if_ethersubr.c revision 1.289 1 /* $NetBSD: if_ethersubr.c,v 1.289 2020/09/26 18:38:09 roy Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.289 2020/09/26 18:38:09 roy Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/entropy.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92
93 #include <net/if.h>
94 #include <net/netisr.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104
105 #if NARP == 0
106 /*
107 * XXX there should really be a way to issue this warning from within config(8)
108 */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111
112 #include <net/bpf.h>
113
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120
121 #if NAGR > 0
122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144
145 #include "carp.h"
146 #if NCARP > 0
147 #include <netinet/ip_carp.h>
148 #endif
149
150 #ifdef NETATALK
151 #include <netatalk/at.h>
152 #include <netatalk/at_var.h>
153 #include <netatalk/at_extern.h>
154
155 #define llc_snap_org_code llc_un.type_snap.org_code
156 #define llc_snap_ether_type llc_un.type_snap.ether_type
157
158 extern u_char at_org_code[3];
159 extern u_char aarp_org_code[3];
160 #endif /* NETATALK */
161
162 #ifdef MPLS
163 #include <netmpls/mpls.h>
164 #include <netmpls/mpls_var.h>
165 #endif
166
167 #ifdef DIAGNOSTIC
168 static struct timeval bigpktppslim_last;
169 static int bigpktppslim = 2; /* XXX */
170 static int bigpktpps_count;
171 static kmutex_t bigpktpps_lock __cacheline_aligned;
172 #endif
173
174 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
175 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
176 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
177 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
178 #define senderr(e) { error = (e); goto bad;}
179
180 static int ether_output(struct ifnet *, struct mbuf *,
181 const struct sockaddr *, const struct rtentry *);
182
183 /*
184 * Ethernet output routine.
185 * Encapsulate a packet of type family for the local net.
186 * Assumes that ifp is actually pointer to ethercom structure.
187 */
188 static int
189 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
190 const struct sockaddr * const dst, const struct rtentry *rt)
191 {
192 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
193 uint16_t etype = 0;
194 int error = 0, hdrcmplt = 0;
195 struct mbuf *m = m0;
196 struct mbuf *mcopy = NULL;
197 struct ether_header *eh;
198 struct ifnet *ifp = ifp0;
199 #ifdef INET
200 struct arphdr *ah;
201 #endif
202 #ifdef NETATALK
203 struct at_ifaddr *aa;
204 #endif
205
206 #ifdef MBUFTRACE
207 m_claimm(m, ifp->if_mowner);
208 #endif
209
210 #if NCARP > 0
211 if (ifp->if_type == IFT_CARP) {
212 struct ifaddr *ifa;
213 int s = pserialize_read_enter();
214
215 /* loop back if this is going to the carp interface */
216 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
217 (ifa = ifa_ifwithaddr(dst)) != NULL) {
218 if (ifa->ifa_ifp == ifp0) {
219 pserialize_read_exit(s);
220 return looutput(ifp0, m, dst, rt);
221 }
222 }
223 pserialize_read_exit(s);
224
225 ifp = ifp->if_carpdev;
226 /* ac = (struct arpcom *)ifp; */
227
228 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
229 (IFF_UP | IFF_RUNNING))
230 senderr(ENETDOWN);
231 }
232 #endif
233
234 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
235 senderr(ENETDOWN);
236
237 switch (dst->sa_family) {
238
239 #ifdef INET
240 case AF_INET:
241 if (m->m_flags & M_BCAST) {
242 memcpy(edst, etherbroadcastaddr, sizeof(edst));
243 } else if (m->m_flags & M_MCAST) {
244 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
245 } else {
246 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
247 if (error)
248 return (error == EWOULDBLOCK) ? 0 : error;
249 }
250 /* If broadcasting on a simplex interface, loopback a copy */
251 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
252 mcopy = m_copypacket(m, M_DONTWAIT);
253 etype = htons(ETHERTYPE_IP);
254 break;
255
256 case AF_ARP:
257 ah = mtod(m, struct arphdr *);
258 if (m->m_flags & M_BCAST) {
259 memcpy(edst, etherbroadcastaddr, sizeof(edst));
260 } else {
261 void *tha = ar_tha(ah);
262
263 if (tha == NULL) {
264 /* fake with ARPHRD_IEEE1394 */
265 m_freem(m);
266 return 0;
267 }
268 memcpy(edst, tha, sizeof(edst));
269 }
270
271 ah->ar_hrd = htons(ARPHRD_ETHER);
272
273 switch (ntohs(ah->ar_op)) {
274 case ARPOP_REVREQUEST:
275 case ARPOP_REVREPLY:
276 etype = htons(ETHERTYPE_REVARP);
277 break;
278
279 case ARPOP_REQUEST:
280 case ARPOP_REPLY:
281 default:
282 etype = htons(ETHERTYPE_ARP);
283 }
284 break;
285 #endif
286
287 #ifdef INET6
288 case AF_INET6:
289 if (m->m_flags & M_BCAST) {
290 memcpy(edst, etherbroadcastaddr, sizeof(edst));
291 } else if (m->m_flags & M_MCAST) {
292 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
293 edst);
294 } else {
295 error = nd6_resolve(ifp0, rt, m, dst, edst,
296 sizeof(edst));
297 if (error)
298 return (error == EWOULDBLOCK) ? 0 : error;
299 }
300 etype = htons(ETHERTYPE_IPV6);
301 break;
302 #endif
303
304 #ifdef NETATALK
305 case AF_APPLETALK: {
306 struct ifaddr *ifa;
307 int s;
308
309 KERNEL_LOCK(1, NULL);
310
311 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
312 KERNEL_UNLOCK_ONE(NULL);
313 return 0;
314 }
315
316 /*
317 * ifaddr is the first thing in at_ifaddr
318 */
319 s = pserialize_read_enter();
320 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
321 if (ifa == NULL) {
322 pserialize_read_exit(s);
323 KERNEL_UNLOCK_ONE(NULL);
324 senderr(EADDRNOTAVAIL);
325 }
326 aa = (struct at_ifaddr *)ifa;
327
328 /*
329 * In the phase 2 case, we need to prepend an mbuf for the
330 * llc header.
331 */
332 if (aa->aa_flags & AFA_PHASE2) {
333 struct llc llc;
334
335 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
336 if (m == NULL) {
337 pserialize_read_exit(s);
338 KERNEL_UNLOCK_ONE(NULL);
339 senderr(ENOBUFS);
340 }
341
342 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
343 llc.llc_control = LLC_UI;
344 memcpy(llc.llc_snap_org_code, at_org_code,
345 sizeof(llc.llc_snap_org_code));
346 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
347 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
348 } else {
349 etype = htons(ETHERTYPE_ATALK);
350 }
351 pserialize_read_exit(s);
352 KERNEL_UNLOCK_ONE(NULL);
353 break;
354 }
355 #endif /* NETATALK */
356
357 case pseudo_AF_HDRCMPLT:
358 hdrcmplt = 1;
359 memcpy(esrc,
360 ((const struct ether_header *)dst->sa_data)->ether_shost,
361 sizeof(esrc));
362 /* FALLTHROUGH */
363
364 case AF_UNSPEC:
365 memcpy(edst,
366 ((const struct ether_header *)dst->sa_data)->ether_dhost,
367 sizeof(edst));
368 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
369 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
370 break;
371
372 default:
373 printf("%s: can't handle af%d\n", ifp->if_xname,
374 dst->sa_family);
375 senderr(EAFNOSUPPORT);
376 }
377
378 #ifdef MPLS
379 {
380 struct m_tag *mtag;
381 mtag = m_tag_find(m, PACKET_TAG_MPLS);
382 if (mtag != NULL) {
383 /* Having the tag itself indicates it's MPLS */
384 etype = htons(ETHERTYPE_MPLS);
385 m_tag_delete(m, mtag);
386 }
387 }
388 #endif
389
390 if (mcopy)
391 (void)looutput(ifp, mcopy, dst, rt);
392
393 KASSERT((m->m_flags & M_PKTHDR) != 0);
394
395 /*
396 * If no ether type is set, this must be a 802.2 formatted packet.
397 */
398 if (etype == 0)
399 etype = htons(m->m_pkthdr.len);
400
401 /*
402 * Add local net header. If no space in first mbuf, allocate another.
403 */
404 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
405 if (m == NULL)
406 senderr(ENOBUFS);
407
408 eh = mtod(m, struct ether_header *);
409 /* Note: etype is already in network byte order. */
410 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
411 memcpy(eh->ether_dhost, edst, sizeof(edst));
412 if (hdrcmplt) {
413 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
414 } else {
415 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
416 sizeof(eh->ether_shost));
417 }
418
419 #if NCARP > 0
420 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
421 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
422 sizeof(eh->ether_shost));
423 }
424 #endif
425
426 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
427 return error;
428 if (m == NULL)
429 return 0;
430
431 #if NBRIDGE > 0
432 /*
433 * Bridges require special output handling.
434 */
435 if (ifp->if_bridge)
436 return bridge_output(ifp, m, NULL, NULL);
437 #endif
438
439 #if NCARP > 0
440 if (ifp != ifp0)
441 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
442 #endif
443
444 #ifdef ALTQ
445 KERNEL_LOCK(1, NULL);
446 /*
447 * If ALTQ is enabled on the parent interface, do
448 * classification; the queueing discipline might not
449 * require classification, but might require the
450 * address family/header pointer in the pktattr.
451 */
452 if (ALTQ_IS_ENABLED(&ifp->if_snd))
453 altq_etherclassify(&ifp->if_snd, m);
454 KERNEL_UNLOCK_ONE(NULL);
455 #endif
456 return ifq_enqueue(ifp, m);
457
458 bad:
459 if_statinc(ifp, if_oerrors);
460 if (m)
461 m_freem(m);
462 return error;
463 }
464
465 #ifdef ALTQ
466 /*
467 * This routine is a slight hack to allow a packet to be classified
468 * if the Ethernet headers are present. It will go away when ALTQ's
469 * classification engine understands link headers.
470 *
471 * XXX: We may need to do m_pullups here. First to ensure struct ether_header
472 * is indeed contiguous, then to read the LLC and so on.
473 */
474 void
475 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
476 {
477 struct ether_header *eh;
478 struct mbuf *mtop = m;
479 uint16_t ether_type;
480 int hlen, af, hdrsize;
481 void *hdr;
482
483 KASSERT((mtop->m_flags & M_PKTHDR) != 0);
484
485 hlen = ETHER_HDR_LEN;
486 eh = mtod(m, struct ether_header *);
487
488 ether_type = htons(eh->ether_type);
489
490 if (ether_type < ETHERMTU) {
491 /* LLC/SNAP */
492 struct llc *llc = (struct llc *)(eh + 1);
493 hlen += 8;
494
495 if (m->m_len < hlen ||
496 llc->llc_dsap != LLC_SNAP_LSAP ||
497 llc->llc_ssap != LLC_SNAP_LSAP ||
498 llc->llc_control != LLC_UI) {
499 /* Not SNAP. */
500 goto bad;
501 }
502
503 ether_type = htons(llc->llc_un.type_snap.ether_type);
504 }
505
506 switch (ether_type) {
507 case ETHERTYPE_IP:
508 af = AF_INET;
509 hdrsize = 20; /* sizeof(struct ip) */
510 break;
511
512 case ETHERTYPE_IPV6:
513 af = AF_INET6;
514 hdrsize = 40; /* sizeof(struct ip6_hdr) */
515 break;
516
517 default:
518 af = AF_UNSPEC;
519 hdrsize = 0;
520 break;
521 }
522
523 while (m->m_len <= hlen) {
524 hlen -= m->m_len;
525 m = m->m_next;
526 if (m == NULL)
527 goto bad;
528 }
529
530 if (m->m_len < (hlen + hdrsize)) {
531 /*
532 * protocol header not in a single mbuf.
533 * We can't cope with this situation right
534 * now (but it shouldn't ever happen, really, anyhow).
535 */
536 #ifdef DEBUG
537 printf("altq_etherclassify: headers span multiple mbufs: "
538 "%d < %d\n", m->m_len, (hlen + hdrsize));
539 #endif
540 goto bad;
541 }
542
543 m->m_data += hlen;
544 m->m_len -= hlen;
545
546 hdr = mtod(m, void *);
547
548 if (ALTQ_NEEDS_CLASSIFY(ifq)) {
549 mtop->m_pkthdr.pattr_class =
550 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
551 }
552 mtop->m_pkthdr.pattr_af = af;
553 mtop->m_pkthdr.pattr_hdr = hdr;
554
555 m->m_data -= hlen;
556 m->m_len += hlen;
557
558 return;
559
560 bad:
561 mtop->m_pkthdr.pattr_class = NULL;
562 mtop->m_pkthdr.pattr_hdr = NULL;
563 mtop->m_pkthdr.pattr_af = AF_UNSPEC;
564 }
565 #endif /* ALTQ */
566
567 #if defined (LLC) || defined (NETATALK)
568 static void
569 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh)
570 {
571 struct ifqueue *inq = NULL;
572 int isr = 0;
573 struct llc *l;
574
575 if (m->m_len < sizeof(*eh) + sizeof(struct llc))
576 goto drop;
577
578 l = (struct llc *)(eh+1);
579 switch (l->llc_dsap) {
580 #ifdef NETATALK
581 case LLC_SNAP_LSAP:
582 switch (l->llc_control) {
583 case LLC_UI:
584 if (l->llc_ssap != LLC_SNAP_LSAP)
585 goto drop;
586
587 if (memcmp(&(l->llc_snap_org_code)[0],
588 at_org_code, sizeof(at_org_code)) == 0 &&
589 ntohs(l->llc_snap_ether_type) ==
590 ETHERTYPE_ATALK) {
591 inq = &atintrq2;
592 m_adj(m, sizeof(struct ether_header)
593 + sizeof(struct llc));
594 isr = NETISR_ATALK;
595 break;
596 }
597
598 if (memcmp(&(l->llc_snap_org_code)[0],
599 aarp_org_code,
600 sizeof(aarp_org_code)) == 0 &&
601 ntohs(l->llc_snap_ether_type) ==
602 ETHERTYPE_AARP) {
603 m_adj(m, sizeof(struct ether_header)
604 + sizeof(struct llc));
605 aarpinput(ifp, m); /* XXX queue? */
606 return;
607 }
608
609 default:
610 goto drop;
611 }
612 break;
613 #endif
614 default:
615 goto drop;
616 }
617
618 KASSERT(inq != NULL);
619 IFQ_ENQUEUE_ISR(inq, m, isr);
620 return;
621
622 drop:
623 m_freem(m);
624 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */
625 return;
626 }
627 #endif /* defined (LLC) || defined (NETATALK) */
628
629 /*
630 * Process a received Ethernet packet;
631 * the packet is in the mbuf chain m with
632 * the ether header.
633 */
634 void
635 ether_input(struct ifnet *ifp, struct mbuf *m)
636 {
637 struct ethercom *ec = (struct ethercom *) ifp;
638 pktqueue_t *pktq = NULL;
639 struct ifqueue *inq = NULL;
640 uint16_t etype;
641 struct ether_header *eh;
642 size_t ehlen;
643 static int earlypkts;
644 int isr = 0;
645
646 KASSERT(!cpu_intr_p());
647 KASSERT((m->m_flags & M_PKTHDR) != 0);
648
649 if ((ifp->if_flags & IFF_UP) == 0)
650 goto drop;
651 if (m->m_len < sizeof(*eh)) {
652 m = m_pullup(m, sizeof(*eh));
653 if (m == NULL)
654 goto dropped;
655 }
656
657 #ifdef MBUFTRACE
658 m_claimm(m, &ec->ec_rx_mowner);
659 #endif
660 eh = mtod(m, struct ether_header *);
661 etype = ntohs(eh->ether_type);
662 ehlen = sizeof(*eh);
663
664 if (__predict_false(earlypkts < 100 ||
665 entropy_epoch() == (unsigned)-1)) {
666 rnd_add_data(NULL, eh, ehlen, 0);
667 earlypkts++;
668 }
669
670 /*
671 * Determine if the packet is within its size limits. For MPLS the
672 * header length is variable, so we skip the check.
673 */
674 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
675 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
676 #ifdef DIAGNOSTIC
677 mutex_enter(&bigpktpps_lock);
678 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
679 bigpktppslim)) {
680 printf("%s: discarding oversize frame (len=%d)\n",
681 ifp->if_xname, m->m_pkthdr.len);
682 }
683 mutex_exit(&bigpktpps_lock);
684 #endif
685 goto drop;
686 }
687
688 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
689 /*
690 * If this is not a simplex interface, drop the packet
691 * if it came from us.
692 */
693 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
694 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
695 ETHER_ADDR_LEN) == 0) {
696 goto drop;
697 }
698
699 if (memcmp(etherbroadcastaddr,
700 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
701 m->m_flags |= M_BCAST;
702 else
703 m->m_flags |= M_MCAST;
704 if_statinc(ifp, if_imcasts);
705 }
706
707 /* If the CRC is still on the packet, trim it off. */
708 if (m->m_flags & M_HASFCS) {
709 m_adj(m, -ETHER_CRC_LEN);
710 m->m_flags &= ~M_HASFCS;
711 }
712
713 if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
714
715 #if NCARP > 0
716 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
717 /*
718 * Clear M_PROMISC, in case the packet comes from a
719 * vlan.
720 */
721 m->m_flags &= ~M_PROMISC;
722 if (carp_input(m, (uint8_t *)&eh->ether_shost,
723 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
724 return;
725 }
726 #endif
727
728 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
729 (ifp->if_flags & IFF_PROMISC) != 0 &&
730 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
731 ETHER_ADDR_LEN) != 0) {
732 m->m_flags |= M_PROMISC;
733 }
734
735 if ((m->m_flags & M_PROMISC) == 0) {
736 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
737 return;
738 if (m == NULL)
739 return;
740
741 eh = mtod(m, struct ether_header *);
742 etype = ntohs(eh->ether_type);
743 }
744
745 #if NAGR > 0
746 if (ifp->if_agrprivate &&
747 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
748 m->m_flags &= ~M_PROMISC;
749 agr_input(ifp, m);
750 return;
751 }
752 #endif
753
754 /*
755 * If VLANs are configured on the interface, check to
756 * see if the device performed the decapsulation and
757 * provided us with the tag.
758 */
759 if (ec->ec_nvlans && vlan_has_tag(m)) {
760 #if NVLAN > 0
761 /*
762 * vlan_input() will either recursively call ether_input()
763 * or drop the packet.
764 */
765 vlan_input(ifp, m);
766 return;
767 #else
768 goto drop;
769 #endif
770 }
771
772 /*
773 * Handle protocols that expect to have the Ethernet header
774 * (and possibly FCS) intact.
775 */
776 switch (etype) {
777 case ETHERTYPE_VLAN: {
778 struct ether_vlan_header *evl = (void *)eh;
779
780 /*
781 * If there is a tag of 0, then the VLAN header was probably
782 * just being used to store the priority. Extract the ether
783 * type, and if IP or IPV6, let them deal with it.
784 */
785 if (m->m_len >= sizeof(*evl) &&
786 EVL_VLANOFTAG(evl->evl_tag) == 0) {
787 etype = ntohs(evl->evl_proto);
788 ehlen = sizeof(*evl);
789 if ((m->m_flags & M_PROMISC) == 0 &&
790 (etype == ETHERTYPE_IP ||
791 etype == ETHERTYPE_IPV6))
792 break;
793 }
794
795 #if NVLAN > 0
796 /*
797 * vlan_input() will either recursively call ether_input()
798 * or drop the packet.
799 */
800 if (ec->ec_nvlans != 0) {
801 vlan_input(ifp, m);
802 return;
803 } else
804 #endif
805 goto drop;
806 }
807
808 #if NPPPOE > 0
809 case ETHERTYPE_PPPOEDISC:
810 pppoedisc_input(ifp, m);
811 return;
812
813 case ETHERTYPE_PPPOE:
814 pppoe_input(ifp, m);
815 return;
816 #endif
817
818 case ETHERTYPE_SLOWPROTOCOLS: {
819 uint8_t subtype;
820
821 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype))
822 goto drop;
823
824 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
825 switch (subtype) {
826 #if NAGR > 0
827 case SLOWPROTOCOLS_SUBTYPE_LACP:
828 if (ifp->if_agrprivate) {
829 ieee8023ad_lacp_input(ifp, m);
830 return;
831 }
832 break;
833
834 case SLOWPROTOCOLS_SUBTYPE_MARKER:
835 if (ifp->if_agrprivate) {
836 ieee8023ad_marker_input(ifp, m);
837 return;
838 }
839 break;
840 #endif
841
842 default:
843 if (subtype == 0 || subtype > 10) {
844 /* illegal value */
845 goto drop;
846 }
847 /* unknown subtype */
848 break;
849 }
850 }
851 /* FALLTHROUGH */
852 default:
853 if (m->m_flags & M_PROMISC)
854 goto drop;
855 }
856
857 /* If the CRC is still on the packet, trim it off. */
858 if (m->m_flags & M_HASFCS) {
859 m_adj(m, -ETHER_CRC_LEN);
860 m->m_flags &= ~M_HASFCS;
861 }
862
863 /* etype represents the size of the payload in this case */
864 if (etype <= ETHERMTU + sizeof(struct ether_header)) {
865 KASSERT(ehlen == sizeof(*eh));
866 #if defined (LLC) || defined (NETATALK)
867 ether_input_llc(ifp, m, eh);
868 return;
869 #else
870 goto drop;
871 #endif
872 }
873
874 /* Strip off the Ethernet header. */
875 m_adj(m, ehlen);
876
877 switch (etype) {
878 #ifdef INET
879 case ETHERTYPE_IP:
880 #ifdef GATEWAY
881 if (ipflow_fastforward(m))
882 return;
883 #endif
884 pktq = ip_pktq;
885 break;
886
887 case ETHERTYPE_ARP:
888 isr = NETISR_ARP;
889 inq = &arpintrq;
890 break;
891
892 case ETHERTYPE_REVARP:
893 revarpinput(m); /* XXX queue? */
894 return;
895 #endif
896
897 #ifdef INET6
898 case ETHERTYPE_IPV6:
899 if (__predict_false(!in6_present))
900 goto drop;
901 #ifdef GATEWAY
902 if (ip6flow_fastforward(&m))
903 return;
904 #endif
905 pktq = ip6_pktq;
906 break;
907 #endif
908
909 #ifdef NETATALK
910 case ETHERTYPE_ATALK:
911 isr = NETISR_ATALK;
912 inq = &atintrq1;
913 break;
914
915 case ETHERTYPE_AARP:
916 aarpinput(ifp, m); /* XXX queue? */
917 return;
918 #endif
919
920 #ifdef MPLS
921 case ETHERTYPE_MPLS:
922 isr = NETISR_MPLS;
923 inq = &mplsintrq;
924 break;
925 #endif
926
927 default:
928 goto drop;
929 }
930
931 if (__predict_true(pktq)) {
932 #ifdef NET_MPSAFE
933 const u_int h = curcpu()->ci_index;
934 #else
935 const uint32_t h = pktq_rps_hash(m);
936 #endif
937 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
938 m_freem(m);
939 }
940 return;
941 }
942
943 if (__predict_false(!inq)) {
944 /* Should not happen. */
945 goto drop;
946 }
947
948 IFQ_ENQUEUE_ISR(inq, m, isr);
949 return;
950
951 drop:
952 m_freem(m);
953 dropped:
954 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */
955 }
956
957 /*
958 * Convert Ethernet address to printable (loggable) representation.
959 */
960 char *
961 ether_sprintf(const u_char *ap)
962 {
963 static char etherbuf[3 * ETHER_ADDR_LEN];
964 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
965 }
966
967 char *
968 ether_snprintf(char *buf, size_t len, const u_char *ap)
969 {
970 char *cp = buf;
971 size_t i;
972
973 for (i = 0; i < len / 3; i++) {
974 *cp++ = hexdigits[*ap >> 4];
975 *cp++ = hexdigits[*ap++ & 0xf];
976 *cp++ = ':';
977 }
978 *--cp = '\0';
979 return buf;
980 }
981
982 static void
983 ether_link_state_changed(struct ifnet *ifp, int link_state)
984 {
985 #if NVLAN > 0
986 struct ethercom *ec = (void *)ifp;
987
988 if (ec->ec_nvlans)
989 vlan_link_state_changed(ifp, link_state);
990 #endif
991 }
992
993 /*
994 * Perform common duties while attaching to interface list
995 */
996 void
997 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
998 {
999 struct ethercom *ec = (struct ethercom *)ifp;
1000
1001 ifp->if_type = IFT_ETHER;
1002 ifp->if_hdrlen = ETHER_HDR_LEN;
1003 ifp->if_dlt = DLT_EN10MB;
1004 ifp->if_mtu = ETHERMTU;
1005 ifp->if_output = ether_output;
1006 ifp->_if_input = ether_input;
1007 ifp->if_link_state_changed = ether_link_state_changed;
1008 if (ifp->if_baudrate == 0)
1009 ifp->if_baudrate = IF_Mbps(10); /* just a default */
1010
1011 if (lla != NULL)
1012 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
1013
1014 LIST_INIT(&ec->ec_multiaddrs);
1015 SIMPLEQ_INIT(&ec->ec_vids);
1016 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1017 ec->ec_flags = 0;
1018 ifp->if_broadcastaddr = etherbroadcastaddr;
1019 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1020 #ifdef MBUFTRACE
1021 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
1022 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
1023 MOWNER_ATTACH(&ec->ec_tx_mowner);
1024 MOWNER_ATTACH(&ec->ec_rx_mowner);
1025 ifp->if_mowner = &ec->ec_tx_mowner;
1026 #endif
1027 }
1028
1029 void
1030 ether_ifdetach(struct ifnet *ifp)
1031 {
1032 struct ethercom *ec = (void *) ifp;
1033 struct ether_multi *enm;
1034
1035 IFNET_ASSERT_UNLOCKED(ifp);
1036 /*
1037 * Prevent further calls to ioctl (for example turning off
1038 * promiscuous mode from the bridge code), which eventually can
1039 * call if_init() which can cause panics because the interface
1040 * is in the process of being detached. Return device not configured
1041 * instead.
1042 */
1043 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
1044 enxio);
1045
1046 #if NBRIDGE > 0
1047 if (ifp->if_bridge)
1048 bridge_ifdetach(ifp);
1049 #endif
1050 bpf_detach(ifp);
1051 #if NVLAN > 0
1052 if (ec->ec_nvlans)
1053 vlan_ifdetach(ifp);
1054 #endif
1055
1056 ETHER_LOCK(ec);
1057 KASSERT(ec->ec_nvlans == 0);
1058 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1059 LIST_REMOVE(enm, enm_list);
1060 kmem_free(enm, sizeof(*enm));
1061 ec->ec_multicnt--;
1062 }
1063 ETHER_UNLOCK(ec);
1064
1065 mutex_obj_free(ec->ec_lock);
1066 ec->ec_lock = NULL;
1067
1068 ifp->if_mowner = NULL;
1069 MOWNER_DETACH(&ec->ec_rx_mowner);
1070 MOWNER_DETACH(&ec->ec_tx_mowner);
1071 }
1072
1073 #if 0
1074 /*
1075 * This is for reference. We have a table-driven version
1076 * of the little-endian crc32 generator, which is faster
1077 * than the double-loop.
1078 */
1079 uint32_t
1080 ether_crc32_le(const uint8_t *buf, size_t len)
1081 {
1082 uint32_t c, crc, carry;
1083 size_t i, j;
1084
1085 crc = 0xffffffffU; /* initial value */
1086
1087 for (i = 0; i < len; i++) {
1088 c = buf[i];
1089 for (j = 0; j < 8; j++) {
1090 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1091 crc >>= 1;
1092 c >>= 1;
1093 if (carry)
1094 crc = (crc ^ ETHER_CRC_POLY_LE);
1095 }
1096 }
1097
1098 return (crc);
1099 }
1100 #else
1101 uint32_t
1102 ether_crc32_le(const uint8_t *buf, size_t len)
1103 {
1104 static const uint32_t crctab[] = {
1105 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1106 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1107 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1108 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1109 };
1110 uint32_t crc;
1111 size_t i;
1112
1113 crc = 0xffffffffU; /* initial value */
1114
1115 for (i = 0; i < len; i++) {
1116 crc ^= buf[i];
1117 crc = (crc >> 4) ^ crctab[crc & 0xf];
1118 crc = (crc >> 4) ^ crctab[crc & 0xf];
1119 }
1120
1121 return (crc);
1122 }
1123 #endif
1124
1125 uint32_t
1126 ether_crc32_be(const uint8_t *buf, size_t len)
1127 {
1128 uint32_t c, crc, carry;
1129 size_t i, j;
1130
1131 crc = 0xffffffffU; /* initial value */
1132
1133 for (i = 0; i < len; i++) {
1134 c = buf[i];
1135 for (j = 0; j < 8; j++) {
1136 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1137 crc <<= 1;
1138 c >>= 1;
1139 if (carry)
1140 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1141 }
1142 }
1143
1144 return (crc);
1145 }
1146
1147 #ifdef INET
1148 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1149 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1150 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1151 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1152 #endif
1153 #ifdef INET6
1154 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1155 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1156 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1157 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1158 #endif
1159
1160 /*
1161 * ether_aton implementation, not using a static buffer.
1162 */
1163 int
1164 ether_aton_r(u_char *dest, size_t len, const char *str)
1165 {
1166 const u_char *cp = (const void *)str;
1167 u_char *ep;
1168
1169 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1170
1171 if (len < ETHER_ADDR_LEN)
1172 return ENOSPC;
1173
1174 ep = dest + ETHER_ADDR_LEN;
1175
1176 while (*cp) {
1177 if (!isxdigit(*cp))
1178 return EINVAL;
1179
1180 *dest = atox(*cp);
1181 cp++;
1182 if (isxdigit(*cp)) {
1183 *dest = (*dest << 4) | atox(*cp);
1184 cp++;
1185 }
1186 dest++;
1187
1188 if (dest == ep)
1189 return (*cp == '\0') ? 0 : ENAMETOOLONG;
1190
1191 switch (*cp) {
1192 case ':':
1193 case '-':
1194 case '.':
1195 cp++;
1196 break;
1197 }
1198 }
1199 return ENOBUFS;
1200 }
1201
1202 /*
1203 * Convert a sockaddr into an Ethernet address or range of Ethernet
1204 * addresses.
1205 */
1206 int
1207 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1208 uint8_t addrhi[ETHER_ADDR_LEN])
1209 {
1210 #ifdef INET
1211 const struct sockaddr_in *sin;
1212 #endif
1213 #ifdef INET6
1214 const struct sockaddr_in6 *sin6;
1215 #endif
1216
1217 switch (sa->sa_family) {
1218
1219 case AF_UNSPEC:
1220 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1221 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1222 break;
1223
1224 #ifdef INET
1225 case AF_INET:
1226 sin = satocsin(sa);
1227 if (sin->sin_addr.s_addr == INADDR_ANY) {
1228 /*
1229 * An IP address of INADDR_ANY means listen to
1230 * or stop listening to all of the Ethernet
1231 * multicast addresses used for IP.
1232 * (This is for the sake of IP multicast routers.)
1233 */
1234 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1235 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1236 } else {
1237 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1238 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1239 }
1240 break;
1241 #endif
1242 #ifdef INET6
1243 case AF_INET6:
1244 sin6 = satocsin6(sa);
1245 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1246 /*
1247 * An IP6 address of 0 means listen to or stop
1248 * listening to all of the Ethernet multicast
1249 * address used for IP6.
1250 * (This is used for multicast routers.)
1251 */
1252 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1253 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1254 } else {
1255 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1256 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1257 }
1258 break;
1259 #endif
1260
1261 default:
1262 return EAFNOSUPPORT;
1263 }
1264 return 0;
1265 }
1266
1267 /*
1268 * Add an Ethernet multicast address or range of addresses to the list for a
1269 * given interface.
1270 */
1271 int
1272 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1273 {
1274 struct ether_multi *enm, *_enm;
1275 u_char addrlo[ETHER_ADDR_LEN];
1276 u_char addrhi[ETHER_ADDR_LEN];
1277 int error = 0;
1278
1279 /* Allocate out of lock */
1280 enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1281
1282 ETHER_LOCK(ec);
1283 error = ether_multiaddr(sa, addrlo, addrhi);
1284 if (error != 0)
1285 goto out;
1286
1287 /*
1288 * Verify that we have valid Ethernet multicast addresses.
1289 */
1290 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1291 error = EINVAL;
1292 goto out;
1293 }
1294
1295 /*
1296 * See if the address range is already in the list.
1297 */
1298 _enm = ether_lookup_multi(addrlo, addrhi, ec);
1299 if (_enm != NULL) {
1300 /*
1301 * Found it; just increment the reference count.
1302 */
1303 ++_enm->enm_refcount;
1304 error = 0;
1305 goto out;
1306 }
1307
1308 /*
1309 * Link a new multicast record into the interface's multicast list.
1310 */
1311 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1312 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1313 enm->enm_refcount = 1;
1314 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1315 ec->ec_multicnt++;
1316
1317 /*
1318 * Return ENETRESET to inform the driver that the list has changed
1319 * and its reception filter should be adjusted accordingly.
1320 */
1321 error = ENETRESET;
1322 enm = NULL;
1323
1324 out:
1325 ETHER_UNLOCK(ec);
1326 if (enm != NULL)
1327 kmem_free(enm, sizeof(*enm));
1328 return error;
1329 }
1330
1331 /*
1332 * Delete a multicast address record.
1333 */
1334 int
1335 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1336 {
1337 struct ether_multi *enm;
1338 u_char addrlo[ETHER_ADDR_LEN];
1339 u_char addrhi[ETHER_ADDR_LEN];
1340 int error;
1341
1342 ETHER_LOCK(ec);
1343 error = ether_multiaddr(sa, addrlo, addrhi);
1344 if (error != 0)
1345 goto error;
1346
1347 /*
1348 * Look up the address in our list.
1349 */
1350 enm = ether_lookup_multi(addrlo, addrhi, ec);
1351 if (enm == NULL) {
1352 error = ENXIO;
1353 goto error;
1354 }
1355 if (--enm->enm_refcount != 0) {
1356 /*
1357 * Still some claims to this record.
1358 */
1359 error = 0;
1360 goto error;
1361 }
1362
1363 /*
1364 * No remaining claims to this record; unlink and free it.
1365 */
1366 LIST_REMOVE(enm, enm_list);
1367 ec->ec_multicnt--;
1368 ETHER_UNLOCK(ec);
1369 kmem_free(enm, sizeof(*enm));
1370
1371 /*
1372 * Return ENETRESET to inform the driver that the list has changed
1373 * and its reception filter should be adjusted accordingly.
1374 */
1375 return ENETRESET;
1376
1377 error:
1378 ETHER_UNLOCK(ec);
1379 return error;
1380 }
1381
1382 void
1383 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1384 {
1385 ec->ec_ifflags_cb = cb;
1386 }
1387
1388 void
1389 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
1390 {
1391
1392 ec->ec_vlan_cb = cb;
1393 }
1394
1395 static int
1396 ether_ioctl_reinit(struct ethercom *ec)
1397 {
1398 struct ifnet *ifp = &ec->ec_if;
1399 int error;
1400
1401 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1402 case IFF_RUNNING:
1403 /*
1404 * If interface is marked down and it is running,
1405 * then stop and disable it.
1406 */
1407 (*ifp->if_stop)(ifp, 1);
1408 break;
1409 case IFF_UP:
1410 /*
1411 * If interface is marked up and it is stopped, then
1412 * start it.
1413 */
1414 return (*ifp->if_init)(ifp);
1415 case IFF_UP | IFF_RUNNING:
1416 error = 0;
1417 if (ec->ec_ifflags_cb != NULL) {
1418 error = (*ec->ec_ifflags_cb)(ec);
1419 if (error == ENETRESET) {
1420 /*
1421 * Reset the interface to pick up
1422 * changes in any other flags that
1423 * affect the hardware state.
1424 */
1425 return (*ifp->if_init)(ifp);
1426 }
1427 } else
1428 error = (*ifp->if_init)(ifp);
1429 return error;
1430 case 0:
1431 break;
1432 }
1433
1434 return 0;
1435 }
1436
1437 /*
1438 * Common ioctls for Ethernet interfaces. Note, we must be
1439 * called at splnet().
1440 */
1441 int
1442 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1443 {
1444 struct ethercom *ec = (void *)ifp;
1445 struct eccapreq *eccr;
1446 struct ifreq *ifr = (struct ifreq *)data;
1447 struct if_laddrreq *iflr = data;
1448 const struct sockaddr_dl *sdl;
1449 static const uint8_t zero[ETHER_ADDR_LEN];
1450 int error;
1451
1452 switch (cmd) {
1453 case SIOCINITIFADDR:
1454 {
1455 struct ifaddr *ifa = (struct ifaddr *)data;
1456 if (ifa->ifa_addr->sa_family != AF_LINK
1457 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1458 (IFF_UP | IFF_RUNNING)) {
1459 ifp->if_flags |= IFF_UP;
1460 if ((error = (*ifp->if_init)(ifp)) != 0)
1461 return error;
1462 }
1463 #ifdef INET
1464 if (ifa->ifa_addr->sa_family == AF_INET)
1465 arp_ifinit(ifp, ifa);
1466 #endif
1467 return 0;
1468 }
1469
1470 case SIOCSIFMTU:
1471 {
1472 int maxmtu;
1473
1474 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1475 maxmtu = ETHERMTU_JUMBO;
1476 else
1477 maxmtu = ETHERMTU;
1478
1479 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1480 return EINVAL;
1481 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1482 return error;
1483 else if (ifp->if_flags & IFF_UP) {
1484 /* Make sure the device notices the MTU change. */
1485 return (*ifp->if_init)(ifp);
1486 } else
1487 return 0;
1488 }
1489
1490 case SIOCSIFFLAGS:
1491 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1492 return error;
1493 return ether_ioctl_reinit(ec);
1494 case SIOCGIFFLAGS:
1495 error = ifioctl_common(ifp, cmd, data);
1496 if (error == 0) {
1497 /* Set IFF_ALLMULTI for backcompat */
1498 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
1499 IFF_ALLMULTI : 0;
1500 }
1501 return error;
1502 case SIOCGETHERCAP:
1503 eccr = (struct eccapreq *)data;
1504 eccr->eccr_capabilities = ec->ec_capabilities;
1505 eccr->eccr_capenable = ec->ec_capenable;
1506 return 0;
1507 case SIOCSETHERCAP:
1508 eccr = (struct eccapreq *)data;
1509 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1510 return EINVAL;
1511 if (eccr->eccr_capenable == ec->ec_capenable)
1512 return 0;
1513 #if 0 /* notyet */
1514 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1515 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1516 #else
1517 ec->ec_capenable = eccr->eccr_capenable;
1518 #endif
1519 return ether_ioctl_reinit(ec);
1520 case SIOCADDMULTI:
1521 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1522 case SIOCDELMULTI:
1523 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1524 case SIOCSIFMEDIA:
1525 case SIOCGIFMEDIA:
1526 if (ec->ec_mii != NULL)
1527 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
1528 cmd);
1529 else if (ec->ec_ifmedia != NULL)
1530 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
1531 else
1532 return ENOTTY;
1533 break;
1534 case SIOCALIFADDR:
1535 sdl = satocsdl(sstocsa(&iflr->addr));
1536 if (sdl->sdl_family != AF_LINK)
1537 ;
1538 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1539 return EINVAL;
1540 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1541 return EINVAL;
1542 /*FALLTHROUGH*/
1543 default:
1544 return ifioctl_common(ifp, cmd, data);
1545 }
1546 return 0;
1547 }
1548
1549 /*
1550 * Enable/disable passing VLAN packets if the parent interface supports it.
1551 * Return:
1552 * 0: Ok
1553 * -1: Parent interface does not support vlans
1554 * >0: Error
1555 */
1556 int
1557 ether_enable_vlan_mtu(struct ifnet *ifp)
1558 {
1559 int error;
1560 struct ethercom *ec = (void *)ifp;
1561
1562 /* Parent does not support VLAN's */
1563 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1564 return -1;
1565
1566 /*
1567 * Parent supports the VLAN_MTU capability,
1568 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1569 * enable it.
1570 */
1571 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1572
1573 /* Interface is down, defer for later */
1574 if ((ifp->if_flags & IFF_UP) == 0)
1575 return 0;
1576
1577 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1578 return 0;
1579
1580 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1581 return error;
1582 }
1583
1584 int
1585 ether_disable_vlan_mtu(struct ifnet *ifp)
1586 {
1587 int error;
1588 struct ethercom *ec = (void *)ifp;
1589
1590 /* We still have VLAN's, defer for later */
1591 if (ec->ec_nvlans != 0)
1592 return 0;
1593
1594 /* Parent does not support VLAB's, nothing to do. */
1595 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1596 return -1;
1597
1598 /*
1599 * Disable Tx/Rx of VLAN-sized frames.
1600 */
1601 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1602
1603 /* Interface is down, defer for later */
1604 if ((ifp->if_flags & IFF_UP) == 0)
1605 return 0;
1606
1607 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1608 return 0;
1609
1610 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1611 return error;
1612 }
1613
1614 static int
1615 ether_multicast_sysctl(SYSCTLFN_ARGS)
1616 {
1617 struct ether_multi *enm;
1618 struct ifnet *ifp;
1619 struct ethercom *ec;
1620 int error = 0;
1621 size_t written;
1622 struct psref psref;
1623 int bound;
1624 unsigned int multicnt;
1625 struct ether_multi_sysctl *addrs;
1626 int i;
1627
1628 if (namelen != 1)
1629 return EINVAL;
1630
1631 bound = curlwp_bind();
1632 ifp = if_get_byindex(name[0], &psref);
1633 if (ifp == NULL) {
1634 error = ENODEV;
1635 goto out;
1636 }
1637 if (ifp->if_type != IFT_ETHER) {
1638 if_put(ifp, &psref);
1639 *oldlenp = 0;
1640 goto out;
1641 }
1642 ec = (struct ethercom *)ifp;
1643
1644 if (oldp == NULL) {
1645 if_put(ifp, &psref);
1646 *oldlenp = ec->ec_multicnt * sizeof(*addrs);
1647 goto out;
1648 }
1649
1650 /*
1651 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1652 * is sleepable, while holding it. Copy data to a local buffer first
1653 * with the lock taken and then call sysctl_copyout without holding it.
1654 */
1655 retry:
1656 multicnt = ec->ec_multicnt;
1657
1658 if (multicnt == 0) {
1659 if_put(ifp, &psref);
1660 *oldlenp = 0;
1661 goto out;
1662 }
1663
1664 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1665
1666 ETHER_LOCK(ec);
1667 if (multicnt != ec->ec_multicnt) {
1668 /* The number of multicast addresses has changed */
1669 ETHER_UNLOCK(ec);
1670 kmem_free(addrs, sizeof(*addrs) * multicnt);
1671 goto retry;
1672 }
1673
1674 i = 0;
1675 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1676 struct ether_multi_sysctl *addr = &addrs[i];
1677 addr->enm_refcount = enm->enm_refcount;
1678 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1679 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1680 i++;
1681 }
1682 ETHER_UNLOCK(ec);
1683
1684 error = 0;
1685 written = 0;
1686 for (i = 0; i < multicnt; i++) {
1687 struct ether_multi_sysctl *addr = &addrs[i];
1688
1689 if (written + sizeof(*addr) > *oldlenp)
1690 break;
1691 error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1692 if (error)
1693 break;
1694 written += sizeof(*addr);
1695 oldp = (char *)oldp + sizeof(*addr);
1696 }
1697 kmem_free(addrs, sizeof(*addrs) * multicnt);
1698
1699 if_put(ifp, &psref);
1700
1701 *oldlenp = written;
1702 out:
1703 curlwp_bindx(bound);
1704 return error;
1705 }
1706
1707 static void
1708 ether_sysctl_setup(struct sysctllog **clog)
1709 {
1710 const struct sysctlnode *rnode = NULL;
1711
1712 sysctl_createv(clog, 0, NULL, &rnode,
1713 CTLFLAG_PERMANENT,
1714 CTLTYPE_NODE, "ether",
1715 SYSCTL_DESCR("Ethernet-specific information"),
1716 NULL, 0, NULL, 0,
1717 CTL_NET, CTL_CREATE, CTL_EOL);
1718
1719 sysctl_createv(clog, 0, &rnode, NULL,
1720 CTLFLAG_PERMANENT,
1721 CTLTYPE_NODE, "multicast",
1722 SYSCTL_DESCR("multicast addresses"),
1723 ether_multicast_sysctl, 0, NULL, 0,
1724 CTL_CREATE, CTL_EOL);
1725 }
1726
1727 void
1728 etherinit(void)
1729 {
1730
1731 #ifdef DIAGNOSTIC
1732 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1733 #endif
1734 ether_sysctl_setup(NULL);
1735 }
1736