if_ethersubr.c revision 1.256 1 /* $NetBSD: if_ethersubr.c,v 1.256 2018/01/15 14:00:34 maxv Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.256 2018/01/15 14:00:34 maxv Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/rnd.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92
93 #include <net/if.h>
94 #include <net/netisr.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104
105 #if NARP == 0
106 /*
107 * XXX there should really be a way to issue this warning from within config(8)
108 */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111
112 #include <net/bpf.h>
113
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120
121 #if NAGR > 0
122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144
145
146 #include "carp.h"
147 #if NCARP > 0
148 #include <netinet/ip_carp.h>
149 #endif
150
151 #ifdef NETATALK
152 #include <netatalk/at.h>
153 #include <netatalk/at_var.h>
154 #include <netatalk/at_extern.h>
155
156 #define llc_snap_org_code llc_un.type_snap.org_code
157 #define llc_snap_ether_type llc_un.type_snap.ether_type
158
159 extern u_char at_org_code[3];
160 extern u_char aarp_org_code[3];
161 #endif /* NETATALK */
162
163 #ifdef MPLS
164 #include <netmpls/mpls.h>
165 #include <netmpls/mpls_var.h>
166 #endif
167
168 static struct timeval bigpktppslim_last;
169 static int bigpktppslim = 2; /* XXX */
170 static int bigpktpps_count;
171 static kmutex_t bigpktpps_lock __cacheline_aligned;
172
173
174 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
175 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
176 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
177 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
178 #define senderr(e) { error = (e); goto bad;}
179
180 static int ether_output(struct ifnet *, struct mbuf *,
181 const struct sockaddr *, const struct rtentry *);
182
183 /*
184 * Ethernet output routine.
185 * Encapsulate a packet of type family for the local net.
186 * Assumes that ifp is actually pointer to ethercom structure.
187 */
188 static int
189 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
190 const struct sockaddr * const dst, const struct rtentry *rt)
191 {
192 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
193 uint16_t etype = 0;
194 int error = 0, hdrcmplt = 0;
195 struct mbuf *m = m0;
196 struct mbuf *mcopy = NULL;
197 struct ether_header *eh;
198 struct ifnet *ifp = ifp0;
199 #ifdef INET
200 struct arphdr *ah;
201 #endif /* INET */
202 #ifdef NETATALK
203 struct at_ifaddr *aa;
204 #endif /* NETATALK */
205
206 #ifdef MBUFTRACE
207 m_claimm(m, ifp->if_mowner);
208 #endif
209
210 #if NCARP > 0
211 if (ifp->if_type == IFT_CARP) {
212 struct ifaddr *ifa;
213 int s = pserialize_read_enter();
214
215 /* loop back if this is going to the carp interface */
216 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
217 (ifa = ifa_ifwithaddr(dst)) != NULL) {
218 if (ifa->ifa_ifp == ifp0) {
219 pserialize_read_exit(s);
220 return looutput(ifp0, m, dst, rt);
221 }
222 }
223 pserialize_read_exit(s);
224
225 ifp = ifp->if_carpdev;
226 /* ac = (struct arpcom *)ifp; */
227
228 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
229 (IFF_UP | IFF_RUNNING))
230 senderr(ENETDOWN);
231 }
232 #endif /* NCARP > 0 */
233
234 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
235 senderr(ENETDOWN);
236
237 switch (dst->sa_family) {
238
239 #ifdef INET
240 case AF_INET:
241 if (m->m_flags & M_BCAST)
242 memcpy(edst, etherbroadcastaddr, sizeof(edst));
243 else if (m->m_flags & M_MCAST)
244 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
245 else if ((error = arpresolve(ifp, rt, m, dst, edst,
246 sizeof(edst))) != 0) {
247 return error == EWOULDBLOCK ? 0 : error;
248 }
249 /* If broadcasting on a simplex interface, loopback a copy */
250 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
251 mcopy = m_copy(m, 0, M_COPYALL);
252 etype = htons(ETHERTYPE_IP);
253 break;
254
255 case AF_ARP:
256 ah = mtod(m, struct arphdr *);
257 if (m->m_flags & M_BCAST)
258 memcpy(edst, etherbroadcastaddr, sizeof(edst));
259 else {
260 void *tha = ar_tha(ah);
261
262 if (tha == NULL) {
263 /* fake with ARPHDR_IEEE1394 */
264 m_freem(m);
265 return 0;
266 }
267 memcpy(edst, tha, sizeof(edst));
268 }
269
270 ah->ar_hrd = htons(ARPHRD_ETHER);
271
272 switch (ntohs(ah->ar_op)) {
273 case ARPOP_REVREQUEST:
274 case ARPOP_REVREPLY:
275 etype = htons(ETHERTYPE_REVARP);
276 break;
277
278 case ARPOP_REQUEST:
279 case ARPOP_REPLY:
280 default:
281 etype = htons(ETHERTYPE_ARP);
282 }
283 break;
284 #endif
285
286 #ifdef INET6
287 case AF_INET6:
288 if (m->m_flags & M_BCAST)
289 memcpy(edst, etherbroadcastaddr, sizeof(edst));
290 else if (m->m_flags & M_MCAST) {
291 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
292 edst);
293 } else {
294 error = nd6_resolve(ifp, rt, m, dst, edst,
295 sizeof(edst));
296 if (error != 0)
297 return error == EWOULDBLOCK ? 0 : error;
298 }
299 etype = htons(ETHERTYPE_IPV6);
300 break;
301 #endif
302
303 #ifdef NETATALK
304 case AF_APPLETALK: {
305 struct ifaddr *ifa;
306 int s;
307
308 KERNEL_LOCK(1, NULL);
309
310 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
311 #ifdef NETATALKDEBUG
312 printf("aarpresolv failed\n");
313 #endif
314 KERNEL_UNLOCK_ONE(NULL);
315 return (0);
316 }
317
318 /*
319 * ifaddr is the first thing in at_ifaddr
320 */
321 s = pserialize_read_enter();
322 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
323 if (ifa == NULL) {
324 pserialize_read_exit(s);
325 KERNEL_UNLOCK_ONE(NULL);
326 /* XXX error? */
327 goto bad;
328 }
329 aa = (struct at_ifaddr *)ifa;
330
331 /*
332 * In the phase 2 case, we need to prepend an mbuf for the
333 * llc header. Since we must preserve the value of m,
334 * which is passed to us by value, we m_copy() the first
335 * mbuf, and use it for our llc header.
336 */
337 if (aa->aa_flags & AFA_PHASE2) {
338 struct llc llc;
339
340 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
341 if (m == NULL) {
342 KERNEL_UNLOCK_ONE(NULL);
343 senderr(ENOBUFS);
344 }
345
346 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
347 llc.llc_control = LLC_UI;
348 memcpy(llc.llc_snap_org_code, at_org_code,
349 sizeof(llc.llc_snap_org_code));
350 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
351 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
352 } else {
353 etype = htons(ETHERTYPE_ATALK);
354 }
355 pserialize_read_exit(s);
356 KERNEL_UNLOCK_ONE(NULL);
357 break;
358 }
359 #endif /* NETATALK */
360
361 case pseudo_AF_HDRCMPLT:
362 hdrcmplt = 1;
363 memcpy(esrc,
364 ((const struct ether_header *)dst->sa_data)->ether_shost,
365 sizeof(esrc));
366 /* FALLTHROUGH */
367
368 case AF_UNSPEC:
369 memcpy(edst,
370 ((const struct ether_header *)dst->sa_data)->ether_dhost,
371 sizeof(edst));
372 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
373 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
374 break;
375
376 default:
377 printf("%s: can't handle af%d\n", ifp->if_xname,
378 dst->sa_family);
379 senderr(EAFNOSUPPORT);
380 }
381
382 #ifdef MPLS
383 KERNEL_LOCK(1, NULL);
384 {
385 struct m_tag *mtag;
386 mtag = m_tag_find(m, PACKET_TAG_MPLS, NULL);
387 if (mtag != NULL) {
388 /* Having the tag itself indicates it's MPLS */
389 etype = htons(ETHERTYPE_MPLS);
390 m_tag_delete(m, mtag);
391 }
392 }
393 KERNEL_UNLOCK_ONE(NULL);
394 #endif
395
396 if (mcopy)
397 (void)looutput(ifp, mcopy, dst, rt);
398
399 KASSERT((m->m_flags & M_PKTHDR) != 0);
400
401 /*
402 * If no ether type is set, this must be a 802.2 formatted packet.
403 */
404 if (etype == 0)
405 etype = htons(m->m_pkthdr.len);
406
407 /*
408 * Add local net header. If no space in first mbuf, allocate another.
409 */
410 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
411 if (m == NULL)
412 senderr(ENOBUFS);
413
414 eh = mtod(m, struct ether_header *);
415 /* Note: etype is already in network byte order. */
416 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
417 memcpy(eh->ether_dhost, edst, sizeof(edst));
418 if (hdrcmplt)
419 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
420 else
421 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
422 sizeof(eh->ether_shost));
423
424 #if NCARP > 0
425 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
426 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
427 sizeof(eh->ether_shost));
428 }
429 #endif
430
431 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
432 return (error);
433 if (m == NULL)
434 return (0);
435
436 #if NBRIDGE > 0
437 /*
438 * Bridges require special output handling.
439 */
440 if (ifp->if_bridge)
441 return bridge_output(ifp, m, NULL, NULL);
442 #endif
443
444 #if NCARP > 0
445 if (ifp != ifp0)
446 ifp0->if_obytes += m->m_pkthdr.len + ETHER_HDR_LEN;
447 #endif
448
449 #ifdef ALTQ
450 KERNEL_LOCK(1, NULL);
451 /*
452 * If ALTQ is enabled on the parent interface, do
453 * classification; the queueing discipline might not
454 * require classification, but might require the
455 * address family/header pointer in the pktattr.
456 */
457 if (ALTQ_IS_ENABLED(&ifp->if_snd))
458 altq_etherclassify(&ifp->if_snd, m);
459 KERNEL_UNLOCK_ONE(NULL);
460 #endif
461 return ifq_enqueue(ifp, m);
462
463 bad:
464 if (m)
465 m_freem(m);
466 return (error);
467 }
468
469 #ifdef ALTQ
470 /*
471 * This routine is a slight hack to allow a packet to be classified
472 * if the Ethernet headers are present. It will go away when ALTQ's
473 * classification engine understands link headers.
474 */
475 void
476 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
477 {
478 struct ether_header *eh;
479 struct mbuf *mtop = m;
480 uint16_t ether_type;
481 int hlen, af, hdrsize;
482 void *hdr;
483
484 KASSERT((mtop->m_flags & M_PKTHDR) != 0);
485
486 hlen = ETHER_HDR_LEN;
487 eh = mtod(m, struct ether_header *);
488
489 ether_type = htons(eh->ether_type);
490
491 if (ether_type < ETHERMTU) {
492 /* LLC/SNAP */
493 struct llc *llc = (struct llc *)(eh + 1);
494 hlen += 8;
495
496 if (m->m_len < hlen ||
497 llc->llc_dsap != LLC_SNAP_LSAP ||
498 llc->llc_ssap != LLC_SNAP_LSAP ||
499 llc->llc_control != LLC_UI) {
500 /* Not SNAP. */
501 goto bad;
502 }
503
504 ether_type = htons(llc->llc_un.type_snap.ether_type);
505 }
506
507 switch (ether_type) {
508 case ETHERTYPE_IP:
509 af = AF_INET;
510 hdrsize = 20; /* sizeof(struct ip) */
511 break;
512
513 case ETHERTYPE_IPV6:
514 af = AF_INET6;
515 hdrsize = 40; /* sizeof(struct ip6_hdr) */
516 break;
517
518 default:
519 af = AF_UNSPEC;
520 hdrsize = 0;
521 break;
522 }
523
524 while (m->m_len <= hlen) {
525 hlen -= m->m_len;
526 m = m->m_next;
527 if (m == NULL)
528 goto bad;
529 }
530
531 if (m->m_len < (hlen + hdrsize)) {
532 /*
533 * protocol header not in a single mbuf.
534 * We can't cope with this situation right
535 * now (but it shouldn't ever happen, really, anyhow).
536 */
537 #ifdef DEBUG
538 printf("altq_etherclassify: headers span multiple mbufs: "
539 "%d < %d\n", m->m_len, (hlen + hdrsize));
540 #endif
541 goto bad;
542 }
543
544 m->m_data += hlen;
545 m->m_len -= hlen;
546
547 hdr = mtod(m, void *);
548
549 if (ALTQ_NEEDS_CLASSIFY(ifq)) {
550 mtop->m_pkthdr.pattr_class =
551 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
552 }
553 mtop->m_pkthdr.pattr_af = af;
554 mtop->m_pkthdr.pattr_hdr = hdr;
555
556 m->m_data -= hlen;
557 m->m_len += hlen;
558
559 return;
560
561 bad:
562 mtop->m_pkthdr.pattr_class = NULL;
563 mtop->m_pkthdr.pattr_hdr = NULL;
564 mtop->m_pkthdr.pattr_af = AF_UNSPEC;
565 }
566 #endif /* ALTQ */
567
568 /*
569 * Process a received Ethernet packet;
570 * the packet is in the mbuf chain m with
571 * the ether header.
572 */
573 void
574 ether_input(struct ifnet *ifp, struct mbuf *m)
575 {
576 struct ethercom *ec = (struct ethercom *) ifp;
577 pktqueue_t *pktq = NULL;
578 struct ifqueue *inq = NULL;
579 uint16_t etype;
580 struct ether_header *eh;
581 size_t ehlen;
582 static int earlypkts;
583 int isr = 0;
584 #if defined (LLC) || defined(NETATALK)
585 struct llc *l;
586 #endif
587
588 KASSERT(!cpu_intr_p());
589 KASSERT((m->m_flags & M_PKTHDR) != 0);
590
591 if ((ifp->if_flags & IFF_UP) == 0) {
592 m_freem(m);
593 return;
594 }
595
596 #ifdef MBUFTRACE
597 m_claimm(m, &ec->ec_rx_mowner);
598 #endif
599 eh = mtod(m, struct ether_header *);
600 etype = ntohs(eh->ether_type);
601 ehlen = sizeof(*eh);
602
603 if (__predict_false(earlypkts < 100 || !rnd_initial_entropy)) {
604 rnd_add_data(NULL, eh, ehlen, 0);
605 earlypkts++;
606 }
607
608 /*
609 * Determine if the packet is within its size limits.
610 */
611 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
612 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
613 mutex_enter(&bigpktpps_lock);
614 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
615 bigpktppslim)) {
616 printf("%s: discarding oversize frame (len=%d)\n",
617 ifp->if_xname, m->m_pkthdr.len);
618 }
619 mutex_exit(&bigpktpps_lock);
620 m_freem(m);
621 return;
622 }
623
624 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
625 /*
626 * If this is not a simplex interface, drop the packet
627 * if it came from us.
628 */
629 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
630 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
631 ETHER_ADDR_LEN) == 0) {
632 m_freem(m);
633 return;
634 }
635
636 if (memcmp(etherbroadcastaddr,
637 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
638 m->m_flags |= M_BCAST;
639 else
640 m->m_flags |= M_MCAST;
641 ifp->if_imcasts++;
642 }
643
644 /* If the CRC is still on the packet, trim it off. */
645 if (m->m_flags & M_HASFCS) {
646 m_adj(m, -ETHER_CRC_LEN);
647 m->m_flags &= ~M_HASFCS;
648 }
649
650 ifp->if_ibytes += m->m_pkthdr.len;
651
652 #if NCARP > 0
653 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
654 /*
655 * clear M_PROMISC, in case the packets comes from a
656 * vlan
657 */
658 m->m_flags &= ~M_PROMISC;
659 if (carp_input(m, (uint8_t *)&eh->ether_shost,
660 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
661 return;
662 }
663 #endif
664
665 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
666 (ifp->if_flags & IFF_PROMISC) != 0 &&
667 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
668 ETHER_ADDR_LEN) != 0) {
669 m->m_flags |= M_PROMISC;
670 }
671
672 if ((m->m_flags & M_PROMISC) == 0) {
673 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
674 return;
675 if (m == NULL)
676 return;
677
678 eh = mtod(m, struct ether_header *);
679 etype = ntohs(eh->ether_type);
680 }
681
682 #if NAGR > 0
683 if (ifp->if_agrprivate &&
684 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
685 m->m_flags &= ~M_PROMISC;
686 agr_input(ifp, m);
687 return;
688 }
689 #endif
690
691 /*
692 * If VLANs are configured on the interface, check to
693 * see if the device performed the decapsulation and
694 * provided us with the tag.
695 */
696 if (ec->ec_nvlans && vlan_has_tag(m)) {
697 #if NVLAN > 0
698 /*
699 * vlan_input() will either recursively call ether_input()
700 * or drop the packet.
701 */
702 vlan_input(ifp, m);
703 #else
704 m_freem(m);
705 #endif
706 return;
707 }
708
709 /*
710 * Handle protocols that expect to have the Ethernet header
711 * (and possibly FCS) intact.
712 */
713 switch (etype) {
714 case ETHERTYPE_VLAN: {
715 struct ether_vlan_header *evl = (void *)eh;
716
717 /*
718 * If there is a tag of 0, then the VLAN header was probably
719 * just being used to store the priority. Extract the ether
720 * type, and if IP or IPV6, let them deal with it.
721 */
722 if (m->m_len >= sizeof(*evl) &&
723 EVL_VLANOFTAG(evl->evl_tag) == 0) {
724 etype = ntohs(evl->evl_proto);
725 ehlen = sizeof(*evl);
726 if ((m->m_flags & M_PROMISC) == 0 &&
727 (etype == ETHERTYPE_IP ||
728 etype == ETHERTYPE_IPV6))
729 break;
730 }
731
732 #if NVLAN > 0
733 /*
734 * vlan_input() will either recursively call ether_input()
735 * or drop the packet.
736 */
737 if (ec->ec_nvlans != 0)
738 vlan_input(ifp, m);
739 else
740 #endif
741 m_freem(m);
742
743 return;
744 }
745
746 #if NPPPOE > 0
747 case ETHERTYPE_PPPOEDISC:
748 pppoedisc_input(ifp, m);
749 return;
750
751 case ETHERTYPE_PPPOE:
752 pppoe_input(ifp, m);
753 return;
754 #endif
755
756 case ETHERTYPE_SLOWPROTOCOLS: {
757 uint8_t subtype;
758
759 KASSERTMSG((m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)),
760 "too short slow protocol packet");
761
762 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
763 switch (subtype) {
764 #if NAGR > 0
765 case SLOWPROTOCOLS_SUBTYPE_LACP:
766 if (ifp->if_agrprivate) {
767 ieee8023ad_lacp_input(ifp, m);
768 return;
769 }
770 break;
771
772 case SLOWPROTOCOLS_SUBTYPE_MARKER:
773 if (ifp->if_agrprivate) {
774 ieee8023ad_marker_input(ifp, m);
775 return;
776 }
777 break;
778 #endif /* NAGR > 0 */
779
780 default:
781 if (subtype == 0 || subtype > 10) {
782 /* illegal value */
783 m_freem(m);
784 return;
785 }
786 /* unknown subtype */
787 break;
788 }
789 /* FALLTHROUGH */
790 }
791
792 default:
793 if (m->m_flags & M_PROMISC) {
794 m_freem(m);
795 return;
796 }
797 }
798
799 /* If the CRC is still on the packet, trim it off. */
800 if (m->m_flags & M_HASFCS) {
801 m_adj(m, -ETHER_CRC_LEN);
802 m->m_flags &= ~M_HASFCS;
803 }
804
805 if (etype > ETHERMTU + sizeof(struct ether_header)) {
806 /* Strip off the Ethernet header. */
807 m_adj(m, ehlen);
808
809 switch (etype) {
810 #ifdef INET
811 case ETHERTYPE_IP:
812 #ifdef GATEWAY
813 if (ipflow_fastforward(m))
814 return;
815 #endif
816 pktq = ip_pktq;
817 break;
818
819 case ETHERTYPE_ARP:
820 isr = NETISR_ARP;
821 inq = &arpintrq;
822 break;
823
824 case ETHERTYPE_REVARP:
825 revarpinput(m); /* XXX queue? */
826 return;
827 #endif
828
829 #ifdef INET6
830 case ETHERTYPE_IPV6:
831 if (__predict_false(!in6_present)) {
832 m_freem(m);
833 return;
834 }
835 #ifdef GATEWAY
836 if (ip6flow_fastforward(&m))
837 return;
838 #endif
839 pktq = ip6_pktq;
840 break;
841 #endif
842
843 #ifdef NETATALK
844 case ETHERTYPE_ATALK:
845 isr = NETISR_ATALK;
846 inq = &atintrq1;
847 break;
848
849 case ETHERTYPE_AARP:
850 aarpinput(ifp, m); /* XXX queue? */
851 return;
852 #endif
853
854 #ifdef MPLS
855 case ETHERTYPE_MPLS:
856 isr = NETISR_MPLS;
857 inq = &mplsintrq;
858 break;
859 #endif
860
861 default:
862 m_freem(m);
863 return;
864 }
865 } else {
866 KASSERT(ehlen == sizeof(*eh));
867 #if defined (LLC) || defined (NETATALK)
868 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) {
869 goto dropanyway;
870 }
871 l = (struct llc *)(eh+1);
872
873 switch (l->llc_dsap) {
874 #ifdef NETATALK
875 case LLC_SNAP_LSAP:
876 switch (l->llc_control) {
877 case LLC_UI:
878 if (l->llc_ssap != LLC_SNAP_LSAP) {
879 goto dropanyway;
880 }
881
882 if (memcmp(&(l->llc_snap_org_code)[0],
883 at_org_code, sizeof(at_org_code)) == 0 &&
884 ntohs(l->llc_snap_ether_type) ==
885 ETHERTYPE_ATALK) {
886 inq = &atintrq2;
887 m_adj(m, sizeof(struct ether_header)
888 + sizeof(struct llc));
889 isr = NETISR_ATALK;
890 break;
891 }
892
893 if (memcmp(&(l->llc_snap_org_code)[0],
894 aarp_org_code,
895 sizeof(aarp_org_code)) == 0 &&
896 ntohs(l->llc_snap_ether_type) ==
897 ETHERTYPE_AARP) {
898 m_adj(m, sizeof(struct ether_header)
899 + sizeof(struct llc));
900 aarpinput(ifp, m); /* XXX */
901 return;
902 }
903
904 default:
905 goto dropanyway;
906 }
907 break;
908 #endif
909 dropanyway:
910 default:
911 m_freem(m);
912 return;
913 }
914 #else /* LLC || NETATALK */
915 m_freem(m);
916 return;
917 #endif /* LLC || NETATALK */
918 }
919
920 if (__predict_true(pktq)) {
921 #ifdef NET_MPSAFE
922 const u_int h = curcpu()->ci_index;
923 #else
924 const uint32_t h = pktq_rps_hash(m);
925 #endif
926 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
927 m_freem(m);
928 }
929 return;
930 }
931
932 if (__predict_false(!inq)) {
933 /* Should not happen. */
934 m_freem(m);
935 return;
936 }
937
938 IFQ_LOCK(inq);
939 if (IF_QFULL(inq)) {
940 IF_DROP(inq);
941 IFQ_UNLOCK(inq);
942 m_freem(m);
943 } else {
944 IF_ENQUEUE(inq, m);
945 IFQ_UNLOCK(inq);
946 schednetisr(isr);
947 }
948 }
949
950 /*
951 * Convert Ethernet address to printable (loggable) representation.
952 */
953 char *
954 ether_sprintf(const u_char *ap)
955 {
956 static char etherbuf[3 * ETHER_ADDR_LEN];
957 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
958 }
959
960 char *
961 ether_snprintf(char *buf, size_t len, const u_char *ap)
962 {
963 char *cp = buf;
964 size_t i;
965
966 for (i = 0; i < len / 3; i++) {
967 *cp++ = hexdigits[*ap >> 4];
968 *cp++ = hexdigits[*ap++ & 0xf];
969 *cp++ = ':';
970 }
971 *--cp = '\0';
972 return buf;
973 }
974
975 /*
976 * Perform common duties while attaching to interface list
977 */
978 void
979 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
980 {
981 struct ethercom *ec = (struct ethercom *)ifp;
982
983 ifp->if_type = IFT_ETHER;
984 ifp->if_hdrlen = ETHER_HDR_LEN;
985 ifp->if_dlt = DLT_EN10MB;
986 ifp->if_mtu = ETHERMTU;
987 ifp->if_output = ether_output;
988 ifp->_if_input = ether_input;
989 if (ifp->if_baudrate == 0)
990 ifp->if_baudrate = IF_Mbps(10); /* just a default */
991
992 if (lla != NULL)
993 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
994
995 LIST_INIT(&ec->ec_multiaddrs);
996 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
997 ifp->if_broadcastaddr = etherbroadcastaddr;
998 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
999 #ifdef MBUFTRACE
1000 strlcpy(ec->ec_tx_mowner.mo_name, ifp->if_xname,
1001 sizeof(ec->ec_tx_mowner.mo_name));
1002 strlcpy(ec->ec_tx_mowner.mo_descr, "tx",
1003 sizeof(ec->ec_tx_mowner.mo_descr));
1004 strlcpy(ec->ec_rx_mowner.mo_name, ifp->if_xname,
1005 sizeof(ec->ec_rx_mowner.mo_name));
1006 strlcpy(ec->ec_rx_mowner.mo_descr, "rx",
1007 sizeof(ec->ec_rx_mowner.mo_descr));
1008 MOWNER_ATTACH(&ec->ec_tx_mowner);
1009 MOWNER_ATTACH(&ec->ec_rx_mowner);
1010 ifp->if_mowner = &ec->ec_tx_mowner;
1011 #endif
1012 }
1013
1014 void
1015 ether_ifdetach(struct ifnet *ifp)
1016 {
1017 struct ethercom *ec = (void *) ifp;
1018 struct ether_multi *enm;
1019
1020 /*
1021 * Prevent further calls to ioctl (for example turning off
1022 * promiscuous mode from the bridge code), which eventually can
1023 * call if_init() which can cause panics because the interface
1024 * is in the process of being detached. Return device not configured
1025 * instead.
1026 */
1027 ifp->if_ioctl = (int (*)(struct ifnet *, u_long, void *))enxio;
1028
1029 #if NBRIDGE > 0
1030 if (ifp->if_bridge)
1031 bridge_ifdetach(ifp);
1032 #endif
1033 bpf_detach(ifp);
1034 #if NVLAN > 0
1035 if (ec->ec_nvlans)
1036 vlan_ifdetach(ifp);
1037 #endif
1038
1039 ETHER_LOCK(ec);
1040 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1041 LIST_REMOVE(enm, enm_list);
1042 kmem_free(enm, sizeof(*enm));
1043 ec->ec_multicnt--;
1044 }
1045 ETHER_UNLOCK(ec);
1046
1047 mutex_obj_free(ec->ec_lock);
1048 ec->ec_lock = NULL;
1049
1050 ifp->if_mowner = NULL;
1051 MOWNER_DETACH(&ec->ec_rx_mowner);
1052 MOWNER_DETACH(&ec->ec_tx_mowner);
1053 }
1054
1055 #if 0
1056 /*
1057 * This is for reference. We have a table-driven version
1058 * of the little-endian crc32 generator, which is faster
1059 * than the double-loop.
1060 */
1061 uint32_t
1062 ether_crc32_le(const uint8_t *buf, size_t len)
1063 {
1064 uint32_t c, crc, carry;
1065 size_t i, j;
1066
1067 crc = 0xffffffffU; /* initial value */
1068
1069 for (i = 0; i < len; i++) {
1070 c = buf[i];
1071 for (j = 0; j < 8; j++) {
1072 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1073 crc >>= 1;
1074 c >>= 1;
1075 if (carry)
1076 crc = (crc ^ ETHER_CRC_POLY_LE);
1077 }
1078 }
1079
1080 return (crc);
1081 }
1082 #else
1083 uint32_t
1084 ether_crc32_le(const uint8_t *buf, size_t len)
1085 {
1086 static const uint32_t crctab[] = {
1087 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1088 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1089 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1090 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1091 };
1092 uint32_t crc;
1093 size_t i;
1094
1095 crc = 0xffffffffU; /* initial value */
1096
1097 for (i = 0; i < len; i++) {
1098 crc ^= buf[i];
1099 crc = (crc >> 4) ^ crctab[crc & 0xf];
1100 crc = (crc >> 4) ^ crctab[crc & 0xf];
1101 }
1102
1103 return (crc);
1104 }
1105 #endif
1106
1107 uint32_t
1108 ether_crc32_be(const uint8_t *buf, size_t len)
1109 {
1110 uint32_t c, crc, carry;
1111 size_t i, j;
1112
1113 crc = 0xffffffffU; /* initial value */
1114
1115 for (i = 0; i < len; i++) {
1116 c = buf[i];
1117 for (j = 0; j < 8; j++) {
1118 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1119 crc <<= 1;
1120 c >>= 1;
1121 if (carry)
1122 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1123 }
1124 }
1125
1126 return (crc);
1127 }
1128
1129 #ifdef INET
1130 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1131 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1132 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1133 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1134 #endif
1135 #ifdef INET6
1136 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1137 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1138 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1139 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1140 #endif
1141
1142 /*
1143 * ether_aton implementation, not using a static buffer.
1144 */
1145 int
1146 ether_aton_r(u_char *dest, size_t len, const char *str)
1147 {
1148 const u_char *cp = (const void *)str;
1149 u_char *ep;
1150
1151 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1152
1153 if (len < ETHER_ADDR_LEN)
1154 return ENOSPC;
1155
1156 ep = dest + ETHER_ADDR_LEN;
1157
1158 while (*cp) {
1159 if (!isxdigit(*cp))
1160 return EINVAL;
1161
1162 *dest = atox(*cp);
1163 cp++;
1164 if (isxdigit(*cp)) {
1165 *dest = (*dest << 4) | atox(*cp);
1166 cp++;
1167 }
1168 dest++;
1169
1170 if (dest == ep)
1171 return (*cp == '\0') ? 0 : ENAMETOOLONG;
1172
1173 switch (*cp) {
1174 case ':':
1175 case '-':
1176 case '.':
1177 cp++;
1178 break;
1179 }
1180 }
1181 return ENOBUFS;
1182 }
1183
1184 /*
1185 * Convert a sockaddr into an Ethernet address or range of Ethernet
1186 * addresses.
1187 */
1188 int
1189 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1190 uint8_t addrhi[ETHER_ADDR_LEN])
1191 {
1192 #ifdef INET
1193 const struct sockaddr_in *sin;
1194 #endif /* INET */
1195 #ifdef INET6
1196 const struct sockaddr_in6 *sin6;
1197 #endif /* INET6 */
1198
1199 switch (sa->sa_family) {
1200
1201 case AF_UNSPEC:
1202 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1203 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1204 break;
1205
1206 #ifdef INET
1207 case AF_INET:
1208 sin = satocsin(sa);
1209 if (sin->sin_addr.s_addr == INADDR_ANY) {
1210 /*
1211 * An IP address of INADDR_ANY means listen to
1212 * or stop listening to all of the Ethernet
1213 * multicast addresses used for IP.
1214 * (This is for the sake of IP multicast routers.)
1215 */
1216 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1217 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1218 } else {
1219 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1220 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1221 }
1222 break;
1223 #endif
1224 #ifdef INET6
1225 case AF_INET6:
1226 sin6 = satocsin6(sa);
1227 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1228 /*
1229 * An IP6 address of 0 means listen to or stop
1230 * listening to all of the Ethernet multicast
1231 * address used for IP6.
1232 * (This is used for multicast routers.)
1233 */
1234 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1235 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1236 } else {
1237 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1238 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1239 }
1240 break;
1241 #endif
1242
1243 default:
1244 return EAFNOSUPPORT;
1245 }
1246 return 0;
1247 }
1248
1249 /*
1250 * Add an Ethernet multicast address or range of addresses to the list for a
1251 * given interface.
1252 */
1253 int
1254 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1255 {
1256 struct ether_multi *enm, *_enm;
1257 u_char addrlo[ETHER_ADDR_LEN];
1258 u_char addrhi[ETHER_ADDR_LEN];
1259 int error = 0;
1260
1261 /* Allocate out of lock */
1262 enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1263
1264 ETHER_LOCK(ec);
1265 error = ether_multiaddr(sa, addrlo, addrhi);
1266 if (error != 0)
1267 goto out;
1268
1269 /*
1270 * Verify that we have valid Ethernet multicast addresses.
1271 */
1272 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1273 error = EINVAL;
1274 goto out;
1275 }
1276
1277 /*
1278 * See if the address range is already in the list.
1279 */
1280 ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, _enm);
1281 if (_enm != NULL) {
1282 /*
1283 * Found it; just increment the reference count.
1284 */
1285 ++_enm->enm_refcount;
1286 error = 0;
1287 goto out;
1288 }
1289
1290 /*
1291 * Link a new multicast record into the interface's multicast list.
1292 */
1293 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1294 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1295 enm->enm_refcount = 1;
1296 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1297 ec->ec_multicnt++;
1298
1299 /*
1300 * Return ENETRESET to inform the driver that the list has changed
1301 * and its reception filter should be adjusted accordingly.
1302 */
1303 error = ENETRESET;
1304 enm = NULL;
1305
1306 out:
1307 ETHER_UNLOCK(ec);
1308 if (enm != NULL)
1309 kmem_free(enm, sizeof(*enm));
1310 return error;
1311 }
1312
1313 /*
1314 * Delete a multicast address record.
1315 */
1316 int
1317 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1318 {
1319 struct ether_multi *enm;
1320 u_char addrlo[ETHER_ADDR_LEN];
1321 u_char addrhi[ETHER_ADDR_LEN];
1322 int error;
1323
1324 ETHER_LOCK(ec);
1325 error = ether_multiaddr(sa, addrlo, addrhi);
1326 if (error != 0)
1327 goto error;
1328
1329 /*
1330 * Look up the address in our list.
1331 */
1332 ETHER_LOOKUP_MULTI(addrlo, addrhi, ec, enm);
1333 if (enm == NULL) {
1334 error = ENXIO;
1335 goto error;
1336 }
1337 if (--enm->enm_refcount != 0) {
1338 /*
1339 * Still some claims to this record.
1340 */
1341 error = 0;
1342 goto error;
1343 }
1344
1345 /*
1346 * No remaining claims to this record; unlink and free it.
1347 */
1348 LIST_REMOVE(enm, enm_list);
1349 ec->ec_multicnt--;
1350 ETHER_UNLOCK(ec);
1351 kmem_free(enm, sizeof(*enm));
1352
1353 /*
1354 * Return ENETRESET to inform the driver that the list has changed
1355 * and its reception filter should be adjusted accordingly.
1356 */
1357 return ENETRESET;
1358
1359 error:
1360 ETHER_UNLOCK(ec);
1361 return error;
1362 }
1363
1364 void
1365 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1366 {
1367 ec->ec_ifflags_cb = cb;
1368 }
1369
1370 /*
1371 * Common ioctls for Ethernet interfaces. Note, we must be
1372 * called at splnet().
1373 */
1374 int
1375 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1376 {
1377 struct ethercom *ec = (void *) ifp;
1378 struct eccapreq *eccr;
1379 struct ifreq *ifr = (struct ifreq *)data;
1380 struct if_laddrreq *iflr = data;
1381 const struct sockaddr_dl *sdl;
1382 static const uint8_t zero[ETHER_ADDR_LEN];
1383 int error;
1384
1385 switch (cmd) {
1386 case SIOCINITIFADDR:
1387 {
1388 struct ifaddr *ifa = (struct ifaddr *)data;
1389 if (ifa->ifa_addr->sa_family != AF_LINK
1390 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1391 (IFF_UP | IFF_RUNNING)) {
1392 ifp->if_flags |= IFF_UP;
1393 if ((error = (*ifp->if_init)(ifp)) != 0)
1394 return error;
1395 }
1396 #ifdef INET
1397 if (ifa->ifa_addr->sa_family == AF_INET)
1398 arp_ifinit(ifp, ifa);
1399 #endif
1400 return 0;
1401 }
1402
1403 case SIOCSIFMTU:
1404 {
1405 int maxmtu;
1406
1407 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1408 maxmtu = ETHERMTU_JUMBO;
1409 else
1410 maxmtu = ETHERMTU;
1411
1412 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1413 return EINVAL;
1414 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1415 return error;
1416 else if (ifp->if_flags & IFF_UP) {
1417 /* Make sure the device notices the MTU change. */
1418 return (*ifp->if_init)(ifp);
1419 } else
1420 return 0;
1421 }
1422
1423 case SIOCSIFFLAGS:
1424 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1425 return error;
1426 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1427 case IFF_RUNNING:
1428 /*
1429 * If interface is marked down and it is running,
1430 * then stop and disable it.
1431 */
1432 (*ifp->if_stop)(ifp, 1);
1433 break;
1434 case IFF_UP:
1435 /*
1436 * If interface is marked up and it is stopped, then
1437 * start it.
1438 */
1439 return (*ifp->if_init)(ifp);
1440 case IFF_UP | IFF_RUNNING:
1441 error = 0;
1442 if (ec->ec_ifflags_cb != NULL) {
1443 error = (*ec->ec_ifflags_cb)(ec);
1444 if (error == ENETRESET) {
1445 /*
1446 * Reset the interface to pick up
1447 * changes in any other flags that
1448 * affect the hardware state.
1449 */
1450 return (*ifp->if_init)(ifp);
1451 }
1452 } else
1453 error = (*ifp->if_init)(ifp);
1454 return error;
1455 case 0:
1456 break;
1457 }
1458 return 0;
1459 case SIOCGETHERCAP:
1460 eccr = (struct eccapreq *)data;
1461 eccr->eccr_capabilities = ec->ec_capabilities;
1462 eccr->eccr_capenable = ec->ec_capenable;
1463 return 0;
1464 case SIOCADDMULTI:
1465 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1466 case SIOCDELMULTI:
1467 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1468 case SIOCSIFMEDIA:
1469 case SIOCGIFMEDIA:
1470 if (ec->ec_mii == NULL)
1471 return ENOTTY;
1472 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, cmd);
1473 case SIOCALIFADDR:
1474 sdl = satocsdl(sstocsa(&iflr->addr));
1475 if (sdl->sdl_family != AF_LINK)
1476 ;
1477 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1478 return EINVAL;
1479 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1480 return EINVAL;
1481 /*FALLTHROUGH*/
1482 default:
1483 return ifioctl_common(ifp, cmd, data);
1484 }
1485 return 0;
1486 }
1487
1488 /*
1489 * Enable/disable passing VLAN packets if the parent interface supports it.
1490 * Return:
1491 * 0: Ok
1492 * -1: Parent interface does not support vlans
1493 * >0: Error
1494 */
1495 int
1496 ether_enable_vlan_mtu(struct ifnet *ifp)
1497 {
1498 int error;
1499 struct ethercom *ec = (void *)ifp;
1500
1501 /* Parent does not support VLAN's */
1502 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1503 return -1;
1504
1505 /*
1506 * Parent supports the VLAN_MTU capability,
1507 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1508 * enable it.
1509 */
1510 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1511
1512 /* Interface is down, defer for later */
1513 if ((ifp->if_flags & IFF_UP) == 0)
1514 return 0;
1515
1516 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1517 return 0;
1518
1519 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1520 return error;
1521 }
1522
1523 int
1524 ether_disable_vlan_mtu(struct ifnet *ifp)
1525 {
1526 int error;
1527 struct ethercom *ec = (void *)ifp;
1528
1529 /* We still have VLAN's, defer for later */
1530 if (ec->ec_nvlans != 0)
1531 return 0;
1532
1533 /* Parent does not support VLAB's, nothing to do. */
1534 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1535 return -1;
1536
1537 /*
1538 * Disable Tx/Rx of VLAN-sized frames.
1539 */
1540 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1541
1542 /* Interface is down, defer for later */
1543 if ((ifp->if_flags & IFF_UP) == 0)
1544 return 0;
1545
1546 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1547 return 0;
1548
1549 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1550 return error;
1551 }
1552
1553 static int
1554 ether_multicast_sysctl(SYSCTLFN_ARGS)
1555 {
1556 struct ether_multi *enm;
1557 struct ifnet *ifp;
1558 struct ethercom *ec;
1559 int error = 0;
1560 size_t written;
1561 struct psref psref;
1562 int bound;
1563 unsigned int multicnt;
1564 struct ether_multi_sysctl *addrs;
1565 int i;
1566
1567 if (namelen != 1)
1568 return EINVAL;
1569
1570 bound = curlwp_bind();
1571 ifp = if_get_byindex(name[0], &psref);
1572 if (ifp == NULL) {
1573 error = ENODEV;
1574 goto out;
1575 }
1576 if (ifp->if_type != IFT_ETHER) {
1577 if_put(ifp, &psref);
1578 *oldlenp = 0;
1579 goto out;
1580 }
1581 ec = (struct ethercom *)ifp;
1582
1583 if (oldp == NULL) {
1584 if_put(ifp, &psref);
1585 *oldlenp = ec->ec_multicnt * sizeof(*addrs);
1586 goto out;
1587 }
1588
1589 /*
1590 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1591 * is sleepable, while holding it. Copy data to a local buffer first
1592 * with the lock taken and then call sysctl_copyout without holding it.
1593 */
1594 retry:
1595 multicnt = ec->ec_multicnt;
1596
1597 if (multicnt == 0) {
1598 if_put(ifp, &psref);
1599 *oldlenp = 0;
1600 goto out;
1601 }
1602
1603 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1604
1605 ETHER_LOCK(ec);
1606 if (multicnt != ec->ec_multicnt) {
1607 /* The number of multicast addresses has changed */
1608 ETHER_UNLOCK(ec);
1609 kmem_free(addrs, sizeof(*addrs) * multicnt);
1610 goto retry;
1611 }
1612
1613 i = 0;
1614 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1615 struct ether_multi_sysctl *addr = &addrs[i];
1616 addr->enm_refcount = enm->enm_refcount;
1617 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1618 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1619 i++;
1620 }
1621 ETHER_UNLOCK(ec);
1622
1623 error = 0;
1624 written = 0;
1625 for (i = 0; i < multicnt; i++) {
1626 struct ether_multi_sysctl *addr = &addrs[i];
1627
1628 if (written + sizeof(*addr) > *oldlenp)
1629 break;
1630 error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1631 if (error)
1632 break;
1633 written += sizeof(*addr);
1634 oldp = (char *)oldp + sizeof(*addr);
1635 }
1636 kmem_free(addrs, sizeof(*addrs) * multicnt);
1637
1638 if_put(ifp, &psref);
1639
1640 *oldlenp = written;
1641 out:
1642 curlwp_bindx(bound);
1643 return error;
1644 }
1645
1646 static void
1647 ether_sysctl_setup(struct sysctllog **clog)
1648 {
1649 const struct sysctlnode *rnode = NULL;
1650
1651 sysctl_createv(clog, 0, NULL, &rnode,
1652 CTLFLAG_PERMANENT,
1653 CTLTYPE_NODE, "ether",
1654 SYSCTL_DESCR("Ethernet-specific information"),
1655 NULL, 0, NULL, 0,
1656 CTL_NET, CTL_CREATE, CTL_EOL);
1657
1658 sysctl_createv(clog, 0, &rnode, NULL,
1659 CTLFLAG_PERMANENT,
1660 CTLTYPE_NODE, "multicast",
1661 SYSCTL_DESCR("multicast addresses"),
1662 ether_multicast_sysctl, 0, NULL, 0,
1663 CTL_CREATE, CTL_EOL);
1664 }
1665
1666 void
1667 etherinit(void)
1668 {
1669
1670 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1671 ether_sysctl_setup(NULL);
1672 }
1673