if_ethersubr.c revision 1.273 1 /* $NetBSD: if_ethersubr.c,v 1.273 2019/02/04 10:11:34 mrg Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.273 2019/02/04 10:11:34 mrg Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/rnd.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92
93 #include <net/if.h>
94 #include <net/netisr.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104
105 #if NARP == 0
106 /*
107 * XXX there should really be a way to issue this warning from within config(8)
108 */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111
112 #include <net/bpf.h>
113
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120
121 #if NAGR > 0
122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144
145 #include "carp.h"
146 #if NCARP > 0
147 #include <netinet/ip_carp.h>
148 #endif
149
150 #ifdef NETATALK
151 #include <netatalk/at.h>
152 #include <netatalk/at_var.h>
153 #include <netatalk/at_extern.h>
154
155 #define llc_snap_org_code llc_un.type_snap.org_code
156 #define llc_snap_ether_type llc_un.type_snap.ether_type
157
158 extern u_char at_org_code[3];
159 extern u_char aarp_org_code[3];
160 #endif /* NETATALK */
161
162 #ifdef MPLS
163 #include <netmpls/mpls.h>
164 #include <netmpls/mpls_var.h>
165 #endif
166
167 static struct timeval bigpktppslim_last;
168 static int bigpktppslim = 2; /* XXX */
169 static int bigpktpps_count;
170 static kmutex_t bigpktpps_lock __cacheline_aligned;
171
172 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
173 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
174 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
175 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
176 #define senderr(e) { error = (e); goto bad;}
177
178 static int ether_output(struct ifnet *, struct mbuf *,
179 const struct sockaddr *, const struct rtentry *);
180
181 /*
182 * Ethernet output routine.
183 * Encapsulate a packet of type family for the local net.
184 * Assumes that ifp is actually pointer to ethercom structure.
185 */
186 static int
187 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
188 const struct sockaddr * const dst, const struct rtentry *rt)
189 {
190 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
191 uint16_t etype = 0;
192 int error = 0, hdrcmplt = 0;
193 struct mbuf *m = m0;
194 struct mbuf *mcopy = NULL;
195 struct ether_header *eh;
196 struct ifnet *ifp = ifp0;
197 #ifdef INET
198 struct arphdr *ah;
199 #endif
200 #ifdef NETATALK
201 struct at_ifaddr *aa;
202 #endif
203
204 #ifdef MBUFTRACE
205 m_claimm(m, ifp->if_mowner);
206 #endif
207
208 #if NCARP > 0
209 if (ifp->if_type == IFT_CARP) {
210 struct ifaddr *ifa;
211 int s = pserialize_read_enter();
212
213 /* loop back if this is going to the carp interface */
214 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
215 (ifa = ifa_ifwithaddr(dst)) != NULL) {
216 if (ifa->ifa_ifp == ifp0) {
217 pserialize_read_exit(s);
218 return looutput(ifp0, m, dst, rt);
219 }
220 }
221 pserialize_read_exit(s);
222
223 ifp = ifp->if_carpdev;
224 /* ac = (struct arpcom *)ifp; */
225
226 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
227 (IFF_UP | IFF_RUNNING))
228 senderr(ENETDOWN);
229 }
230 #endif
231
232 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
233 senderr(ENETDOWN);
234
235 switch (dst->sa_family) {
236
237 #ifdef INET
238 case AF_INET:
239 if (m->m_flags & M_BCAST) {
240 memcpy(edst, etherbroadcastaddr, sizeof(edst));
241 } else if (m->m_flags & M_MCAST) {
242 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
243 } else {
244 error = arpresolve(ifp, rt, m, dst, edst, sizeof(edst));
245 if (error)
246 return (error == EWOULDBLOCK) ? 0 : error;
247 }
248 /* If broadcasting on a simplex interface, loopback a copy */
249 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
250 mcopy = m_copypacket(m, M_DONTWAIT);
251 etype = htons(ETHERTYPE_IP);
252 break;
253
254 case AF_ARP:
255 ah = mtod(m, struct arphdr *);
256 if (m->m_flags & M_BCAST) {
257 memcpy(edst, etherbroadcastaddr, sizeof(edst));
258 } else {
259 void *tha = ar_tha(ah);
260
261 if (tha == NULL) {
262 /* fake with ARPHRD_IEEE1394 */
263 m_freem(m);
264 return 0;
265 }
266 memcpy(edst, tha, sizeof(edst));
267 }
268
269 ah->ar_hrd = htons(ARPHRD_ETHER);
270
271 switch (ntohs(ah->ar_op)) {
272 case ARPOP_REVREQUEST:
273 case ARPOP_REVREPLY:
274 etype = htons(ETHERTYPE_REVARP);
275 break;
276
277 case ARPOP_REQUEST:
278 case ARPOP_REPLY:
279 default:
280 etype = htons(ETHERTYPE_ARP);
281 }
282 break;
283 #endif
284
285 #ifdef INET6
286 case AF_INET6:
287 if (m->m_flags & M_BCAST) {
288 memcpy(edst, etherbroadcastaddr, sizeof(edst));
289 } else if (m->m_flags & M_MCAST) {
290 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
291 edst);
292 } else {
293 error = nd6_resolve(ifp, rt, m, dst, edst,
294 sizeof(edst));
295 if (error)
296 return (error == EWOULDBLOCK) ? 0 : error;
297 }
298 etype = htons(ETHERTYPE_IPV6);
299 break;
300 #endif
301
302 #ifdef NETATALK
303 case AF_APPLETALK: {
304 struct ifaddr *ifa;
305 int s;
306
307 KERNEL_LOCK(1, NULL);
308
309 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
310 KERNEL_UNLOCK_ONE(NULL);
311 return 0;
312 }
313
314 /*
315 * ifaddr is the first thing in at_ifaddr
316 */
317 s = pserialize_read_enter();
318 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
319 if (ifa == NULL) {
320 pserialize_read_exit(s);
321 KERNEL_UNLOCK_ONE(NULL);
322 senderr(EADDRNOTAVAIL);
323 }
324 aa = (struct at_ifaddr *)ifa;
325
326 /*
327 * In the phase 2 case, we need to prepend an mbuf for the
328 * llc header.
329 */
330 if (aa->aa_flags & AFA_PHASE2) {
331 struct llc llc;
332
333 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
334 if (m == NULL) {
335 pserialize_read_exit(s);
336 KERNEL_UNLOCK_ONE(NULL);
337 senderr(ENOBUFS);
338 }
339
340 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
341 llc.llc_control = LLC_UI;
342 memcpy(llc.llc_snap_org_code, at_org_code,
343 sizeof(llc.llc_snap_org_code));
344 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
345 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
346 } else {
347 etype = htons(ETHERTYPE_ATALK);
348 }
349 pserialize_read_exit(s);
350 KERNEL_UNLOCK_ONE(NULL);
351 break;
352 }
353 #endif /* NETATALK */
354
355 case pseudo_AF_HDRCMPLT:
356 hdrcmplt = 1;
357 memcpy(esrc,
358 ((const struct ether_header *)dst->sa_data)->ether_shost,
359 sizeof(esrc));
360 /* FALLTHROUGH */
361
362 case AF_UNSPEC:
363 memcpy(edst,
364 ((const struct ether_header *)dst->sa_data)->ether_dhost,
365 sizeof(edst));
366 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
367 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
368 break;
369
370 default:
371 printf("%s: can't handle af%d\n", ifp->if_xname,
372 dst->sa_family);
373 senderr(EAFNOSUPPORT);
374 }
375
376 #ifdef MPLS
377 {
378 struct m_tag *mtag;
379 mtag = m_tag_find(m, PACKET_TAG_MPLS);
380 if (mtag != NULL) {
381 /* Having the tag itself indicates it's MPLS */
382 etype = htons(ETHERTYPE_MPLS);
383 m_tag_delete(m, mtag);
384 }
385 }
386 #endif
387
388 if (mcopy)
389 (void)looutput(ifp, mcopy, dst, rt);
390
391 KASSERT((m->m_flags & M_PKTHDR) != 0);
392
393 /*
394 * If no ether type is set, this must be a 802.2 formatted packet.
395 */
396 if (etype == 0)
397 etype = htons(m->m_pkthdr.len);
398
399 /*
400 * Add local net header. If no space in first mbuf, allocate another.
401 */
402 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
403 if (m == NULL)
404 senderr(ENOBUFS);
405
406 eh = mtod(m, struct ether_header *);
407 /* Note: etype is already in network byte order. */
408 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
409 memcpy(eh->ether_dhost, edst, sizeof(edst));
410 if (hdrcmplt) {
411 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
412 } else {
413 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
414 sizeof(eh->ether_shost));
415 }
416
417 #if NCARP > 0
418 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
419 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
420 sizeof(eh->ether_shost));
421 }
422 #endif
423
424 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
425 return error;
426 if (m == NULL)
427 return 0;
428
429 #if NBRIDGE > 0
430 /*
431 * Bridges require special output handling.
432 */
433 if (ifp->if_bridge)
434 return bridge_output(ifp, m, NULL, NULL);
435 #endif
436
437 #if NCARP > 0
438 if (ifp != ifp0)
439 ifp0->if_obytes += m->m_pkthdr.len + ETHER_HDR_LEN;
440 #endif
441
442 #ifdef ALTQ
443 KERNEL_LOCK(1, NULL);
444 /*
445 * If ALTQ is enabled on the parent interface, do
446 * classification; the queueing discipline might not
447 * require classification, but might require the
448 * address family/header pointer in the pktattr.
449 */
450 if (ALTQ_IS_ENABLED(&ifp->if_snd))
451 altq_etherclassify(&ifp->if_snd, m);
452 KERNEL_UNLOCK_ONE(NULL);
453 #endif
454 return ifq_enqueue(ifp, m);
455
456 bad:
457 if (m)
458 m_freem(m);
459 return error;
460 }
461
462 #ifdef ALTQ
463 /*
464 * This routine is a slight hack to allow a packet to be classified
465 * if the Ethernet headers are present. It will go away when ALTQ's
466 * classification engine understands link headers.
467 *
468 * XXX: We may need to do m_pullups here. First to ensure struct ether_header
469 * is indeed contiguous, then to read the LLC and so on.
470 */
471 void
472 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
473 {
474 struct ether_header *eh;
475 struct mbuf *mtop = m;
476 uint16_t ether_type;
477 int hlen, af, hdrsize;
478 void *hdr;
479
480 KASSERT((mtop->m_flags & M_PKTHDR) != 0);
481
482 hlen = ETHER_HDR_LEN;
483 eh = mtod(m, struct ether_header *);
484
485 ether_type = htons(eh->ether_type);
486
487 if (ether_type < ETHERMTU) {
488 /* LLC/SNAP */
489 struct llc *llc = (struct llc *)(eh + 1);
490 hlen += 8;
491
492 if (m->m_len < hlen ||
493 llc->llc_dsap != LLC_SNAP_LSAP ||
494 llc->llc_ssap != LLC_SNAP_LSAP ||
495 llc->llc_control != LLC_UI) {
496 /* Not SNAP. */
497 goto bad;
498 }
499
500 ether_type = htons(llc->llc_un.type_snap.ether_type);
501 }
502
503 switch (ether_type) {
504 case ETHERTYPE_IP:
505 af = AF_INET;
506 hdrsize = 20; /* sizeof(struct ip) */
507 break;
508
509 case ETHERTYPE_IPV6:
510 af = AF_INET6;
511 hdrsize = 40; /* sizeof(struct ip6_hdr) */
512 break;
513
514 default:
515 af = AF_UNSPEC;
516 hdrsize = 0;
517 break;
518 }
519
520 while (m->m_len <= hlen) {
521 hlen -= m->m_len;
522 m = m->m_next;
523 if (m == NULL)
524 goto bad;
525 }
526
527 if (m->m_len < (hlen + hdrsize)) {
528 /*
529 * protocol header not in a single mbuf.
530 * We can't cope with this situation right
531 * now (but it shouldn't ever happen, really, anyhow).
532 */
533 #ifdef DEBUG
534 printf("altq_etherclassify: headers span multiple mbufs: "
535 "%d < %d\n", m->m_len, (hlen + hdrsize));
536 #endif
537 goto bad;
538 }
539
540 m->m_data += hlen;
541 m->m_len -= hlen;
542
543 hdr = mtod(m, void *);
544
545 if (ALTQ_NEEDS_CLASSIFY(ifq)) {
546 mtop->m_pkthdr.pattr_class =
547 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
548 }
549 mtop->m_pkthdr.pattr_af = af;
550 mtop->m_pkthdr.pattr_hdr = hdr;
551
552 m->m_data -= hlen;
553 m->m_len += hlen;
554
555 return;
556
557 bad:
558 mtop->m_pkthdr.pattr_class = NULL;
559 mtop->m_pkthdr.pattr_hdr = NULL;
560 mtop->m_pkthdr.pattr_af = AF_UNSPEC;
561 }
562 #endif /* ALTQ */
563
564 /*
565 * Process a received Ethernet packet;
566 * the packet is in the mbuf chain m with
567 * the ether header.
568 */
569 void
570 ether_input(struct ifnet *ifp, struct mbuf *m)
571 {
572 struct ethercom *ec = (struct ethercom *) ifp;
573 pktqueue_t *pktq = NULL;
574 struct ifqueue *inq = NULL;
575 uint16_t etype;
576 struct ether_header *eh;
577 size_t ehlen;
578 static int earlypkts;
579 int isr = 0;
580 #if defined (LLC) || defined(NETATALK)
581 struct llc *l;
582 #endif
583
584 KASSERT(!cpu_intr_p());
585 KASSERT((m->m_flags & M_PKTHDR) != 0);
586
587 if ((ifp->if_flags & IFF_UP) == 0) {
588 m_freem(m);
589 return;
590 }
591 if (m->m_len < sizeof(*eh)) {
592 m = m_pullup(m, sizeof(*eh));
593 if (m == NULL)
594 return;
595 }
596
597 #ifdef MBUFTRACE
598 m_claimm(m, &ec->ec_rx_mowner);
599 #endif
600 eh = mtod(m, struct ether_header *);
601 etype = ntohs(eh->ether_type);
602 ehlen = sizeof(*eh);
603
604 if (__predict_false(earlypkts < 100 || !rnd_initial_entropy)) {
605 rnd_add_data(NULL, eh, ehlen, 0);
606 earlypkts++;
607 }
608
609 /*
610 * Determine if the packet is within its size limits. For MPLS the
611 * header length is variable, so we skip the check.
612 */
613 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
614 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
615 mutex_enter(&bigpktpps_lock);
616 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
617 bigpktppslim)) {
618 printf("%s: discarding oversize frame (len=%d)\n",
619 ifp->if_xname, m->m_pkthdr.len);
620 }
621 mutex_exit(&bigpktpps_lock);
622 m_freem(m);
623 return;
624 }
625
626 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
627 /*
628 * If this is not a simplex interface, drop the packet
629 * if it came from us.
630 */
631 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
632 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
633 ETHER_ADDR_LEN) == 0) {
634 m_freem(m);
635 return;
636 }
637
638 if (memcmp(etherbroadcastaddr,
639 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
640 m->m_flags |= M_BCAST;
641 else
642 m->m_flags |= M_MCAST;
643 ifp->if_imcasts++;
644 }
645
646 /* If the CRC is still on the packet, trim it off. */
647 if (m->m_flags & M_HASFCS) {
648 m_adj(m, -ETHER_CRC_LEN);
649 m->m_flags &= ~M_HASFCS;
650 }
651
652 ifp->if_ibytes += m->m_pkthdr.len;
653
654 #if NCARP > 0
655 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
656 /*
657 * Clear M_PROMISC, in case the packet comes from a
658 * vlan.
659 */
660 m->m_flags &= ~M_PROMISC;
661 if (carp_input(m, (uint8_t *)&eh->ether_shost,
662 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
663 return;
664 }
665 #endif
666
667 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
668 (ifp->if_flags & IFF_PROMISC) != 0 &&
669 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
670 ETHER_ADDR_LEN) != 0) {
671 m->m_flags |= M_PROMISC;
672 }
673
674 if ((m->m_flags & M_PROMISC) == 0) {
675 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
676 return;
677 if (m == NULL)
678 return;
679
680 eh = mtod(m, struct ether_header *);
681 etype = ntohs(eh->ether_type);
682 }
683
684 #if NAGR > 0
685 if (ifp->if_agrprivate &&
686 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
687 m->m_flags &= ~M_PROMISC;
688 agr_input(ifp, m);
689 return;
690 }
691 #endif
692
693 /*
694 * If VLANs are configured on the interface, check to
695 * see if the device performed the decapsulation and
696 * provided us with the tag.
697 */
698 if (ec->ec_nvlans && vlan_has_tag(m)) {
699 #if NVLAN > 0
700 /*
701 * vlan_input() will either recursively call ether_input()
702 * or drop the packet.
703 */
704 vlan_input(ifp, m);
705 #else
706 m_freem(m);
707 #endif
708 return;
709 }
710
711 /*
712 * Handle protocols that expect to have the Ethernet header
713 * (and possibly FCS) intact.
714 */
715 switch (etype) {
716 case ETHERTYPE_VLAN: {
717 struct ether_vlan_header *evl = (void *)eh;
718
719 /*
720 * If there is a tag of 0, then the VLAN header was probably
721 * just being used to store the priority. Extract the ether
722 * type, and if IP or IPV6, let them deal with it.
723 */
724 if (m->m_len >= sizeof(*evl) &&
725 EVL_VLANOFTAG(evl->evl_tag) == 0) {
726 etype = ntohs(evl->evl_proto);
727 ehlen = sizeof(*evl);
728 if ((m->m_flags & M_PROMISC) == 0 &&
729 (etype == ETHERTYPE_IP ||
730 etype == ETHERTYPE_IPV6))
731 break;
732 }
733
734 #if NVLAN > 0
735 /*
736 * vlan_input() will either recursively call ether_input()
737 * or drop the packet.
738 */
739 if (ec->ec_nvlans != 0)
740 vlan_input(ifp, m);
741 else
742 #endif
743 m_freem(m);
744
745 return;
746 }
747
748 #if NPPPOE > 0
749 case ETHERTYPE_PPPOEDISC:
750 pppoedisc_input(ifp, m);
751 return;
752
753 case ETHERTYPE_PPPOE:
754 pppoe_input(ifp, m);
755 return;
756 #endif
757
758 case ETHERTYPE_SLOWPROTOCOLS: {
759 uint8_t subtype;
760
761 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) {
762 m_freem(m);
763 return;
764 }
765
766 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
767 switch (subtype) {
768 #if NAGR > 0
769 case SLOWPROTOCOLS_SUBTYPE_LACP:
770 if (ifp->if_agrprivate) {
771 ieee8023ad_lacp_input(ifp, m);
772 return;
773 }
774 break;
775
776 case SLOWPROTOCOLS_SUBTYPE_MARKER:
777 if (ifp->if_agrprivate) {
778 ieee8023ad_marker_input(ifp, m);
779 return;
780 }
781 break;
782 #endif
783
784 default:
785 if (subtype == 0 || subtype > 10) {
786 /* illegal value */
787 m_freem(m);
788 return;
789 }
790 /* unknown subtype */
791 break;
792 }
793 }
794 /* FALLTHROUGH */
795 default:
796 if (m->m_flags & M_PROMISC) {
797 m_freem(m);
798 return;
799 }
800 }
801
802 /* If the CRC is still on the packet, trim it off. */
803 if (m->m_flags & M_HASFCS) {
804 m_adj(m, -ETHER_CRC_LEN);
805 m->m_flags &= ~M_HASFCS;
806 }
807
808 if (etype > ETHERMTU + sizeof(struct ether_header)) {
809 /* Strip off the Ethernet header. */
810 m_adj(m, ehlen);
811
812 switch (etype) {
813 #ifdef INET
814 case ETHERTYPE_IP:
815 #ifdef GATEWAY
816 if (ipflow_fastforward(m))
817 return;
818 #endif
819 pktq = ip_pktq;
820 break;
821
822 case ETHERTYPE_ARP:
823 isr = NETISR_ARP;
824 inq = &arpintrq;
825 break;
826
827 case ETHERTYPE_REVARP:
828 revarpinput(m); /* XXX queue? */
829 return;
830 #endif
831
832 #ifdef INET6
833 case ETHERTYPE_IPV6:
834 if (__predict_false(!in6_present)) {
835 m_freem(m);
836 return;
837 }
838 #ifdef GATEWAY
839 if (ip6flow_fastforward(&m))
840 return;
841 #endif
842 pktq = ip6_pktq;
843 break;
844 #endif
845
846 #ifdef NETATALK
847 case ETHERTYPE_ATALK:
848 isr = NETISR_ATALK;
849 inq = &atintrq1;
850 break;
851
852 case ETHERTYPE_AARP:
853 aarpinput(ifp, m); /* XXX queue? */
854 return;
855 #endif
856
857 #ifdef MPLS
858 case ETHERTYPE_MPLS:
859 isr = NETISR_MPLS;
860 inq = &mplsintrq;
861 break;
862 #endif
863
864 default:
865 m_freem(m);
866 return;
867 }
868 } else {
869 KASSERT(ehlen == sizeof(*eh));
870 #if defined (LLC) || defined (NETATALK)
871 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) {
872 goto dropanyway;
873 }
874 l = (struct llc *)(eh+1);
875
876 switch (l->llc_dsap) {
877 #ifdef NETATALK
878 case LLC_SNAP_LSAP:
879 switch (l->llc_control) {
880 case LLC_UI:
881 if (l->llc_ssap != LLC_SNAP_LSAP) {
882 goto dropanyway;
883 }
884
885 if (memcmp(&(l->llc_snap_org_code)[0],
886 at_org_code, sizeof(at_org_code)) == 0 &&
887 ntohs(l->llc_snap_ether_type) ==
888 ETHERTYPE_ATALK) {
889 inq = &atintrq2;
890 m_adj(m, sizeof(struct ether_header)
891 + sizeof(struct llc));
892 isr = NETISR_ATALK;
893 break;
894 }
895
896 if (memcmp(&(l->llc_snap_org_code)[0],
897 aarp_org_code,
898 sizeof(aarp_org_code)) == 0 &&
899 ntohs(l->llc_snap_ether_type) ==
900 ETHERTYPE_AARP) {
901 m_adj(m, sizeof(struct ether_header)
902 + sizeof(struct llc));
903 aarpinput(ifp, m); /* XXX queue? */
904 return;
905 }
906
907 default:
908 goto dropanyway;
909 }
910 break;
911 #endif
912 dropanyway:
913 default:
914 m_freem(m);
915 return;
916 }
917 #else /* LLC || NETATALK */
918 m_freem(m);
919 return;
920 #endif /* LLC || NETATALK */
921 }
922
923 if (__predict_true(pktq)) {
924 #ifdef NET_MPSAFE
925 const u_int h = curcpu()->ci_index;
926 #else
927 const uint32_t h = pktq_rps_hash(m);
928 #endif
929 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
930 m_freem(m);
931 }
932 return;
933 }
934
935 if (__predict_false(!inq)) {
936 /* Should not happen. */
937 m_freem(m);
938 return;
939 }
940
941 IFQ_LOCK(inq);
942 if (IF_QFULL(inq)) {
943 IF_DROP(inq);
944 IFQ_UNLOCK(inq);
945 m_freem(m);
946 } else {
947 IF_ENQUEUE(inq, m);
948 IFQ_UNLOCK(inq);
949 schednetisr(isr);
950 }
951 }
952
953 /*
954 * Convert Ethernet address to printable (loggable) representation.
955 */
956 char *
957 ether_sprintf(const u_char *ap)
958 {
959 static char etherbuf[3 * ETHER_ADDR_LEN];
960 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
961 }
962
963 char *
964 ether_snprintf(char *buf, size_t len, const u_char *ap)
965 {
966 char *cp = buf;
967 size_t i;
968
969 for (i = 0; i < len / 3; i++) {
970 *cp++ = hexdigits[*ap >> 4];
971 *cp++ = hexdigits[*ap++ & 0xf];
972 *cp++ = ':';
973 }
974 *--cp = '\0';
975 return buf;
976 }
977
978 /*
979 * Perform common duties while attaching to interface list
980 */
981 void
982 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
983 {
984 struct ethercom *ec = (struct ethercom *)ifp;
985
986 ifp->if_type = IFT_ETHER;
987 ifp->if_hdrlen = ETHER_HDR_LEN;
988 ifp->if_dlt = DLT_EN10MB;
989 ifp->if_mtu = ETHERMTU;
990 ifp->if_output = ether_output;
991 ifp->_if_input = ether_input;
992 if (ifp->if_baudrate == 0)
993 ifp->if_baudrate = IF_Mbps(10); /* just a default */
994
995 if (lla != NULL)
996 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
997
998 LIST_INIT(&ec->ec_multiaddrs);
999 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1000 ifp->if_broadcastaddr = etherbroadcastaddr;
1001 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1002 #ifdef MBUFTRACE
1003 strlcpy(ec->ec_tx_mowner.mo_name, ifp->if_xname,
1004 sizeof(ec->ec_tx_mowner.mo_name));
1005 strlcpy(ec->ec_tx_mowner.mo_descr, "tx",
1006 sizeof(ec->ec_tx_mowner.mo_descr));
1007 strlcpy(ec->ec_rx_mowner.mo_name, ifp->if_xname,
1008 sizeof(ec->ec_rx_mowner.mo_name));
1009 strlcpy(ec->ec_rx_mowner.mo_descr, "rx",
1010 sizeof(ec->ec_rx_mowner.mo_descr));
1011 MOWNER_ATTACH(&ec->ec_tx_mowner);
1012 MOWNER_ATTACH(&ec->ec_rx_mowner);
1013 ifp->if_mowner = &ec->ec_tx_mowner;
1014 #endif
1015 }
1016
1017 void
1018 ether_ifdetach(struct ifnet *ifp)
1019 {
1020 struct ethercom *ec = (void *) ifp;
1021 struct ether_multi *enm;
1022
1023 IFNET_ASSERT_UNLOCKED(ifp);
1024 /*
1025 * Prevent further calls to ioctl (for example turning off
1026 * promiscuous mode from the bridge code), which eventually can
1027 * call if_init() which can cause panics because the interface
1028 * is in the process of being detached. Return device not configured
1029 * instead.
1030 */
1031 ifp->if_ioctl = (int (*)(struct ifnet *, u_long, void *))enxio;
1032
1033 #if NBRIDGE > 0
1034 if (ifp->if_bridge)
1035 bridge_ifdetach(ifp);
1036 #endif
1037 bpf_detach(ifp);
1038 #if NVLAN > 0
1039 if (ec->ec_nvlans)
1040 vlan_ifdetach(ifp);
1041 #endif
1042
1043 ETHER_LOCK(ec);
1044 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1045 LIST_REMOVE(enm, enm_list);
1046 kmem_free(enm, sizeof(*enm));
1047 ec->ec_multicnt--;
1048 }
1049 ETHER_UNLOCK(ec);
1050
1051 mutex_obj_free(ec->ec_lock);
1052 ec->ec_lock = NULL;
1053
1054 ifp->if_mowner = NULL;
1055 MOWNER_DETACH(&ec->ec_rx_mowner);
1056 MOWNER_DETACH(&ec->ec_tx_mowner);
1057 }
1058
1059 #if 0
1060 /*
1061 * This is for reference. We have a table-driven version
1062 * of the little-endian crc32 generator, which is faster
1063 * than the double-loop.
1064 */
1065 uint32_t
1066 ether_crc32_le(const uint8_t *buf, size_t len)
1067 {
1068 uint32_t c, crc, carry;
1069 size_t i, j;
1070
1071 crc = 0xffffffffU; /* initial value */
1072
1073 for (i = 0; i < len; i++) {
1074 c = buf[i];
1075 for (j = 0; j < 8; j++) {
1076 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1077 crc >>= 1;
1078 c >>= 1;
1079 if (carry)
1080 crc = (crc ^ ETHER_CRC_POLY_LE);
1081 }
1082 }
1083
1084 return (crc);
1085 }
1086 #else
1087 uint32_t
1088 ether_crc32_le(const uint8_t *buf, size_t len)
1089 {
1090 static const uint32_t crctab[] = {
1091 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1092 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1093 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1094 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1095 };
1096 uint32_t crc;
1097 size_t i;
1098
1099 crc = 0xffffffffU; /* initial value */
1100
1101 for (i = 0; i < len; i++) {
1102 crc ^= buf[i];
1103 crc = (crc >> 4) ^ crctab[crc & 0xf];
1104 crc = (crc >> 4) ^ crctab[crc & 0xf];
1105 }
1106
1107 return (crc);
1108 }
1109 #endif
1110
1111 uint32_t
1112 ether_crc32_be(const uint8_t *buf, size_t len)
1113 {
1114 uint32_t c, crc, carry;
1115 size_t i, j;
1116
1117 crc = 0xffffffffU; /* initial value */
1118
1119 for (i = 0; i < len; i++) {
1120 c = buf[i];
1121 for (j = 0; j < 8; j++) {
1122 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1123 crc <<= 1;
1124 c >>= 1;
1125 if (carry)
1126 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1127 }
1128 }
1129
1130 return (crc);
1131 }
1132
1133 #ifdef INET
1134 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1135 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1136 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1137 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1138 #endif
1139 #ifdef INET6
1140 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1141 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1142 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1143 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1144 #endif
1145
1146 /*
1147 * ether_aton implementation, not using a static buffer.
1148 */
1149 int
1150 ether_aton_r(u_char *dest, size_t len, const char *str)
1151 {
1152 const u_char *cp = (const void *)str;
1153 u_char *ep;
1154
1155 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1156
1157 if (len < ETHER_ADDR_LEN)
1158 return ENOSPC;
1159
1160 ep = dest + ETHER_ADDR_LEN;
1161
1162 while (*cp) {
1163 if (!isxdigit(*cp))
1164 return EINVAL;
1165
1166 *dest = atox(*cp);
1167 cp++;
1168 if (isxdigit(*cp)) {
1169 *dest = (*dest << 4) | atox(*cp);
1170 cp++;
1171 }
1172 dest++;
1173
1174 if (dest == ep)
1175 return (*cp == '\0') ? 0 : ENAMETOOLONG;
1176
1177 switch (*cp) {
1178 case ':':
1179 case '-':
1180 case '.':
1181 cp++;
1182 break;
1183 }
1184 }
1185 return ENOBUFS;
1186 }
1187
1188 /*
1189 * Convert a sockaddr into an Ethernet address or range of Ethernet
1190 * addresses.
1191 */
1192 int
1193 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1194 uint8_t addrhi[ETHER_ADDR_LEN])
1195 {
1196 #ifdef INET
1197 const struct sockaddr_in *sin;
1198 #endif
1199 #ifdef INET6
1200 const struct sockaddr_in6 *sin6;
1201 #endif
1202
1203 switch (sa->sa_family) {
1204
1205 case AF_UNSPEC:
1206 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1207 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1208 break;
1209
1210 #ifdef INET
1211 case AF_INET:
1212 sin = satocsin(sa);
1213 if (sin->sin_addr.s_addr == INADDR_ANY) {
1214 /*
1215 * An IP address of INADDR_ANY means listen to
1216 * or stop listening to all of the Ethernet
1217 * multicast addresses used for IP.
1218 * (This is for the sake of IP multicast routers.)
1219 */
1220 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1221 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1222 } else {
1223 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1224 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1225 }
1226 break;
1227 #endif
1228 #ifdef INET6
1229 case AF_INET6:
1230 sin6 = satocsin6(sa);
1231 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1232 /*
1233 * An IP6 address of 0 means listen to or stop
1234 * listening to all of the Ethernet multicast
1235 * address used for IP6.
1236 * (This is used for multicast routers.)
1237 */
1238 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1239 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1240 } else {
1241 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1242 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1243 }
1244 break;
1245 #endif
1246
1247 default:
1248 return EAFNOSUPPORT;
1249 }
1250 return 0;
1251 }
1252
1253 /*
1254 * Add an Ethernet multicast address or range of addresses to the list for a
1255 * given interface.
1256 */
1257 int
1258 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1259 {
1260 struct ether_multi *enm, *_enm;
1261 u_char addrlo[ETHER_ADDR_LEN];
1262 u_char addrhi[ETHER_ADDR_LEN];
1263 int error = 0;
1264
1265 /* Allocate out of lock */
1266 enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1267
1268 ETHER_LOCK(ec);
1269 error = ether_multiaddr(sa, addrlo, addrhi);
1270 if (error != 0)
1271 goto out;
1272
1273 /*
1274 * Verify that we have valid Ethernet multicast addresses.
1275 */
1276 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1277 error = EINVAL;
1278 goto out;
1279 }
1280
1281 /*
1282 * See if the address range is already in the list.
1283 */
1284 _enm = ether_lookup_multi(addrlo, addrhi, ec);
1285 if (_enm != NULL) {
1286 /*
1287 * Found it; just increment the reference count.
1288 */
1289 ++_enm->enm_refcount;
1290 error = 0;
1291 goto out;
1292 }
1293
1294 /*
1295 * Link a new multicast record into the interface's multicast list.
1296 */
1297 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1298 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1299 enm->enm_refcount = 1;
1300 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1301 ec->ec_multicnt++;
1302
1303 /*
1304 * Return ENETRESET to inform the driver that the list has changed
1305 * and its reception filter should be adjusted accordingly.
1306 */
1307 error = ENETRESET;
1308 enm = NULL;
1309
1310 out:
1311 ETHER_UNLOCK(ec);
1312 if (enm != NULL)
1313 kmem_free(enm, sizeof(*enm));
1314 return error;
1315 }
1316
1317 /*
1318 * Delete a multicast address record.
1319 */
1320 int
1321 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1322 {
1323 struct ether_multi *enm;
1324 u_char addrlo[ETHER_ADDR_LEN];
1325 u_char addrhi[ETHER_ADDR_LEN];
1326 int error;
1327
1328 ETHER_LOCK(ec);
1329 error = ether_multiaddr(sa, addrlo, addrhi);
1330 if (error != 0)
1331 goto error;
1332
1333 /*
1334 * Look up the address in our list.
1335 */
1336 enm = ether_lookup_multi(addrlo, addrhi, ec);
1337 if (enm == NULL) {
1338 error = ENXIO;
1339 goto error;
1340 }
1341 if (--enm->enm_refcount != 0) {
1342 /*
1343 * Still some claims to this record.
1344 */
1345 error = 0;
1346 goto error;
1347 }
1348
1349 /*
1350 * No remaining claims to this record; unlink and free it.
1351 */
1352 LIST_REMOVE(enm, enm_list);
1353 ec->ec_multicnt--;
1354 ETHER_UNLOCK(ec);
1355 kmem_free(enm, sizeof(*enm));
1356
1357 /*
1358 * Return ENETRESET to inform the driver that the list has changed
1359 * and its reception filter should be adjusted accordingly.
1360 */
1361 return ENETRESET;
1362
1363 error:
1364 ETHER_UNLOCK(ec);
1365 return error;
1366 }
1367
1368 void
1369 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1370 {
1371 ec->ec_ifflags_cb = cb;
1372 }
1373
1374 static int
1375 ether_ioctl_reinit(struct ethercom *ec)
1376 {
1377 struct ifnet *ifp = &ec->ec_if;
1378 int error;
1379
1380 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1381 case IFF_RUNNING:
1382 /*
1383 * If interface is marked down and it is running,
1384 * then stop and disable it.
1385 */
1386 (*ifp->if_stop)(ifp, 1);
1387 break;
1388 case IFF_UP:
1389 /*
1390 * If interface is marked up and it is stopped, then
1391 * start it.
1392 */
1393 return (*ifp->if_init)(ifp);
1394 case IFF_UP | IFF_RUNNING:
1395 error = 0;
1396 if (ec->ec_ifflags_cb != NULL) {
1397 error = (*ec->ec_ifflags_cb)(ec);
1398 if (error == ENETRESET) {
1399 /*
1400 * Reset the interface to pick up
1401 * changes in any other flags that
1402 * affect the hardware state.
1403 */
1404 return (*ifp->if_init)(ifp);
1405 }
1406 } else
1407 error = (*ifp->if_init)(ifp);
1408 return error;
1409 case 0:
1410 break;
1411 }
1412
1413 return 0;
1414 }
1415
1416 /*
1417 * Common ioctls for Ethernet interfaces. Note, we must be
1418 * called at splnet().
1419 */
1420 int
1421 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1422 {
1423 struct ethercom *ec = (void *)ifp;
1424 struct eccapreq *eccr;
1425 struct ifreq *ifr = (struct ifreq *)data;
1426 struct if_laddrreq *iflr = data;
1427 const struct sockaddr_dl *sdl;
1428 static const uint8_t zero[ETHER_ADDR_LEN];
1429 int error;
1430
1431 switch (cmd) {
1432 case SIOCINITIFADDR:
1433 {
1434 struct ifaddr *ifa = (struct ifaddr *)data;
1435 if (ifa->ifa_addr->sa_family != AF_LINK
1436 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1437 (IFF_UP | IFF_RUNNING)) {
1438 ifp->if_flags |= IFF_UP;
1439 if ((error = (*ifp->if_init)(ifp)) != 0)
1440 return error;
1441 }
1442 #ifdef INET
1443 if (ifa->ifa_addr->sa_family == AF_INET)
1444 arp_ifinit(ifp, ifa);
1445 #endif
1446 return 0;
1447 }
1448
1449 case SIOCSIFMTU:
1450 {
1451 int maxmtu;
1452
1453 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1454 maxmtu = ETHERMTU_JUMBO;
1455 else
1456 maxmtu = ETHERMTU;
1457
1458 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1459 return EINVAL;
1460 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1461 return error;
1462 else if (ifp->if_flags & IFF_UP) {
1463 /* Make sure the device notices the MTU change. */
1464 return (*ifp->if_init)(ifp);
1465 } else
1466 return 0;
1467 }
1468
1469 case SIOCSIFFLAGS:
1470 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1471 return error;
1472 return ether_ioctl_reinit(ec);
1473 case SIOCGETHERCAP:
1474 eccr = (struct eccapreq *)data;
1475 eccr->eccr_capabilities = ec->ec_capabilities;
1476 eccr->eccr_capenable = ec->ec_capenable;
1477 return 0;
1478 case SIOCSETHERCAP:
1479 eccr = (struct eccapreq *)data;
1480 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1481 return EINVAL;
1482 if (eccr->eccr_capenable == ec->ec_capenable)
1483 return 0;
1484 #if 0 /* notyet */
1485 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1486 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1487 #else
1488 ec->ec_capenable = eccr->eccr_capenable;
1489 #endif
1490 return ether_ioctl_reinit(ec);
1491 case SIOCADDMULTI:
1492 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1493 case SIOCDELMULTI:
1494 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1495 case SIOCSIFMEDIA:
1496 case SIOCGIFMEDIA:
1497 if (ec->ec_mii == NULL)
1498 return ENOTTY;
1499 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media, cmd);
1500 case SIOCALIFADDR:
1501 sdl = satocsdl(sstocsa(&iflr->addr));
1502 if (sdl->sdl_family != AF_LINK)
1503 ;
1504 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1505 return EINVAL;
1506 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1507 return EINVAL;
1508 /*FALLTHROUGH*/
1509 default:
1510 return ifioctl_common(ifp, cmd, data);
1511 }
1512 return 0;
1513 }
1514
1515 /*
1516 * Enable/disable passing VLAN packets if the parent interface supports it.
1517 * Return:
1518 * 0: Ok
1519 * -1: Parent interface does not support vlans
1520 * >0: Error
1521 */
1522 int
1523 ether_enable_vlan_mtu(struct ifnet *ifp)
1524 {
1525 int error;
1526 struct ethercom *ec = (void *)ifp;
1527
1528 /* Parent does not support VLAN's */
1529 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1530 return -1;
1531
1532 /*
1533 * Parent supports the VLAN_MTU capability,
1534 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1535 * enable it.
1536 */
1537 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1538
1539 /* Interface is down, defer for later */
1540 if ((ifp->if_flags & IFF_UP) == 0)
1541 return 0;
1542
1543 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1544 return 0;
1545
1546 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1547 return error;
1548 }
1549
1550 int
1551 ether_disable_vlan_mtu(struct ifnet *ifp)
1552 {
1553 int error;
1554 struct ethercom *ec = (void *)ifp;
1555
1556 /* We still have VLAN's, defer for later */
1557 if (ec->ec_nvlans != 0)
1558 return 0;
1559
1560 /* Parent does not support VLAB's, nothing to do. */
1561 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1562 return -1;
1563
1564 /*
1565 * Disable Tx/Rx of VLAN-sized frames.
1566 */
1567 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1568
1569 /* Interface is down, defer for later */
1570 if ((ifp->if_flags & IFF_UP) == 0)
1571 return 0;
1572
1573 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1574 return 0;
1575
1576 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1577 return error;
1578 }
1579
1580 static int
1581 ether_multicast_sysctl(SYSCTLFN_ARGS)
1582 {
1583 struct ether_multi *enm;
1584 struct ifnet *ifp;
1585 struct ethercom *ec;
1586 int error = 0;
1587 size_t written;
1588 struct psref psref;
1589 int bound;
1590 unsigned int multicnt;
1591 struct ether_multi_sysctl *addrs;
1592 int i;
1593
1594 if (namelen != 1)
1595 return EINVAL;
1596
1597 bound = curlwp_bind();
1598 ifp = if_get_byindex(name[0], &psref);
1599 if (ifp == NULL) {
1600 error = ENODEV;
1601 goto out;
1602 }
1603 if (ifp->if_type != IFT_ETHER) {
1604 if_put(ifp, &psref);
1605 *oldlenp = 0;
1606 goto out;
1607 }
1608 ec = (struct ethercom *)ifp;
1609
1610 if (oldp == NULL) {
1611 if_put(ifp, &psref);
1612 *oldlenp = ec->ec_multicnt * sizeof(*addrs);
1613 goto out;
1614 }
1615
1616 /*
1617 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1618 * is sleepable, while holding it. Copy data to a local buffer first
1619 * with the lock taken and then call sysctl_copyout without holding it.
1620 */
1621 retry:
1622 multicnt = ec->ec_multicnt;
1623
1624 if (multicnt == 0) {
1625 if_put(ifp, &psref);
1626 *oldlenp = 0;
1627 goto out;
1628 }
1629
1630 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1631
1632 ETHER_LOCK(ec);
1633 if (multicnt != ec->ec_multicnt) {
1634 /* The number of multicast addresses has changed */
1635 ETHER_UNLOCK(ec);
1636 kmem_free(addrs, sizeof(*addrs) * multicnt);
1637 goto retry;
1638 }
1639
1640 i = 0;
1641 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1642 struct ether_multi_sysctl *addr = &addrs[i];
1643 addr->enm_refcount = enm->enm_refcount;
1644 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1645 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1646 i++;
1647 }
1648 ETHER_UNLOCK(ec);
1649
1650 error = 0;
1651 written = 0;
1652 for (i = 0; i < multicnt; i++) {
1653 struct ether_multi_sysctl *addr = &addrs[i];
1654
1655 if (written + sizeof(*addr) > *oldlenp)
1656 break;
1657 error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1658 if (error)
1659 break;
1660 written += sizeof(*addr);
1661 oldp = (char *)oldp + sizeof(*addr);
1662 }
1663 kmem_free(addrs, sizeof(*addrs) * multicnt);
1664
1665 if_put(ifp, &psref);
1666
1667 *oldlenp = written;
1668 out:
1669 curlwp_bindx(bound);
1670 return error;
1671 }
1672
1673 static void
1674 ether_sysctl_setup(struct sysctllog **clog)
1675 {
1676 const struct sysctlnode *rnode = NULL;
1677
1678 sysctl_createv(clog, 0, NULL, &rnode,
1679 CTLFLAG_PERMANENT,
1680 CTLTYPE_NODE, "ether",
1681 SYSCTL_DESCR("Ethernet-specific information"),
1682 NULL, 0, NULL, 0,
1683 CTL_NET, CTL_CREATE, CTL_EOL);
1684
1685 sysctl_createv(clog, 0, &rnode, NULL,
1686 CTLFLAG_PERMANENT,
1687 CTLTYPE_NODE, "multicast",
1688 SYSCTL_DESCR("multicast addresses"),
1689 ether_multicast_sysctl, 0, NULL, 0,
1690 CTL_CREATE, CTL_EOL);
1691 }
1692
1693 void
1694 etherinit(void)
1695 {
1696
1697 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1698 ether_sysctl_setup(NULL);
1699 }
1700