if_ethersubr.c revision 1.247 1 /* $NetBSD: if_ethersubr.c,v 1.247 2017/11/22 04:27:57 msaitoh Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.247 2017/11/22 04:27:57 msaitoh Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/rnd.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92
93 #include <net/if.h>
94 #include <net/netisr.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104
105 #if NARP == 0
106 /*
107 * XXX there should really be a way to issue this warning from within config(8)
108 */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111
112 #include <net/bpf.h>
113
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120
121 #if NAGR > 0
122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144
145
146 #include "carp.h"
147 #if NCARP > 0
148 #include <netinet/ip_carp.h>
149 #endif
150
151 #ifdef NETATALK
152 #include <netatalk/at.h>
153 #include <netatalk/at_var.h>
154 #include <netatalk/at_extern.h>
155
156 #define llc_snap_org_code llc_un.type_snap.org_code
157 #define llc_snap_ether_type llc_un.type_snap.ether_type
158
159 extern u_char at_org_code[3];
160 extern u_char aarp_org_code[3];
161 #endif /* NETATALK */
162
163 #ifdef MPLS
164 #include <netmpls/mpls.h>
165 #include <netmpls/mpls_var.h>
166 #endif
167
168 static struct timeval bigpktppslim_last;
169 static int bigpktppslim = 2; /* XXX */
170 static int bigpktpps_count;
171 static kmutex_t bigpktpps_lock __cacheline_aligned;
172
173
174 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
175 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
176 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
177 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
178 #define senderr(e) { error = (e); goto bad;}
179
180 static int ether_output(struct ifnet *, struct mbuf *,
181 const struct sockaddr *, const struct rtentry *);
182
183 /*
184 * Ethernet output routine.
185 * Encapsulate a packet of type family for the local net.
186 * Assumes that ifp is actually pointer to ethercom structure.
187 */
188 static int
189 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
190 const struct sockaddr * const dst,
191 const struct rtentry *rt)
192 {
193 uint16_t etype = 0;
194 int error = 0, hdrcmplt = 0;
195 uint8_t esrc[6], edst[6];
196 struct mbuf *m = m0;
197 struct mbuf *mcopy = NULL;
198 struct ether_header *eh;
199 struct ifnet *ifp = ifp0;
200 #ifdef INET
201 struct arphdr *ah;
202 #endif /* INET */
203 #ifdef NETATALK
204 struct at_ifaddr *aa;
205 #endif /* NETATALK */
206
207 #ifdef MBUFTRACE
208 m_claimm(m, ifp->if_mowner);
209 #endif
210
211 #if NCARP > 0
212 if (ifp->if_type == IFT_CARP) {
213 struct ifaddr *ifa;
214 int s = pserialize_read_enter();
215
216 /* loop back if this is going to the carp interface */
217 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
218 (ifa = ifa_ifwithaddr(dst)) != NULL) {
219 if (ifa->ifa_ifp == ifp0) {
220 pserialize_read_exit(s);
221 return looutput(ifp0, m, dst, rt);
222 }
223 }
224 pserialize_read_exit(s);
225
226 ifp = ifp->if_carpdev;
227 /* ac = (struct arpcom *)ifp; */
228
229 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
230 (IFF_UP | IFF_RUNNING))
231 senderr(ENETDOWN);
232 }
233 #endif /* NCARP > 0 */
234
235 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
236 senderr(ENETDOWN);
237
238 switch (dst->sa_family) {
239
240 #ifdef INET
241 case AF_INET:
242 if (m->m_flags & M_BCAST)
243 (void)memcpy(edst, etherbroadcastaddr, sizeof(edst));
244 else if (m->m_flags & M_MCAST)
245 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
246 else if ((error = arpresolve(ifp, rt, m, dst, edst,
247 sizeof(edst))) != 0) {
248 return error == EWOULDBLOCK ? 0 : error;
249 }
250 /* If broadcasting on a simplex interface, loopback a copy */
251 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
252 mcopy = m_copy(m, 0, (int)M_COPYALL);
253 etype = htons(ETHERTYPE_IP);
254 break;
255
256 case AF_ARP:
257 ah = mtod(m, struct arphdr *);
258 if (m->m_flags & M_BCAST)
259 (void)memcpy(edst, etherbroadcastaddr, sizeof(edst));
260 else {
261 void *tha = ar_tha(ah);
262
263 if (tha == NULL) {
264 /* fake with ARPHDR_IEEE1394 */
265 m_freem(m);
266 return 0;
267 }
268 memcpy(edst, tha, sizeof(edst));
269 }
270
271 ah->ar_hrd = htons(ARPHRD_ETHER);
272
273 switch (ntohs(ah->ar_op)) {
274 case ARPOP_REVREQUEST:
275 case ARPOP_REVREPLY:
276 etype = htons(ETHERTYPE_REVARP);
277 break;
278
279 case ARPOP_REQUEST:
280 case ARPOP_REPLY:
281 default:
282 etype = htons(ETHERTYPE_ARP);
283 }
284
285 break;
286 #endif
287 #ifdef INET6
288 case AF_INET6:
289 if (m->m_flags & M_BCAST)
290 (void)memcpy(edst, etherbroadcastaddr, sizeof(edst));
291 else if (m->m_flags & M_MCAST) {
292 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
293 edst);
294 } else {
295 error = nd6_resolve(ifp, rt, m, dst, edst,
296 sizeof(edst));
297 if (error != 0)
298 return error == EWOULDBLOCK ? 0 : error;
299 }
300 etype = htons(ETHERTYPE_IPV6);
301 break;
302 #endif
303 #ifdef NETATALK
304 case AF_APPLETALK: {
305 struct ifaddr *ifa;
306 int s;
307
308 KERNEL_LOCK(1, NULL);
309 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
310 #ifdef NETATALKDEBUG
311 printf("aarpresolv failed\n");
312 #endif /* NETATALKDEBUG */
313 KERNEL_UNLOCK_ONE(NULL);
314 return (0);
315 }
316 /*
317 * ifaddr is the first thing in at_ifaddr
318 */
319 s = pserialize_read_enter();
320 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
321 if (ifa == NULL) {
322 pserialize_read_exit(s);
323 KERNEL_UNLOCK_ONE(NULL);
324 goto bad;
325 }
326 aa = (struct at_ifaddr *)ifa;
327
328 /*
329 * In the phase 2 case, we need to prepend an mbuf for the
330 * llc header. Since we must preserve the value of m,
331 * which is passed to us by value, we m_copy() the first
332 * mbuf, and use it for our llc header.
333 */
334 if (aa->aa_flags & AFA_PHASE2) {
335 struct llc llc;
336
337 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
338 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
339 llc.llc_control = LLC_UI;
340 memcpy(llc.llc_snap_org_code, at_org_code,
341 sizeof(llc.llc_snap_org_code));
342 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
343 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
344 } else {
345 etype = htons(ETHERTYPE_ATALK);
346 }
347 pserialize_read_exit(s);
348 KERNEL_UNLOCK_ONE(NULL);
349 break;
350 }
351 #endif /* NETATALK */
352 case pseudo_AF_HDRCMPLT:
353 hdrcmplt = 1;
354 memcpy(esrc,
355 ((const struct ether_header *)dst->sa_data)->ether_shost,
356 sizeof(esrc));
357 /* FALLTHROUGH */
358
359 case AF_UNSPEC:
360 memcpy(edst,
361 ((const struct ether_header *)dst->sa_data)->ether_dhost,
362 sizeof(edst));
363 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
364 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
365 break;
366
367 default:
368 printf("%s: can't handle af%d\n", ifp->if_xname,
369 dst->sa_family);
370 senderr(EAFNOSUPPORT);
371 }
372
373 #ifdef MPLS
374 KERNEL_LOCK(1, NULL);
375 {
376 struct m_tag *mtag;
377 mtag = m_tag_find(m, PACKET_TAG_MPLS, NULL);
378 if (mtag != NULL) {
379 /* Having the tag itself indicates it's MPLS */
380 etype = htons(ETHERTYPE_MPLS);
381 m_tag_delete(m, mtag);
382 }
383 }
384 KERNEL_UNLOCK_ONE(NULL);
385 #endif
386
387 if (mcopy)
388 (void)looutput(ifp, mcopy, dst, rt);
389
390 /* If no ether type is set, this must be a 802.2 formatted packet.
391 */
392 if (etype == 0)
393 etype = htons(m->m_pkthdr.len);
394 /*
395 * Add local net header. If no space in first mbuf,
396 * allocate another.
397 */
398 M_PREPEND(m, sizeof (struct ether_header), M_DONTWAIT);
399 if (m == 0)
400 senderr(ENOBUFS);
401 eh = mtod(m, struct ether_header *);
402 /* Note: etype is already in network byte order. */
403 (void)memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
404 memcpy(eh->ether_dhost, edst, sizeof(edst));
405 if (hdrcmplt)
406 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
407 else
408 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
409 sizeof(eh->ether_shost));
410
411 #if NCARP > 0
412 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
413 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
414 sizeof(eh->ether_shost));
415 }
416 #endif /* NCARP > 0 */
417
418 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
419 return (error);
420 if (m == NULL)
421 return (0);
422
423 #if NBRIDGE > 0
424 /*
425 * Bridges require special output handling.
426 */
427 if (ifp->if_bridge)
428 return (bridge_output(ifp, m, NULL, NULL));
429 #endif
430
431 #if NCARP > 0
432 if (ifp != ifp0)
433 ifp0->if_obytes += m->m_pkthdr.len + ETHER_HDR_LEN;
434 #endif /* NCARP > 0 */
435
436 #ifdef ALTQ
437 KERNEL_LOCK(1, NULL);
438 /*
439 * If ALTQ is enabled on the parent interface, do
440 * classification; the queueing discipline might not
441 * require classification, but might require the
442 * address family/header pointer in the pktattr.
443 */
444 if (ALTQ_IS_ENABLED(&ifp->if_snd))
445 altq_etherclassify(&ifp->if_snd, m);
446 KERNEL_UNLOCK_ONE(NULL);
447 #endif
448 return ifq_enqueue(ifp, m);
449
450 bad:
451 if (m)
452 m_freem(m);
453 return (error);
454 }
455
456 #ifdef ALTQ
457 /*
458 * This routine is a slight hack to allow a packet to be classified
459 * if the Ethernet headers are present. It will go away when ALTQ's
460 * classification engine understands link headers.
461 */
462 void
463 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
464 {
465 struct ether_header *eh;
466 uint16_t ether_type;
467 int hlen, af, hdrsize;
468 void *hdr;
469
470 hlen = ETHER_HDR_LEN;
471 eh = mtod(m, struct ether_header *);
472
473 ether_type = htons(eh->ether_type);
474
475 if (ether_type < ETHERMTU) {
476 /* LLC/SNAP */
477 struct llc *llc = (struct llc *)(eh + 1);
478 hlen += 8;
479
480 if (m->m_len < hlen ||
481 llc->llc_dsap != LLC_SNAP_LSAP ||
482 llc->llc_ssap != LLC_SNAP_LSAP ||
483 llc->llc_control != LLC_UI) {
484 /* Not SNAP. */
485 goto bad;
486 }
487
488 ether_type = htons(llc->llc_un.type_snap.ether_type);
489 }
490
491 switch (ether_type) {
492 case ETHERTYPE_IP:
493 af = AF_INET;
494 hdrsize = 20; /* sizeof(struct ip) */
495 break;
496
497 case ETHERTYPE_IPV6:
498 af = AF_INET6;
499 hdrsize = 40; /* sizeof(struct ip6_hdr) */
500 break;
501
502 default:
503 af = AF_UNSPEC;
504 hdrsize = 0;
505 break;
506 }
507
508 while (m->m_len <= hlen) {
509 hlen -= m->m_len;
510 m = m->m_next;
511 }
512 if (m->m_len < (hlen + hdrsize)) {
513 /*
514 * protocol header not in a single mbuf.
515 * We can't cope with this situation right
516 * now (but it shouldn't ever happen, really, anyhow).
517 */
518 #ifdef DEBUG
519 printf("altq_etherclassify: headers span multiple mbufs: "
520 "%d < %d\n", m->m_len, (hlen + hdrsize));
521 #endif
522 goto bad;
523 }
524
525 m->m_data += hlen;
526 m->m_len -= hlen;
527
528 hdr = mtod(m, void *);
529
530 if (ALTQ_NEEDS_CLASSIFY(ifq))
531 m->m_pkthdr.pattr_class =
532 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
533 m->m_pkthdr.pattr_af = af;
534 m->m_pkthdr.pattr_hdr = hdr;
535
536 m->m_data -= hlen;
537 m->m_len += hlen;
538
539 return;
540
541 bad:
542 m->m_pkthdr.pattr_class = NULL;
543 m->m_pkthdr.pattr_hdr = NULL;
544 m->m_pkthdr.pattr_af = AF_UNSPEC;
545 }
546 #endif /* ALTQ */
547
548 /*
549 * Process a received Ethernet packet;
550 * the packet is in the mbuf chain m with
551 * the ether header.
552 */
553 void
554 ether_input(struct ifnet *ifp, struct mbuf *m)
555 {
556 struct ethercom *ec = (struct ethercom *) ifp;
557 pktqueue_t *pktq = NULL;
558 struct ifqueue *inq = NULL;
559 uint16_t etype;
560 struct ether_header *eh;
561 size_t ehlen;
562 static int earlypkts;
563 int isr = 0;
564 #if defined (LLC) || defined(NETATALK)
565 struct llc *l;
566 #endif
567
568 KASSERT(!cpu_intr_p());
569
570 if ((ifp->if_flags & IFF_UP) == 0) {
571 m_freem(m);
572 return;
573 }
574
575 #ifdef MBUFTRACE
576 m_claimm(m, &ec->ec_rx_mowner);
577 #endif
578 eh = mtod(m, struct ether_header *);
579 etype = ntohs(eh->ether_type);
580 ehlen = sizeof(*eh);
581
582 if(__predict_false(earlypkts < 100 || !rnd_initial_entropy)) {
583 rnd_add_data(NULL, eh, ehlen, 0);
584 earlypkts++;
585 }
586
587 /*
588 * Determine if the packet is within its size limits.
589 */
590 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
591 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
592 mutex_enter(&bigpktpps_lock);
593 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
594 bigpktppslim)) {
595 printf("%s: discarding oversize frame (len=%d)\n",
596 ifp->if_xname, m->m_pkthdr.len);
597 }
598 mutex_exit(&bigpktpps_lock);
599 m_freem(m);
600 return;
601 }
602
603 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
604 /*
605 * If this is not a simplex interface, drop the packet
606 * if it came from us.
607 */
608 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
609 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
610 ETHER_ADDR_LEN) == 0) {
611 m_freem(m);
612 return;
613 }
614
615 if (memcmp(etherbroadcastaddr,
616 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
617 m->m_flags |= M_BCAST;
618 else
619 m->m_flags |= M_MCAST;
620 ifp->if_imcasts++;
621 }
622
623 /* If the CRC is still on the packet, trim it off. */
624 if (m->m_flags & M_HASFCS) {
625 m_adj(m, -ETHER_CRC_LEN);
626 m->m_flags &= ~M_HASFCS;
627 }
628
629 ifp->if_ibytes += m->m_pkthdr.len;
630
631 #if NCARP > 0
632 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
633 /*
634 * clear M_PROMISC, in case the packets comes from a
635 * vlan
636 */
637 m->m_flags &= ~M_PROMISC;
638 if (carp_input(m, (uint8_t *)&eh->ether_shost,
639 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
640 return;
641 }
642 #endif /* NCARP > 0 */
643 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
644 (ifp->if_flags & IFF_PROMISC) != 0 &&
645 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
646 ETHER_ADDR_LEN) != 0) {
647 m->m_flags |= M_PROMISC;
648 }
649
650 if ((m->m_flags & M_PROMISC) == 0) {
651 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
652 return;
653 if (m == NULL)
654 return;
655
656 eh = mtod(m, struct ether_header *);
657 etype = ntohs(eh->ether_type);
658 ehlen = sizeof(*eh);
659 }
660
661 #if NAGR > 0
662 if (ifp->if_agrprivate &&
663 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
664 m->m_flags &= ~M_PROMISC;
665 agr_input(ifp, m);
666 return;
667 }
668 #endif /* NAGR > 0 */
669
670 /*
671 * If VLANs are configured on the interface, check to
672 * see if the device performed the decapsulation and
673 * provided us with the tag.
674 */
675 if (ec->ec_nvlans && vlan_has_tag(m)) {
676 #if NVLAN > 0
677 /*
678 * vlan_input() will either recursively call ether_input()
679 * or drop the packet.
680 */
681 vlan_input(ifp, m);
682 #else
683 m_freem(m);
684 #endif
685 return;
686 }
687
688 /*
689 * Handle protocols that expect to have the Ethernet header
690 * (and possibly FCS) intact.
691 */
692 switch (etype) {
693 case ETHERTYPE_VLAN: {
694 struct ether_vlan_header *evl = (void *)eh;
695 /*
696 * If there is a tag of 0, then the VLAN header was probably
697 * just being used to store the priority. Extract the ether
698 * type, and if IP or IPV6, let them deal with it.
699 */
700 if (m->m_len <= sizeof(*evl)
701 && EVL_VLANOFTAG(evl->evl_tag) == 0) {
702 etype = ntohs(evl->evl_proto);
703 ehlen = sizeof(*evl);
704 if ((m->m_flags & M_PROMISC) == 0
705 && (etype == ETHERTYPE_IP
706 || etype == ETHERTYPE_IPV6))
707 break;
708 }
709 #if NVLAN > 0
710 /*
711 * vlan_input() will either recursively call ether_input()
712 * or drop the packet.
713 */
714 if (((struct ethercom *)ifp)->ec_nvlans != 0)
715 vlan_input(ifp, m);
716 else
717 #endif /* NVLAN > 0 */
718 m_freem(m);
719 return;
720 }
721 #if NPPPOE > 0
722 case ETHERTYPE_PPPOEDISC:
723 pppoedisc_input(ifp, m);
724 return;
725 case ETHERTYPE_PPPOE:
726 pppoe_input(ifp, m);
727 return;
728 #endif /* NPPPOE > 0 */
729 case ETHERTYPE_SLOWPROTOCOLS: {
730 uint8_t subtype;
731
732 #if defined(DIAGNOSTIC)
733 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) {
734 panic("ether_input: too short slow protocol packet");
735 }
736 #endif
737 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
738 switch (subtype) {
739 #if NAGR > 0
740 case SLOWPROTOCOLS_SUBTYPE_LACP:
741 if (ifp->if_agrprivate) {
742 ieee8023ad_lacp_input(ifp, m);
743 return;
744 }
745 break;
746
747 case SLOWPROTOCOLS_SUBTYPE_MARKER:
748 if (ifp->if_agrprivate) {
749 ieee8023ad_marker_input(ifp, m);
750 return;
751 }
752 break;
753 #endif /* NAGR > 0 */
754 default:
755 if (subtype == 0 || subtype > 10) {
756 /* illegal value */
757 m_freem(m);
758 return;
759 }
760 /* unknown subtype */
761 break;
762 }
763 /* FALLTHROUGH */
764 }
765 default:
766 if (m->m_flags & M_PROMISC) {
767 m_freem(m);
768 return;
769 }
770 }
771
772 /* If the CRC is still on the packet, trim it off. */
773 if (m->m_flags & M_HASFCS) {
774 m_adj(m, -ETHER_CRC_LEN);
775 m->m_flags &= ~M_HASFCS;
776 }
777
778 if (etype > ETHERMTU + sizeof (struct ether_header)) {
779 /* Strip off the Ethernet header. */
780 m_adj(m, ehlen);
781
782 switch (etype) {
783 #ifdef INET
784 case ETHERTYPE_IP:
785 #ifdef GATEWAY
786 if (ipflow_fastforward(m))
787 return;
788 #endif
789 pktq = ip_pktq;
790 break;
791
792 case ETHERTYPE_ARP:
793 isr = NETISR_ARP;
794 inq = &arpintrq;
795 break;
796
797 case ETHERTYPE_REVARP:
798 revarpinput(m); /* XXX queue? */
799 return;
800 #endif
801 #ifdef INET6
802 case ETHERTYPE_IPV6:
803 if (__predict_false(!in6_present)) {
804 m_freem(m);
805 return;
806 }
807 #ifdef GATEWAY
808 if (ip6flow_fastforward(&m))
809 return;
810 #endif
811 pktq = ip6_pktq;
812 break;
813 #endif
814 #ifdef NETATALK
815 case ETHERTYPE_ATALK:
816 isr = NETISR_ATALK;
817 inq = &atintrq1;
818 break;
819 case ETHERTYPE_AARP:
820 /* probably this should be done with a NETISR as well */
821 aarpinput(ifp, m); /* XXX */
822 return;
823 #endif /* NETATALK */
824 #ifdef MPLS
825 case ETHERTYPE_MPLS:
826 isr = NETISR_MPLS;
827 inq = &mplsintrq;
828 break;
829 #endif
830 default:
831 m_freem(m);
832 return;
833 }
834 } else {
835 #if defined (LLC) || defined (NETATALK)
836 l = (struct llc *)(eh+1);
837 switch (l->llc_dsap) {
838 #ifdef NETATALK
839 case LLC_SNAP_LSAP:
840 switch (l->llc_control) {
841 case LLC_UI:
842 if (l->llc_ssap != LLC_SNAP_LSAP) {
843 goto dropanyway;
844 }
845
846 if (memcmp(&(l->llc_snap_org_code)[0],
847 at_org_code, sizeof(at_org_code)) == 0 &&
848 ntohs(l->llc_snap_ether_type) ==
849 ETHERTYPE_ATALK) {
850 inq = &atintrq2;
851 m_adj(m, sizeof(struct ether_header)
852 + sizeof(struct llc));
853 isr = NETISR_ATALK;
854 break;
855 }
856
857 if (memcmp(&(l->llc_snap_org_code)[0],
858 aarp_org_code,
859 sizeof(aarp_org_code)) == 0 &&
860 ntohs(l->llc_snap_ether_type) ==
861 ETHERTYPE_AARP) {
862 m_adj( m, sizeof(struct ether_header)
863 + sizeof(struct llc));
864 aarpinput(ifp, m); /* XXX */
865 return;
866 }
867
868 default:
869 goto dropanyway;
870 }
871 break;
872 dropanyway:
873 #endif
874 default:
875 m_freem(m);
876 return;
877 }
878 #else /* ISO || LLC || NETATALK*/
879 m_freem(m);
880 return;
881 #endif /* ISO || LLC || NETATALK*/
882 }
883
884 if (__predict_true(pktq)) {
885 #ifdef NET_MPSAFE
886 const u_int h = curcpu()->ci_index;
887 #else
888 const uint32_t h = pktq_rps_hash(m);
889 #endif
890 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
891 m_freem(m);
892 }
893 return;
894 }
895
896 if (__predict_false(!inq)) {
897 /* Should not happen. */
898 m_freem(m);
899 return;
900 }
901
902 IFQ_LOCK(inq);
903 if (IF_QFULL(inq)) {
904 IF_DROP(inq);
905 IFQ_UNLOCK(inq);
906 m_freem(m);
907 } else {
908 IF_ENQUEUE(inq, m);
909 IFQ_UNLOCK(inq);
910 schednetisr(isr);
911 }
912 }
913
914 /*
915 * Convert Ethernet address to printable (loggable) representation.
916 */
917 char *
918 ether_sprintf(const u_char *ap)
919 {
920 static char etherbuf[3 * ETHER_ADDR_LEN];
921 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
922 }
923
924 char *
925 ether_snprintf(char *buf, size_t len, const u_char *ap)
926 {
927 char *cp = buf;
928 size_t i;
929
930 for (i = 0; i < len / 3; i++) {
931 *cp++ = hexdigits[*ap >> 4];
932 *cp++ = hexdigits[*ap++ & 0xf];
933 *cp++ = ':';
934 }
935 *--cp = '\0';
936 return buf;
937 }
938
939 /*
940 * Perform common duties while attaching to interface list
941 */
942 void
943 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
944 {
945 struct ethercom *ec = (struct ethercom *)ifp;
946
947 ifp->if_type = IFT_ETHER;
948 ifp->if_hdrlen = ETHER_HDR_LEN;
949 ifp->if_dlt = DLT_EN10MB;
950 ifp->if_mtu = ETHERMTU;
951 ifp->if_output = ether_output;
952 ifp->_if_input = ether_input;
953 if (ifp->if_baudrate == 0)
954 ifp->if_baudrate = IF_Mbps(10); /* just a default */
955
956 if (lla != NULL)
957 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
958
959 LIST_INIT(&ec->ec_multiaddrs);
960 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
961 ifp->if_broadcastaddr = etherbroadcastaddr;
962 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
963 #ifdef MBUFTRACE
964 strlcpy(ec->ec_tx_mowner.mo_name, ifp->if_xname,
965 sizeof(ec->ec_tx_mowner.mo_name));
966 strlcpy(ec->ec_tx_mowner.mo_descr, "tx",
967 sizeof(ec->ec_tx_mowner.mo_descr));
968 strlcpy(ec->ec_rx_mowner.mo_name, ifp->if_xname,
969 sizeof(ec->ec_rx_mowner.mo_name));
970 strlcpy(ec->ec_rx_mowner.mo_descr, "rx",
971 sizeof(ec->ec_rx_mowner.mo_descr));
972 MOWNER_ATTACH(&ec->ec_tx_mowner);
973 MOWNER_ATTACH(&ec->ec_rx_mowner);
974 ifp->if_mowner = &ec->ec_tx_mowner;
975 #endif
976 }
977
978 void
979 ether_ifdetach(struct ifnet *ifp)
980 {
981 struct ethercom *ec = (void *) ifp;
982 struct ether_multi *enm;
983
984 /*
985 * Prevent further calls to ioctl (for example turning off
986 * promiscuous mode from the bridge code), which eventually can
987 * call if_init() which can cause panics because the interface
988 * is in the process of being detached. Return device not configured
989 * instead.
990 */
991 ifp->if_ioctl = (int (*)(struct ifnet *, u_long, void *))enxio;
992
993 #if NBRIDGE > 0
994 if (ifp->if_bridge)
995 bridge_ifdetach(ifp);
996 #endif
997
998 bpf_detach(ifp);
999
1000 #if NVLAN > 0
1001 if (ec->ec_nvlans)
1002 vlan_ifdetach(ifp);
1003 #endif
1004
1005 ETHER_LOCK(ec);
1006 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1007 LIST_REMOVE(enm, enm_list);
1008 kmem_intr_free(enm, sizeof(*enm));
1009 ec->ec_multicnt--;
1010 }
1011 ETHER_UNLOCK(ec);
1012
1013 mutex_destroy(ec->ec_lock);
1014
1015 ifp->if_mowner = NULL;
1016 MOWNER_DETACH(&ec->ec_rx_mowner);
1017 MOWNER_DETACH(&ec->ec_tx_mowner);
1018 }
1019
1020 #if 0
1021 /*
1022 * This is for reference. We have a table-driven version
1023 * of the little-endian crc32 generator, which is faster
1024 * than the double-loop.
1025 */
1026 uint32_t
1027 ether_crc32_le(const uint8_t *buf, size_t len)
1028 {
1029 uint32_t c, crc, carry;
1030 size_t i, j;
1031
1032 crc = 0xffffffffU; /* initial value */
1033
1034 for (i = 0; i < len; i++) {
1035 c = buf[i];
1036 for (j = 0; j < 8; j++) {
1037 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1038 crc >>= 1;
1039 c >>= 1;
1040 if (carry)
1041 crc = (crc ^ ETHER_CRC_POLY_LE);
1042 }
1043 }
1044
1045 return (crc);
1046 }
1047 #else
1048 uint32_t
1049 ether_crc32_le(const uint8_t *buf, size_t len)
1050 {
1051 static const uint32_t crctab[] = {
1052 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1053 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1054 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1055 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1056 };
1057 uint32_t crc;
1058 size_t i;
1059
1060 crc = 0xffffffffU; /* initial value */
1061
1062 for (i = 0; i < len; i++) {
1063 crc ^= buf[i];
1064 crc = (crc >> 4) ^ crctab[crc & 0xf];
1065 crc = (crc >> 4) ^ crctab[crc & 0xf];
1066 }
1067
1068 return (crc);
1069 }
1070 #endif
1071
1072 uint32_t
1073 ether_crc32_be(const uint8_t *buf, size_t len)
1074 {
1075 uint32_t c, crc, carry;
1076 size_t i, j;
1077
1078 crc = 0xffffffffU; /* initial value */
1079
1080 for (i = 0; i < len; i++) {
1081 c = buf[i];
1082 for (j = 0; j < 8; j++) {
1083 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1084 crc <<= 1;
1085 c >>= 1;
1086 if (carry)
1087 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1088 }
1089 }
1090
1091 return (crc);
1092 }
1093
1094 #ifdef INET
1095 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1096 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1097 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1098 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1099 #endif
1100 #ifdef INET6
1101 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1102 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1103 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1104 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1105 #endif
1106
1107 /*
1108 * ether_aton implementation, not using a static buffer.
1109 */
1110 int
1111 ether_aton_r(u_char *dest, size_t len, const char *str)
1112 {
1113 const u_char *cp = (const void *)str;
1114 u_char *ep;
1115
1116 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1117
1118 if (len < ETHER_ADDR_LEN)
1119 return ENOSPC;
1120
1121 ep = dest + ETHER_ADDR_LEN;
1122
1123 while (*cp) {
1124 if (!isxdigit(*cp))
1125 return EINVAL;
1126 *dest = atox(*cp);
1127 cp++;
1128 if (isxdigit(*cp)) {
1129 *dest = (*dest << 4) | atox(*cp);
1130 dest++;
1131 cp++;
1132 } else
1133 dest++;
1134 if (dest == ep)
1135 return *cp == '\0' ? 0 : ENAMETOOLONG;
1136 switch (*cp) {
1137 case ':':
1138 case '-':
1139 case '.':
1140 cp++;
1141 break;
1142 }
1143 }
1144 return ENOBUFS;
1145 }
1146
1147 /*
1148 * Convert a sockaddr into an Ethernet address or range of Ethernet
1149 * addresses.
1150 */
1151 int
1152 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1153 uint8_t addrhi[ETHER_ADDR_LEN])
1154 {
1155 #ifdef INET
1156 const struct sockaddr_in *sin;
1157 #endif /* INET */
1158 #ifdef INET6
1159 const struct sockaddr_in6 *sin6;
1160 #endif /* INET6 */
1161
1162 switch (sa->sa_family) {
1163
1164 case AF_UNSPEC:
1165 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1166 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1167 break;
1168
1169 #ifdef INET
1170 case AF_INET:
1171 sin = satocsin(sa);
1172 if (sin->sin_addr.s_addr == INADDR_ANY) {
1173 /*
1174 * An IP address of INADDR_ANY means listen to
1175 * or stop listening to all of the Ethernet
1176 * multicast addresses used for IP.
1177 * (This is for the sake of IP multicast routers.)
1178 */
1179 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1180 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1181 }
1182 else {
1183 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1184 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1185 }
1186 break;
1187 #endif
1188 #ifdef INET6
1189 case AF_INET6:
1190 sin6 = satocsin6(sa);
1191 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1192 /*
1193 * An IP6 address of 0 means listen to or stop
1194 * listening to all of the Ethernet multicast
1195 * address used for IP6.
1196 * (This is used for multicast routers.)
1197 */
1198 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1199 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1200 } else {
1201 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1202 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1203 }
1204 break;
1205 #endif
1206
1207 default:
1208 return EAFNOSUPPORT;
1209 }
1210 return 0;
1211 }
1212
1213 /*
1214 * Add an Ethernet multicast address or range of addresses to the list for a
1215 * given interface.
1216 */
1217 int
1218 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1219 {
1220 struct ether_multi *enm, *_enm;
1221 u_char addrlo[ETHER_ADDR_LEN];
1222 u_char addrhi[ETHER_ADDR_LEN];
1223 int error = 0;
1224
1225 /* Allocate out of lock */
1226 /* XXX still can be called in softint */
1227 enm = kmem_intr_alloc(sizeof(*enm), KM_SLEEP);
1228 if (enm == NULL)
1229 return ENOBUFS;
1230
1231 ETHER_LOCK(ec);
1232 error = ether_multiaddr(sa, addrlo, addrhi);
1233 if (error != 0)
1234 goto out;
1235
1236 /*
1237 * Verify that we have valid Ethernet multicast addresses.
1238 */
1239 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1240 error = EINVAL;
1241 goto out;
1242 }
1243 /*
1244 * See if the address range is already in the list.
1245 */
1246 ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, _enm);
1247 if (_enm != NULL) {
1248 /*
1249 * Found it; just increment the reference count.
1250 */
1251 ++_enm->enm_refcount;
1252 error = 0;
1253 goto out;
1254 }
1255 /*
1256 * Link a new multicast record into the interface's multicast list.
1257 */
1258 memcpy(enm->enm_addrlo, addrlo, 6);
1259 memcpy(enm->enm_addrhi, addrhi, 6);
1260 enm->enm_refcount = 1;
1261 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1262 ec->ec_multicnt++;
1263 /*
1264 * Return ENETRESET to inform the driver that the list has changed
1265 * and its reception filter should be adjusted accordingly.
1266 */
1267 error = ENETRESET;
1268 enm = NULL;
1269 out:
1270 ETHER_UNLOCK(ec);
1271 if (enm != NULL)
1272 kmem_intr_free(enm, sizeof(*enm));
1273 return error;
1274 }
1275
1276 /*
1277 * Delete a multicast address record.
1278 */
1279 int
1280 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1281 {
1282 struct ether_multi *enm;
1283 u_char addrlo[ETHER_ADDR_LEN];
1284 u_char addrhi[ETHER_ADDR_LEN];
1285 int error;
1286
1287 ETHER_LOCK(ec);
1288 error = ether_multiaddr(sa, addrlo, addrhi);
1289 if (error != 0)
1290 goto error;
1291
1292 /*
1293 * Look ur the address in our list.
1294 */
1295 ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, enm);
1296 if (enm == NULL) {
1297 error = ENXIO;
1298 goto error;
1299 }
1300 if (--enm->enm_refcount != 0) {
1301 /*
1302 * Still some claims to this record.
1303 */
1304 error = 0;
1305 goto error;
1306 }
1307 /*
1308 * No remaining claims to this record; unlink and free it.
1309 */
1310 LIST_REMOVE(enm, enm_list);
1311 ec->ec_multicnt--;
1312 ETHER_UNLOCK(ec);
1313
1314 kmem_intr_free(enm, sizeof(*enm));
1315 /*
1316 * Return ENETRESET to inform the driver that the list has changed
1317 * and its reception filter should be adjusted accordingly.
1318 */
1319 return ENETRESET;
1320 error:
1321 ETHER_UNLOCK(ec);
1322 return error;
1323 }
1324
1325 void
1326 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1327 {
1328 ec->ec_ifflags_cb = cb;
1329 }
1330
1331 /*
1332 * Common ioctls for Ethernet interfaces. Note, we must be
1333 * called at splnet().
1334 */
1335 int
1336 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1337 {
1338 struct ethercom *ec = (void *) ifp;
1339 struct eccapreq *eccr;
1340 struct ifreq *ifr = (struct ifreq *)data;
1341 struct if_laddrreq *iflr = data;
1342 const struct sockaddr_dl *sdl;
1343 static const uint8_t zero[ETHER_ADDR_LEN];
1344 int error;
1345
1346 switch (cmd) {
1347 case SIOCINITIFADDR:
1348 {
1349 struct ifaddr *ifa = (struct ifaddr *)data;
1350 if (ifa->ifa_addr->sa_family != AF_LINK
1351 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1352 (IFF_UP | IFF_RUNNING)) {
1353 ifp->if_flags |= IFF_UP;
1354 if ((error = (*ifp->if_init)(ifp)) != 0)
1355 return error;
1356 }
1357 #ifdef INET
1358 if (ifa->ifa_addr->sa_family == AF_INET)
1359 arp_ifinit(ifp, ifa);
1360 #endif /* INET */
1361 return 0;
1362 }
1363
1364 case SIOCSIFMTU:
1365 {
1366 int maxmtu;
1367
1368 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1369 maxmtu = ETHERMTU_JUMBO;
1370 else
1371 maxmtu = ETHERMTU;
1372
1373 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1374 return EINVAL;
1375 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1376 return error;
1377 else if (ifp->if_flags & IFF_UP) {
1378 /* Make sure the device notices the MTU change. */
1379 return (*ifp->if_init)(ifp);
1380 } else
1381 return 0;
1382 }
1383
1384 case SIOCSIFFLAGS:
1385 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1386 return error;
1387 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1388 case IFF_RUNNING:
1389 /*
1390 * If interface is marked down and it is running,
1391 * then stop and disable it.
1392 */
1393 (*ifp->if_stop)(ifp, 1);
1394 break;
1395 case IFF_UP:
1396 /*
1397 * If interface is marked up and it is stopped, then
1398 * start it.
1399 */
1400 return (*ifp->if_init)(ifp);
1401 case IFF_UP | IFF_RUNNING:
1402 error = 0;
1403 if (ec->ec_ifflags_cb != NULL) {
1404 error = (*ec->ec_ifflags_cb)(ec);
1405 if (error == ENETRESET) {
1406 /*
1407 * Reset the interface to pick up
1408 * changes in any other flags that
1409 * affect the hardware state.
1410 */
1411 return (*ifp->if_init)(ifp);
1412 }
1413 } else
1414 error = (*ifp->if_init)(ifp);
1415 return error;
1416 case 0:
1417 break;
1418 }
1419 return 0;
1420 case SIOCGETHERCAP:
1421 eccr = (struct eccapreq *)data;
1422 eccr->eccr_capabilities = ec->ec_capabilities;
1423 eccr->eccr_capenable = ec->ec_capenable;
1424 return 0;
1425 case SIOCADDMULTI:
1426 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1427 case SIOCDELMULTI:
1428 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1429 case SIOCSIFMEDIA:
1430 case SIOCGIFMEDIA:
1431 if (ec->ec_mii == NULL)
1432 return ENOTTY;
1433 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, cmd);
1434 case SIOCALIFADDR:
1435 sdl = satocsdl(sstocsa(&iflr->addr));
1436 if (sdl->sdl_family != AF_LINK)
1437 ;
1438 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1439 return EINVAL;
1440 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1441 return EINVAL;
1442 /*FALLTHROUGH*/
1443 default:
1444 return ifioctl_common(ifp, cmd, data);
1445 }
1446 return 0;
1447 }
1448
1449 /*
1450 * Enable/disable passing VLAN packets if the parent interface supports it.
1451 * Return:
1452 * 0: Ok
1453 * -1: Parent interface does not support vlans
1454 * >0: Error
1455 */
1456 int
1457 ether_enable_vlan_mtu(struct ifnet *ifp)
1458 {
1459 int error;
1460 struct ethercom *ec = (void *)ifp;
1461
1462 /* Parent does not support VLAN's */
1463 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1464 return -1;
1465
1466 /*
1467 * Parent supports the VLAN_MTU capability,
1468 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1469 * enable it.
1470 */
1471 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1472
1473 /* Interface is down, defer for later */
1474 if ((ifp->if_flags & IFF_UP) == 0)
1475 return 0;
1476
1477 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1478 return 0;
1479
1480 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1481 return error;
1482 }
1483
1484 int
1485 ether_disable_vlan_mtu(struct ifnet *ifp)
1486 {
1487 int error;
1488 struct ethercom *ec = (void *)ifp;
1489
1490 /* We still have VLAN's, defer for later */
1491 if (ec->ec_nvlans != 0)
1492 return 0;
1493
1494 /* Parent does not support VLAB's, nothing to do. */
1495 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1496 return -1;
1497
1498 /*
1499 * Disable Tx/Rx of VLAN-sized frames.
1500 */
1501 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1502
1503 /* Interface is down, defer for later */
1504 if ((ifp->if_flags & IFF_UP) == 0)
1505 return 0;
1506
1507 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1508 return 0;
1509
1510 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1511 return error;
1512 }
1513
1514 static int
1515 ether_multicast_sysctl(SYSCTLFN_ARGS)
1516 {
1517 struct ether_multi *enm;
1518 struct ifnet *ifp;
1519 struct ethercom *ec;
1520 int error = 0;
1521 size_t written;
1522 struct psref psref;
1523 int bound;
1524 unsigned int multicnt;
1525 struct ether_multi_sysctl *addrs;
1526 int i;
1527
1528 if (namelen != 1)
1529 return EINVAL;
1530
1531 bound = curlwp_bind();
1532 ifp = if_get_byindex(name[0], &psref);
1533 if (ifp == NULL) {
1534 error = ENODEV;
1535 goto out;
1536 }
1537 if (ifp->if_type != IFT_ETHER) {
1538 if_put(ifp, &psref);
1539 *oldlenp = 0;
1540 goto out;
1541 }
1542 ec = (struct ethercom *)ifp;
1543
1544 if (oldp == NULL) {
1545 if_put(ifp, &psref);
1546 *oldlenp = ec->ec_multicnt * sizeof(*addrs);
1547 goto out;
1548 }
1549
1550 /*
1551 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1552 * is sleepable, with holding it. Copy data to a local buffer first
1553 * with holding it and then call sysctl_copyout without holding it.
1554 */
1555 retry:
1556 multicnt = ec->ec_multicnt;
1557 addrs = kmem_alloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1558
1559 ETHER_LOCK(ec);
1560 if (multicnt < ec->ec_multicnt) {
1561 /* The number of multicast addresses have increased */
1562 ETHER_UNLOCK(ec);
1563 kmem_free(addrs, sizeof(*addrs) * multicnt);
1564 goto retry;
1565 }
1566
1567 i = 0;
1568 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1569 struct ether_multi_sysctl *addr = &addrs[i];
1570 addr->enm_refcount = enm->enm_refcount;
1571 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1572 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1573 i++;
1574 }
1575 ETHER_UNLOCK(ec);
1576
1577 error = 0;
1578 written = 0;
1579 for (i = 0; i < multicnt; i++) {
1580 struct ether_multi_sysctl *addr = &addrs[i];
1581
1582 if (written + sizeof(*addr) > *oldlenp)
1583 break;
1584 error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1585 if (error)
1586 break;
1587 written += sizeof(*addr);
1588 oldp = (char *)oldp + sizeof(*addr);
1589 }
1590 kmem_free(addrs, sizeof(*addrs) * multicnt);
1591
1592 if_put(ifp, &psref);
1593
1594 *oldlenp = written;
1595 out:
1596 curlwp_bindx(bound);
1597 return error;
1598 }
1599
1600 static void
1601 ether_sysctl_setup(struct sysctllog **clog)
1602 {
1603 const struct sysctlnode *rnode = NULL;
1604
1605 sysctl_createv(clog, 0, NULL, &rnode,
1606 CTLFLAG_PERMANENT,
1607 CTLTYPE_NODE, "ether",
1608 SYSCTL_DESCR("Ethernet-specific information"),
1609 NULL, 0, NULL, 0,
1610 CTL_NET, CTL_CREATE, CTL_EOL);
1611
1612 sysctl_createv(clog, 0, &rnode, NULL,
1613 CTLFLAG_PERMANENT,
1614 CTLTYPE_NODE, "multicast",
1615 SYSCTL_DESCR("multicast addresses"),
1616 ether_multicast_sysctl, 0, NULL, 0,
1617 CTL_CREATE, CTL_EOL);
1618 }
1619
1620 void
1621 etherinit(void)
1622 {
1623
1624 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1625 ether_sysctl_setup(NULL);
1626 }
1627