if_ethersubr.c revision 1.272 1 /* $NetBSD: if_ethersubr.c,v 1.272 2018/12/21 08:58:08 msaitoh Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.272 2018/12/21 08:58:08 msaitoh Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/rnd.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92
93 #include <net/if.h>
94 #include <net/netisr.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104
105 #if NARP == 0
106 /*
107 * XXX there should really be a way to issue this warning from within config(8)
108 */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111
112 #include <net/bpf.h>
113
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120
121 #if NAGR > 0
122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144
145 #include "carp.h"
146 #if NCARP > 0
147 #include <netinet/ip_carp.h>
148 #endif
149
150 #ifdef NETATALK
151 #include <netatalk/at.h>
152 #include <netatalk/at_var.h>
153 #include <netatalk/at_extern.h>
154
155 #define llc_snap_org_code llc_un.type_snap.org_code
156 #define llc_snap_ether_type llc_un.type_snap.ether_type
157
158 extern u_char at_org_code[3];
159 extern u_char aarp_org_code[3];
160 #endif /* NETATALK */
161
162 #ifdef MPLS
163 #include <netmpls/mpls.h>
164 #include <netmpls/mpls_var.h>
165 #endif
166
167 static struct timeval bigpktppslim_last;
168 static int bigpktppslim = 2; /* XXX */
169 static int bigpktpps_count;
170 static kmutex_t bigpktpps_lock __cacheline_aligned;
171
172 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
173 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
174 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
175 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
176 #define senderr(e) { error = (e); goto bad;}
177
178 static int ether_output(struct ifnet *, struct mbuf *,
179 const struct sockaddr *, const struct rtentry *);
180
181 /*
182 * Ethernet output routine.
183 * Encapsulate a packet of type family for the local net.
184 * Assumes that ifp is actually pointer to ethercom structure.
185 */
186 static int
187 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
188 const struct sockaddr * const dst, const struct rtentry *rt)
189 {
190 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
191 uint16_t etype = 0;
192 int error = 0, hdrcmplt = 0;
193 struct mbuf *m = m0;
194 struct mbuf *mcopy = NULL;
195 struct ether_header *eh;
196 struct ifnet *ifp = ifp0;
197 #ifdef INET
198 struct arphdr *ah;
199 #endif
200 #ifdef NETATALK
201 struct at_ifaddr *aa;
202 #endif
203
204 #ifdef MBUFTRACE
205 m_claimm(m, ifp->if_mowner);
206 #endif
207
208 #if NCARP > 0
209 if (ifp->if_type == IFT_CARP) {
210 struct ifaddr *ifa;
211 int s = pserialize_read_enter();
212
213 /* loop back if this is going to the carp interface */
214 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
215 (ifa = ifa_ifwithaddr(dst)) != NULL) {
216 if (ifa->ifa_ifp == ifp0) {
217 pserialize_read_exit(s);
218 return looutput(ifp0, m, dst, rt);
219 }
220 }
221 pserialize_read_exit(s);
222
223 ifp = ifp->if_carpdev;
224 /* ac = (struct arpcom *)ifp; */
225
226 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
227 (IFF_UP | IFF_RUNNING))
228 senderr(ENETDOWN);
229 }
230 #endif
231
232 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
233 senderr(ENETDOWN);
234
235 switch (dst->sa_family) {
236
237 #ifdef INET
238 case AF_INET:
239 if (m->m_flags & M_BCAST) {
240 memcpy(edst, etherbroadcastaddr, sizeof(edst));
241 } else if (m->m_flags & M_MCAST) {
242 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
243 } else {
244 error = arpresolve(ifp, rt, m, dst, edst, sizeof(edst));
245 if (error)
246 return (error == EWOULDBLOCK) ? 0 : error;
247 }
248 /* If broadcasting on a simplex interface, loopback a copy */
249 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
250 mcopy = m_copypacket(m, M_DONTWAIT);
251 etype = htons(ETHERTYPE_IP);
252 break;
253
254 case AF_ARP:
255 ah = mtod(m, struct arphdr *);
256 if (m->m_flags & M_BCAST) {
257 memcpy(edst, etherbroadcastaddr, sizeof(edst));
258 } else {
259 void *tha = ar_tha(ah);
260
261 if (tha == NULL) {
262 /* fake with ARPHRD_IEEE1394 */
263 m_freem(m);
264 return 0;
265 }
266 memcpy(edst, tha, sizeof(edst));
267 }
268
269 ah->ar_hrd = htons(ARPHRD_ETHER);
270
271 switch (ntohs(ah->ar_op)) {
272 case ARPOP_REVREQUEST:
273 case ARPOP_REVREPLY:
274 etype = htons(ETHERTYPE_REVARP);
275 break;
276
277 case ARPOP_REQUEST:
278 case ARPOP_REPLY:
279 default:
280 etype = htons(ETHERTYPE_ARP);
281 }
282 break;
283 #endif
284
285 #ifdef INET6
286 case AF_INET6:
287 if (m->m_flags & M_BCAST) {
288 memcpy(edst, etherbroadcastaddr, sizeof(edst));
289 } else if (m->m_flags & M_MCAST) {
290 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
291 edst);
292 } else {
293 error = nd6_resolve(ifp, rt, m, dst, edst,
294 sizeof(edst));
295 if (error)
296 return (error == EWOULDBLOCK) ? 0 : error;
297 }
298 etype = htons(ETHERTYPE_IPV6);
299 break;
300 #endif
301
302 #ifdef NETATALK
303 case AF_APPLETALK: {
304 struct ifaddr *ifa;
305 int s;
306
307 KERNEL_LOCK(1, NULL);
308
309 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
310 KERNEL_UNLOCK_ONE(NULL);
311 return 0;
312 }
313
314 /*
315 * ifaddr is the first thing in at_ifaddr
316 */
317 s = pserialize_read_enter();
318 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
319 if (ifa == NULL) {
320 pserialize_read_exit(s);
321 KERNEL_UNLOCK_ONE(NULL);
322 senderr(EADDRNOTAVAIL);
323 }
324 aa = (struct at_ifaddr *)ifa;
325
326 /*
327 * In the phase 2 case, we need to prepend an mbuf for the
328 * llc header.
329 */
330 if (aa->aa_flags & AFA_PHASE2) {
331 struct llc llc;
332
333 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
334 if (m == NULL) {
335 pserialize_read_exit(s);
336 KERNEL_UNLOCK_ONE(NULL);
337 senderr(ENOBUFS);
338 }
339
340 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
341 llc.llc_control = LLC_UI;
342 memcpy(llc.llc_snap_org_code, at_org_code,
343 sizeof(llc.llc_snap_org_code));
344 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
345 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
346 } else {
347 etype = htons(ETHERTYPE_ATALK);
348 }
349 pserialize_read_exit(s);
350 KERNEL_UNLOCK_ONE(NULL);
351 break;
352 }
353 #endif /* NETATALK */
354
355 case pseudo_AF_HDRCMPLT:
356 hdrcmplt = 1;
357 memcpy(esrc,
358 ((const struct ether_header *)dst->sa_data)->ether_shost,
359 sizeof(esrc));
360 /* FALLTHROUGH */
361
362 case AF_UNSPEC:
363 memcpy(edst,
364 ((const struct ether_header *)dst->sa_data)->ether_dhost,
365 sizeof(edst));
366 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
367 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
368 break;
369
370 default:
371 printf("%s: can't handle af%d\n", ifp->if_xname,
372 dst->sa_family);
373 senderr(EAFNOSUPPORT);
374 }
375
376 #ifdef MPLS
377 {
378 struct m_tag *mtag;
379 mtag = m_tag_find(m, PACKET_TAG_MPLS);
380 if (mtag != NULL) {
381 /* Having the tag itself indicates it's MPLS */
382 etype = htons(ETHERTYPE_MPLS);
383 m_tag_delete(m, mtag);
384 }
385 }
386 #endif
387
388 if (mcopy)
389 (void)looutput(ifp, mcopy, dst, rt);
390
391 KASSERT((m->m_flags & M_PKTHDR) != 0);
392
393 /*
394 * If no ether type is set, this must be a 802.2 formatted packet.
395 */
396 if (etype == 0)
397 etype = htons(m->m_pkthdr.len);
398
399 /*
400 * Add local net header. If no space in first mbuf, allocate another.
401 */
402 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
403 if (m == NULL)
404 senderr(ENOBUFS);
405
406 eh = mtod(m, struct ether_header *);
407 /* Note: etype is already in network byte order. */
408 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
409 memcpy(eh->ether_dhost, edst, sizeof(edst));
410 if (hdrcmplt) {
411 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
412 } else {
413 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
414 sizeof(eh->ether_shost));
415 }
416
417 #if NCARP > 0
418 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
419 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
420 sizeof(eh->ether_shost));
421 }
422 #endif
423
424 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
425 return error;
426 if (m == NULL)
427 return 0;
428
429 #if NBRIDGE > 0
430 /*
431 * Bridges require special output handling.
432 */
433 if (ifp->if_bridge)
434 return bridge_output(ifp, m, NULL, NULL);
435 #endif
436
437 #if NCARP > 0
438 if (ifp != ifp0)
439 ifp0->if_obytes += m->m_pkthdr.len + ETHER_HDR_LEN;
440 #endif
441
442 #ifdef ALTQ
443 KERNEL_LOCK(1, NULL);
444 /*
445 * If ALTQ is enabled on the parent interface, do
446 * classification; the queueing discipline might not
447 * require classification, but might require the
448 * address family/header pointer in the pktattr.
449 */
450 if (ALTQ_IS_ENABLED(&ifp->if_snd))
451 altq_etherclassify(&ifp->if_snd, m);
452 KERNEL_UNLOCK_ONE(NULL);
453 #endif
454 return ifq_enqueue(ifp, m);
455
456 bad:
457 if (m)
458 m_freem(m);
459 return error;
460 }
461
462 #ifdef ALTQ
463 /*
464 * This routine is a slight hack to allow a packet to be classified
465 * if the Ethernet headers are present. It will go away when ALTQ's
466 * classification engine understands link headers.
467 *
468 * XXX: We may need to do m_pullups here. First to ensure struct ether_header
469 * is indeed contiguous, then to read the LLC and so on.
470 */
471 void
472 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
473 {
474 struct ether_header *eh;
475 struct mbuf *mtop = m;
476 uint16_t ether_type;
477 int hlen, af, hdrsize;
478 void *hdr;
479
480 KASSERT((mtop->m_flags & M_PKTHDR) != 0);
481
482 hlen = ETHER_HDR_LEN;
483 eh = mtod(m, struct ether_header *);
484
485 ether_type = htons(eh->ether_type);
486
487 if (ether_type < ETHERMTU) {
488 /* LLC/SNAP */
489 struct llc *llc = (struct llc *)(eh + 1);
490 hlen += 8;
491
492 if (m->m_len < hlen ||
493 llc->llc_dsap != LLC_SNAP_LSAP ||
494 llc->llc_ssap != LLC_SNAP_LSAP ||
495 llc->llc_control != LLC_UI) {
496 /* Not SNAP. */
497 goto bad;
498 }
499
500 ether_type = htons(llc->llc_un.type_snap.ether_type);
501 }
502
503 switch (ether_type) {
504 case ETHERTYPE_IP:
505 af = AF_INET;
506 hdrsize = 20; /* sizeof(struct ip) */
507 break;
508
509 case ETHERTYPE_IPV6:
510 af = AF_INET6;
511 hdrsize = 40; /* sizeof(struct ip6_hdr) */
512 break;
513
514 default:
515 af = AF_UNSPEC;
516 hdrsize = 0;
517 break;
518 }
519
520 while (m->m_len <= hlen) {
521 hlen -= m->m_len;
522 m = m->m_next;
523 if (m == NULL)
524 goto bad;
525 }
526
527 if (m->m_len < (hlen + hdrsize)) {
528 /*
529 * protocol header not in a single mbuf.
530 * We can't cope with this situation right
531 * now (but it shouldn't ever happen, really, anyhow).
532 */
533 #ifdef DEBUG
534 printf("altq_etherclassify: headers span multiple mbufs: "
535 "%d < %d\n", m->m_len, (hlen + hdrsize));
536 #endif
537 goto bad;
538 }
539
540 m->m_data += hlen;
541 m->m_len -= hlen;
542
543 hdr = mtod(m, void *);
544
545 if (ALTQ_NEEDS_CLASSIFY(ifq)) {
546 mtop->m_pkthdr.pattr_class =
547 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
548 }
549 mtop->m_pkthdr.pattr_af = af;
550 mtop->m_pkthdr.pattr_hdr = hdr;
551
552 m->m_data -= hlen;
553 m->m_len += hlen;
554
555 return;
556
557 bad:
558 mtop->m_pkthdr.pattr_class = NULL;
559 mtop->m_pkthdr.pattr_hdr = NULL;
560 mtop->m_pkthdr.pattr_af = AF_UNSPEC;
561 }
562 #endif /* ALTQ */
563
564 /*
565 * Process a received Ethernet packet;
566 * the packet is in the mbuf chain m with
567 * the ether header.
568 */
569 void
570 ether_input(struct ifnet *ifp, struct mbuf *m)
571 {
572 struct ethercom *ec = (struct ethercom *) ifp;
573 pktqueue_t *pktq = NULL;
574 struct ifqueue *inq = NULL;
575 uint16_t etype;
576 struct ether_header *eh;
577 size_t ehlen;
578 static int earlypkts;
579 int isr = 0;
580 #if defined (LLC) || defined(NETATALK)
581 struct llc *l;
582 #endif
583
584 KASSERT(!cpu_intr_p());
585 KASSERT((m->m_flags & M_PKTHDR) != 0);
586
587 if ((ifp->if_flags & IFF_UP) == 0) {
588 m_freem(m);
589 return;
590 }
591 if (m->m_len < sizeof(*eh)) {
592 m = m_pullup(m, sizeof(*eh));
593 if (m == NULL)
594 return;
595 }
596
597 #ifdef MBUFTRACE
598 m_claimm(m, &ec->ec_rx_mowner);
599 #endif
600 eh = mtod(m, struct ether_header *);
601 etype = ntohs(eh->ether_type);
602 ehlen = sizeof(*eh);
603
604 if (__predict_false(earlypkts < 100 || !rnd_initial_entropy)) {
605 rnd_add_data(NULL, eh, ehlen, 0);
606 earlypkts++;
607 }
608
609 /*
610 * Determine if the packet is within its size limits. For MPLS the
611 * header length is variable, so we skip the check.
612 */
613 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
614 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
615 mutex_enter(&bigpktpps_lock);
616 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
617 bigpktppslim)) {
618 printf("%s: discarding oversize frame (len=%d)\n",
619 ifp->if_xname, m->m_pkthdr.len);
620 }
621 mutex_exit(&bigpktpps_lock);
622 m_freem(m);
623 return;
624 }
625
626 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
627 /*
628 * If this is not a simplex interface, drop the packet
629 * if it came from us.
630 */
631 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
632 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
633 ETHER_ADDR_LEN) == 0) {
634 m_freem(m);
635 return;
636 }
637
638 if (memcmp(etherbroadcastaddr,
639 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
640 m->m_flags |= M_BCAST;
641 else
642 m->m_flags |= M_MCAST;
643 ifp->if_imcasts++;
644 }
645
646 /* If the CRC is still on the packet, trim it off. */
647 if (m->m_flags & M_HASFCS) {
648 m_adj(m, -ETHER_CRC_LEN);
649 m->m_flags &= ~M_HASFCS;
650 }
651
652 ifp->if_ibytes += m->m_pkthdr.len;
653
654 #if NCARP > 0
655 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
656 /*
657 * Clear M_PROMISC, in case the packet comes from a
658 * vlan.
659 */
660 m->m_flags &= ~M_PROMISC;
661 if (carp_input(m, (uint8_t *)&eh->ether_shost,
662 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
663 return;
664 }
665 #endif
666
667 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
668 (ifp->if_flags & IFF_PROMISC) != 0 &&
669 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
670 ETHER_ADDR_LEN) != 0) {
671 m->m_flags |= M_PROMISC;
672 }
673
674 if ((m->m_flags & M_PROMISC) == 0) {
675 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
676 return;
677 if (m == NULL)
678 return;
679
680 eh = mtod(m, struct ether_header *);
681 etype = ntohs(eh->ether_type);
682 }
683
684 #if NAGR > 0
685 if (ifp->if_agrprivate &&
686 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
687 m->m_flags &= ~M_PROMISC;
688 agr_input(ifp, m);
689 return;
690 }
691 #endif
692
693 /*
694 * If VLANs are configured on the interface, check to
695 * see if the device performed the decapsulation and
696 * provided us with the tag.
697 */
698 if (ec->ec_nvlans && vlan_has_tag(m)) {
699 #if NVLAN > 0
700 /*
701 * vlan_input() will either recursively call ether_input()
702 * or drop the packet.
703 */
704 vlan_input(ifp, m);
705 #else
706 m_freem(m);
707 #endif
708 return;
709 }
710
711 /*
712 * Handle protocols that expect to have the Ethernet header
713 * (and possibly FCS) intact.
714 */
715 switch (etype) {
716 case ETHERTYPE_VLAN: {
717 struct ether_vlan_header *evl = (void *)eh;
718
719 /*
720 * If there is a tag of 0, then the VLAN header was probably
721 * just being used to store the priority. Extract the ether
722 * type, and if IP or IPV6, let them deal with it.
723 */
724 if (m->m_len >= sizeof(*evl) &&
725 EVL_VLANOFTAG(evl->evl_tag) == 0) {
726 etype = ntohs(evl->evl_proto);
727 ehlen = sizeof(*evl);
728 if ((m->m_flags & M_PROMISC) == 0 &&
729 (etype == ETHERTYPE_IP ||
730 etype == ETHERTYPE_IPV6))
731 break;
732 }
733
734 #if NVLAN > 0
735 /*
736 * vlan_input() will either recursively call ether_input()
737 * or drop the packet.
738 */
739 if (ec->ec_nvlans != 0)
740 vlan_input(ifp, m);
741 else
742 #endif
743 m_freem(m);
744
745 return;
746 }
747
748 #if NPPPOE > 0
749 case ETHERTYPE_PPPOEDISC:
750 pppoedisc_input(ifp, m);
751 return;
752
753 case ETHERTYPE_PPPOE:
754 pppoe_input(ifp, m);
755 return;
756 #endif
757
758 case ETHERTYPE_SLOWPROTOCOLS: {
759 uint8_t subtype;
760
761 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) {
762 m_freem(m);
763 return;
764 }
765
766 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
767 switch (subtype) {
768 #if NAGR > 0
769 case SLOWPROTOCOLS_SUBTYPE_LACP:
770 if (ifp->if_agrprivate) {
771 ieee8023ad_lacp_input(ifp, m);
772 return;
773 }
774 break;
775
776 case SLOWPROTOCOLS_SUBTYPE_MARKER:
777 if (ifp->if_agrprivate) {
778 ieee8023ad_marker_input(ifp, m);
779 return;
780 }
781 break;
782 #endif
783
784 default:
785 if (subtype == 0 || subtype > 10) {
786 /* illegal value */
787 m_freem(m);
788 return;
789 }
790 /* unknown subtype */
791 break;
792 }
793 /* FALLTHROUGH */
794 }
795
796 default:
797 if (m->m_flags & M_PROMISC) {
798 m_freem(m);
799 return;
800 }
801 }
802
803 /* If the CRC is still on the packet, trim it off. */
804 if (m->m_flags & M_HASFCS) {
805 m_adj(m, -ETHER_CRC_LEN);
806 m->m_flags &= ~M_HASFCS;
807 }
808
809 if (etype > ETHERMTU + sizeof(struct ether_header)) {
810 /* Strip off the Ethernet header. */
811 m_adj(m, ehlen);
812
813 switch (etype) {
814 #ifdef INET
815 case ETHERTYPE_IP:
816 #ifdef GATEWAY
817 if (ipflow_fastforward(m))
818 return;
819 #endif
820 pktq = ip_pktq;
821 break;
822
823 case ETHERTYPE_ARP:
824 isr = NETISR_ARP;
825 inq = &arpintrq;
826 break;
827
828 case ETHERTYPE_REVARP:
829 revarpinput(m); /* XXX queue? */
830 return;
831 #endif
832
833 #ifdef INET6
834 case ETHERTYPE_IPV6:
835 if (__predict_false(!in6_present)) {
836 m_freem(m);
837 return;
838 }
839 #ifdef GATEWAY
840 if (ip6flow_fastforward(&m))
841 return;
842 #endif
843 pktq = ip6_pktq;
844 break;
845 #endif
846
847 #ifdef NETATALK
848 case ETHERTYPE_ATALK:
849 isr = NETISR_ATALK;
850 inq = &atintrq1;
851 break;
852
853 case ETHERTYPE_AARP:
854 aarpinput(ifp, m); /* XXX queue? */
855 return;
856 #endif
857
858 #ifdef MPLS
859 case ETHERTYPE_MPLS:
860 isr = NETISR_MPLS;
861 inq = &mplsintrq;
862 break;
863 #endif
864
865 default:
866 m_freem(m);
867 return;
868 }
869 } else {
870 KASSERT(ehlen == sizeof(*eh));
871 #if defined (LLC) || defined (NETATALK)
872 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) {
873 goto dropanyway;
874 }
875 l = (struct llc *)(eh+1);
876
877 switch (l->llc_dsap) {
878 #ifdef NETATALK
879 case LLC_SNAP_LSAP:
880 switch (l->llc_control) {
881 case LLC_UI:
882 if (l->llc_ssap != LLC_SNAP_LSAP) {
883 goto dropanyway;
884 }
885
886 if (memcmp(&(l->llc_snap_org_code)[0],
887 at_org_code, sizeof(at_org_code)) == 0 &&
888 ntohs(l->llc_snap_ether_type) ==
889 ETHERTYPE_ATALK) {
890 inq = &atintrq2;
891 m_adj(m, sizeof(struct ether_header)
892 + sizeof(struct llc));
893 isr = NETISR_ATALK;
894 break;
895 }
896
897 if (memcmp(&(l->llc_snap_org_code)[0],
898 aarp_org_code,
899 sizeof(aarp_org_code)) == 0 &&
900 ntohs(l->llc_snap_ether_type) ==
901 ETHERTYPE_AARP) {
902 m_adj(m, sizeof(struct ether_header)
903 + sizeof(struct llc));
904 aarpinput(ifp, m); /* XXX queue? */
905 return;
906 }
907
908 default:
909 goto dropanyway;
910 }
911 break;
912 #endif
913 dropanyway:
914 default:
915 m_freem(m);
916 return;
917 }
918 #else /* LLC || NETATALK */
919 m_freem(m);
920 return;
921 #endif /* LLC || NETATALK */
922 }
923
924 if (__predict_true(pktq)) {
925 #ifdef NET_MPSAFE
926 const u_int h = curcpu()->ci_index;
927 #else
928 const uint32_t h = pktq_rps_hash(m);
929 #endif
930 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
931 m_freem(m);
932 }
933 return;
934 }
935
936 if (__predict_false(!inq)) {
937 /* Should not happen. */
938 m_freem(m);
939 return;
940 }
941
942 IFQ_LOCK(inq);
943 if (IF_QFULL(inq)) {
944 IF_DROP(inq);
945 IFQ_UNLOCK(inq);
946 m_freem(m);
947 } else {
948 IF_ENQUEUE(inq, m);
949 IFQ_UNLOCK(inq);
950 schednetisr(isr);
951 }
952 }
953
954 /*
955 * Convert Ethernet address to printable (loggable) representation.
956 */
957 char *
958 ether_sprintf(const u_char *ap)
959 {
960 static char etherbuf[3 * ETHER_ADDR_LEN];
961 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
962 }
963
964 char *
965 ether_snprintf(char *buf, size_t len, const u_char *ap)
966 {
967 char *cp = buf;
968 size_t i;
969
970 for (i = 0; i < len / 3; i++) {
971 *cp++ = hexdigits[*ap >> 4];
972 *cp++ = hexdigits[*ap++ & 0xf];
973 *cp++ = ':';
974 }
975 *--cp = '\0';
976 return buf;
977 }
978
979 /*
980 * Perform common duties while attaching to interface list
981 */
982 void
983 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
984 {
985 struct ethercom *ec = (struct ethercom *)ifp;
986
987 ifp->if_type = IFT_ETHER;
988 ifp->if_hdrlen = ETHER_HDR_LEN;
989 ifp->if_dlt = DLT_EN10MB;
990 ifp->if_mtu = ETHERMTU;
991 ifp->if_output = ether_output;
992 ifp->_if_input = ether_input;
993 if (ifp->if_baudrate == 0)
994 ifp->if_baudrate = IF_Mbps(10); /* just a default */
995
996 if (lla != NULL)
997 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
998
999 LIST_INIT(&ec->ec_multiaddrs);
1000 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1001 ifp->if_broadcastaddr = etherbroadcastaddr;
1002 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1003 #ifdef MBUFTRACE
1004 strlcpy(ec->ec_tx_mowner.mo_name, ifp->if_xname,
1005 sizeof(ec->ec_tx_mowner.mo_name));
1006 strlcpy(ec->ec_tx_mowner.mo_descr, "tx",
1007 sizeof(ec->ec_tx_mowner.mo_descr));
1008 strlcpy(ec->ec_rx_mowner.mo_name, ifp->if_xname,
1009 sizeof(ec->ec_rx_mowner.mo_name));
1010 strlcpy(ec->ec_rx_mowner.mo_descr, "rx",
1011 sizeof(ec->ec_rx_mowner.mo_descr));
1012 MOWNER_ATTACH(&ec->ec_tx_mowner);
1013 MOWNER_ATTACH(&ec->ec_rx_mowner);
1014 ifp->if_mowner = &ec->ec_tx_mowner;
1015 #endif
1016 }
1017
1018 void
1019 ether_ifdetach(struct ifnet *ifp)
1020 {
1021 struct ethercom *ec = (void *) ifp;
1022 struct ether_multi *enm;
1023
1024 IFNET_ASSERT_UNLOCKED(ifp);
1025 /*
1026 * Prevent further calls to ioctl (for example turning off
1027 * promiscuous mode from the bridge code), which eventually can
1028 * call if_init() which can cause panics because the interface
1029 * is in the process of being detached. Return device not configured
1030 * instead.
1031 */
1032 ifp->if_ioctl = (int (*)(struct ifnet *, u_long, void *))enxio;
1033
1034 #if NBRIDGE > 0
1035 if (ifp->if_bridge)
1036 bridge_ifdetach(ifp);
1037 #endif
1038 bpf_detach(ifp);
1039 #if NVLAN > 0
1040 if (ec->ec_nvlans)
1041 vlan_ifdetach(ifp);
1042 #endif
1043
1044 ETHER_LOCK(ec);
1045 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1046 LIST_REMOVE(enm, enm_list);
1047 kmem_free(enm, sizeof(*enm));
1048 ec->ec_multicnt--;
1049 }
1050 ETHER_UNLOCK(ec);
1051
1052 mutex_obj_free(ec->ec_lock);
1053 ec->ec_lock = NULL;
1054
1055 ifp->if_mowner = NULL;
1056 MOWNER_DETACH(&ec->ec_rx_mowner);
1057 MOWNER_DETACH(&ec->ec_tx_mowner);
1058 }
1059
1060 #if 0
1061 /*
1062 * This is for reference. We have a table-driven version
1063 * of the little-endian crc32 generator, which is faster
1064 * than the double-loop.
1065 */
1066 uint32_t
1067 ether_crc32_le(const uint8_t *buf, size_t len)
1068 {
1069 uint32_t c, crc, carry;
1070 size_t i, j;
1071
1072 crc = 0xffffffffU; /* initial value */
1073
1074 for (i = 0; i < len; i++) {
1075 c = buf[i];
1076 for (j = 0; j < 8; j++) {
1077 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1078 crc >>= 1;
1079 c >>= 1;
1080 if (carry)
1081 crc = (crc ^ ETHER_CRC_POLY_LE);
1082 }
1083 }
1084
1085 return (crc);
1086 }
1087 #else
1088 uint32_t
1089 ether_crc32_le(const uint8_t *buf, size_t len)
1090 {
1091 static const uint32_t crctab[] = {
1092 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1093 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1094 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1095 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1096 };
1097 uint32_t crc;
1098 size_t i;
1099
1100 crc = 0xffffffffU; /* initial value */
1101
1102 for (i = 0; i < len; i++) {
1103 crc ^= buf[i];
1104 crc = (crc >> 4) ^ crctab[crc & 0xf];
1105 crc = (crc >> 4) ^ crctab[crc & 0xf];
1106 }
1107
1108 return (crc);
1109 }
1110 #endif
1111
1112 uint32_t
1113 ether_crc32_be(const uint8_t *buf, size_t len)
1114 {
1115 uint32_t c, crc, carry;
1116 size_t i, j;
1117
1118 crc = 0xffffffffU; /* initial value */
1119
1120 for (i = 0; i < len; i++) {
1121 c = buf[i];
1122 for (j = 0; j < 8; j++) {
1123 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1124 crc <<= 1;
1125 c >>= 1;
1126 if (carry)
1127 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1128 }
1129 }
1130
1131 return (crc);
1132 }
1133
1134 #ifdef INET
1135 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1136 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1137 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1138 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1139 #endif
1140 #ifdef INET6
1141 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1142 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1143 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1144 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1145 #endif
1146
1147 /*
1148 * ether_aton implementation, not using a static buffer.
1149 */
1150 int
1151 ether_aton_r(u_char *dest, size_t len, const char *str)
1152 {
1153 const u_char *cp = (const void *)str;
1154 u_char *ep;
1155
1156 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1157
1158 if (len < ETHER_ADDR_LEN)
1159 return ENOSPC;
1160
1161 ep = dest + ETHER_ADDR_LEN;
1162
1163 while (*cp) {
1164 if (!isxdigit(*cp))
1165 return EINVAL;
1166
1167 *dest = atox(*cp);
1168 cp++;
1169 if (isxdigit(*cp)) {
1170 *dest = (*dest << 4) | atox(*cp);
1171 cp++;
1172 }
1173 dest++;
1174
1175 if (dest == ep)
1176 return (*cp == '\0') ? 0 : ENAMETOOLONG;
1177
1178 switch (*cp) {
1179 case ':':
1180 case '-':
1181 case '.':
1182 cp++;
1183 break;
1184 }
1185 }
1186 return ENOBUFS;
1187 }
1188
1189 /*
1190 * Convert a sockaddr into an Ethernet address or range of Ethernet
1191 * addresses.
1192 */
1193 int
1194 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1195 uint8_t addrhi[ETHER_ADDR_LEN])
1196 {
1197 #ifdef INET
1198 const struct sockaddr_in *sin;
1199 #endif
1200 #ifdef INET6
1201 const struct sockaddr_in6 *sin6;
1202 #endif
1203
1204 switch (sa->sa_family) {
1205
1206 case AF_UNSPEC:
1207 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1208 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1209 break;
1210
1211 #ifdef INET
1212 case AF_INET:
1213 sin = satocsin(sa);
1214 if (sin->sin_addr.s_addr == INADDR_ANY) {
1215 /*
1216 * An IP address of INADDR_ANY means listen to
1217 * or stop listening to all of the Ethernet
1218 * multicast addresses used for IP.
1219 * (This is for the sake of IP multicast routers.)
1220 */
1221 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1222 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1223 } else {
1224 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1225 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1226 }
1227 break;
1228 #endif
1229 #ifdef INET6
1230 case AF_INET6:
1231 sin6 = satocsin6(sa);
1232 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1233 /*
1234 * An IP6 address of 0 means listen to or stop
1235 * listening to all of the Ethernet multicast
1236 * address used for IP6.
1237 * (This is used for multicast routers.)
1238 */
1239 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1240 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1241 } else {
1242 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1243 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1244 }
1245 break;
1246 #endif
1247
1248 default:
1249 return EAFNOSUPPORT;
1250 }
1251 return 0;
1252 }
1253
1254 /*
1255 * Add an Ethernet multicast address or range of addresses to the list for a
1256 * given interface.
1257 */
1258 int
1259 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1260 {
1261 struct ether_multi *enm, *_enm;
1262 u_char addrlo[ETHER_ADDR_LEN];
1263 u_char addrhi[ETHER_ADDR_LEN];
1264 int error = 0;
1265
1266 /* Allocate out of lock */
1267 enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1268
1269 ETHER_LOCK(ec);
1270 error = ether_multiaddr(sa, addrlo, addrhi);
1271 if (error != 0)
1272 goto out;
1273
1274 /*
1275 * Verify that we have valid Ethernet multicast addresses.
1276 */
1277 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1278 error = EINVAL;
1279 goto out;
1280 }
1281
1282 /*
1283 * See if the address range is already in the list.
1284 */
1285 _enm = ether_lookup_multi(addrlo, addrhi, ec);
1286 if (_enm != NULL) {
1287 /*
1288 * Found it; just increment the reference count.
1289 */
1290 ++_enm->enm_refcount;
1291 error = 0;
1292 goto out;
1293 }
1294
1295 /*
1296 * Link a new multicast record into the interface's multicast list.
1297 */
1298 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1299 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1300 enm->enm_refcount = 1;
1301 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1302 ec->ec_multicnt++;
1303
1304 /*
1305 * Return ENETRESET to inform the driver that the list has changed
1306 * and its reception filter should be adjusted accordingly.
1307 */
1308 error = ENETRESET;
1309 enm = NULL;
1310
1311 out:
1312 ETHER_UNLOCK(ec);
1313 if (enm != NULL)
1314 kmem_free(enm, sizeof(*enm));
1315 return error;
1316 }
1317
1318 /*
1319 * Delete a multicast address record.
1320 */
1321 int
1322 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1323 {
1324 struct ether_multi *enm;
1325 u_char addrlo[ETHER_ADDR_LEN];
1326 u_char addrhi[ETHER_ADDR_LEN];
1327 int error;
1328
1329 ETHER_LOCK(ec);
1330 error = ether_multiaddr(sa, addrlo, addrhi);
1331 if (error != 0)
1332 goto error;
1333
1334 /*
1335 * Look up the address in our list.
1336 */
1337 enm = ether_lookup_multi(addrlo, addrhi, ec);
1338 if (enm == NULL) {
1339 error = ENXIO;
1340 goto error;
1341 }
1342 if (--enm->enm_refcount != 0) {
1343 /*
1344 * Still some claims to this record.
1345 */
1346 error = 0;
1347 goto error;
1348 }
1349
1350 /*
1351 * No remaining claims to this record; unlink and free it.
1352 */
1353 LIST_REMOVE(enm, enm_list);
1354 ec->ec_multicnt--;
1355 ETHER_UNLOCK(ec);
1356 kmem_free(enm, sizeof(*enm));
1357
1358 /*
1359 * Return ENETRESET to inform the driver that the list has changed
1360 * and its reception filter should be adjusted accordingly.
1361 */
1362 return ENETRESET;
1363
1364 error:
1365 ETHER_UNLOCK(ec);
1366 return error;
1367 }
1368
1369 void
1370 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1371 {
1372 ec->ec_ifflags_cb = cb;
1373 }
1374
1375 static int
1376 ether_ioctl_reinit(struct ethercom *ec)
1377 {
1378 struct ifnet *ifp = &ec->ec_if;
1379 int error;
1380
1381 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1382 case IFF_RUNNING:
1383 /*
1384 * If interface is marked down and it is running,
1385 * then stop and disable it.
1386 */
1387 (*ifp->if_stop)(ifp, 1);
1388 break;
1389 case IFF_UP:
1390 /*
1391 * If interface is marked up and it is stopped, then
1392 * start it.
1393 */
1394 return (*ifp->if_init)(ifp);
1395 case IFF_UP | IFF_RUNNING:
1396 error = 0;
1397 if (ec->ec_ifflags_cb != NULL) {
1398 error = (*ec->ec_ifflags_cb)(ec);
1399 if (error == ENETRESET) {
1400 /*
1401 * Reset the interface to pick up
1402 * changes in any other flags that
1403 * affect the hardware state.
1404 */
1405 return (*ifp->if_init)(ifp);
1406 }
1407 } else
1408 error = (*ifp->if_init)(ifp);
1409 return error;
1410 case 0:
1411 break;
1412 }
1413
1414 return 0;
1415 }
1416
1417 /*
1418 * Common ioctls for Ethernet interfaces. Note, we must be
1419 * called at splnet().
1420 */
1421 int
1422 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1423 {
1424 struct ethercom *ec = (void *)ifp;
1425 struct eccapreq *eccr;
1426 struct ifreq *ifr = (struct ifreq *)data;
1427 struct if_laddrreq *iflr = data;
1428 const struct sockaddr_dl *sdl;
1429 static const uint8_t zero[ETHER_ADDR_LEN];
1430 int error;
1431
1432 switch (cmd) {
1433 case SIOCINITIFADDR:
1434 {
1435 struct ifaddr *ifa = (struct ifaddr *)data;
1436 if (ifa->ifa_addr->sa_family != AF_LINK
1437 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1438 (IFF_UP | IFF_RUNNING)) {
1439 ifp->if_flags |= IFF_UP;
1440 if ((error = (*ifp->if_init)(ifp)) != 0)
1441 return error;
1442 }
1443 #ifdef INET
1444 if (ifa->ifa_addr->sa_family == AF_INET)
1445 arp_ifinit(ifp, ifa);
1446 #endif
1447 return 0;
1448 }
1449
1450 case SIOCSIFMTU:
1451 {
1452 int maxmtu;
1453
1454 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1455 maxmtu = ETHERMTU_JUMBO;
1456 else
1457 maxmtu = ETHERMTU;
1458
1459 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1460 return EINVAL;
1461 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1462 return error;
1463 else if (ifp->if_flags & IFF_UP) {
1464 /* Make sure the device notices the MTU change. */
1465 return (*ifp->if_init)(ifp);
1466 } else
1467 return 0;
1468 }
1469
1470 case SIOCSIFFLAGS:
1471 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1472 return error;
1473 return ether_ioctl_reinit(ec);
1474 case SIOCGETHERCAP:
1475 eccr = (struct eccapreq *)data;
1476 eccr->eccr_capabilities = ec->ec_capabilities;
1477 eccr->eccr_capenable = ec->ec_capenable;
1478 return 0;
1479 case SIOCSETHERCAP:
1480 eccr = (struct eccapreq *)data;
1481 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1482 return EINVAL;
1483 if (eccr->eccr_capenable == ec->ec_capenable)
1484 return 0;
1485 #if 0 /* notyet */
1486 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1487 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1488 #else
1489 ec->ec_capenable = eccr->eccr_capenable;
1490 #endif
1491 return ether_ioctl_reinit(ec);
1492 case SIOCADDMULTI:
1493 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1494 case SIOCDELMULTI:
1495 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1496 case SIOCSIFMEDIA:
1497 case SIOCGIFMEDIA:
1498 if (ec->ec_mii == NULL)
1499 return ENOTTY;
1500 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, cmd);
1501 case SIOCALIFADDR:
1502 sdl = satocsdl(sstocsa(&iflr->addr));
1503 if (sdl->sdl_family != AF_LINK)
1504 ;
1505 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1506 return EINVAL;
1507 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1508 return EINVAL;
1509 /*FALLTHROUGH*/
1510 default:
1511 return ifioctl_common(ifp, cmd, data);
1512 }
1513 return 0;
1514 }
1515
1516 /*
1517 * Enable/disable passing VLAN packets if the parent interface supports it.
1518 * Return:
1519 * 0: Ok
1520 * -1: Parent interface does not support vlans
1521 * >0: Error
1522 */
1523 int
1524 ether_enable_vlan_mtu(struct ifnet *ifp)
1525 {
1526 int error;
1527 struct ethercom *ec = (void *)ifp;
1528
1529 /* Parent does not support VLAN's */
1530 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1531 return -1;
1532
1533 /*
1534 * Parent supports the VLAN_MTU capability,
1535 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1536 * enable it.
1537 */
1538 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1539
1540 /* Interface is down, defer for later */
1541 if ((ifp->if_flags & IFF_UP) == 0)
1542 return 0;
1543
1544 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1545 return 0;
1546
1547 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1548 return error;
1549 }
1550
1551 int
1552 ether_disable_vlan_mtu(struct ifnet *ifp)
1553 {
1554 int error;
1555 struct ethercom *ec = (void *)ifp;
1556
1557 /* We still have VLAN's, defer for later */
1558 if (ec->ec_nvlans != 0)
1559 return 0;
1560
1561 /* Parent does not support VLAB's, nothing to do. */
1562 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1563 return -1;
1564
1565 /*
1566 * Disable Tx/Rx of VLAN-sized frames.
1567 */
1568 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1569
1570 /* Interface is down, defer for later */
1571 if ((ifp->if_flags & IFF_UP) == 0)
1572 return 0;
1573
1574 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1575 return 0;
1576
1577 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1578 return error;
1579 }
1580
1581 static int
1582 ether_multicast_sysctl(SYSCTLFN_ARGS)
1583 {
1584 struct ether_multi *enm;
1585 struct ifnet *ifp;
1586 struct ethercom *ec;
1587 int error = 0;
1588 size_t written;
1589 struct psref psref;
1590 int bound;
1591 unsigned int multicnt;
1592 struct ether_multi_sysctl *addrs;
1593 int i;
1594
1595 if (namelen != 1)
1596 return EINVAL;
1597
1598 bound = curlwp_bind();
1599 ifp = if_get_byindex(name[0], &psref);
1600 if (ifp == NULL) {
1601 error = ENODEV;
1602 goto out;
1603 }
1604 if (ifp->if_type != IFT_ETHER) {
1605 if_put(ifp, &psref);
1606 *oldlenp = 0;
1607 goto out;
1608 }
1609 ec = (struct ethercom *)ifp;
1610
1611 if (oldp == NULL) {
1612 if_put(ifp, &psref);
1613 *oldlenp = ec->ec_multicnt * sizeof(*addrs);
1614 goto out;
1615 }
1616
1617 /*
1618 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1619 * is sleepable, while holding it. Copy data to a local buffer first
1620 * with the lock taken and then call sysctl_copyout without holding it.
1621 */
1622 retry:
1623 multicnt = ec->ec_multicnt;
1624
1625 if (multicnt == 0) {
1626 if_put(ifp, &psref);
1627 *oldlenp = 0;
1628 goto out;
1629 }
1630
1631 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1632
1633 ETHER_LOCK(ec);
1634 if (multicnt != ec->ec_multicnt) {
1635 /* The number of multicast addresses has changed */
1636 ETHER_UNLOCK(ec);
1637 kmem_free(addrs, sizeof(*addrs) * multicnt);
1638 goto retry;
1639 }
1640
1641 i = 0;
1642 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1643 struct ether_multi_sysctl *addr = &addrs[i];
1644 addr->enm_refcount = enm->enm_refcount;
1645 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1646 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1647 i++;
1648 }
1649 ETHER_UNLOCK(ec);
1650
1651 error = 0;
1652 written = 0;
1653 for (i = 0; i < multicnt; i++) {
1654 struct ether_multi_sysctl *addr = &addrs[i];
1655
1656 if (written + sizeof(*addr) > *oldlenp)
1657 break;
1658 error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1659 if (error)
1660 break;
1661 written += sizeof(*addr);
1662 oldp = (char *)oldp + sizeof(*addr);
1663 }
1664 kmem_free(addrs, sizeof(*addrs) * multicnt);
1665
1666 if_put(ifp, &psref);
1667
1668 *oldlenp = written;
1669 out:
1670 curlwp_bindx(bound);
1671 return error;
1672 }
1673
1674 static void
1675 ether_sysctl_setup(struct sysctllog **clog)
1676 {
1677 const struct sysctlnode *rnode = NULL;
1678
1679 sysctl_createv(clog, 0, NULL, &rnode,
1680 CTLFLAG_PERMANENT,
1681 CTLTYPE_NODE, "ether",
1682 SYSCTL_DESCR("Ethernet-specific information"),
1683 NULL, 0, NULL, 0,
1684 CTL_NET, CTL_CREATE, CTL_EOL);
1685
1686 sysctl_createv(clog, 0, &rnode, NULL,
1687 CTLFLAG_PERMANENT,
1688 CTLTYPE_NODE, "multicast",
1689 SYSCTL_DESCR("multicast addresses"),
1690 ether_multicast_sysctl, 0, NULL, 0,
1691 CTL_CREATE, CTL_EOL);
1692 }
1693
1694 void
1695 etherinit(void)
1696 {
1697
1698 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1699 ether_sysctl_setup(NULL);
1700 }
1701