mowner = NULL;
1029 MOWNER_DETACH(&ec->ec_rx_mowner);
1030 MOWNER_DETACH(&ec->ec_tx_mowner);
1031 }
1032
1033 #if 0
1034 /*
1035 * This is for reference. We have a table-driven version
1036 * of the little-endian crc32 generator, which is faster
1037 * than the double-loop.
1038 */
1039 uint32_t
1040 ether_crc32_le(const uint8_t *buf, size_t len)
1041 {
1042 uint32_t c, crc, carry;
1043 size_t i, j;
1044
1045 crc = 0xffffffffU; /* initial value */
1046
1047 for (i = 0; i < len; i++) {
1048 c = buf[i];
1049 for (j = 0; j < 8; j++) {
1050 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1051 crc >>= 1;
1052 c >>= 1;
1053 if (carry)
1054 crc = (crc ^ ETHER_CRC_POLY_LE);
1055 }
1056 }
1057
1058 return (crc);
1059 }
1060 #else
1061 uint32_t
1062 ether_crc32_le(const uint8_t *buf, size_t len)
1063 {
1064 static const uint32_t crctab[] = {
1065 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1066 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1067 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1068 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1069 };
1070 uint32_t crc;
1071 size_t i;
1072
1073 crc = 0xffffffffU; /* initial value */
1074
1075 for (i = 0; i < len; i++) {
1076 crc ^= buf[i];
1077 crc = (crc >> 4) ^ crctab[crc & 0xf];
1078 crc = (crc >> 4) ^ crctab[crc & 0xf];
1079 }
1080
1081 return (crc);
1082 }
1083 #endif
1084
1085 uint32_t
1086 ether_crc32_be(const uint8_t *buf, size_t len)
1087 {
1088 uint32_t c, crc, carry;
1089 size_t i, j;
1090
1091 crc = 0xffffffffU; /* initial value */
1092
1093 for (i = 0; i < len; i++) {
1094 c = buf[i];
1095 for (j = 0; j < 8; j++) {
1096 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1097 crc <<= 1;
1098 c >>= 1;
1099 if (carry)
1100 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1101 }
1102 }
1103
1104 return (crc);
1105 }
1106
1107 #ifdef INET
1108 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1109 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1110 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1111 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1112 #endif
1113 #ifdef INET6
1114 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1115 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1116 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1117 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1118 #endif
1119
1120 /*
1121 * ether_aton implementation, not using a static buffer.
1122 */
1123 int
1124 ether_aton_r(u_char *dest, size_t len, const char *str)
1125 {
1126 const u_char *cp = (const void *)str;
1127 u_char *ep;
1128
1129 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1130
1131 if (len < ETHER_ADDR_LEN)
1132 return ENOSPC;
1133
1134 ep = dest + ETHER_ADDR_LEN;
1135
1136 while (*cp) {
1137 if (!isxdigit(*cp))
1138 return EINVAL;
1139 *dest = atox(*cp);
1140 cp++;
1141 if (isxdigit(*cp)) {
1142 *dest = (*dest << 4) | atox(*cp);
1143 dest++;
1144 cp++;
1145 } else
1146 dest++;
1147 if (dest == ep)
1148 return *cp == '\0' ? 0 : ENAMETOOLONG;
1149 switch (*cp) {
1150 case ':':
1151 case '-':
1152 case '.':
1153 cp++;
1154 break;
1155 }
1156 }
1157 return ENOBUFS;
1158 }
1159
1160 /*
1161 * Convert a sockaddr into an Ethernet address or range of Ethernet
1162 * addresses.
1163 */
1164 int
1165 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1166 uint8_t addrhi[ETHER_ADDR_LEN])
1167 {
1168 #ifdef INET
1169 const struct sockaddr_in *sin;
1170 #endif /* INET */
1171 #ifdef INET6
1172 const struct sockaddr_in6 *sin6;
1173 #endif /* INET6 */
1174
1175 switch (sa->sa_family) {
1176
1177 case AF_UNSPEC:
1178 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1179 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1180 break;
1181
1182 #ifdef INET
1183 case AF_INET:
1184 sin = satocsin(sa);
1185 if (sin->sin_addr.s_addr == INADDR_ANY) {
1186 /*
1187 * An IP address of INADDR_ANY means listen to
1188 * or stop listening to all of the Ethernet
1189 * multicast addresses used for IP.
1190 * (This is for the sake of IP multicast routers.)
1191 */
1192 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1193 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1194 }
1195 else {
1196 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1197 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1198 }
1199 break;
1200 #endif
1201 #ifdef INET6
1202 case AF_INET6:
1203 sin6 = satocsin6(sa);
1204 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1205 /*
1206 * An IP6 address of 0 means listen to or stop
1207 * listening to all of the Ethernet multicast
1208 * address used for IP6.
1209 * (This is used for multicast routers.)
1210 */
1211 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1212 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1213 } else {
1214 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1215 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1216 }
1217 break;
1218 #endif
1219
1220 default:
1221 return EAFNOSUPPORT;
1222 }
1223 return 0;
1224 }
1225
1226 /*
1227 * Add an Ethernet multicast address or range of addresses to the list for a
1228 * given interface.
1229 */
1230 int
1231 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1232 {
1233 struct ether_multi *enm, *_enm;
1234 u_char addrlo[ETHER_ADDR_LEN];
1235 u_char addrhi[ETHER_ADDR_LEN];
1236 int s, error = 0;
1237
1238 /* Allocate out of lock */
1239 /* XXX still can be called in softint */
1240 enm = kmem_intr_alloc(sizeof(*enm), KM_SLEEP);
1241 if (enm == NULL)
1242 return ENOBUFS;
1243
1244 s = splnet();
1245 mutex_enter(ec->ec_lock);
1246 error = ether_multiaddr(sa, addrlo, addrhi);
1247 if (error != 0)
1248 goto out;
1249
1250 /*
1251 * Verify that we have valid Ethernet multicast addresses.
1252 */
1253 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1254 error = EINVAL;
1255 goto out;
1256 }
1257 /*
1258 * See if the address range is already in the list.
1259 */
1260 ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, _enm);
1261 if (_enm != NULL) {
1262 /*
1263 * Found it; just increment the reference count.
1264 */
1265 ++_enm->enm_refcount;
1266 error = 0;
1267 goto out;
1268 }
1269 /*
1270 * New address or range; malloc a new multicast record
1271 * and link it into the interface's multicast list.
1272 */
1273 memcpy(enm->enm_addrlo, addrlo, 6);
1274 memcpy(enm->enm_addrhi, addrhi, 6);
1275 enm->enm_refcount = 1;
1276 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1277 ec->ec_multicnt++;
1278 /*
1279 * Return ENETRESET to inform the driver that the list has changed
1280 * and its reception filter should be adjusted accordingly.
1281 */
1282 error = ENETRESET;
1283 enm = NULL;
1284 out:
1285 mutex_exit(ec->ec_lock);
1286 splx(s);
1287 if (enm != NULL)
1288 kmem_free(enm, sizeof(*enm));
1289 return error;
1290 }
1291
1292 /*
1293 * Delete a multicast address record.
1294 */
1295 int
1296 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1297 {
1298 struct ether_multi *enm;
1299 u_char addrlo[ETHER_ADDR_LEN];
1300 u_char addrhi[ETHER_ADDR_LEN];
1301 int s, error;
1302
1303 s = splnet();
1304 mutex_enter(ec->ec_lock);
1305 error = ether_multiaddr(sa, addrlo, addrhi);
1306 if (error != 0)
1307 goto error;
1308
1309 /*
1310 * Look ur the address in our list.
1311 */
1312 ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, enm);
1313 if (enm == NULL) {
1314 error = ENXIO;
1315 goto error;
1316 }
1317 if (--enm->enm_refcount != 0) {
1318 /*
1319 * Still some claims to this record.
1320 */
1321 error = 0;
1322 goto error;
1323 }
1324 /*
1325 * No remaining claims to this record; unlink and free it.
1326 */
1327 LIST_REMOVE(enm, enm_list);
1328 ec->ec_multicnt--;
1329 mutex_exit(ec->ec_lock);
1330 splx(s);
1331
1332 kmem_free(enm, sizeof(*enm));
1333 /*
1334 * Return ENETRESET to inform the driver that the list has changed
1335 * and its reception filter should be adjusted accordingly.
1336 */
1337 return ENETRESET;
1338 error:
1339 mutex_exit(ec->ec_lock);
1340 splx(s);
1341 return error;
1342 }
1343
1344 void
1345 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1346 {
1347 ec->ec_ifflags_cb = cb;
1348 }
1349
1350 /*
1351 * Common ioctls for Ethernet interfaces. Note, we must be
1352 * called at splnet().
1353 */
1354 int
1355 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1356 {
1357 struct ethercom *ec = (void *) ifp;
1358 struct eccapreq *eccr;
1359 struct ifreq *ifr = (struct ifreq *)data;
1360 struct if_laddrreq *iflr = data;
1361 const struct sockaddr_dl *sdl;
1362 static const uint8_t zero[ETHER_ADDR_LEN];
1363 int error;
1364
1365 switch (cmd) {
1366 case SIOCINITIFADDR:
1367 {
1368 struct ifaddr *ifa = (struct ifaddr *)data;
1369 if (ifa->ifa_addr->sa_family != AF_LINK
1370 && (ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
1371 (IFF_UP|IFF_RUNNING)) {
1372 ifp->if_flags |= IFF_UP;
1373 if ((error = (*ifp->if_init)(ifp)) != 0)
1374 return error;
1375 }
1376 #ifdef INET
1377 if (ifa->ifa_addr->sa_family == AF_INET)
1378 arp_ifinit(ifp, ifa);
1379 #endif /* INET */
1380 return 0;
1381 }
1382
1383 case SIOCSIFMTU:
1384 {
1385 int maxmtu;
1386
1387 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1388 maxmtu = ETHERMTU_JUMBO;
1389 else
1390 maxmtu = ETHERMTU;
1391
1392 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1393 return EINVAL;
1394 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1395 return error;
1396 else if (ifp->if_flags & IFF_UP) {
1397 /* Make sure the device notices the MTU change. */
1398 return (*ifp->if_init)(ifp);
1399 } else
1400 return 0;
1401 }
1402
1403 case SIOCSIFFLAGS:
1404 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1405 return error;
1406 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
1407 case IFF_RUNNING:
1408 /*
1409 * If interface is marked down and it is running,
1410 * then stop and disable it.
1411 */
1412 (*ifp->if_stop)(ifp, 1);
1413 break;
1414 case IFF_UP:
1415 /*
1416 * If interface is marked up and it is stopped, then
1417 * start it.
1418 */
1419 return (*ifp->if_init)(ifp);
1420 case IFF_UP|IFF_RUNNING:
1421 error = 0;
1422 if (ec->ec_ifflags_cb == NULL ||
1423 (error = (*ec->ec_ifflags_cb)(ec)) == ENETRESET) {
1424 /*
1425 * Reset the interface to pick up
1426 * changes in any other flags that
1427 * affect the hardware state.
1428 */
1429 return (*ifp->if_init)(ifp);
1430 } else
1431 return error;
1432 case 0:
1433 break;
1434 }
1435 return 0;
1436 case SIOCGETHERCAP:
1437 eccr = (struct eccapreq *)data;
1438 eccr->eccr_capabilities = ec->ec_capabilities;
1439 eccr->eccr_capenable = ec->ec_capenable;
1440 return 0;
1441 case SIOCADDMULTI:
1442 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1443 case SIOCDELMULTI:
1444 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1445 case SIOCSIFMEDIA:
1446 case SIOCGIFMEDIA:
1447 if (ec->ec_mii == NULL)
1448 return ENOTTY;
1449 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, cmd);
1450 case SIOCALIFADDR:
1451 sdl = satocsdl(sstocsa(&iflr->addr));
1452 if (sdl->sdl_family != AF_LINK)
1453 ;
1454 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1455 return EINVAL;
1456 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1457 return EINVAL;
1458 /*FALLTHROUGH*/
1459 default:
1460 return ifioctl_common(ifp, cmd, data);
1461 }
1462 return 0;
1463 }
1464
1465 /*
1466 * Enable/disable passing VLAN packets if the parent interface supports it.
1467 * Return:
1468 * 0: Ok
1469 * -1: Parent interface does not support vlans
1470 * >0: Error
1471 */
1472 int
1473 ether_enable_vlan_mtu(struct ifnet *ifp)
1474 {
1475 int error;
1476 struct ethercom *ec = (void *)ifp;
1477
1478 /* Already have VLAN's do nothing. */
1479 if (ec->ec_nvlans != 0)
1480 return 0;
1481
1482 /* Parent does not support VLAN's */
1483 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1484 return -1;
1485
1486 /*
1487 * Parent supports the VLAN_MTU capability,
1488 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1489 * enable it.
1490 */
1491 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1492
1493 /* Interface is down, defer for later */
1494 if ((ifp->if_flags & IFF_UP) == 0)
1495 return 0;
1496
1497 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1498 return 0;
1499
1500 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1501 return error;
1502 }
1503
1504 int
1505 ether_disable_vlan_mtu(struct ifnet *ifp)
1506 {
1507 int error;
1508 struct ethercom *ec = (void *)ifp;
1509
1510 /* We still have VLAN's, defer for later */
1511 if (ec->ec_nvlans != 0)
1512 return 0;
1513
1514 /* Parent does not support VLAB's, nothing to do. */
1515 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1516 return -1;
1517
1518 /*
1519 * Disable Tx/Rx of VLAN-sized frames.
1520 */
1521 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1522
1523 /* Interface is down, defer for later */
1524 if ((ifp->if_flags & IFF_UP) == 0)
1525 return 0;
1526
1527 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1528 return 0;
1529
1530 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1531 return error;
1532 }
1533
1534 static int
1535 ether_multicast_sysctl(SYSCTLFN_ARGS)
1536 {
1537 struct ether_multi *enm;
1538 struct ether_multi_sysctl addr;
1539 struct ifnet *ifp;
1540 struct ethercom *ec;
1541 int error = 0;
1542 size_t written;
1543 struct psref psref;
1544 int bound, s;
1545
1546 if (namelen != 1)
1547 return EINVAL;
1548
1549 bound = curlwp_bind();
1550 ifp = if_get_byindex(name[0], &psref);
1551 if (ifp == NULL) {
1552 error = ENODEV;
1553 goto out;
1554 }
1555 if (ifp->if_type != IFT_ETHER) {
1556 if_put(ifp, &psref);
1557 *oldlenp = 0;
1558 goto out;
1559 }
1560 ec = (struct ethercom *)ifp;
1561
1562 if (oldp == NULL) {
1563 if_put(ifp, &psref);
1564 *oldlenp = ec->ec_multicnt * sizeof(addr);
1565 goto out;
1566 }
1567
1568 memset(&addr, 0, sizeof(addr));
1569 error = 0;
1570 written = 0;
1571
1572 s = splnet();
1573 mutex_enter(ec->ec_lock);
1574 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1575 if (written + sizeof(addr) > *oldlenp)
1576 break;
1577 addr.enm_refcount = enm->enm_refcount;
1578 memcpy(addr.enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1579 memcpy(addr.enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1580 error = sysctl_copyout(l, &addr, oldp, sizeof(addr));
1581 if (error)
1582 break;
1583 written += sizeof(addr);
1584 oldp = (char *)oldp + sizeof(addr);
1585 }
1586 mutex_exit(ec->ec_lock);
1587 splx(s);
1588 if_put(ifp, &psref);
1589
1590 *oldlenp = written;
1591 out:
1592 curlwp_bindx(bound);
1593 return error;
1594 }
1595
1596 SYSCTL_SETUP(sysctl_net_ether_setup, "sysctl net.ether subtree setup")
1597 {
1598 const struct sysctlnode *rnode = NULL;
1599
1600 sysctl_createv(clog, 0, NULL, &rnode,
1601 CTLFLAG_PERMANENT,
1602 CTLTYPE_NODE, "ether",
1603 SYSCTL_DESCR("Ethernet-specific information"),
1604 NULL, 0, NULL, 0,
1605 CTL_NET, CTL_CREATE, CTL_EOL);
1606
1607 sysctl_createv(clog, 0, &rnode, NULL,
1608 CTLFLAG_PERMANENT,
1609 CTLTYPE_NODE, "multicast",
1610 SYSCTL_DESCR("multicast addresses"),
1611 ether_multicast_sysctl, 0, NULL, 0,
1612 CTL_CREATE, CTL_EOL);
1613 }
1614
1615 void
1616 etherinit(void)
1617 {
1618 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1619 }
1620