if_ethersubr.c revision 1.285 1 /* $NetBSD: if_ethersubr.c,v 1.285 2020/08/28 06:23:42 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.285 2020/08/28 06:23:42 ozaki-r Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/entropy.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92
93 #include <net/if.h>
94 #include <net/netisr.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104
105 #if NARP == 0
106 /*
107 * XXX there should really be a way to issue this warning from within config(8)
108 */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111
112 #include <net/bpf.h>
113
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120
121 #if NAGR > 0
122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144
145 #include "carp.h"
146 #if NCARP > 0
147 #include <netinet/ip_carp.h>
148 #endif
149
150 #ifdef NETATALK
151 #include <netatalk/at.h>
152 #include <netatalk/at_var.h>
153 #include <netatalk/at_extern.h>
154
155 #define llc_snap_org_code llc_un.type_snap.org_code
156 #define llc_snap_ether_type llc_un.type_snap.ether_type
157
158 extern u_char at_org_code[3];
159 extern u_char aarp_org_code[3];
160 #endif /* NETATALK */
161
162 #ifdef MPLS
163 #include <netmpls/mpls.h>
164 #include <netmpls/mpls_var.h>
165 #endif
166
167 #ifdef DIAGNOSTIC
168 static struct timeval bigpktppslim_last;
169 static int bigpktppslim = 2; /* XXX */
170 static int bigpktpps_count;
171 static kmutex_t bigpktpps_lock __cacheline_aligned;
172 #endif
173
174 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
175 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
176 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
177 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
178 #define senderr(e) { error = (e); goto bad;}
179
180 static int ether_output(struct ifnet *, struct mbuf *,
181 const struct sockaddr *, const struct rtentry *);
182
183 /*
184 * Ethernet output routine.
185 * Encapsulate a packet of type family for the local net.
186 * Assumes that ifp is actually pointer to ethercom structure.
187 */
188 static int
189 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
190 const struct sockaddr * const dst, const struct rtentry *rt)
191 {
192 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
193 uint16_t etype = 0;
194 int error = 0, hdrcmplt = 0;
195 struct mbuf *m = m0;
196 struct mbuf *mcopy = NULL;
197 struct ether_header *eh;
198 struct ifnet *ifp = ifp0;
199 #ifdef INET
200 struct arphdr *ah;
201 #endif
202 #ifdef NETATALK
203 struct at_ifaddr *aa;
204 #endif
205
206 #ifdef MBUFTRACE
207 m_claimm(m, ifp->if_mowner);
208 #endif
209
210 #if NCARP > 0
211 if (ifp->if_type == IFT_CARP) {
212 struct ifaddr *ifa;
213 int s = pserialize_read_enter();
214
215 /* loop back if this is going to the carp interface */
216 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
217 (ifa = ifa_ifwithaddr(dst)) != NULL) {
218 if (ifa->ifa_ifp == ifp0) {
219 pserialize_read_exit(s);
220 return looutput(ifp0, m, dst, rt);
221 }
222 }
223 pserialize_read_exit(s);
224
225 ifp = ifp->if_carpdev;
226 /* ac = (struct arpcom *)ifp; */
227
228 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
229 (IFF_UP | IFF_RUNNING))
230 senderr(ENETDOWN);
231 }
232 #endif
233
234 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
235 senderr(ENETDOWN);
236
237 switch (dst->sa_family) {
238
239 #ifdef INET
240 case AF_INET:
241 if (m->m_flags & M_BCAST) {
242 memcpy(edst, etherbroadcastaddr, sizeof(edst));
243 } else if (m->m_flags & M_MCAST) {
244 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
245 } else {
246 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
247 if (error)
248 return (error == EWOULDBLOCK) ? 0 : error;
249 }
250 /* If broadcasting on a simplex interface, loopback a copy */
251 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
252 mcopy = m_copypacket(m, M_DONTWAIT);
253 etype = htons(ETHERTYPE_IP);
254 break;
255
256 case AF_ARP:
257 ah = mtod(m, struct arphdr *);
258 if (m->m_flags & M_BCAST) {
259 memcpy(edst, etherbroadcastaddr, sizeof(edst));
260 } else {
261 void *tha = ar_tha(ah);
262
263 if (tha == NULL) {
264 /* fake with ARPHRD_IEEE1394 */
265 m_freem(m);
266 return 0;
267 }
268 memcpy(edst, tha, sizeof(edst));
269 }
270
271 ah->ar_hrd = htons(ARPHRD_ETHER);
272
273 switch (ntohs(ah->ar_op)) {
274 case ARPOP_REVREQUEST:
275 case ARPOP_REVREPLY:
276 etype = htons(ETHERTYPE_REVARP);
277 break;
278
279 case ARPOP_REQUEST:
280 case ARPOP_REPLY:
281 default:
282 etype = htons(ETHERTYPE_ARP);
283 }
284 break;
285 #endif
286
287 #ifdef INET6
288 case AF_INET6:
289 if (m->m_flags & M_BCAST) {
290 memcpy(edst, etherbroadcastaddr, sizeof(edst));
291 } else if (m->m_flags & M_MCAST) {
292 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
293 edst);
294 } else {
295 error = nd6_resolve(ifp0, rt, m, dst, edst,
296 sizeof(edst));
297 if (error)
298 return (error == EWOULDBLOCK) ? 0 : error;
299 }
300 etype = htons(ETHERTYPE_IPV6);
301 break;
302 #endif
303
304 #ifdef NETATALK
305 case AF_APPLETALK: {
306 struct ifaddr *ifa;
307 int s;
308
309 KERNEL_LOCK(1, NULL);
310
311 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
312 KERNEL_UNLOCK_ONE(NULL);
313 return 0;
314 }
315
316 /*
317 * ifaddr is the first thing in at_ifaddr
318 */
319 s = pserialize_read_enter();
320 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
321 if (ifa == NULL) {
322 pserialize_read_exit(s);
323 KERNEL_UNLOCK_ONE(NULL);
324 senderr(EADDRNOTAVAIL);
325 }
326 aa = (struct at_ifaddr *)ifa;
327
328 /*
329 * In the phase 2 case, we need to prepend an mbuf for the
330 * llc header.
331 */
332 if (aa->aa_flags & AFA_PHASE2) {
333 struct llc llc;
334
335 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
336 if (m == NULL) {
337 pserialize_read_exit(s);
338 KERNEL_UNLOCK_ONE(NULL);
339 senderr(ENOBUFS);
340 }
341
342 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
343 llc.llc_control = LLC_UI;
344 memcpy(llc.llc_snap_org_code, at_org_code,
345 sizeof(llc.llc_snap_org_code));
346 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
347 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
348 } else {
349 etype = htons(ETHERTYPE_ATALK);
350 }
351 pserialize_read_exit(s);
352 KERNEL_UNLOCK_ONE(NULL);
353 break;
354 }
355 #endif /* NETATALK */
356
357 case pseudo_AF_HDRCMPLT:
358 hdrcmplt = 1;
359 memcpy(esrc,
360 ((const struct ether_header *)dst->sa_data)->ether_shost,
361 sizeof(esrc));
362 /* FALLTHROUGH */
363
364 case AF_UNSPEC:
365 memcpy(edst,
366 ((const struct ether_header *)dst->sa_data)->ether_dhost,
367 sizeof(edst));
368 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
369 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
370 break;
371
372 default:
373 printf("%s: can't handle af%d\n", ifp->if_xname,
374 dst->sa_family);
375 senderr(EAFNOSUPPORT);
376 }
377
378 #ifdef MPLS
379 {
380 struct m_tag *mtag;
381 mtag = m_tag_find(m, PACKET_TAG_MPLS);
382 if (mtag != NULL) {
383 /* Having the tag itself indicates it's MPLS */
384 etype = htons(ETHERTYPE_MPLS);
385 m_tag_delete(m, mtag);
386 }
387 }
388 #endif
389
390 if (mcopy)
391 (void)looutput(ifp, mcopy, dst, rt);
392
393 KASSERT((m->m_flags & M_PKTHDR) != 0);
394
395 /*
396 * If no ether type is set, this must be a 802.2 formatted packet.
397 */
398 if (etype == 0)
399 etype = htons(m->m_pkthdr.len);
400
401 /*
402 * Add local net header. If no space in first mbuf, allocate another.
403 */
404 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
405 if (m == NULL)
406 senderr(ENOBUFS);
407
408 eh = mtod(m, struct ether_header *);
409 /* Note: etype is already in network byte order. */
410 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
411 memcpy(eh->ether_dhost, edst, sizeof(edst));
412 if (hdrcmplt) {
413 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
414 } else {
415 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
416 sizeof(eh->ether_shost));
417 }
418
419 #if NCARP > 0
420 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
421 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
422 sizeof(eh->ether_shost));
423 }
424 #endif
425
426 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
427 return error;
428 if (m == NULL)
429 return 0;
430
431 #if NBRIDGE > 0
432 /*
433 * Bridges require special output handling.
434 */
435 if (ifp->if_bridge)
436 return bridge_output(ifp, m, NULL, NULL);
437 #endif
438
439 #if NCARP > 0
440 if (ifp != ifp0)
441 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
442 #endif
443
444 #ifdef ALTQ
445 KERNEL_LOCK(1, NULL);
446 /*
447 * If ALTQ is enabled on the parent interface, do
448 * classification; the queueing discipline might not
449 * require classification, but might require the
450 * address family/header pointer in the pktattr.
451 */
452 if (ALTQ_IS_ENABLED(&ifp->if_snd))
453 altq_etherclassify(&ifp->if_snd, m);
454 KERNEL_UNLOCK_ONE(NULL);
455 #endif
456 return ifq_enqueue(ifp, m);
457
458 bad:
459 if (m)
460 m_freem(m);
461 return error;
462 }
463
464 #ifdef ALTQ
465 /*
466 * This routine is a slight hack to allow a packet to be classified
467 * if the Ethernet headers are present. It will go away when ALTQ's
468 * classification engine understands link headers.
469 *
470 * XXX: We may need to do m_pullups here. First to ensure struct ether_header
471 * is indeed contiguous, then to read the LLC and so on.
472 */
473 void
474 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
475 {
476 struct ether_header *eh;
477 struct mbuf *mtop = m;
478 uint16_t ether_type;
479 int hlen, af, hdrsize;
480 void *hdr;
481
482 KASSERT((mtop->m_flags & M_PKTHDR) != 0);
483
484 hlen = ETHER_HDR_LEN;
485 eh = mtod(m, struct ether_header *);
486
487 ether_type = htons(eh->ether_type);
488
489 if (ether_type < ETHERMTU) {
490 /* LLC/SNAP */
491 struct llc *llc = (struct llc *)(eh + 1);
492 hlen += 8;
493
494 if (m->m_len < hlen ||
495 llc->llc_dsap != LLC_SNAP_LSAP ||
496 llc->llc_ssap != LLC_SNAP_LSAP ||
497 llc->llc_control != LLC_UI) {
498 /* Not SNAP. */
499 goto bad;
500 }
501
502 ether_type = htons(llc->llc_un.type_snap.ether_type);
503 }
504
505 switch (ether_type) {
506 case ETHERTYPE_IP:
507 af = AF_INET;
508 hdrsize = 20; /* sizeof(struct ip) */
509 break;
510
511 case ETHERTYPE_IPV6:
512 af = AF_INET6;
513 hdrsize = 40; /* sizeof(struct ip6_hdr) */
514 break;
515
516 default:
517 af = AF_UNSPEC;
518 hdrsize = 0;
519 break;
520 }
521
522 while (m->m_len <= hlen) {
523 hlen -= m->m_len;
524 m = m->m_next;
525 if (m == NULL)
526 goto bad;
527 }
528
529 if (m->m_len < (hlen + hdrsize)) {
530 /*
531 * protocol header not in a single mbuf.
532 * We can't cope with this situation right
533 * now (but it shouldn't ever happen, really, anyhow).
534 */
535 #ifdef DEBUG
536 printf("altq_etherclassify: headers span multiple mbufs: "
537 "%d < %d\n", m->m_len, (hlen + hdrsize));
538 #endif
539 goto bad;
540 }
541
542 m->m_data += hlen;
543 m->m_len -= hlen;
544
545 hdr = mtod(m, void *);
546
547 if (ALTQ_NEEDS_CLASSIFY(ifq)) {
548 mtop->m_pkthdr.pattr_class =
549 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
550 }
551 mtop->m_pkthdr.pattr_af = af;
552 mtop->m_pkthdr.pattr_hdr = hdr;
553
554 m->m_data -= hlen;
555 m->m_len += hlen;
556
557 return;
558
559 bad:
560 mtop->m_pkthdr.pattr_class = NULL;
561 mtop->m_pkthdr.pattr_hdr = NULL;
562 mtop->m_pkthdr.pattr_af = AF_UNSPEC;
563 }
564 #endif /* ALTQ */
565
566 /*
567 * Process a received Ethernet packet;
568 * the packet is in the mbuf chain m with
569 * the ether header.
570 */
571 void
572 ether_input(struct ifnet *ifp, struct mbuf *m)
573 {
574 struct ethercom *ec = (struct ethercom *) ifp;
575 pktqueue_t *pktq = NULL;
576 struct ifqueue *inq = NULL;
577 uint16_t etype;
578 struct ether_header *eh;
579 size_t ehlen;
580 static int earlypkts;
581 int isr = 0;
582 #if defined (LLC) || defined(NETATALK)
583 struct llc *l;
584 #endif
585
586 KASSERT(!cpu_intr_p());
587 KASSERT((m->m_flags & M_PKTHDR) != 0);
588
589 if ((ifp->if_flags & IFF_UP) == 0) {
590 m_freem(m);
591 return;
592 }
593 if (m->m_len < sizeof(*eh)) {
594 m = m_pullup(m, sizeof(*eh));
595 if (m == NULL)
596 return;
597 }
598
599 #ifdef MBUFTRACE
600 m_claimm(m, &ec->ec_rx_mowner);
601 #endif
602 eh = mtod(m, struct ether_header *);
603 etype = ntohs(eh->ether_type);
604 ehlen = sizeof(*eh);
605
606 if (__predict_false(earlypkts < 100 ||
607 entropy_epoch() == (unsigned)-1)) {
608 rnd_add_data(NULL, eh, ehlen, 0);
609 earlypkts++;
610 }
611
612 /*
613 * Determine if the packet is within its size limits. For MPLS the
614 * header length is variable, so we skip the check.
615 */
616 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
617 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
618 #ifdef DIAGNOSTIC
619 mutex_enter(&bigpktpps_lock);
620 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
621 bigpktppslim)) {
622 printf("%s: discarding oversize frame (len=%d)\n",
623 ifp->if_xname, m->m_pkthdr.len);
624 }
625 mutex_exit(&bigpktpps_lock);
626 #endif
627 if_statinc(ifp, if_iqdrops);
628 m_freem(m);
629 return;
630 }
631
632 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
633 /*
634 * If this is not a simplex interface, drop the packet
635 * if it came from us.
636 */
637 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
638 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
639 ETHER_ADDR_LEN) == 0) {
640 m_freem(m);
641 return;
642 }
643
644 if (memcmp(etherbroadcastaddr,
645 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
646 m->m_flags |= M_BCAST;
647 else
648 m->m_flags |= M_MCAST;
649 if_statinc(ifp, if_imcasts);
650 }
651
652 /* If the CRC is still on the packet, trim it off. */
653 if (m->m_flags & M_HASFCS) {
654 m_adj(m, -ETHER_CRC_LEN);
655 m->m_flags &= ~M_HASFCS;
656 }
657
658 if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
659
660 #if NCARP > 0
661 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
662 /*
663 * Clear M_PROMISC, in case the packet comes from a
664 * vlan.
665 */
666 m->m_flags &= ~M_PROMISC;
667 if (carp_input(m, (uint8_t *)&eh->ether_shost,
668 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
669 return;
670 }
671 #endif
672
673 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
674 (ifp->if_flags & IFF_PROMISC) != 0 &&
675 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
676 ETHER_ADDR_LEN) != 0) {
677 m->m_flags |= M_PROMISC;
678 }
679
680 if ((m->m_flags & M_PROMISC) == 0) {
681 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
682 return;
683 if (m == NULL)
684 return;
685
686 eh = mtod(m, struct ether_header *);
687 etype = ntohs(eh->ether_type);
688 }
689
690 #if NAGR > 0
691 if (ifp->if_agrprivate &&
692 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
693 m->m_flags &= ~M_PROMISC;
694 agr_input(ifp, m);
695 return;
696 }
697 #endif
698
699 /*
700 * If VLANs are configured on the interface, check to
701 * see if the device performed the decapsulation and
702 * provided us with the tag.
703 */
704 if (ec->ec_nvlans && vlan_has_tag(m)) {
705 #if NVLAN > 0
706 /*
707 * vlan_input() will either recursively call ether_input()
708 * or drop the packet.
709 */
710 vlan_input(ifp, m);
711 #else
712 m_freem(m);
713 #endif
714 return;
715 }
716
717 /*
718 * Handle protocols that expect to have the Ethernet header
719 * (and possibly FCS) intact.
720 */
721 switch (etype) {
722 case ETHERTYPE_VLAN: {
723 struct ether_vlan_header *evl = (void *)eh;
724
725 /*
726 * If there is a tag of 0, then the VLAN header was probably
727 * just being used to store the priority. Extract the ether
728 * type, and if IP or IPV6, let them deal with it.
729 */
730 if (m->m_len >= sizeof(*evl) &&
731 EVL_VLANOFTAG(evl->evl_tag) == 0) {
732 etype = ntohs(evl->evl_proto);
733 ehlen = sizeof(*evl);
734 if ((m->m_flags & M_PROMISC) == 0 &&
735 (etype == ETHERTYPE_IP ||
736 etype == ETHERTYPE_IPV6))
737 break;
738 }
739
740 #if NVLAN > 0
741 /*
742 * vlan_input() will either recursively call ether_input()
743 * or drop the packet.
744 */
745 if (ec->ec_nvlans != 0)
746 vlan_input(ifp, m);
747 else
748 #endif
749 m_freem(m);
750
751 return;
752 }
753
754 #if NPPPOE > 0
755 case ETHERTYPE_PPPOEDISC:
756 pppoedisc_input(ifp, m);
757 return;
758
759 case ETHERTYPE_PPPOE:
760 pppoe_input(ifp, m);
761 return;
762 #endif
763
764 case ETHERTYPE_SLOWPROTOCOLS: {
765 uint8_t subtype;
766
767 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype)) {
768 m_freem(m);
769 return;
770 }
771
772 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
773 switch (subtype) {
774 #if NAGR > 0
775 case SLOWPROTOCOLS_SUBTYPE_LACP:
776 if (ifp->if_agrprivate) {
777 ieee8023ad_lacp_input(ifp, m);
778 return;
779 }
780 break;
781
782 case SLOWPROTOCOLS_SUBTYPE_MARKER:
783 if (ifp->if_agrprivate) {
784 ieee8023ad_marker_input(ifp, m);
785 return;
786 }
787 break;
788 #endif
789
790 default:
791 if (subtype == 0 || subtype > 10) {
792 /* illegal value */
793 m_freem(m);
794 return;
795 }
796 /* unknown subtype */
797 break;
798 }
799 }
800 /* FALLTHROUGH */
801 default:
802 if (m->m_flags & M_PROMISC) {
803 m_freem(m);
804 return;
805 }
806 }
807
808 /* If the CRC is still on the packet, trim it off. */
809 if (m->m_flags & M_HASFCS) {
810 m_adj(m, -ETHER_CRC_LEN);
811 m->m_flags &= ~M_HASFCS;
812 }
813
814 if (etype > ETHERMTU + sizeof(struct ether_header)) {
815 /* Strip off the Ethernet header. */
816 m_adj(m, ehlen);
817
818 switch (etype) {
819 #ifdef INET
820 case ETHERTYPE_IP:
821 #ifdef GATEWAY
822 if (ipflow_fastforward(m))
823 return;
824 #endif
825 pktq = ip_pktq;
826 break;
827
828 case ETHERTYPE_ARP:
829 isr = NETISR_ARP;
830 inq = &arpintrq;
831 break;
832
833 case ETHERTYPE_REVARP:
834 revarpinput(m); /* XXX queue? */
835 return;
836 #endif
837
838 #ifdef INET6
839 case ETHERTYPE_IPV6:
840 if (__predict_false(!in6_present)) {
841 m_freem(m);
842 return;
843 }
844 #ifdef GATEWAY
845 if (ip6flow_fastforward(&m))
846 return;
847 #endif
848 pktq = ip6_pktq;
849 break;
850 #endif
851
852 #ifdef NETATALK
853 case ETHERTYPE_ATALK:
854 isr = NETISR_ATALK;
855 inq = &atintrq1;
856 break;
857
858 case ETHERTYPE_AARP:
859 aarpinput(ifp, m); /* XXX queue? */
860 return;
861 #endif
862
863 #ifdef MPLS
864 case ETHERTYPE_MPLS:
865 isr = NETISR_MPLS;
866 inq = &mplsintrq;
867 break;
868 #endif
869
870 default:
871 m_freem(m);
872 return;
873 }
874 } else {
875 KASSERT(ehlen == sizeof(*eh));
876 #if defined (LLC) || defined (NETATALK)
877 if (m->m_len < sizeof(*eh) + sizeof(struct llc)) {
878 goto dropanyway;
879 }
880 l = (struct llc *)(eh+1);
881
882 switch (l->llc_dsap) {
883 #ifdef NETATALK
884 case LLC_SNAP_LSAP:
885 switch (l->llc_control) {
886 case LLC_UI:
887 if (l->llc_ssap != LLC_SNAP_LSAP) {
888 goto dropanyway;
889 }
890
891 if (memcmp(&(l->llc_snap_org_code)[0],
892 at_org_code, sizeof(at_org_code)) == 0 &&
893 ntohs(l->llc_snap_ether_type) ==
894 ETHERTYPE_ATALK) {
895 inq = &atintrq2;
896 m_adj(m, sizeof(struct ether_header)
897 + sizeof(struct llc));
898 isr = NETISR_ATALK;
899 break;
900 }
901
902 if (memcmp(&(l->llc_snap_org_code)[0],
903 aarp_org_code,
904 sizeof(aarp_org_code)) == 0 &&
905 ntohs(l->llc_snap_ether_type) ==
906 ETHERTYPE_AARP) {
907 m_adj(m, sizeof(struct ether_header)
908 + sizeof(struct llc));
909 aarpinput(ifp, m); /* XXX queue? */
910 return;
911 }
912
913 default:
914 goto dropanyway;
915 }
916 break;
917 #endif
918 dropanyway:
919 default:
920 m_freem(m);
921 return;
922 }
923 #else /* LLC || NETATALK */
924 m_freem(m);
925 return;
926 #endif /* LLC || NETATALK */
927 }
928
929 if (__predict_true(pktq)) {
930 #ifdef NET_MPSAFE
931 const u_int h = curcpu()->ci_index;
932 #else
933 const uint32_t h = pktq_rps_hash(m);
934 #endif
935 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
936 m_freem(m);
937 }
938 return;
939 }
940
941 if (__predict_false(!inq)) {
942 /* Should not happen. */
943 m_freem(m);
944 return;
945 }
946
947 IFQ_ENQUEUE_ISR(inq, m, isr);
948 }
949
950 /*
951 * Convert Ethernet address to printable (loggable) representation.
952 */
953 char *
954 ether_sprintf(const u_char *ap)
955 {
956 static char etherbuf[3 * ETHER_ADDR_LEN];
957 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
958 }
959
960 char *
961 ether_snprintf(char *buf, size_t len, const u_char *ap)
962 {
963 char *cp = buf;
964 size_t i;
965
966 for (i = 0; i < len / 3; i++) {
967 *cp++ = hexdigits[*ap >> 4];
968 *cp++ = hexdigits[*ap++ & 0xf];
969 *cp++ = ':';
970 }
971 *--cp = '\0';
972 return buf;
973 }
974
975 /*
976 * Perform common duties while attaching to interface list
977 */
978 void
979 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
980 {
981 struct ethercom *ec = (struct ethercom *)ifp;
982
983 ifp->if_type = IFT_ETHER;
984 ifp->if_hdrlen = ETHER_HDR_LEN;
985 ifp->if_dlt = DLT_EN10MB;
986 ifp->if_mtu = ETHERMTU;
987 ifp->if_output = ether_output;
988 ifp->_if_input = ether_input;
989 if (ifp->if_baudrate == 0)
990 ifp->if_baudrate = IF_Mbps(10); /* just a default */
991
992 if (lla != NULL)
993 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
994
995 LIST_INIT(&ec->ec_multiaddrs);
996 SIMPLEQ_INIT(&ec->ec_vids);
997 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
998 ec->ec_flags = 0;
999 ifp->if_broadcastaddr = etherbroadcastaddr;
1000 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1001 #ifdef MBUFTRACE
1002 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
1003 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
1004 MOWNER_ATTACH(&ec->ec_tx_mowner);
1005 MOWNER_ATTACH(&ec->ec_rx_mowner);
1006 ifp->if_mowner = &ec->ec_tx_mowner;
1007 #endif
1008 }
1009
1010 void
1011 ether_ifdetach(struct ifnet *ifp)
1012 {
1013 struct ethercom *ec = (void *) ifp;
1014 struct ether_multi *enm;
1015
1016 IFNET_ASSERT_UNLOCKED(ifp);
1017 /*
1018 * Prevent further calls to ioctl (for example turning off
1019 * promiscuous mode from the bridge code), which eventually can
1020 * call if_init() which can cause panics because the interface
1021 * is in the process of being detached. Return device not configured
1022 * instead.
1023 */
1024 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
1025 enxio);
1026
1027 #if NBRIDGE > 0
1028 if (ifp->if_bridge)
1029 bridge_ifdetach(ifp);
1030 #endif
1031 bpf_detach(ifp);
1032 #if NVLAN > 0
1033 if (ec->ec_nvlans)
1034 vlan_ifdetach(ifp);
1035 #endif
1036
1037 ETHER_LOCK(ec);
1038 KASSERT(ec->ec_nvlans == 0);
1039 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1040 LIST_REMOVE(enm, enm_list);
1041 kmem_free(enm, sizeof(*enm));
1042 ec->ec_multicnt--;
1043 }
1044 ETHER_UNLOCK(ec);
1045
1046 mutex_obj_free(ec->ec_lock);
1047 ec->ec_lock = NULL;
1048
1049 ifp->if_mowner = NULL;
1050 MOWNER_DETACH(&ec->ec_rx_mowner);
1051 MOWNER_DETACH(&ec->ec_tx_mowner);
1052 }
1053
1054 #if 0
1055 /*
1056 * This is for reference. We have a table-driven version
1057 * of the little-endian crc32 generator, which is faster
1058 * than the double-loop.
1059 */
1060 uint32_t
1061 ether_crc32_le(const uint8_t *buf, size_t len)
1062 {
1063 uint32_t c, crc, carry;
1064 size_t i, j;
1065
1066 crc = 0xffffffffU; /* initial value */
1067
1068 for (i = 0; i < len; i++) {
1069 c = buf[i];
1070 for (j = 0; j < 8; j++) {
1071 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1072 crc >>= 1;
1073 c >>= 1;
1074 if (carry)
1075 crc = (crc ^ ETHER_CRC_POLY_LE);
1076 }
1077 }
1078
1079 return (crc);
1080 }
1081 #else
1082 uint32_t
1083 ether_crc32_le(const uint8_t *buf, size_t len)
1084 {
1085 static const uint32_t crctab[] = {
1086 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1087 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1088 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1089 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1090 };
1091 uint32_t crc;
1092 size_t i;
1093
1094 crc = 0xffffffffU; /* initial value */
1095
1096 for (i = 0; i < len; i++) {
1097 crc ^= buf[i];
1098 crc = (crc >> 4) ^ crctab[crc & 0xf];
1099 crc = (crc >> 4) ^ crctab[crc & 0xf];
1100 }
1101
1102 return (crc);
1103 }
1104 #endif
1105
1106 uint32_t
1107 ether_crc32_be(const uint8_t *buf, size_t len)
1108 {
1109 uint32_t c, crc, carry;
1110 size_t i, j;
1111
1112 crc = 0xffffffffU; /* initial value */
1113
1114 for (i = 0; i < len; i++) {
1115 c = buf[i];
1116 for (j = 0; j < 8; j++) {
1117 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1118 crc <<= 1;
1119 c >>= 1;
1120 if (carry)
1121 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1122 }
1123 }
1124
1125 return (crc);
1126 }
1127
1128 #ifdef INET
1129 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1130 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1131 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1132 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1133 #endif
1134 #ifdef INET6
1135 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1136 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1137 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1138 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1139 #endif
1140
1141 /*
1142 * ether_aton implementation, not using a static buffer.
1143 */
1144 int
1145 ether_aton_r(u_char *dest, size_t len, const char *str)
1146 {
1147 const u_char *cp = (const void *)str;
1148 u_char *ep;
1149
1150 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1151
1152 if (len < ETHER_ADDR_LEN)
1153 return ENOSPC;
1154
1155 ep = dest + ETHER_ADDR_LEN;
1156
1157 while (*cp) {
1158 if (!isxdigit(*cp))
1159 return EINVAL;
1160
1161 *dest = atox(*cp);
1162 cp++;
1163 if (isxdigit(*cp)) {
1164 *dest = (*dest << 4) | atox(*cp);
1165 cp++;
1166 }
1167 dest++;
1168
1169 if (dest == ep)
1170 return (*cp == '\0') ? 0 : ENAMETOOLONG;
1171
1172 switch (*cp) {
1173 case ':':
1174 case '-':
1175 case '.':
1176 cp++;
1177 break;
1178 }
1179 }
1180 return ENOBUFS;
1181 }
1182
1183 /*
1184 * Convert a sockaddr into an Ethernet address or range of Ethernet
1185 * addresses.
1186 */
1187 int
1188 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1189 uint8_t addrhi[ETHER_ADDR_LEN])
1190 {
1191 #ifdef INET
1192 const struct sockaddr_in *sin;
1193 #endif
1194 #ifdef INET6
1195 const struct sockaddr_in6 *sin6;
1196 #endif
1197
1198 switch (sa->sa_family) {
1199
1200 case AF_UNSPEC:
1201 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1202 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1203 break;
1204
1205 #ifdef INET
1206 case AF_INET:
1207 sin = satocsin(sa);
1208 if (sin->sin_addr.s_addr == INADDR_ANY) {
1209 /*
1210 * An IP address of INADDR_ANY means listen to
1211 * or stop listening to all of the Ethernet
1212 * multicast addresses used for IP.
1213 * (This is for the sake of IP multicast routers.)
1214 */
1215 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1216 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1217 } else {
1218 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1219 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1220 }
1221 break;
1222 #endif
1223 #ifdef INET6
1224 case AF_INET6:
1225 sin6 = satocsin6(sa);
1226 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1227 /*
1228 * An IP6 address of 0 means listen to or stop
1229 * listening to all of the Ethernet multicast
1230 * address used for IP6.
1231 * (This is used for multicast routers.)
1232 */
1233 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1234 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1235 } else {
1236 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1237 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1238 }
1239 break;
1240 #endif
1241
1242 default:
1243 return EAFNOSUPPORT;
1244 }
1245 return 0;
1246 }
1247
1248 /*
1249 * Add an Ethernet multicast address or range of addresses to the list for a
1250 * given interface.
1251 */
1252 int
1253 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1254 {
1255 struct ether_multi *enm, *_enm;
1256 u_char addrlo[ETHER_ADDR_LEN];
1257 u_char addrhi[ETHER_ADDR_LEN];
1258 int error = 0;
1259
1260 /* Allocate out of lock */
1261 enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1262
1263 ETHER_LOCK(ec);
1264 error = ether_multiaddr(sa, addrlo, addrhi);
1265 if (error != 0)
1266 goto out;
1267
1268 /*
1269 * Verify that we have valid Ethernet multicast addresses.
1270 */
1271 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1272 error = EINVAL;
1273 goto out;
1274 }
1275
1276 /*
1277 * See if the address range is already in the list.
1278 */
1279 _enm = ether_lookup_multi(addrlo, addrhi, ec);
1280 if (_enm != NULL) {
1281 /*
1282 * Found it; just increment the reference count.
1283 */
1284 ++_enm->enm_refcount;
1285 error = 0;
1286 goto out;
1287 }
1288
1289 /*
1290 * Link a new multicast record into the interface's multicast list.
1291 */
1292 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1293 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1294 enm->enm_refcount = 1;
1295 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1296 ec->ec_multicnt++;
1297
1298 /*
1299 * Return ENETRESET to inform the driver that the list has changed
1300 * and its reception filter should be adjusted accordingly.
1301 */
1302 error = ENETRESET;
1303 enm = NULL;
1304
1305 out:
1306 ETHER_UNLOCK(ec);
1307 if (enm != NULL)
1308 kmem_free(enm, sizeof(*enm));
1309 return error;
1310 }
1311
1312 /*
1313 * Delete a multicast address record.
1314 */
1315 int
1316 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1317 {
1318 struct ether_multi *enm;
1319 u_char addrlo[ETHER_ADDR_LEN];
1320 u_char addrhi[ETHER_ADDR_LEN];
1321 int error;
1322
1323 ETHER_LOCK(ec);
1324 error = ether_multiaddr(sa, addrlo, addrhi);
1325 if (error != 0)
1326 goto error;
1327
1328 /*
1329 * Look up the address in our list.
1330 */
1331 enm = ether_lookup_multi(addrlo, addrhi, ec);
1332 if (enm == NULL) {
1333 error = ENXIO;
1334 goto error;
1335 }
1336 if (--enm->enm_refcount != 0) {
1337 /*
1338 * Still some claims to this record.
1339 */
1340 error = 0;
1341 goto error;
1342 }
1343
1344 /*
1345 * No remaining claims to this record; unlink and free it.
1346 */
1347 LIST_REMOVE(enm, enm_list);
1348 ec->ec_multicnt--;
1349 ETHER_UNLOCK(ec);
1350 kmem_free(enm, sizeof(*enm));
1351
1352 /*
1353 * Return ENETRESET to inform the driver that the list has changed
1354 * and its reception filter should be adjusted accordingly.
1355 */
1356 return ENETRESET;
1357
1358 error:
1359 ETHER_UNLOCK(ec);
1360 return error;
1361 }
1362
1363 void
1364 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1365 {
1366 ec->ec_ifflags_cb = cb;
1367 }
1368
1369 void
1370 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
1371 {
1372
1373 ec->ec_vlan_cb = cb;
1374 }
1375
1376 static int
1377 ether_ioctl_reinit(struct ethercom *ec)
1378 {
1379 struct ifnet *ifp = &ec->ec_if;
1380 int error;
1381
1382 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1383 case IFF_RUNNING:
1384 /*
1385 * If interface is marked down and it is running,
1386 * then stop and disable it.
1387 */
1388 (*ifp->if_stop)(ifp, 1);
1389 break;
1390 case IFF_UP:
1391 /*
1392 * If interface is marked up and it is stopped, then
1393 * start it.
1394 */
1395 return (*ifp->if_init)(ifp);
1396 case IFF_UP | IFF_RUNNING:
1397 error = 0;
1398 if (ec->ec_ifflags_cb != NULL) {
1399 error = (*ec->ec_ifflags_cb)(ec);
1400 if (error == ENETRESET) {
1401 /*
1402 * Reset the interface to pick up
1403 * changes in any other flags that
1404 * affect the hardware state.
1405 */
1406 return (*ifp->if_init)(ifp);
1407 }
1408 } else
1409 error = (*ifp->if_init)(ifp);
1410 return error;
1411 case 0:
1412 break;
1413 }
1414
1415 return 0;
1416 }
1417
1418 /*
1419 * Common ioctls for Ethernet interfaces. Note, we must be
1420 * called at splnet().
1421 */
1422 int
1423 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1424 {
1425 struct ethercom *ec = (void *)ifp;
1426 struct eccapreq *eccr;
1427 struct ifreq *ifr = (struct ifreq *)data;
1428 struct if_laddrreq *iflr = data;
1429 const struct sockaddr_dl *sdl;
1430 static const uint8_t zero[ETHER_ADDR_LEN];
1431 int error;
1432
1433 switch (cmd) {
1434 case SIOCINITIFADDR:
1435 {
1436 struct ifaddr *ifa = (struct ifaddr *)data;
1437 if (ifa->ifa_addr->sa_family != AF_LINK
1438 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1439 (IFF_UP | IFF_RUNNING)) {
1440 ifp->if_flags |= IFF_UP;
1441 if ((error = (*ifp->if_init)(ifp)) != 0)
1442 return error;
1443 }
1444 #ifdef INET
1445 if (ifa->ifa_addr->sa_family == AF_INET)
1446 arp_ifinit(ifp, ifa);
1447 #endif
1448 return 0;
1449 }
1450
1451 case SIOCSIFMTU:
1452 {
1453 int maxmtu;
1454
1455 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1456 maxmtu = ETHERMTU_JUMBO;
1457 else
1458 maxmtu = ETHERMTU;
1459
1460 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1461 return EINVAL;
1462 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1463 return error;
1464 else if (ifp->if_flags & IFF_UP) {
1465 /* Make sure the device notices the MTU change. */
1466 return (*ifp->if_init)(ifp);
1467 } else
1468 return 0;
1469 }
1470
1471 case SIOCSIFFLAGS:
1472 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1473 return error;
1474 return ether_ioctl_reinit(ec);
1475 case SIOCGIFFLAGS:
1476 error = ifioctl_common(ifp, cmd, data);
1477 if (error == 0) {
1478 /* Set IFF_ALLMULTI for backcompat */
1479 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
1480 IFF_ALLMULTI : 0;
1481 }
1482 return error;
1483 case SIOCGETHERCAP:
1484 eccr = (struct eccapreq *)data;
1485 eccr->eccr_capabilities = ec->ec_capabilities;
1486 eccr->eccr_capenable = ec->ec_capenable;
1487 return 0;
1488 case SIOCSETHERCAP:
1489 eccr = (struct eccapreq *)data;
1490 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1491 return EINVAL;
1492 if (eccr->eccr_capenable == ec->ec_capenable)
1493 return 0;
1494 #if 0 /* notyet */
1495 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1496 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1497 #else
1498 ec->ec_capenable = eccr->eccr_capenable;
1499 #endif
1500 return ether_ioctl_reinit(ec);
1501 case SIOCADDMULTI:
1502 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1503 case SIOCDELMULTI:
1504 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1505 case SIOCSIFMEDIA:
1506 case SIOCGIFMEDIA:
1507 if (ec->ec_mii != NULL)
1508 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
1509 cmd);
1510 else if (ec->ec_ifmedia != NULL)
1511 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
1512 else
1513 return ENOTTY;
1514 break;
1515 case SIOCALIFADDR:
1516 sdl = satocsdl(sstocsa(&iflr->addr));
1517 if (sdl->sdl_family != AF_LINK)
1518 ;
1519 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1520 return EINVAL;
1521 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1522 return EINVAL;
1523 /*FALLTHROUGH*/
1524 default:
1525 return ifioctl_common(ifp, cmd, data);
1526 }
1527 return 0;
1528 }
1529
1530 /*
1531 * Enable/disable passing VLAN packets if the parent interface supports it.
1532 * Return:
1533 * 0: Ok
1534 * -1: Parent interface does not support vlans
1535 * >0: Error
1536 */
1537 int
1538 ether_enable_vlan_mtu(struct ifnet *ifp)
1539 {
1540 int error;
1541 struct ethercom *ec = (void *)ifp;
1542
1543 /* Parent does not support VLAN's */
1544 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1545 return -1;
1546
1547 /*
1548 * Parent supports the VLAN_MTU capability,
1549 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1550 * enable it.
1551 */
1552 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1553
1554 /* Interface is down, defer for later */
1555 if ((ifp->if_flags & IFF_UP) == 0)
1556 return 0;
1557
1558 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1559 return 0;
1560
1561 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1562 return error;
1563 }
1564
1565 int
1566 ether_disable_vlan_mtu(struct ifnet *ifp)
1567 {
1568 int error;
1569 struct ethercom *ec = (void *)ifp;
1570
1571 /* We still have VLAN's, defer for later */
1572 if (ec->ec_nvlans != 0)
1573 return 0;
1574
1575 /* Parent does not support VLAB's, nothing to do. */
1576 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1577 return -1;
1578
1579 /*
1580 * Disable Tx/Rx of VLAN-sized frames.
1581 */
1582 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1583
1584 /* Interface is down, defer for later */
1585 if ((ifp->if_flags & IFF_UP) == 0)
1586 return 0;
1587
1588 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1589 return 0;
1590
1591 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1592 return error;
1593 }
1594
1595 static int
1596 ether_multicast_sysctl(SYSCTLFN_ARGS)
1597 {
1598 struct ether_multi *enm;
1599 struct ifnet *ifp;
1600 struct ethercom *ec;
1601 int error = 0;
1602 size_t written;
1603 struct psref psref;
1604 int bound;
1605 unsigned int multicnt;
1606 struct ether_multi_sysctl *addrs;
1607 int i;
1608
1609 if (namelen != 1)
1610 return EINVAL;
1611
1612 bound = curlwp_bind();
1613 ifp = if_get_byindex(name[0], &psref);
1614 if (ifp == NULL) {
1615 error = ENODEV;
1616 goto out;
1617 }
1618 if (ifp->if_type != IFT_ETHER) {
1619 if_put(ifp, &psref);
1620 *oldlenp = 0;
1621 goto out;
1622 }
1623 ec = (struct ethercom *)ifp;
1624
1625 if (oldp == NULL) {
1626 if_put(ifp, &psref);
1627 *oldlenp = ec->ec_multicnt * sizeof(*addrs);
1628 goto out;
1629 }
1630
1631 /*
1632 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1633 * is sleepable, while holding it. Copy data to a local buffer first
1634 * with the lock taken and then call sysctl_copyout without holding it.
1635 */
1636 retry:
1637 multicnt = ec->ec_multicnt;
1638
1639 if (multicnt == 0) {
1640 if_put(ifp, &psref);
1641 *oldlenp = 0;
1642 goto out;
1643 }
1644
1645 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1646
1647 ETHER_LOCK(ec);
1648 if (multicnt != ec->ec_multicnt) {
1649 /* The number of multicast addresses has changed */
1650 ETHER_UNLOCK(ec);
1651 kmem_free(addrs, sizeof(*addrs) * multicnt);
1652 goto retry;
1653 }
1654
1655 i = 0;
1656 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1657 struct ether_multi_sysctl *addr = &addrs[i];
1658 addr->enm_refcount = enm->enm_refcount;
1659 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1660 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1661 i++;
1662 }
1663 ETHER_UNLOCK(ec);
1664
1665 error = 0;
1666 written = 0;
1667 for (i = 0; i < multicnt; i++) {
1668 struct ether_multi_sysctl *addr = &addrs[i];
1669
1670 if (written + sizeof(*addr) > *oldlenp)
1671 break;
1672 error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1673 if (error)
1674 break;
1675 written += sizeof(*addr);
1676 oldp = (char *)oldp + sizeof(*addr);
1677 }
1678 kmem_free(addrs, sizeof(*addrs) * multicnt);
1679
1680 if_put(ifp, &psref);
1681
1682 *oldlenp = written;
1683 out:
1684 curlwp_bindx(bound);
1685 return error;
1686 }
1687
1688 static void
1689 ether_sysctl_setup(struct sysctllog **clog)
1690 {
1691 const struct sysctlnode *rnode = NULL;
1692
1693 sysctl_createv(clog, 0, NULL, &rnode,
1694 CTLFLAG_PERMANENT,
1695 CTLTYPE_NODE, "ether",
1696 SYSCTL_DESCR("Ethernet-specific information"),
1697 NULL, 0, NULL, 0,
1698 CTL_NET, CTL_CREATE, CTL_EOL);
1699
1700 sysctl_createv(clog, 0, &rnode, NULL,
1701 CTLFLAG_PERMANENT,
1702 CTLTYPE_NODE, "multicast",
1703 SYSCTL_DESCR("multicast addresses"),
1704 ether_multicast_sysctl, 0, NULL, 0,
1705 CTL_CREATE, CTL_EOL);
1706 }
1707
1708 void
1709 etherinit(void)
1710 {
1711
1712 #ifdef DIAGNOSTIC
1713 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1714 #endif
1715 ether_sysctl_setup(NULL);
1716 }
1717