if_ethersubr.c revision 1.277 1 /* $NetBSD: if_ethersubr.c,v 1.277 2019/10/01 08:13:16 msaitoh Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.277 2019/10/01 08:13:16 msaitoh Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/rnd.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92
93 #include <net/if.h>
94 #include <net/netisr.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104
105 #if NARP == 0
106 /*
107 * XXX there should really be a way to issue this warning from within config(8)
108 */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111
112 #include <net/bpf.h>
113
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120
121 #if NAGR > 0
122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144
145 #include "carp.h"
146 #if NCARP > 0
147 #include <netinet/ip_carp.h>
148 #endif
149
150 #ifdef NETATALK
151 #include <netatalk/at.h>
152 #include <netatalk/at_var.h>
153 #include <netatalk/at_extern.h>
154
155 #define llc_snap_org_code llc_un.type_snap.org_code
156 #define llc_snap_ether_type llc_un.type_snap.ether_type
157
158 extern u_char at_org_code[3];
159 extern u_char aarp_org_code[3];
160 #endif /* NETATALK */
161
162 #ifdef MPLS
163 #include <netmpls/mpls.h>
164 #include <netmpls/mpls_var.h>
165 #endif
166
167 static struct timeval bigpktppslim_last;
168 static int bigpktppslim = 2; /* XXX */
169 static int bigpktpps_count;
170 static kmutex_t bigpktpps_lock __cacheline_aligned;
171
172 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
173 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
174 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
175 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
176 #define senderr(e) { error = (e); goto bad;}
177
178 static int ether_output(struct ifnet *, struct mbuf *,
179 const struct sockaddr *, const struct rtentry *);
180
181 /*
182 * Ethernet output routine.
183 * Encapsulate a packet of type family for the local net.
184 * Assumes that ifp is actually pointer to ethercom structure.
185 */
186 static int
187 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
188 const struct sockaddr * const dst, const struct rtentry *rt)
189 {
190 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
191 uint16_t etype = 0;
192 int error = 0, hdrcmplt = 0;
193 struct mbuf *m = m0;
194 struct mbuf *mcopy = NULL;
195 struct ether_header *eh;
196 struct ifnet *ifp = ifp0;
197 #ifdef INET
198 struct arphdr *ah;
199 #endif
200 #ifdef NETATALK
201 struct at_ifaddr *aa;
202 #endif
203
204 #ifdef MBUFTRACE
205 m_claimm(m, ifp->if_mowner);
206 #endif
207
208 #if NCARP > 0
209 if (ifp->if_type == IFT_CARP) {
210 struct ifaddr *ifa;
211 int s = pserialize_read_enter();
212
213 /* loop back if this is going to the carp interface */
214 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
215 (ifa = ifa_ifwithaddr(dst)) != NULL) {
216 if (ifa->ifa_ifp == ifp0) {
217 pserialize_read_exit(s);
218 return looutput(ifp0, m, dst, rt);
219 }
220 }
221 pserialize_read_exit(s);
222
223 ifp = ifp->if_carpdev;
224 /* ac = (struct arpcom *)ifp; */
225
226 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
227 (IFF_UP | IFF_RUNNING))
228 senderr(ENETDOWN);
229 }
230 #endif
231
232 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
233 senderr(ENETDOWN);
234
235 switch (dst->sa_family) {
236
237 #ifdef INET
238 case AF_INET:
239 if (m->m_flags & M_BCAST) {
240 memcpy(edst, etherbroadcastaddr, sizeof(edst));
241 } else if (m->m_flags & M_MCAST) {
242 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
243 } else {
244 error = arpresolve(ifp, rt, m, dst, edst, sizeof(edst));
245 if (error)
246 return (error == EWOULDBLOCK) ? 0 : error;
247 }
248 /* If broadcasting on a simplex interface, loopback a copy */
249 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
250 mcopy = m_copypacket(m, M_DONTWAIT);
251 etype = htons(ETHERTYPE_IP);
252 break;
253
254 case AF_ARP:
255 ah = mtod(m, struct arphdr *);
256 if (m->m_flags & M_BCAST) {
257 memcpy(edst, etherbroadcastaddr, sizeof(edst));
258 } else {
259 void *tha = ar_tha(ah);
260
261 if (tha == NULL) {
262 /* fake with ARPHRD_IEEE1394 */
263 m_freem(m);
264 return 0;
265 }
266 memcpy(edst, tha, sizeof(edst));
267 }
268
269 ah->ar_hrd = htons(ARPHRD_ETHER);
270
271 switch (ntohs(ah->ar_op)) {
272 case ARPOP_REVREQUEST:
273 case ARPOP_REVREPLY:
274 etype = htons(ETHERTYPE_REVARP);
275 break;
276
277 case ARPOP_REQUEST:
278 case ARPOP_REPLY:
279 default:
280 etype = htons(ETHERTYPE_ARP);
281 }
282 break;
283 #endif
284
285 #ifdef INET6
286 case AF_INET6:
287 if (m->m_flags & M_BCAST) {
288 memcpy(edst, etherbroadcastaddr, sizeof(edst));
289 } else if (m->m_flags & M_MCAST) {
290 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
291 edst);
292 } else {
293 error = nd6_resolve(ifp, rt, m, dst, edst,
294 sizeof(edst));
295 if (error)
296 return (error == EWOULDBLOCK) ? 0 : error;
297 }
298 etype = htons(ETHERTYPE_IPV6);
299 break;
300 #endif
301
302 #ifdef NETATALK
303 case AF_APPLETALK: {
304 struct ifaddr *ifa;
305 int s;
306
307 KERNEL_LOCK(1, NULL);
308
309 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
310 KERNEL_UNLOCK_ONE(NULL);
311 return 0;
312 }
313
314 /*
315 * ifaddr is the first thing in at_ifaddr
316 */
317 s = pserialize_read_enter();
318 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
319 if (ifa == NULL) {
320 pserialize_read_exit(s);
321 KERNEL_UNLOCK_ONE(NULL);
322 senderr(EADDRNOTAVAIL);
323 }
324 aa = (struct at_ifaddr *)ifa;
325
326 /*
327 * In the phase 2 case, we need to prepend an mbuf for the
328 * llc header.
329 */
330 if (aa->aa_flags & AFA_PHASE2) {
331 struct llc llc;
332
333 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
334 if (m == NULL) {
335 pserialize_read_exit(s);
336 KERNEL_UNLOCK_ONE(NULL);
337 senderr(ENOBUFS);
338 }
339
340 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
341 llc.llc_control = LLC_UI;
342 memcpy(llc.llc_snap_org_code, at_org_code,
343 sizeof(llc.llc_snap_org_code));
344 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
345 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
346 } else {
347 etype = htons(ETHERTYPE_ATALK);
348 }
349 pserialize_read_exit(s);
350 KERNEL_UNLOCK_ONE(NULL);
351 break;
352 }
353 #endif /* NETATALK */
354
355 case pseudo_AF_HDRCMPLT:
356 hdrcmplt = 1;
357 memcpy(esrc,
358 ((const struct ether_header *)dst->sa_data)->ether_shost,
359 sizeof(esrc));
360 /* FALLTHROUGH */
361
362 case AF_UNSPEC:
363 memcpy(edst,
364 ((const struct ether_header *)dst->sa_data)->ether_dhost,
365 sizeof(edst));
366 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
367 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
368 break;
369
370 default:
371 printf("%s: can't handle af%d\n", ifp->if_xname,
372 dst->sa_family);
373 senderr(EAFNOSUPPORT);
374 }
375
376 #ifdef MPLS
377 {
378 struct m_tag *mtag;
379 mtag = m_tag_find(m, PACKET_TAG_MPLS);
380 if (mtag != NULL) {
381 /* Having the tag itself indicates it's MPLS */
382 etype = htons(ETHERTYPE_MPLS);
383 m_tag_delete(m, mtag);
384 }
385 }
386 #endif
387
388 if (mcopy)
389 (void)looutput(ifp, mcopy, dst, rt);
390
391 KASSERT((m->m_flags & M_PKTHDR) != 0);
392
393 /*
394 * If no ether type is set, this must be a 802.2 formatted packet.
395 */
396 if (etype == 0)
397 etype = htons(m->m_pkthdr.len);
398
399 /*
400 * Add local net header. If no space in first mbuf, allocate another.
401 */
402 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
403 if (m == NULL)
404 senderr(ENOBUFS);
405
406 eh = mtod(m, struct ether_header *);
407 /* Note: etype is already in network byte order. */
408 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
409 memcpy(eh->ether_dhost, edst, sizeof(edst));
410 if (hdrcmplt) {
411 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
412 } else {
413 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
414 sizeof(eh->ether_shost));
415 }
416
417 #if NCARP > 0
418 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
419 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
420 sizeof(eh->ether_shost));
421 }
422 #endif
423
424 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
425 return error;
426 if (m == NULL)
427 return 0;
428
429 #if NBRIDGE > 0
430 /*
431 * Bridges require special output handling.
432 */
433 if (ifp->if_bridge)
434 return bridge_output(ifp, m, NULL, NULL);
435 #endif
436
437 #if NCARP > 0
438 if (ifp != ifp0)
439 ifp0->if_obytes += m->m_pkthdr.len + ETHER_HDR_LEN;
440 #endif
441
442 #ifdef ALTQ
443 KERNEL_LOCK(1, NULL);
444 /*
445 * If ALTQ is enabled on the parent interface, do
446 * classification; the queueing discipline might not
447 * require classification, but might require the
448 * address family/header pointer in the pktattr.
449 */
450 if (ALTQ_IS_ENABLED(&ifp->if_snd))
451 altq_etherclassify(&ifp->if_snd, m);
452 KERNEL_UNLOCK_ONE(NULL);
453 #endif
454 return ifq_enqueue(ifp, m);
455
456 bad:
457 if (m)
458 m_freem(m);
459 return error;
460 }
461
462 #ifdef ALTQ
463 /*
464 * This routine is a slight hack to allow a packet to be classified
465 * if the Ethernet headers are present. It will go away when ALTQ's
466 * classification engine understands link headers.
467 *
468 * XXX: We may need to do m_pullups here. First to ensure struct ether_header
469 * is indeed contiguous, then to read the LLC and so on.
470 */
471 void
472 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
473 {
474 struct ether_header *eh;
475 struct mbuf *mtop = m;
476 uint16_t ether_type;
477 int hlen, af, hdrsize;
478 void *hdr;
479
480 KASSERT((mtop->m_flags & M_PKTHDR) != 0);
481
482 hlen = ETHER_HDR_LEN;
483 eh = mtod(m, struct ether_header *);
484
485 ether_type = htons(eh->ether_type);
486
487 if (ether_type < ETHERMTU) {
488 /* LLC/SNAP */
489 struct llc *llc = (struct llc *)(eh + 1);
490 hlen += 8;
491
492 if (m->m_len < hlen ||
493 llc->llc_dsap != LLC_SNAP_LSAP ||
494 llc->llc_ssap != LLC_SNAP_LSAP ||
495 llc->llc_control != LLC_UI) {
496 /* Not SNAP. */
497 goto bad;
498 }
499
500 ether_type = htons(llc->llc_un.type_snap.ether_type);
501 }
502
503 switch (ether_type) {
504 case ETHERTYPE_IP:
505 af = AF_INET;
506 hdrsize = 20; /* sizeof(struct ip) */
507 break;
508
509 case ETHERTYPE_IPV6:
510 af = AF_INET6;
511 hdrsize = 40; /* sizeof(struct ip6_hdr) */
512 break;
513
514 default:
515 af = AF_UNSPEC;
516 hdrsize = 0;
517 break;
518 }
519
520 while (m->m_len <= hlen) {
521 hlen -= m->m_len;
522 m = m->m_next;
523 if (m == NULL)
524 goto bad;
525 }
526
527 if (m->m_len < (hlen + hdrsize)) {
528 /*
529 * protocol header not in a single mbuf.
530 * We can't cope with this situation right
531 * now (but it shouldn't ever happen, really, anyhow).
532 */
533 #ifdef DEBUG
534 printf("altq_etherclassify: headers span multiple mbufs: "
535 "%d < %d\n", m->m_len, (hlen + hdrsize));
536 #endif
537 goto bad;
538 }
539
540 m->m_data += hlen;
541 m->m_len -= hlen;
542
543 hdr = mtod(m, void *);
544
545 if (ALTQ_NEEDS_CLASSIFY(ifq)) {
546 mtop->m_pkthdr.pattr_class =
547 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
548 }
549 mtop->m_pkthdr.pattr_af = af;
550 mtop->m_pkthdr.pattr_hdr = hdr;
551
552 m->m_data -= hlen;
553 m->m_len += hlen;
554
555 return;
556
557 bad:
558 mtop->m_pkthdr.pattr_class = NULL;
559 mtop->m_pkthdr.pattr_hdr = NULL;
560 mtop->m_pkthdr.pattr_af = AF_UNSPEC;
561 }
562 #endif /* ALTQ */
563
564 /*
565 * Process a received Ethernet packet;
566 * the packet is in the mbuf chain m with
567 * the ether header.
568 */
569 void
570 ether_input(struct ifnet *ifp, struct mbuf *m)
571 {
572 struct ethercom *ec = (struct ethercom *) ifp;
573 pktqueue_t *pktq = NULL;
574 struct ifqueue *inq = NULL;
575 uint16_t etype;
576 struct ether_header *eh;
577 size_t ehlen;
578 static int earlypkts;
579 int isr = 0;
580 #if defined (LLC) || defined(NETATALK)
581 struct llc *l;
582 #endif
583
584 KASSERT(!cpu_intr_p());
585 KASSERT((m->m_flags & M_PKTHDR) != 0);
586
587 if ((ifp->if_flags & IFF_UP) == 0) {
588 m_freem(m);
589 return;
590 }
591 if (m->m_len < sizeof(*eh)) {
592 m = m_pullup(m, sizeof(*eh));
593 if (m == NULL)
594 return;
595 }
596
597 #ifdef MBUFTRACE
598 m_claimm(m, &ec->ec_rx_mowner);
599 #endif
600 eh = mtod(m, struct ether_header *);
601 etype = ntohs(eh->ether_type);
602 ehlen = sizeof(*eh);
603
604 if (__predict_false(earlypkts < 100 || !rnd_initial_entropy)) {
605 rnd_add_data(NULL, eh, ehlen, 0);
606 earlypkts++;
607 }
608
609 /*
610 * Determine if the packet is within its size limits. For MPLS the
611 * header length is variable, so we skip the check.
612 */
613 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
614 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
615 mutex_enter(&bigpktpps_lock);
616 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
617 bigpktppslim)) {
618 printf("%s: discarding oversize frame (len=%d)\n",
619 ifp->if_xname, m->m_pkthdr.len);
620 }
621 mutex_exit(&bigpktpps_lock);
622 ifp->if_iqdrops++;
623 m_freem(m);
624 return;
625 }
626
627 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
628 /*
629 * If this is not a simplex interface, drop the packet
630 * if it came from us.
631 */
632 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
633 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
634 ETHER_ADDR_LEN) == 0) {
635 m_freem(m);
636 return;
637 }
638
639 if (memcmp(etherbroadcastaddr,
640 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
641 m->m_flags |= M_BCAST;
642 else
643 m->m_flags |= M_MCAST;
644 ifp->if_imcasts++;
645 }
646
647 /* If the CRC is still on the packet, trim it off. */
648 if (m->m_flags & M_HASFCS) {
649 m_adj(m, -ETHER_CRC_LEN);
650 m->m_flags &= ~M_HASFCS;
651 }
652
653 ifp->if_ibytes += m->m_pkthdr.len;
654
655 #if NCARP > 0
656 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
657 /*
658 * Clear M_PROMISC, in case the packet comes from a
659 * vlan.
660 */
661 m->m_flags &= ~M_PROMISC;
662 if (carp_input(m, (uint8_t *)&eh->ether_shost,
663 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
664 return;
665 }
666 #endif
667
668 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
669 (ifp->if_flags & IFF_PROMISC) != 0 &&
670 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
671 ETHER_ADDR_LEN) != 0) {
672 m->m_flags |= M_PROMISC;
673 }
674
675 if ((m->m_flags & M_PROMISC) == 0) {
676 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
677 return;
678 if (m == NULL)
679 return;
680
681 eh = mtod(m, struct ether_header *);
682 etype = ntohs(eh->ether_type);
683 }
684
685 #if NAGR > 0
686 if (ifp->if_agrprivate &&
687 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
688 m->m_flags &= ~M_PROMISC;
689 agr_input(ifp, m);
690 return;
691 }
692 #endif
693
694 /*
695 * If VLANs are configured on the interface, check to
696 * see if the device performed the decapsulation and
697 * provided us with the tag.
698 */
699 if (ec->ec_nvlans && vlan_has_tag(m)) {
700 #if NVLAN > 0
701 /*
702 * vlan_input() will either recursively call ether_input()
703 * or drop the packet.
704 */
705 vlan_input(ifp, m);
706 #else
707 m_freem(m);
708 #endif
709 return;
710 }
711
712 /*
713 * Handle protocols that expect to have the Ethernet header
714 * (and possibly FCS) intact.
715 */
716 switch (etype) {
717 case ETHERTYPE_VLAN: {
718 struct ether_vlan_header *evl = (void *)eh;
719
720 /*
721 * If there is a tag of 0, then the VLAN header was probably
722 * just being used to store the priority. Extract the ether
723 * type, and if IP or IPV6, let them deal with it.
724 */
725 if (m->m_len >= sizeof(*evl) &&
726 EVL_VLANOFTAG(evl->evl_tag) == 0) {
727 etype = ntohs(evl->evl_proto);
728 ehlen = sizeof(*evl);
729 if ((m->m_flags & M_PROMISC) == 0 &&
730 (etype == ETHERTYPE_IP ||
731 etype == ETHERTYPE_IPV6))
732 break;
733 }
734
735 #if NVLAN > 0
736 /*
737 * vlan_input() will either recursively call ether_input()
738 * or drop the packet.
739 */
740 if (ec->ec_nvlans != 0)
741 vlan_input(ifp, m);
742 else
743 #endif
744 m_freem(m);
745
746 return;
747 }
748
749 #if NPPPOE > 0
750 case ETHERTYPE_PPPOEDISC:
751 pppoedisc_input(ifp, m);
752 return;
753
754 case ETHERTYPE_PPPOE:
755 pppoe_input(ifp, m);
756 return;
757 #endif
758
759 case ETHERTYPE_SLOWPROTOCOLS: {
760 uint8_t subtype;
761
762 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) {
763 m_freem(m);
764 return;
765 }
766
767 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
768 switch (subtype) {
769 #if NAGR > 0
770 case SLOWPROTOCOLS_SUBTYPE_LACP:
771 if (ifp->if_agrprivate) {
772 ieee8023ad_lacp_input(ifp, m);
773 return;
774 }
775 break;
776
777 case SLOWPROTOCOLS_SUBTYPE_MARKER:
778 if (ifp->if_agrprivate) {
779 ieee8023ad_marker_input(ifp, m);
780 return;
781 }
782 break;
783 #endif
784
785 default:
786 if (subtype == 0 || subtype > 10) {
787 /* illegal value */
788 m_freem(m);
789 return;
790 }
791 /* unknown subtype */
792 break;
793 }
794 }
795 /* FALLTHROUGH */
796 default:
797 if (m->m_flags & M_PROMISC) {
798 m_freem(m);
799 return;
800 }
801 }
802
803 /* If the CRC is still on the packet, trim it off. */
804 if (m->m_flags & M_HASFCS) {
805 m_adj(m, -ETHER_CRC_LEN);
806 m->m_flags &= ~M_HASFCS;
807 }
808
809 if (etype > ETHERMTU + sizeof(struct ether_header)) {
810 /* Strip off the Ethernet header. */
811 m_adj(m, ehlen);
812
813 switch (etype) {
814 #ifdef INET
815 case ETHERTYPE_IP:
816 #ifdef GATEWAY
817 if (ipflow_fastforward(m))
818 return;
819 #endif
820 pktq = ip_pktq;
821 break;
822
823 case ETHERTYPE_ARP:
824 isr = NETISR_ARP;
825 inq = &arpintrq;
826 break;
827
828 case ETHERTYPE_REVARP:
829 revarpinput(m); /* XXX queue? */
830 return;
831 #endif
832
833 #ifdef INET6
834 case ETHERTYPE_IPV6:
835 if (__predict_false(!in6_present)) {
836 m_freem(m);
837 return;
838 }
839 #ifdef GATEWAY
840 if (ip6flow_fastforward(&m))
841 return;
842 #endif
843 pktq = ip6_pktq;
844 break;
845 #endif
846
847 #ifdef NETATALK
848 case ETHERTYPE_ATALK:
849 isr = NETISR_ATALK;
850 inq = &atintrq1;
851 break;
852
853 case ETHERTYPE_AARP:
854 aarpinput(ifp, m); /* XXX queue? */
855 return;
856 #endif
857
858 #ifdef MPLS
859 case ETHERTYPE_MPLS:
860 isr = NETISR_MPLS;
861 inq = &mplsintrq;
862 break;
863 #endif
864
865 default:
866 m_freem(m);
867 return;
868 }
869 } else {
870 KASSERT(ehlen == sizeof(*eh));
871 #if defined (LLC) || defined (NETATALK)
872 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) {
873 goto dropanyway;
874 }
875 l = (struct llc *)(eh+1);
876
877 switch (l->llc_dsap) {
878 #ifdef NETATALK
879 case LLC_SNAP_LSAP:
880 switch (l->llc_control) {
881 case LLC_UI:
882 if (l->llc_ssap != LLC_SNAP_LSAP) {
883 goto dropanyway;
884 }
885
886 if (memcmp(&(l->llc_snap_org_code)[0],
887 at_org_code, sizeof(at_org_code)) == 0 &&
888 ntohs(l->llc_snap_ether_type) ==
889 ETHERTYPE_ATALK) {
890 inq = &atintrq2;
891 m_adj(m, sizeof(struct ether_header)
892 + sizeof(struct llc));
893 isr = NETISR_ATALK;
894 break;
895 }
896
897 if (memcmp(&(l->llc_snap_org_code)[0],
898 aarp_org_code,
899 sizeof(aarp_org_code)) == 0 &&
900 ntohs(l->llc_snap_ether_type) ==
901 ETHERTYPE_AARP) {
902 m_adj(m, sizeof(struct ether_header)
903 + sizeof(struct llc));
904 aarpinput(ifp, m); /* XXX queue? */
905 return;
906 }
907
908 default:
909 goto dropanyway;
910 }
911 break;
912 #endif
913 dropanyway:
914 default:
915 m_freem(m);
916 return;
917 }
918 #else /* LLC || NETATALK */
919 m_freem(m);
920 return;
921 #endif /* LLC || NETATALK */
922 }
923
924 if (__predict_true(pktq)) {
925 #ifdef NET_MPSAFE
926 const u_int h = curcpu()->ci_index;
927 #else
928 const uint32_t h = pktq_rps_hash(m);
929 #endif
930 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
931 m_freem(m);
932 }
933 return;
934 }
935
936 if (__predict_false(!inq)) {
937 /* Should not happen. */
938 m_freem(m);
939 return;
940 }
941
942 IFQ_LOCK(inq);
943 if (IF_QFULL(inq)) {
944 IF_DROP(inq);
945 IFQ_UNLOCK(inq);
946 m_freem(m);
947 } else {
948 IF_ENQUEUE(inq, m);
949 IFQ_UNLOCK(inq);
950 schednetisr(isr);
951 }
952 }
953
954 /*
955 * Convert Ethernet address to printable (loggable) representation.
956 */
957 char *
958 ether_sprintf(const u_char *ap)
959 {
960 static char etherbuf[3 * ETHER_ADDR_LEN];
961 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
962 }
963
964 char *
965 ether_snprintf(char *buf, size_t len, const u_char *ap)
966 {
967 char *cp = buf;
968 size_t i;
969
970 for (i = 0; i < len / 3; i++) {
971 *cp++ = hexdigits[*ap >> 4];
972 *cp++ = hexdigits[*ap++ & 0xf];
973 *cp++ = ':';
974 }
975 *--cp = '\0';
976 return buf;
977 }
978
979 /*
980 * Perform common duties while attaching to interface list
981 */
982 void
983 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
984 {
985 struct ethercom *ec = (struct ethercom *)ifp;
986
987 ifp->if_type = IFT_ETHER;
988 ifp->if_hdrlen = ETHER_HDR_LEN;
989 ifp->if_dlt = DLT_EN10MB;
990 ifp->if_mtu = ETHERMTU;
991 ifp->if_output = ether_output;
992 ifp->_if_input = ether_input;
993 if (ifp->if_baudrate == 0)
994 ifp->if_baudrate = IF_Mbps(10); /* just a default */
995
996 if (lla != NULL)
997 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
998
999 LIST_INIT(&ec->ec_multiaddrs);
1000 SIMPLEQ_INIT(&ec->ec_vids);
1001 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1002 ec->ec_flags = 0;
1003 ifp->if_broadcastaddr = etherbroadcastaddr;
1004 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1005 #ifdef MBUFTRACE
1006 strlcpy(ec->ec_tx_mowner.mo_name, ifp->if_xname,
1007 sizeof(ec->ec_tx_mowner.mo_name));
1008 strlcpy(ec->ec_tx_mowner.mo_descr, "tx",
1009 sizeof(ec->ec_tx_mowner.mo_descr));
1010 strlcpy(ec->ec_rx_mowner.mo_name, ifp->if_xname,
1011 sizeof(ec->ec_rx_mowner.mo_name));
1012 strlcpy(ec->ec_rx_mowner.mo_descr, "rx",
1013 sizeof(ec->ec_rx_mowner.mo_descr));
1014 MOWNER_ATTACH(&ec->ec_tx_mowner);
1015 MOWNER_ATTACH(&ec->ec_rx_mowner);
1016 ifp->if_mowner = &ec->ec_tx_mowner;
1017 #endif
1018 }
1019
1020 void
1021 ether_ifdetach(struct ifnet *ifp)
1022 {
1023 struct ethercom *ec = (void *) ifp;
1024 struct ether_multi *enm;
1025
1026 IFNET_ASSERT_UNLOCKED(ifp);
1027 /*
1028 * Prevent further calls to ioctl (for example turning off
1029 * promiscuous mode from the bridge code), which eventually can
1030 * call if_init() which can cause panics because the interface
1031 * is in the process of being detached. Return device not configured
1032 * instead.
1033 */
1034 ifp->if_ioctl = (int (*)(struct ifnet *, u_long, void *))enxio;
1035
1036 #if NBRIDGE > 0
1037 if (ifp->if_bridge)
1038 bridge_ifdetach(ifp);
1039 #endif
1040 bpf_detach(ifp);
1041 #if NVLAN > 0
1042 if (ec->ec_nvlans)
1043 vlan_ifdetach(ifp);
1044 #endif
1045
1046 ETHER_LOCK(ec);
1047 KASSERT(ec->ec_nvlans == 0);
1048 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1049 LIST_REMOVE(enm, enm_list);
1050 kmem_free(enm, sizeof(*enm));
1051 ec->ec_multicnt--;
1052 }
1053 ETHER_UNLOCK(ec);
1054
1055 mutex_obj_free(ec->ec_lock);
1056 ec->ec_lock = NULL;
1057
1058 ifp->if_mowner = NULL;
1059 MOWNER_DETACH(&ec->ec_rx_mowner);
1060 MOWNER_DETACH(&ec->ec_tx_mowner);
1061 }
1062
1063 #if 0
1064 /*
1065 * This is for reference. We have a table-driven version
1066 * of the little-endian crc32 generator, which is faster
1067 * than the double-loop.
1068 */
1069 uint32_t
1070 ether_crc32_le(const uint8_t *buf, size_t len)
1071 {
1072 uint32_t c, crc, carry;
1073 size_t i, j;
1074
1075 crc = 0xffffffffU; /* initial value */
1076
1077 for (i = 0; i < len; i++) {
1078 c = buf[i];
1079 for (j = 0; j < 8; j++) {
1080 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1081 crc >>= 1;
1082 c >>= 1;
1083 if (carry)
1084 crc = (crc ^ ETHER_CRC_POLY_LE);
1085 }
1086 }
1087
1088 return (crc);
1089 }
1090 #else
1091 uint32_t
1092 ether_crc32_le(const uint8_t *buf, size_t len)
1093 {
1094 static const uint32_t crctab[] = {
1095 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1096 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1097 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1098 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1099 };
1100 uint32_t crc;
1101 size_t i;
1102
1103 crc = 0xffffffffU; /* initial value */
1104
1105 for (i = 0; i < len; i++) {
1106 crc ^= buf[i];
1107 crc = (crc >> 4) ^ crctab[crc & 0xf];
1108 crc = (crc >> 4) ^ crctab[crc & 0xf];
1109 }
1110
1111 return (crc);
1112 }
1113 #endif
1114
1115 uint32_t
1116 ether_crc32_be(const uint8_t *buf, size_t len)
1117 {
1118 uint32_t c, crc, carry;
1119 size_t i, j;
1120
1121 crc = 0xffffffffU; /* initial value */
1122
1123 for (i = 0; i < len; i++) {
1124 c = buf[i];
1125 for (j = 0; j < 8; j++) {
1126 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1127 crc <<= 1;
1128 c >>= 1;
1129 if (carry)
1130 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1131 }
1132 }
1133
1134 return (crc);
1135 }
1136
1137 #ifdef INET
1138 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1139 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1140 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1141 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1142 #endif
1143 #ifdef INET6
1144 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1145 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1146 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1147 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1148 #endif
1149
1150 /*
1151 * ether_aton implementation, not using a static buffer.
1152 */
1153 int
1154 ether_aton_r(u_char *dest, size_t len, const char *str)
1155 {
1156 const u_char *cp = (const void *)str;
1157 u_char *ep;
1158
1159 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1160
1161 if (len < ETHER_ADDR_LEN)
1162 return ENOSPC;
1163
1164 ep = dest + ETHER_ADDR_LEN;
1165
1166 while (*cp) {
1167 if (!isxdigit(*cp))
1168 return EINVAL;
1169
1170 *dest = atox(*cp);
1171 cp++;
1172 if (isxdigit(*cp)) {
1173 *dest = (*dest << 4) | atox(*cp);
1174 cp++;
1175 }
1176 dest++;
1177
1178 if (dest == ep)
1179 return (*cp == '\0') ? 0 : ENAMETOOLONG;
1180
1181 switch (*cp) {
1182 case ':':
1183 case '-':
1184 case '.':
1185 cp++;
1186 break;
1187 }
1188 }
1189 return ENOBUFS;
1190 }
1191
1192 /*
1193 * Convert a sockaddr into an Ethernet address or range of Ethernet
1194 * addresses.
1195 */
1196 int
1197 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1198 uint8_t addrhi[ETHER_ADDR_LEN])
1199 {
1200 #ifdef INET
1201 const struct sockaddr_in *sin;
1202 #endif
1203 #ifdef INET6
1204 const struct sockaddr_in6 *sin6;
1205 #endif
1206
1207 switch (sa->sa_family) {
1208
1209 case AF_UNSPEC:
1210 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1211 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1212 break;
1213
1214 #ifdef INET
1215 case AF_INET:
1216 sin = satocsin(sa);
1217 if (sin->sin_addr.s_addr == INADDR_ANY) {
1218 /*
1219 * An IP address of INADDR_ANY means listen to
1220 * or stop listening to all of the Ethernet
1221 * multicast addresses used for IP.
1222 * (This is for the sake of IP multicast routers.)
1223 */
1224 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1225 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1226 } else {
1227 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1228 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1229 }
1230 break;
1231 #endif
1232 #ifdef INET6
1233 case AF_INET6:
1234 sin6 = satocsin6(sa);
1235 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1236 /*
1237 * An IP6 address of 0 means listen to or stop
1238 * listening to all of the Ethernet multicast
1239 * address used for IP6.
1240 * (This is used for multicast routers.)
1241 */
1242 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1243 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1244 } else {
1245 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1246 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1247 }
1248 break;
1249 #endif
1250
1251 default:
1252 return EAFNOSUPPORT;
1253 }
1254 return 0;
1255 }
1256
1257 /*
1258 * Add an Ethernet multicast address or range of addresses to the list for a
1259 * given interface.
1260 */
1261 int
1262 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1263 {
1264 struct ether_multi *enm, *_enm;
1265 u_char addrlo[ETHER_ADDR_LEN];
1266 u_char addrhi[ETHER_ADDR_LEN];
1267 int error = 0;
1268
1269 /* Allocate out of lock */
1270 enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1271
1272 ETHER_LOCK(ec);
1273 error = ether_multiaddr(sa, addrlo, addrhi);
1274 if (error != 0)
1275 goto out;
1276
1277 /*
1278 * Verify that we have valid Ethernet multicast addresses.
1279 */
1280 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1281 error = EINVAL;
1282 goto out;
1283 }
1284
1285 /*
1286 * See if the address range is already in the list.
1287 */
1288 _enm = ether_lookup_multi(addrlo, addrhi, ec);
1289 if (_enm != NULL) {
1290 /*
1291 * Found it; just increment the reference count.
1292 */
1293 ++_enm->enm_refcount;
1294 error = 0;
1295 goto out;
1296 }
1297
1298 /*
1299 * Link a new multicast record into the interface's multicast list.
1300 */
1301 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1302 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1303 enm->enm_refcount = 1;
1304 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1305 ec->ec_multicnt++;
1306
1307 /*
1308 * Return ENETRESET to inform the driver that the list has changed
1309 * and its reception filter should be adjusted accordingly.
1310 */
1311 error = ENETRESET;
1312 enm = NULL;
1313
1314 out:
1315 ETHER_UNLOCK(ec);
1316 if (enm != NULL)
1317 kmem_free(enm, sizeof(*enm));
1318 return error;
1319 }
1320
1321 /*
1322 * Delete a multicast address record.
1323 */
1324 int
1325 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1326 {
1327 struct ether_multi *enm;
1328 u_char addrlo[ETHER_ADDR_LEN];
1329 u_char addrhi[ETHER_ADDR_LEN];
1330 int error;
1331
1332 ETHER_LOCK(ec);
1333 error = ether_multiaddr(sa, addrlo, addrhi);
1334 if (error != 0)
1335 goto error;
1336
1337 /*
1338 * Look up the address in our list.
1339 */
1340 enm = ether_lookup_multi(addrlo, addrhi, ec);
1341 if (enm == NULL) {
1342 error = ENXIO;
1343 goto error;
1344 }
1345 if (--enm->enm_refcount != 0) {
1346 /*
1347 * Still some claims to this record.
1348 */
1349 error = 0;
1350 goto error;
1351 }
1352
1353 /*
1354 * No remaining claims to this record; unlink and free it.
1355 */
1356 LIST_REMOVE(enm, enm_list);
1357 ec->ec_multicnt--;
1358 ETHER_UNLOCK(ec);
1359 kmem_free(enm, sizeof(*enm));
1360
1361 /*
1362 * Return ENETRESET to inform the driver that the list has changed
1363 * and its reception filter should be adjusted accordingly.
1364 */
1365 return ENETRESET;
1366
1367 error:
1368 ETHER_UNLOCK(ec);
1369 return error;
1370 }
1371
1372 void
1373 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1374 {
1375 ec->ec_ifflags_cb = cb;
1376 }
1377
1378 void
1379 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
1380 {
1381
1382 ec->ec_vlan_cb = cb;
1383 }
1384
1385 static int
1386 ether_ioctl_reinit(struct ethercom *ec)
1387 {
1388 struct ifnet *ifp = &ec->ec_if;
1389 int error;
1390
1391 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1392 case IFF_RUNNING:
1393 /*
1394 * If interface is marked down and it is running,
1395 * then stop and disable it.
1396 */
1397 (*ifp->if_stop)(ifp, 1);
1398 break;
1399 case IFF_UP:
1400 /*
1401 * If interface is marked up and it is stopped, then
1402 * start it.
1403 */
1404 return (*ifp->if_init)(ifp);
1405 case IFF_UP | IFF_RUNNING:
1406 error = 0;
1407 if (ec->ec_ifflags_cb != NULL) {
1408 error = (*ec->ec_ifflags_cb)(ec);
1409 if (error == ENETRESET) {
1410 /*
1411 * Reset the interface to pick up
1412 * changes in any other flags that
1413 * affect the hardware state.
1414 */
1415 return (*ifp->if_init)(ifp);
1416 }
1417 } else
1418 error = (*ifp->if_init)(ifp);
1419 return error;
1420 case 0:
1421 break;
1422 }
1423
1424 return 0;
1425 }
1426
1427 /*
1428 * Common ioctls for Ethernet interfaces. Note, we must be
1429 * called at splnet().
1430 */
1431 int
1432 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1433 {
1434 struct ethercom *ec = (void *)ifp;
1435 struct eccapreq *eccr;
1436 struct ifreq *ifr = (struct ifreq *)data;
1437 struct if_laddrreq *iflr = data;
1438 const struct sockaddr_dl *sdl;
1439 static const uint8_t zero[ETHER_ADDR_LEN];
1440 int error;
1441
1442 switch (cmd) {
1443 case SIOCINITIFADDR:
1444 {
1445 struct ifaddr *ifa = (struct ifaddr *)data;
1446 if (ifa->ifa_addr->sa_family != AF_LINK
1447 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1448 (IFF_UP | IFF_RUNNING)) {
1449 ifp->if_flags |= IFF_UP;
1450 if ((error = (*ifp->if_init)(ifp)) != 0)
1451 return error;
1452 }
1453 #ifdef INET
1454 if (ifa->ifa_addr->sa_family == AF_INET)
1455 arp_ifinit(ifp, ifa);
1456 #endif
1457 return 0;
1458 }
1459
1460 case SIOCSIFMTU:
1461 {
1462 int maxmtu;
1463
1464 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1465 maxmtu = ETHERMTU_JUMBO;
1466 else
1467 maxmtu = ETHERMTU;
1468
1469 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1470 return EINVAL;
1471 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1472 return error;
1473 else if (ifp->if_flags & IFF_UP) {
1474 /* Make sure the device notices the MTU change. */
1475 return (*ifp->if_init)(ifp);
1476 } else
1477 return 0;
1478 }
1479
1480 case SIOCSIFFLAGS:
1481 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1482 return error;
1483 return ether_ioctl_reinit(ec);
1484 case SIOCGIFFLAGS:
1485 error = ifioctl_common(ifp, cmd, data);
1486 if (error == 0) {
1487 /* Set IFF_ALLMULTI for backcompat */
1488 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
1489 IFF_ALLMULTI : 0;
1490 }
1491 return error;
1492 case SIOCGETHERCAP:
1493 eccr = (struct eccapreq *)data;
1494 eccr->eccr_capabilities = ec->ec_capabilities;
1495 eccr->eccr_capenable = ec->ec_capenable;
1496 return 0;
1497 case SIOCSETHERCAP:
1498 eccr = (struct eccapreq *)data;
1499 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1500 return EINVAL;
1501 if (eccr->eccr_capenable == ec->ec_capenable)
1502 return 0;
1503 #if 0 /* notyet */
1504 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1505 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1506 #else
1507 ec->ec_capenable = eccr->eccr_capenable;
1508 #endif
1509 return ether_ioctl_reinit(ec);
1510 case SIOCADDMULTI:
1511 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1512 case SIOCDELMULTI:
1513 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1514 case SIOCSIFMEDIA:
1515 case SIOCGIFMEDIA:
1516 if (ec->ec_mii != NULL)
1517 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
1518 cmd);
1519 else if (ec->ec_ifmedia != NULL)
1520 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
1521 else
1522 return ENOTTY;
1523 break;
1524 case SIOCALIFADDR:
1525 sdl = satocsdl(sstocsa(&iflr->addr));
1526 if (sdl->sdl_family != AF_LINK)
1527 ;
1528 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1529 return EINVAL;
1530 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1531 return EINVAL;
1532 /*FALLTHROUGH*/
1533 default:
1534 return ifioctl_common(ifp, cmd, data);
1535 }
1536 return 0;
1537 }
1538
1539 /*
1540 * Enable/disable passing VLAN packets if the parent interface supports it.
1541 * Return:
1542 * 0: Ok
1543 * -1: Parent interface does not support vlans
1544 * >0: Error
1545 */
1546 int
1547 ether_enable_vlan_mtu(struct ifnet *ifp)
1548 {
1549 int error;
1550 struct ethercom *ec = (void *)ifp;
1551
1552 /* Parent does not support VLAN's */
1553 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1554 return -1;
1555
1556 /*
1557 * Parent supports the VLAN_MTU capability,
1558 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1559 * enable it.
1560 */
1561 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1562
1563 /* Interface is down, defer for later */
1564 if ((ifp->if_flags & IFF_UP) == 0)
1565 return 0;
1566
1567 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1568 return 0;
1569
1570 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1571 return error;
1572 }
1573
1574 int
1575 ether_disable_vlan_mtu(struct ifnet *ifp)
1576 {
1577 int error;
1578 struct ethercom *ec = (void *)ifp;
1579
1580 /* We still have VLAN's, defer for later */
1581 if (ec->ec_nvlans != 0)
1582 return 0;
1583
1584 /* Parent does not support VLAB's, nothing to do. */
1585 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1586 return -1;
1587
1588 /*
1589 * Disable Tx/Rx of VLAN-sized frames.
1590 */
1591 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1592
1593 /* Interface is down, defer for later */
1594 if ((ifp->if_flags & IFF_UP) == 0)
1595 return 0;
1596
1597 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1598 return 0;
1599
1600 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1601 return error;
1602 }
1603
1604 static int
1605 ether_multicast_sysctl(SYSCTLFN_ARGS)
1606 {
1607 struct ether_multi *enm;
1608 struct ifnet *ifp;
1609 struct ethercom *ec;
1610 int error = 0;
1611 size_t written;
1612 struct psref psref;
1613 int bound;
1614 unsigned int multicnt;
1615 struct ether_multi_sysctl *addrs;
1616 int i;
1617
1618 if (namelen != 1)
1619 return EINVAL;
1620
1621 bound = curlwp_bind();
1622 ifp = if_get_byindex(name[0], &psref);
1623 if (ifp == NULL) {
1624 error = ENODEV;
1625 goto out;
1626 }
1627 if (ifp->if_type != IFT_ETHER) {
1628 if_put(ifp, &psref);
1629 *oldlenp = 0;
1630 goto out;
1631 }
1632 ec = (struct ethercom *)ifp;
1633
1634 if (oldp == NULL) {
1635 if_put(ifp, &psref);
1636 *oldlenp = ec->ec_multicnt * sizeof(*addrs);
1637 goto out;
1638 }
1639
1640 /*
1641 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1642 * is sleepable, while holding it. Copy data to a local buffer first
1643 * with the lock taken and then call sysctl_copyout without holding it.
1644 */
1645 retry:
1646 multicnt = ec->ec_multicnt;
1647
1648 if (multicnt == 0) {
1649 if_put(ifp, &psref);
1650 *oldlenp = 0;
1651 goto out;
1652 }
1653
1654 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1655
1656 ETHER_LOCK(ec);
1657 if (multicnt != ec->ec_multicnt) {
1658 /* The number of multicast addresses has changed */
1659 ETHER_UNLOCK(ec);
1660 kmem_free(addrs, sizeof(*addrs) * multicnt);
1661 goto retry;
1662 }
1663
1664 i = 0;
1665 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1666 struct ether_multi_sysctl *addr = &addrs[i];
1667 addr->enm_refcount = enm->enm_refcount;
1668 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1669 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1670 i++;
1671 }
1672 ETHER_UNLOCK(ec);
1673
1674 error = 0;
1675 written = 0;
1676 for (i = 0; i < multicnt; i++) {
1677 struct ether_multi_sysctl *addr = &addrs[i];
1678
1679 if (written + sizeof(*addr) > *oldlenp)
1680 break;
1681 error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1682 if (error)
1683 break;
1684 written += sizeof(*addr);
1685 oldp = (char *)oldp + sizeof(*addr);
1686 }
1687 kmem_free(addrs, sizeof(*addrs) * multicnt);
1688
1689 if_put(ifp, &psref);
1690
1691 *oldlenp = written;
1692 out:
1693 curlwp_bindx(bound);
1694 return error;
1695 }
1696
1697 static void
1698 ether_sysctl_setup(struct sysctllog **clog)
1699 {
1700 const struct sysctlnode *rnode = NULL;
1701
1702 sysctl_createv(clog, 0, NULL, &rnode,
1703 CTLFLAG_PERMANENT,
1704 CTLTYPE_NODE, "ether",
1705 SYSCTL_DESCR("Ethernet-specific information"),
1706 NULL, 0, NULL, 0,
1707 CTL_NET, CTL_CREATE, CTL_EOL);
1708
1709 sysctl_createv(clog, 0, &rnode, NULL,
1710 CTLFLAG_PERMANENT,
1711 CTLTYPE_NODE, "multicast",
1712 SYSCTL_DESCR("multicast addresses"),
1713 ether_multicast_sysctl, 0, NULL, 0,
1714 CTL_CREATE, CTL_EOL);
1715 }
1716
1717 void
1718 etherinit(void)
1719 {
1720
1721 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1722 ether_sysctl_setup(NULL);
1723 }
1724