if_ethersubr.c revision 1.283 1 /* $NetBSD: if_ethersubr.c,v 1.283 2020/03/15 23:14:41 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.283 2020/03/15 23:14:41 thorpej Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/rnd.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92
93 #include <net/if.h>
94 #include <net/netisr.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104
105 #if NARP == 0
106 /*
107 * XXX there should really be a way to issue this warning from within config(8)
108 */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111
112 #include <net/bpf.h>
113
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120
121 #if NAGR > 0
122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144
145 #include "carp.h"
146 #if NCARP > 0
147 #include <netinet/ip_carp.h>
148 #endif
149
150 #ifdef NETATALK
151 #include <netatalk/at.h>
152 #include <netatalk/at_var.h>
153 #include <netatalk/at_extern.h>
154
155 #define llc_snap_org_code llc_un.type_snap.org_code
156 #define llc_snap_ether_type llc_un.type_snap.ether_type
157
158 extern u_char at_org_code[3];
159 extern u_char aarp_org_code[3];
160 #endif /* NETATALK */
161
162 #ifdef MPLS
163 #include <netmpls/mpls.h>
164 #include <netmpls/mpls_var.h>
165 #endif
166
167 #ifdef DIAGNOSTIC
168 static struct timeval bigpktppslim_last;
169 static int bigpktppslim = 2; /* XXX */
170 static int bigpktpps_count;
171 static kmutex_t bigpktpps_lock __cacheline_aligned;
172 #endif
173
174 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
175 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
176 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
177 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
178 #define senderr(e) { error = (e); goto bad;}
179
180 static int ether_output(struct ifnet *, struct mbuf *,
181 const struct sockaddr *, const struct rtentry *);
182
183 /*
184 * Ethernet output routine.
185 * Encapsulate a packet of type family for the local net.
186 * Assumes that ifp is actually pointer to ethercom structure.
187 */
188 static int
189 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
190 const struct sockaddr * const dst, const struct rtentry *rt)
191 {
192 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
193 uint16_t etype = 0;
194 int error = 0, hdrcmplt = 0;
195 struct mbuf *m = m0;
196 struct mbuf *mcopy = NULL;
197 struct ether_header *eh;
198 struct ifnet *ifp = ifp0;
199 #ifdef INET
200 struct arphdr *ah;
201 #endif
202 #ifdef NETATALK
203 struct at_ifaddr *aa;
204 #endif
205
206 #ifdef MBUFTRACE
207 m_claimm(m, ifp->if_mowner);
208 #endif
209
210 #if NCARP > 0
211 if (ifp->if_type == IFT_CARP) {
212 struct ifaddr *ifa;
213 int s = pserialize_read_enter();
214
215 /* loop back if this is going to the carp interface */
216 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
217 (ifa = ifa_ifwithaddr(dst)) != NULL) {
218 if (ifa->ifa_ifp == ifp0) {
219 pserialize_read_exit(s);
220 return looutput(ifp0, m, dst, rt);
221 }
222 }
223 pserialize_read_exit(s);
224
225 ifp = ifp->if_carpdev;
226 /* ac = (struct arpcom *)ifp; */
227
228 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
229 (IFF_UP | IFF_RUNNING))
230 senderr(ENETDOWN);
231 }
232 #endif
233
234 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
235 senderr(ENETDOWN);
236
237 switch (dst->sa_family) {
238
239 #ifdef INET
240 case AF_INET:
241 if (m->m_flags & M_BCAST) {
242 memcpy(edst, etherbroadcastaddr, sizeof(edst));
243 } else if (m->m_flags & M_MCAST) {
244 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
245 } else {
246 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
247 if (error)
248 return (error == EWOULDBLOCK) ? 0 : error;
249 }
250 /* If broadcasting on a simplex interface, loopback a copy */
251 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
252 mcopy = m_copypacket(m, M_DONTWAIT);
253 etype = htons(ETHERTYPE_IP);
254 break;
255
256 case AF_ARP:
257 ah = mtod(m, struct arphdr *);
258 if (m->m_flags & M_BCAST) {
259 memcpy(edst, etherbroadcastaddr, sizeof(edst));
260 } else {
261 void *tha = ar_tha(ah);
262
263 if (tha == NULL) {
264 /* fake with ARPHRD_IEEE1394 */
265 m_freem(m);
266 return 0;
267 }
268 memcpy(edst, tha, sizeof(edst));
269 }
270
271 ah->ar_hrd = htons(ARPHRD_ETHER);
272
273 switch (ntohs(ah->ar_op)) {
274 case ARPOP_REVREQUEST:
275 case ARPOP_REVREPLY:
276 etype = htons(ETHERTYPE_REVARP);
277 break;
278
279 case ARPOP_REQUEST:
280 case ARPOP_REPLY:
281 default:
282 etype = htons(ETHERTYPE_ARP);
283 }
284 break;
285 #endif
286
287 #ifdef INET6
288 case AF_INET6:
289 if (m->m_flags & M_BCAST) {
290 memcpy(edst, etherbroadcastaddr, sizeof(edst));
291 } else if (m->m_flags & M_MCAST) {
292 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
293 edst);
294 } else {
295 error = nd6_resolve(ifp0, rt, m, dst, edst,
296 sizeof(edst));
297 if (error)
298 return (error == EWOULDBLOCK) ? 0 : error;
299 }
300 etype = htons(ETHERTYPE_IPV6);
301 break;
302 #endif
303
304 #ifdef NETATALK
305 case AF_APPLETALK: {
306 struct ifaddr *ifa;
307 int s;
308
309 KERNEL_LOCK(1, NULL);
310
311 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
312 KERNEL_UNLOCK_ONE(NULL);
313 return 0;
314 }
315
316 /*
317 * ifaddr is the first thing in at_ifaddr
318 */
319 s = pserialize_read_enter();
320 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
321 if (ifa == NULL) {
322 pserialize_read_exit(s);
323 KERNEL_UNLOCK_ONE(NULL);
324 senderr(EADDRNOTAVAIL);
325 }
326 aa = (struct at_ifaddr *)ifa;
327
328 /*
329 * In the phase 2 case, we need to prepend an mbuf for the
330 * llc header.
331 */
332 if (aa->aa_flags & AFA_PHASE2) {
333 struct llc llc;
334
335 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
336 if (m == NULL) {
337 pserialize_read_exit(s);
338 KERNEL_UNLOCK_ONE(NULL);
339 senderr(ENOBUFS);
340 }
341
342 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
343 llc.llc_control = LLC_UI;
344 memcpy(llc.llc_snap_org_code, at_org_code,
345 sizeof(llc.llc_snap_org_code));
346 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
347 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
348 } else {
349 etype = htons(ETHERTYPE_ATALK);
350 }
351 pserialize_read_exit(s);
352 KERNEL_UNLOCK_ONE(NULL);
353 break;
354 }
355 #endif /* NETATALK */
356
357 case pseudo_AF_HDRCMPLT:
358 hdrcmplt = 1;
359 memcpy(esrc,
360 ((const struct ether_header *)dst->sa_data)->ether_shost,
361 sizeof(esrc));
362 /* FALLTHROUGH */
363
364 case AF_UNSPEC:
365 memcpy(edst,
366 ((const struct ether_header *)dst->sa_data)->ether_dhost,
367 sizeof(edst));
368 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
369 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
370 break;
371
372 default:
373 printf("%s: can't handle af%d\n", ifp->if_xname,
374 dst->sa_family);
375 senderr(EAFNOSUPPORT);
376 }
377
378 #ifdef MPLS
379 {
380 struct m_tag *mtag;
381 mtag = m_tag_find(m, PACKET_TAG_MPLS);
382 if (mtag != NULL) {
383 /* Having the tag itself indicates it's MPLS */
384 etype = htons(ETHERTYPE_MPLS);
385 m_tag_delete(m, mtag);
386 }
387 }
388 #endif
389
390 if (mcopy)
391 (void)looutput(ifp, mcopy, dst, rt);
392
393 KASSERT((m->m_flags & M_PKTHDR) != 0);
394
395 /*
396 * If no ether type is set, this must be a 802.2 formatted packet.
397 */
398 if (etype == 0)
399 etype = htons(m->m_pkthdr.len);
400
401 /*
402 * Add local net header. If no space in first mbuf, allocate another.
403 */
404 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
405 if (m == NULL)
406 senderr(ENOBUFS);
407
408 eh = mtod(m, struct ether_header *);
409 /* Note: etype is already in network byte order. */
410 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
411 memcpy(eh->ether_dhost, edst, sizeof(edst));
412 if (hdrcmplt) {
413 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
414 } else {
415 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
416 sizeof(eh->ether_shost));
417 }
418
419 #if NCARP > 0
420 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
421 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
422 sizeof(eh->ether_shost));
423 }
424 #endif
425
426 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
427 return error;
428 if (m == NULL)
429 return 0;
430
431 #if NBRIDGE > 0
432 /*
433 * Bridges require special output handling.
434 */
435 if (ifp->if_bridge)
436 return bridge_output(ifp, m, NULL, NULL);
437 #endif
438
439 #if NCARP > 0
440 if (ifp != ifp0)
441 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
442 #endif
443
444 #ifdef ALTQ
445 KERNEL_LOCK(1, NULL);
446 /*
447 * If ALTQ is enabled on the parent interface, do
448 * classification; the queueing discipline might not
449 * require classification, but might require the
450 * address family/header pointer in the pktattr.
451 */
452 if (ALTQ_IS_ENABLED(&ifp->if_snd))
453 altq_etherclassify(&ifp->if_snd, m);
454 KERNEL_UNLOCK_ONE(NULL);
455 #endif
456 return ifq_enqueue(ifp, m);
457
458 bad:
459 if (m)
460 m_freem(m);
461 return error;
462 }
463
464 #ifdef ALTQ
465 /*
466 * This routine is a slight hack to allow a packet to be classified
467 * if the Ethernet headers are present. It will go away when ALTQ's
468 * classification engine understands link headers.
469 *
470 * XXX: We may need to do m_pullups here. First to ensure struct ether_header
471 * is indeed contiguous, then to read the LLC and so on.
472 */
473 void
474 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
475 {
476 struct ether_header *eh;
477 struct mbuf *mtop = m;
478 uint16_t ether_type;
479 int hlen, af, hdrsize;
480 void *hdr;
481
482 KASSERT((mtop->m_flags & M_PKTHDR) != 0);
483
484 hlen = ETHER_HDR_LEN;
485 eh = mtod(m, struct ether_header *);
486
487 ether_type = htons(eh->ether_type);
488
489 if (ether_type < ETHERMTU) {
490 /* LLC/SNAP */
491 struct llc *llc = (struct llc *)(eh + 1);
492 hlen += 8;
493
494 if (m->m_len < hlen ||
495 llc->llc_dsap != LLC_SNAP_LSAP ||
496 llc->llc_ssap != LLC_SNAP_LSAP ||
497 llc->llc_control != LLC_UI) {
498 /* Not SNAP. */
499 goto bad;
500 }
501
502 ether_type = htons(llc->llc_un.type_snap.ether_type);
503 }
504
505 switch (ether_type) {
506 case ETHERTYPE_IP:
507 af = AF_INET;
508 hdrsize = 20; /* sizeof(struct ip) */
509 break;
510
511 case ETHERTYPE_IPV6:
512 af = AF_INET6;
513 hdrsize = 40; /* sizeof(struct ip6_hdr) */
514 break;
515
516 default:
517 af = AF_UNSPEC;
518 hdrsize = 0;
519 break;
520 }
521
522 while (m->m_len <= hlen) {
523 hlen -= m->m_len;
524 m = m->m_next;
525 if (m == NULL)
526 goto bad;
527 }
528
529 if (m->m_len < (hlen + hdrsize)) {
530 /*
531 * protocol header not in a single mbuf.
532 * We can't cope with this situation right
533 * now (but it shouldn't ever happen, really, anyhow).
534 */
535 #ifdef DEBUG
536 printf("altq_etherclassify: headers span multiple mbufs: "
537 "%d < %d\n", m->m_len, (hlen + hdrsize));
538 #endif
539 goto bad;
540 }
541
542 m->m_data += hlen;
543 m->m_len -= hlen;
544
545 hdr = mtod(m, void *);
546
547 if (ALTQ_NEEDS_CLASSIFY(ifq)) {
548 mtop->m_pkthdr.pattr_class =
549 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
550 }
551 mtop->m_pkthdr.pattr_af = af;
552 mtop->m_pkthdr.pattr_hdr = hdr;
553
554 m->m_data -= hlen;
555 m->m_len += hlen;
556
557 return;
558
559 bad:
560 mtop->m_pkthdr.pattr_class = NULL;
561 mtop->m_pkthdr.pattr_hdr = NULL;
562 mtop->m_pkthdr.pattr_af = AF_UNSPEC;
563 }
564 #endif /* ALTQ */
565
566 /*
567 * Process a received Ethernet packet;
568 * the packet is in the mbuf chain m with
569 * the ether header.
570 */
571 void
572 ether_input(struct ifnet *ifp, struct mbuf *m)
573 {
574 struct ethercom *ec = (struct ethercom *) ifp;
575 pktqueue_t *pktq = NULL;
576 struct ifqueue *inq = NULL;
577 uint16_t etype;
578 struct ether_header *eh;
579 size_t ehlen;
580 static int earlypkts;
581 int isr = 0;
582 #if defined (LLC) || defined(NETATALK)
583 struct llc *l;
584 #endif
585
586 KASSERT(!cpu_intr_p());
587 KASSERT((m->m_flags & M_PKTHDR) != 0);
588
589 if ((ifp->if_flags & IFF_UP) == 0) {
590 m_freem(m);
591 return;
592 }
593 if (m->m_len < sizeof(*eh)) {
594 m = m_pullup(m, sizeof(*eh));
595 if (m == NULL)
596 return;
597 }
598
599 #ifdef MBUFTRACE
600 m_claimm(m, &ec->ec_rx_mowner);
601 #endif
602 eh = mtod(m, struct ether_header *);
603 etype = ntohs(eh->ether_type);
604 ehlen = sizeof(*eh);
605
606 if (__predict_false(earlypkts < 100 || !rnd_initial_entropy)) {
607 rnd_add_data(NULL, eh, ehlen, 0);
608 earlypkts++;
609 }
610
611 /*
612 * Determine if the packet is within its size limits. For MPLS the
613 * header length is variable, so we skip the check.
614 */
615 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
616 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
617 #ifdef DIAGNOSTIC
618 mutex_enter(&bigpktpps_lock);
619 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
620 bigpktppslim)) {
621 printf("%s: discarding oversize frame (len=%d)\n",
622 ifp->if_xname, m->m_pkthdr.len);
623 }
624 mutex_exit(&bigpktpps_lock);
625 #endif
626 if_statinc(ifp, if_iqdrops);
627 m_freem(m);
628 return;
629 }
630
631 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
632 /*
633 * If this is not a simplex interface, drop the packet
634 * if it came from us.
635 */
636 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
637 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
638 ETHER_ADDR_LEN) == 0) {
639 m_freem(m);
640 return;
641 }
642
643 if (memcmp(etherbroadcastaddr,
644 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
645 m->m_flags |= M_BCAST;
646 else
647 m->m_flags |= M_MCAST;
648 if_statinc(ifp, if_imcasts);
649 }
650
651 /* If the CRC is still on the packet, trim it off. */
652 if (m->m_flags & M_HASFCS) {
653 m_adj(m, -ETHER_CRC_LEN);
654 m->m_flags &= ~M_HASFCS;
655 }
656
657 if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
658
659 #if NCARP > 0
660 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
661 /*
662 * Clear M_PROMISC, in case the packet comes from a
663 * vlan.
664 */
665 m->m_flags &= ~M_PROMISC;
666 if (carp_input(m, (uint8_t *)&eh->ether_shost,
667 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
668 return;
669 }
670 #endif
671
672 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
673 (ifp->if_flags & IFF_PROMISC) != 0 &&
674 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
675 ETHER_ADDR_LEN) != 0) {
676 m->m_flags |= M_PROMISC;
677 }
678
679 if ((m->m_flags & M_PROMISC) == 0) {
680 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
681 return;
682 if (m == NULL)
683 return;
684
685 eh = mtod(m, struct ether_header *);
686 etype = ntohs(eh->ether_type);
687 }
688
689 #if NAGR > 0
690 if (ifp->if_agrprivate &&
691 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
692 m->m_flags &= ~M_PROMISC;
693 agr_input(ifp, m);
694 return;
695 }
696 #endif
697
698 /*
699 * If VLANs are configured on the interface, check to
700 * see if the device performed the decapsulation and
701 * provided us with the tag.
702 */
703 if (ec->ec_nvlans && vlan_has_tag(m)) {
704 #if NVLAN > 0
705 /*
706 * vlan_input() will either recursively call ether_input()
707 * or drop the packet.
708 */
709 vlan_input(ifp, m);
710 #else
711 m_freem(m);
712 #endif
713 return;
714 }
715
716 /*
717 * Handle protocols that expect to have the Ethernet header
718 * (and possibly FCS) intact.
719 */
720 switch (etype) {
721 case ETHERTYPE_VLAN: {
722 struct ether_vlan_header *evl = (void *)eh;
723
724 /*
725 * If there is a tag of 0, then the VLAN header was probably
726 * just being used to store the priority. Extract the ether
727 * type, and if IP or IPV6, let them deal with it.
728 */
729 if (m->m_len >= sizeof(*evl) &&
730 EVL_VLANOFTAG(evl->evl_tag) == 0) {
731 etype = ntohs(evl->evl_proto);
732 ehlen = sizeof(*evl);
733 if ((m->m_flags & M_PROMISC) == 0 &&
734 (etype == ETHERTYPE_IP ||
735 etype == ETHERTYPE_IPV6))
736 break;
737 }
738
739 #if NVLAN > 0
740 /*
741 * vlan_input() will either recursively call ether_input()
742 * or drop the packet.
743 */
744 if (ec->ec_nvlans != 0)
745 vlan_input(ifp, m);
746 else
747 #endif
748 m_freem(m);
749
750 return;
751 }
752
753 #if NPPPOE > 0
754 case ETHERTYPE_PPPOEDISC:
755 pppoedisc_input(ifp, m);
756 return;
757
758 case ETHERTYPE_PPPOE:
759 pppoe_input(ifp, m);
760 return;
761 #endif
762
763 case ETHERTYPE_SLOWPROTOCOLS: {
764 uint8_t subtype;
765
766 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) {
767 m_freem(m);
768 return;
769 }
770
771 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
772 switch (subtype) {
773 #if NAGR > 0
774 case SLOWPROTOCOLS_SUBTYPE_LACP:
775 if (ifp->if_agrprivate) {
776 ieee8023ad_lacp_input(ifp, m);
777 return;
778 }
779 break;
780
781 case SLOWPROTOCOLS_SUBTYPE_MARKER:
782 if (ifp->if_agrprivate) {
783 ieee8023ad_marker_input(ifp, m);
784 return;
785 }
786 break;
787 #endif
788
789 default:
790 if (subtype == 0 || subtype > 10) {
791 /* illegal value */
792 m_freem(m);
793 return;
794 }
795 /* unknown subtype */
796 break;
797 }
798 }
799 /* FALLTHROUGH */
800 default:
801 if (m->m_flags & M_PROMISC) {
802 m_freem(m);
803 return;
804 }
805 }
806
807 /* If the CRC is still on the packet, trim it off. */
808 if (m->m_flags & M_HASFCS) {
809 m_adj(m, -ETHER_CRC_LEN);
810 m->m_flags &= ~M_HASFCS;
811 }
812
813 if (etype > ETHERMTU + sizeof(struct ether_header)) {
814 /* Strip off the Ethernet header. */
815 m_adj(m, ehlen);
816
817 switch (etype) {
818 #ifdef INET
819 case ETHERTYPE_IP:
820 #ifdef GATEWAY
821 if (ipflow_fastforward(m))
822 return;
823 #endif
824 pktq = ip_pktq;
825 break;
826
827 case ETHERTYPE_ARP:
828 isr = NETISR_ARP;
829 inq = &arpintrq;
830 break;
831
832 case ETHERTYPE_REVARP:
833 revarpinput(m); /* XXX queue? */
834 return;
835 #endif
836
837 #ifdef INET6
838 case ETHERTYPE_IPV6:
839 if (__predict_false(!in6_present)) {
840 m_freem(m);
841 return;
842 }
843 #ifdef GATEWAY
844 if (ip6flow_fastforward(&m))
845 return;
846 #endif
847 pktq = ip6_pktq;
848 break;
849 #endif
850
851 #ifdef NETATALK
852 case ETHERTYPE_ATALK:
853 isr = NETISR_ATALK;
854 inq = &atintrq1;
855 break;
856
857 case ETHERTYPE_AARP:
858 aarpinput(ifp, m); /* XXX queue? */
859 return;
860 #endif
861
862 #ifdef MPLS
863 case ETHERTYPE_MPLS:
864 isr = NETISR_MPLS;
865 inq = &mplsintrq;
866 break;
867 #endif
868
869 default:
870 m_freem(m);
871 return;
872 }
873 } else {
874 KASSERT(ehlen == sizeof(*eh));
875 #if defined (LLC) || defined (NETATALK)
876 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) {
877 goto dropanyway;
878 }
879 l = (struct llc *)(eh+1);
880
881 switch (l->llc_dsap) {
882 #ifdef NETATALK
883 case LLC_SNAP_LSAP:
884 switch (l->llc_control) {
885 case LLC_UI:
886 if (l->llc_ssap != LLC_SNAP_LSAP) {
887 goto dropanyway;
888 }
889
890 if (memcmp(&(l->llc_snap_org_code)[0],
891 at_org_code, sizeof(at_org_code)) == 0 &&
892 ntohs(l->llc_snap_ether_type) ==
893 ETHERTYPE_ATALK) {
894 inq = &atintrq2;
895 m_adj(m, sizeof(struct ether_header)
896 + sizeof(struct llc));
897 isr = NETISR_ATALK;
898 break;
899 }
900
901 if (memcmp(&(l->llc_snap_org_code)[0],
902 aarp_org_code,
903 sizeof(aarp_org_code)) == 0 &&
904 ntohs(l->llc_snap_ether_type) ==
905 ETHERTYPE_AARP) {
906 m_adj(m, sizeof(struct ether_header)
907 + sizeof(struct llc));
908 aarpinput(ifp, m); /* XXX queue? */
909 return;
910 }
911
912 default:
913 goto dropanyway;
914 }
915 break;
916 #endif
917 dropanyway:
918 default:
919 m_freem(m);
920 return;
921 }
922 #else /* LLC || NETATALK */
923 m_freem(m);
924 return;
925 #endif /* LLC || NETATALK */
926 }
927
928 if (__predict_true(pktq)) {
929 #ifdef NET_MPSAFE
930 const u_int h = curcpu()->ci_index;
931 #else
932 const uint32_t h = pktq_rps_hash(m);
933 #endif
934 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
935 m_freem(m);
936 }
937 return;
938 }
939
940 if (__predict_false(!inq)) {
941 /* Should not happen. */
942 m_freem(m);
943 return;
944 }
945
946 IFQ_LOCK(inq);
947 if (IF_QFULL(inq)) {
948 IF_DROP(inq);
949 IFQ_UNLOCK(inq);
950 m_freem(m);
951 } else {
952 IF_ENQUEUE(inq, m);
953 IFQ_UNLOCK(inq);
954 schednetisr(isr);
955 }
956 }
957
958 /*
959 * Convert Ethernet address to printable (loggable) representation.
960 */
961 char *
962 ether_sprintf(const u_char *ap)
963 {
964 static char etherbuf[3 * ETHER_ADDR_LEN];
965 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
966 }
967
968 char *
969 ether_snprintf(char *buf, size_t len, const u_char *ap)
970 {
971 char *cp = buf;
972 size_t i;
973
974 for (i = 0; i < len / 3; i++) {
975 *cp++ = hexdigits[*ap >> 4];
976 *cp++ = hexdigits[*ap++ & 0xf];
977 *cp++ = ':';
978 }
979 *--cp = '\0';
980 return buf;
981 }
982
983 /*
984 * Perform common duties while attaching to interface list
985 */
986 void
987 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
988 {
989 struct ethercom *ec = (struct ethercom *)ifp;
990
991 ifp->if_type = IFT_ETHER;
992 ifp->if_hdrlen = ETHER_HDR_LEN;
993 ifp->if_dlt = DLT_EN10MB;
994 ifp->if_mtu = ETHERMTU;
995 ifp->if_output = ether_output;
996 ifp->_if_input = ether_input;
997 if (ifp->if_baudrate == 0)
998 ifp->if_baudrate = IF_Mbps(10); /* just a default */
999
1000 if (lla != NULL)
1001 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
1002
1003 LIST_INIT(&ec->ec_multiaddrs);
1004 SIMPLEQ_INIT(&ec->ec_vids);
1005 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1006 ec->ec_flags = 0;
1007 ifp->if_broadcastaddr = etherbroadcastaddr;
1008 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1009 #ifdef MBUFTRACE
1010 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
1011 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
1012 MOWNER_ATTACH(&ec->ec_tx_mowner);
1013 MOWNER_ATTACH(&ec->ec_rx_mowner);
1014 ifp->if_mowner = &ec->ec_tx_mowner;
1015 #endif
1016 }
1017
1018 void
1019 ether_ifdetach(struct ifnet *ifp)
1020 {
1021 struct ethercom *ec = (void *) ifp;
1022 struct ether_multi *enm;
1023
1024 IFNET_ASSERT_UNLOCKED(ifp);
1025 /*
1026 * Prevent further calls to ioctl (for example turning off
1027 * promiscuous mode from the bridge code), which eventually can
1028 * call if_init() which can cause panics because the interface
1029 * is in the process of being detached. Return device not configured
1030 * instead.
1031 */
1032 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
1033 enxio);
1034
1035 #if NBRIDGE > 0
1036 if (ifp->if_bridge)
1037 bridge_ifdetach(ifp);
1038 #endif
1039 bpf_detach(ifp);
1040 #if NVLAN > 0
1041 if (ec->ec_nvlans)
1042 vlan_ifdetach(ifp);
1043 #endif
1044
1045 ETHER_LOCK(ec);
1046 KASSERT(ec->ec_nvlans == 0);
1047 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1048 LIST_REMOVE(enm, enm_list);
1049 kmem_free(enm, sizeof(*enm));
1050 ec->ec_multicnt--;
1051 }
1052 ETHER_UNLOCK(ec);
1053
1054 mutex_obj_free(ec->ec_lock);
1055 ec->ec_lock = NULL;
1056
1057 ifp->if_mowner = NULL;
1058 MOWNER_DETACH(&ec->ec_rx_mowner);
1059 MOWNER_DETACH(&ec->ec_tx_mowner);
1060 }
1061
1062 #if 0
1063 /*
1064 * This is for reference. We have a table-driven version
1065 * of the little-endian crc32 generator, which is faster
1066 * than the double-loop.
1067 */
1068 uint32_t
1069 ether_crc32_le(const uint8_t *buf, size_t len)
1070 {
1071 uint32_t c, crc, carry;
1072 size_t i, j;
1073
1074 crc = 0xffffffffU; /* initial value */
1075
1076 for (i = 0; i < len; i++) {
1077 c = buf[i];
1078 for (j = 0; j < 8; j++) {
1079 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1080 crc >>= 1;
1081 c >>= 1;
1082 if (carry)
1083 crc = (crc ^ ETHER_CRC_POLY_LE);
1084 }
1085 }
1086
1087 return (crc);
1088 }
1089 #else
1090 uint32_t
1091 ether_crc32_le(const uint8_t *buf, size_t len)
1092 {
1093 static const uint32_t crctab[] = {
1094 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1095 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1096 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1097 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1098 };
1099 uint32_t crc;
1100 size_t i;
1101
1102 crc = 0xffffffffU; /* initial value */
1103
1104 for (i = 0; i < len; i++) {
1105 crc ^= buf[i];
1106 crc = (crc >> 4) ^ crctab[crc & 0xf];
1107 crc = (crc >> 4) ^ crctab[crc & 0xf];
1108 }
1109
1110 return (crc);
1111 }
1112 #endif
1113
1114 uint32_t
1115 ether_crc32_be(const uint8_t *buf, size_t len)
1116 {
1117 uint32_t c, crc, carry;
1118 size_t i, j;
1119
1120 crc = 0xffffffffU; /* initial value */
1121
1122 for (i = 0; i < len; i++) {
1123 c = buf[i];
1124 for (j = 0; j < 8; j++) {
1125 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1126 crc <<= 1;
1127 c >>= 1;
1128 if (carry)
1129 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1130 }
1131 }
1132
1133 return (crc);
1134 }
1135
1136 #ifdef INET
1137 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1138 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1139 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1140 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1141 #endif
1142 #ifdef INET6
1143 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1144 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1145 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1146 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1147 #endif
1148
1149 /*
1150 * ether_aton implementation, not using a static buffer.
1151 */
1152 int
1153 ether_aton_r(u_char *dest, size_t len, const char *str)
1154 {
1155 const u_char *cp = (const void *)str;
1156 u_char *ep;
1157
1158 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1159
1160 if (len < ETHER_ADDR_LEN)
1161 return ENOSPC;
1162
1163 ep = dest + ETHER_ADDR_LEN;
1164
1165 while (*cp) {
1166 if (!isxdigit(*cp))
1167 return EINVAL;
1168
1169 *dest = atox(*cp);
1170 cp++;
1171 if (isxdigit(*cp)) {
1172 *dest = (*dest << 4) | atox(*cp);
1173 cp++;
1174 }
1175 dest++;
1176
1177 if (dest == ep)
1178 return (*cp == '\0') ? 0 : ENAMETOOLONG;
1179
1180 switch (*cp) {
1181 case ':':
1182 case '-':
1183 case '.':
1184 cp++;
1185 break;
1186 }
1187 }
1188 return ENOBUFS;
1189 }
1190
1191 /*
1192 * Convert a sockaddr into an Ethernet address or range of Ethernet
1193 * addresses.
1194 */
1195 int
1196 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1197 uint8_t addrhi[ETHER_ADDR_LEN])
1198 {
1199 #ifdef INET
1200 const struct sockaddr_in *sin;
1201 #endif
1202 #ifdef INET6
1203 const struct sockaddr_in6 *sin6;
1204 #endif
1205
1206 switch (sa->sa_family) {
1207
1208 case AF_UNSPEC:
1209 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1210 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1211 break;
1212
1213 #ifdef INET
1214 case AF_INET:
1215 sin = satocsin(sa);
1216 if (sin->sin_addr.s_addr == INADDR_ANY) {
1217 /*
1218 * An IP address of INADDR_ANY means listen to
1219 * or stop listening to all of the Ethernet
1220 * multicast addresses used for IP.
1221 * (This is for the sake of IP multicast routers.)
1222 */
1223 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1224 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1225 } else {
1226 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1227 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1228 }
1229 break;
1230 #endif
1231 #ifdef INET6
1232 case AF_INET6:
1233 sin6 = satocsin6(sa);
1234 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1235 /*
1236 * An IP6 address of 0 means listen to or stop
1237 * listening to all of the Ethernet multicast
1238 * address used for IP6.
1239 * (This is used for multicast routers.)
1240 */
1241 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1242 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1243 } else {
1244 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1245 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1246 }
1247 break;
1248 #endif
1249
1250 default:
1251 return EAFNOSUPPORT;
1252 }
1253 return 0;
1254 }
1255
1256 /*
1257 * Add an Ethernet multicast address or range of addresses to the list for a
1258 * given interface.
1259 */
1260 int
1261 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1262 {
1263 struct ether_multi *enm, *_enm;
1264 u_char addrlo[ETHER_ADDR_LEN];
1265 u_char addrhi[ETHER_ADDR_LEN];
1266 int error = 0;
1267
1268 /* Allocate out of lock */
1269 enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1270
1271 ETHER_LOCK(ec);
1272 error = ether_multiaddr(sa, addrlo, addrhi);
1273 if (error != 0)
1274 goto out;
1275
1276 /*
1277 * Verify that we have valid Ethernet multicast addresses.
1278 */
1279 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1280 error = EINVAL;
1281 goto out;
1282 }
1283
1284 /*
1285 * See if the address range is already in the list.
1286 */
1287 _enm = ether_lookup_multi(addrlo, addrhi, ec);
1288 if (_enm != NULL) {
1289 /*
1290 * Found it; just increment the reference count.
1291 */
1292 ++_enm->enm_refcount;
1293 error = 0;
1294 goto out;
1295 }
1296
1297 /*
1298 * Link a new multicast record into the interface's multicast list.
1299 */
1300 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1301 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1302 enm->enm_refcount = 1;
1303 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1304 ec->ec_multicnt++;
1305
1306 /*
1307 * Return ENETRESET to inform the driver that the list has changed
1308 * and its reception filter should be adjusted accordingly.
1309 */
1310 error = ENETRESET;
1311 enm = NULL;
1312
1313 out:
1314 ETHER_UNLOCK(ec);
1315 if (enm != NULL)
1316 kmem_free(enm, sizeof(*enm));
1317 return error;
1318 }
1319
1320 /*
1321 * Delete a multicast address record.
1322 */
1323 int
1324 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1325 {
1326 struct ether_multi *enm;
1327 u_char addrlo[ETHER_ADDR_LEN];
1328 u_char addrhi[ETHER_ADDR_LEN];
1329 int error;
1330
1331 ETHER_LOCK(ec);
1332 error = ether_multiaddr(sa, addrlo, addrhi);
1333 if (error != 0)
1334 goto error;
1335
1336 /*
1337 * Look up the address in our list.
1338 */
1339 enm = ether_lookup_multi(addrlo, addrhi, ec);
1340 if (enm == NULL) {
1341 error = ENXIO;
1342 goto error;
1343 }
1344 if (--enm->enm_refcount != 0) {
1345 /*
1346 * Still some claims to this record.
1347 */
1348 error = 0;
1349 goto error;
1350 }
1351
1352 /*
1353 * No remaining claims to this record; unlink and free it.
1354 */
1355 LIST_REMOVE(enm, enm_list);
1356 ec->ec_multicnt--;
1357 ETHER_UNLOCK(ec);
1358 kmem_free(enm, sizeof(*enm));
1359
1360 /*
1361 * Return ENETRESET to inform the driver that the list has changed
1362 * and its reception filter should be adjusted accordingly.
1363 */
1364 return ENETRESET;
1365
1366 error:
1367 ETHER_UNLOCK(ec);
1368 return error;
1369 }
1370
1371 void
1372 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1373 {
1374 ec->ec_ifflags_cb = cb;
1375 }
1376
1377 void
1378 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
1379 {
1380
1381 ec->ec_vlan_cb = cb;
1382 }
1383
1384 static int
1385 ether_ioctl_reinit(struct ethercom *ec)
1386 {
1387 struct ifnet *ifp = &ec->ec_if;
1388 int error;
1389
1390 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1391 case IFF_RUNNING:
1392 /*
1393 * If interface is marked down and it is running,
1394 * then stop and disable it.
1395 */
1396 (*ifp->if_stop)(ifp, 1);
1397 break;
1398 case IFF_UP:
1399 /*
1400 * If interface is marked up and it is stopped, then
1401 * start it.
1402 */
1403 return (*ifp->if_init)(ifp);
1404 case IFF_UP | IFF_RUNNING:
1405 error = 0;
1406 if (ec->ec_ifflags_cb != NULL) {
1407 error = (*ec->ec_ifflags_cb)(ec);
1408 if (error == ENETRESET) {
1409 /*
1410 * Reset the interface to pick up
1411 * changes in any other flags that
1412 * affect the hardware state.
1413 */
1414 return (*ifp->if_init)(ifp);
1415 }
1416 } else
1417 error = (*ifp->if_init)(ifp);
1418 return error;
1419 case 0:
1420 break;
1421 }
1422
1423 return 0;
1424 }
1425
1426 /*
1427 * Common ioctls for Ethernet interfaces. Note, we must be
1428 * called at splnet().
1429 */
1430 int
1431 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1432 {
1433 struct ethercom *ec = (void *)ifp;
1434 struct eccapreq *eccr;
1435 struct ifreq *ifr = (struct ifreq *)data;
1436 struct if_laddrreq *iflr = data;
1437 const struct sockaddr_dl *sdl;
1438 static const uint8_t zero[ETHER_ADDR_LEN];
1439 int error;
1440
1441 switch (cmd) {
1442 case SIOCINITIFADDR:
1443 {
1444 struct ifaddr *ifa = (struct ifaddr *)data;
1445 if (ifa->ifa_addr->sa_family != AF_LINK
1446 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1447 (IFF_UP | IFF_RUNNING)) {
1448 ifp->if_flags |= IFF_UP;
1449 if ((error = (*ifp->if_init)(ifp)) != 0)
1450 return error;
1451 }
1452 #ifdef INET
1453 if (ifa->ifa_addr->sa_family == AF_INET)
1454 arp_ifinit(ifp, ifa);
1455 #endif
1456 return 0;
1457 }
1458
1459 case SIOCSIFMTU:
1460 {
1461 int maxmtu;
1462
1463 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1464 maxmtu = ETHERMTU_JUMBO;
1465 else
1466 maxmtu = ETHERMTU;
1467
1468 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1469 return EINVAL;
1470 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1471 return error;
1472 else if (ifp->if_flags & IFF_UP) {
1473 /* Make sure the device notices the MTU change. */
1474 return (*ifp->if_init)(ifp);
1475 } else
1476 return 0;
1477 }
1478
1479 case SIOCSIFFLAGS:
1480 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1481 return error;
1482 return ether_ioctl_reinit(ec);
1483 case SIOCGIFFLAGS:
1484 error = ifioctl_common(ifp, cmd, data);
1485 if (error == 0) {
1486 /* Set IFF_ALLMULTI for backcompat */
1487 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
1488 IFF_ALLMULTI : 0;
1489 }
1490 return error;
1491 case SIOCGETHERCAP:
1492 eccr = (struct eccapreq *)data;
1493 eccr->eccr_capabilities = ec->ec_capabilities;
1494 eccr->eccr_capenable = ec->ec_capenable;
1495 return 0;
1496 case SIOCSETHERCAP:
1497 eccr = (struct eccapreq *)data;
1498 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1499 return EINVAL;
1500 if (eccr->eccr_capenable == ec->ec_capenable)
1501 return 0;
1502 #if 0 /* notyet */
1503 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1504 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1505 #else
1506 ec->ec_capenable = eccr->eccr_capenable;
1507 #endif
1508 return ether_ioctl_reinit(ec);
1509 case SIOCADDMULTI:
1510 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1511 case SIOCDELMULTI:
1512 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1513 case SIOCSIFMEDIA:
1514 case SIOCGIFMEDIA:
1515 if (ec->ec_mii != NULL)
1516 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
1517 cmd);
1518 else if (ec->ec_ifmedia != NULL)
1519 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
1520 else
1521 return ENOTTY;
1522 break;
1523 case SIOCALIFADDR:
1524 sdl = satocsdl(sstocsa(&iflr->addr));
1525 if (sdl->sdl_family != AF_LINK)
1526 ;
1527 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1528 return EINVAL;
1529 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1530 return EINVAL;
1531 /*FALLTHROUGH*/
1532 default:
1533 return ifioctl_common(ifp, cmd, data);
1534 }
1535 return 0;
1536 }
1537
1538 /*
1539 * Enable/disable passing VLAN packets if the parent interface supports it.
1540 * Return:
1541 * 0: Ok
1542 * -1: Parent interface does not support vlans
1543 * >0: Error
1544 */
1545 int
1546 ether_enable_vlan_mtu(struct ifnet *ifp)
1547 {
1548 int error;
1549 struct ethercom *ec = (void *)ifp;
1550
1551 /* Parent does not support VLAN's */
1552 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1553 return -1;
1554
1555 /*
1556 * Parent supports the VLAN_MTU capability,
1557 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1558 * enable it.
1559 */
1560 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1561
1562 /* Interface is down, defer for later */
1563 if ((ifp->if_flags & IFF_UP) == 0)
1564 return 0;
1565
1566 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1567 return 0;
1568
1569 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1570 return error;
1571 }
1572
1573 int
1574 ether_disable_vlan_mtu(struct ifnet *ifp)
1575 {
1576 int error;
1577 struct ethercom *ec = (void *)ifp;
1578
1579 /* We still have VLAN's, defer for later */
1580 if (ec->ec_nvlans != 0)
1581 return 0;
1582
1583 /* Parent does not support VLAB's, nothing to do. */
1584 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1585 return -1;
1586
1587 /*
1588 * Disable Tx/Rx of VLAN-sized frames.
1589 */
1590 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1591
1592 /* Interface is down, defer for later */
1593 if ((ifp->if_flags & IFF_UP) == 0)
1594 return 0;
1595
1596 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1597 return 0;
1598
1599 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1600 return error;
1601 }
1602
1603 static int
1604 ether_multicast_sysctl(SYSCTLFN_ARGS)
1605 {
1606 struct ether_multi *enm;
1607 struct ifnet *ifp;
1608 struct ethercom *ec;
1609 int error = 0;
1610 size_t written;
1611 struct psref psref;
1612 int bound;
1613 unsigned int multicnt;
1614 struct ether_multi_sysctl *addrs;
1615 int i;
1616
1617 if (namelen != 1)
1618 return EINVAL;
1619
1620 bound = curlwp_bind();
1621 ifp = if_get_byindex(name[0], &psref);
1622 if (ifp == NULL) {
1623 error = ENODEV;
1624 goto out;
1625 }
1626 if (ifp->if_type != IFT_ETHER) {
1627 if_put(ifp, &psref);
1628 *oldlenp = 0;
1629 goto out;
1630 }
1631 ec = (struct ethercom *)ifp;
1632
1633 if (oldp == NULL) {
1634 if_put(ifp, &psref);
1635 *oldlenp = ec->ec_multicnt * sizeof(*addrs);
1636 goto out;
1637 }
1638
1639 /*
1640 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1641 * is sleepable, while holding it. Copy data to a local buffer first
1642 * with the lock taken and then call sysctl_copyout without holding it.
1643 */
1644 retry:
1645 multicnt = ec->ec_multicnt;
1646
1647 if (multicnt == 0) {
1648 if_put(ifp, &psref);
1649 *oldlenp = 0;
1650 goto out;
1651 }
1652
1653 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1654
1655 ETHER_LOCK(ec);
1656 if (multicnt != ec->ec_multicnt) {
1657 /* The number of multicast addresses has changed */
1658 ETHER_UNLOCK(ec);
1659 kmem_free(addrs, sizeof(*addrs) * multicnt);
1660 goto retry;
1661 }
1662
1663 i = 0;
1664 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1665 struct ether_multi_sysctl *addr = &addrs[i];
1666 addr->enm_refcount = enm->enm_refcount;
1667 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1668 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1669 i++;
1670 }
1671 ETHER_UNLOCK(ec);
1672
1673 error = 0;
1674 written = 0;
1675 for (i = 0; i < multicnt; i++) {
1676 struct ether_multi_sysctl *addr = &addrs[i];
1677
1678 if (written + sizeof(*addr) > *oldlenp)
1679 break;
1680 error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1681 if (error)
1682 break;
1683 written += sizeof(*addr);
1684 oldp = (char *)oldp + sizeof(*addr);
1685 }
1686 kmem_free(addrs, sizeof(*addrs) * multicnt);
1687
1688 if_put(ifp, &psref);
1689
1690 *oldlenp = written;
1691 out:
1692 curlwp_bindx(bound);
1693 return error;
1694 }
1695
1696 static void
1697 ether_sysctl_setup(struct sysctllog **clog)
1698 {
1699 const struct sysctlnode *rnode = NULL;
1700
1701 sysctl_createv(clog, 0, NULL, &rnode,
1702 CTLFLAG_PERMANENT,
1703 CTLTYPE_NODE, "ether",
1704 SYSCTL_DESCR("Ethernet-specific information"),
1705 NULL, 0, NULL, 0,
1706 CTL_NET, CTL_CREATE, CTL_EOL);
1707
1708 sysctl_createv(clog, 0, &rnode, NULL,
1709 CTLFLAG_PERMANENT,
1710 CTLTYPE_NODE, "multicast",
1711 SYSCTL_DESCR("multicast addresses"),
1712 ether_multicast_sysctl, 0, NULL, 0,
1713 CTL_CREATE, CTL_EOL);
1714 }
1715
1716 void
1717 etherinit(void)
1718 {
1719
1720 #ifdef DIAGNOSTIC
1721 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1722 #endif
1723 ether_sysctl_setup(NULL);
1724 }
1725