if_ethersubr.c revision 1.291 1 /* $NetBSD: if_ethersubr.c,v 1.291 2021/02/13 13:00:16 roy Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.291 2021/02/13 13:00:16 roy Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/entropy.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92
93 #include <net/if.h>
94 #include <net/netisr.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104
105 #if NARP == 0
106 /*
107 * XXX there should really be a way to issue this warning from within config(8)
108 */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111
112 #include <net/bpf.h>
113
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120
121 #if NAGR > 0
122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144
145 #include "carp.h"
146 #if NCARP > 0
147 #include <netinet/ip_carp.h>
148 #endif
149
150 #ifdef NETATALK
151 #include <netatalk/at.h>
152 #include <netatalk/at_var.h>
153 #include <netatalk/at_extern.h>
154
155 #define llc_snap_org_code llc_un.type_snap.org_code
156 #define llc_snap_ether_type llc_un.type_snap.ether_type
157
158 extern u_char at_org_code[3];
159 extern u_char aarp_org_code[3];
160 #endif /* NETATALK */
161
162 #ifdef MPLS
163 #include <netmpls/mpls.h>
164 #include <netmpls/mpls_var.h>
165 #endif
166
167 #ifdef DIAGNOSTIC
168 static struct timeval bigpktppslim_last;
169 static int bigpktppslim = 2; /* XXX */
170 static int bigpktpps_count;
171 static kmutex_t bigpktpps_lock __cacheline_aligned;
172 #endif
173
174 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
175 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
176 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
177 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
178 #define senderr(e) { error = (e); goto bad;}
179
180 static int ether_output(struct ifnet *, struct mbuf *,
181 const struct sockaddr *, const struct rtentry *);
182
183 /*
184 * Ethernet output routine.
185 * Encapsulate a packet of type family for the local net.
186 * Assumes that ifp is actually pointer to ethercom structure.
187 */
188 static int
189 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
190 const struct sockaddr * const dst, const struct rtentry *rt)
191 {
192 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
193 uint16_t etype = 0;
194 int error = 0, hdrcmplt = 0;
195 struct mbuf *m = m0;
196 struct mbuf *mcopy = NULL;
197 struct ether_header *eh;
198 struct ifnet *ifp = ifp0;
199 #ifdef INET
200 struct arphdr *ah;
201 #endif
202 #ifdef NETATALK
203 struct at_ifaddr *aa;
204 #endif
205
206 #ifdef MBUFTRACE
207 m_claimm(m, ifp->if_mowner);
208 #endif
209
210 #if NCARP > 0
211 if (ifp->if_type == IFT_CARP) {
212 struct ifaddr *ifa;
213 int s = pserialize_read_enter();
214
215 /* loop back if this is going to the carp interface */
216 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
217 (ifa = ifa_ifwithaddr(dst)) != NULL) {
218 if (ifa->ifa_ifp == ifp0) {
219 pserialize_read_exit(s);
220 return looutput(ifp0, m, dst, rt);
221 }
222 }
223 pserialize_read_exit(s);
224
225 ifp = ifp->if_carpdev;
226 /* ac = (struct arpcom *)ifp; */
227
228 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
229 (IFF_UP | IFF_RUNNING))
230 senderr(ENETDOWN);
231 }
232 #endif
233
234 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
235 senderr(ENETDOWN);
236
237 switch (dst->sa_family) {
238
239 #ifdef INET
240 case AF_INET:
241 if (m->m_flags & M_BCAST) {
242 memcpy(edst, etherbroadcastaddr, sizeof(edst));
243 } else if (m->m_flags & M_MCAST) {
244 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
245 } else {
246 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
247 if (error)
248 return (error == EWOULDBLOCK) ? 0 : error;
249 }
250 /* If broadcasting on a simplex interface, loopback a copy */
251 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
252 mcopy = m_copypacket(m, M_DONTWAIT);
253 etype = htons(ETHERTYPE_IP);
254 break;
255
256 case AF_ARP:
257 ah = mtod(m, struct arphdr *);
258 if (m->m_flags & M_BCAST) {
259 memcpy(edst, etherbroadcastaddr, sizeof(edst));
260 } else {
261 void *tha = ar_tha(ah);
262
263 if (tha == NULL) {
264 /* fake with ARPHRD_IEEE1394 */
265 m_freem(m);
266 return 0;
267 }
268 memcpy(edst, tha, sizeof(edst));
269 }
270
271 ah->ar_hrd = htons(ARPHRD_ETHER);
272
273 switch (ntohs(ah->ar_op)) {
274 case ARPOP_REVREQUEST:
275 case ARPOP_REVREPLY:
276 etype = htons(ETHERTYPE_REVARP);
277 break;
278
279 case ARPOP_REQUEST:
280 case ARPOP_REPLY:
281 default:
282 etype = htons(ETHERTYPE_ARP);
283 }
284 break;
285 #endif
286
287 #ifdef INET6
288 case AF_INET6:
289 if (m->m_flags & M_BCAST) {
290 memcpy(edst, etherbroadcastaddr, sizeof(edst));
291 } else if (m->m_flags & M_MCAST) {
292 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
293 edst);
294 } else {
295 error = nd6_resolve(ifp0, rt, m, dst, edst,
296 sizeof(edst));
297 if (error)
298 return (error == EWOULDBLOCK) ? 0 : error;
299 }
300 etype = htons(ETHERTYPE_IPV6);
301 break;
302 #endif
303
304 #ifdef NETATALK
305 case AF_APPLETALK: {
306 struct ifaddr *ifa;
307 int s;
308
309 KERNEL_LOCK(1, NULL);
310
311 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
312 KERNEL_UNLOCK_ONE(NULL);
313 return 0;
314 }
315
316 /*
317 * ifaddr is the first thing in at_ifaddr
318 */
319 s = pserialize_read_enter();
320 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
321 if (ifa == NULL) {
322 pserialize_read_exit(s);
323 KERNEL_UNLOCK_ONE(NULL);
324 senderr(EADDRNOTAVAIL);
325 }
326 aa = (struct at_ifaddr *)ifa;
327
328 /*
329 * In the phase 2 case, we need to prepend an mbuf for the
330 * llc header.
331 */
332 if (aa->aa_flags & AFA_PHASE2) {
333 struct llc llc;
334
335 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
336 if (m == NULL) {
337 pserialize_read_exit(s);
338 KERNEL_UNLOCK_ONE(NULL);
339 senderr(ENOBUFS);
340 }
341
342 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
343 llc.llc_control = LLC_UI;
344 memcpy(llc.llc_snap_org_code, at_org_code,
345 sizeof(llc.llc_snap_org_code));
346 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
347 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
348 } else {
349 etype = htons(ETHERTYPE_ATALK);
350 }
351 pserialize_read_exit(s);
352 KERNEL_UNLOCK_ONE(NULL);
353 break;
354 }
355 #endif /* NETATALK */
356
357 case pseudo_AF_HDRCMPLT:
358 hdrcmplt = 1;
359 memcpy(esrc,
360 ((const struct ether_header *)dst->sa_data)->ether_shost,
361 sizeof(esrc));
362 /* FALLTHROUGH */
363
364 case AF_UNSPEC:
365 memcpy(edst,
366 ((const struct ether_header *)dst->sa_data)->ether_dhost,
367 sizeof(edst));
368 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
369 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
370 break;
371
372 default:
373 printf("%s: can't handle af%d\n", ifp->if_xname,
374 dst->sa_family);
375 senderr(EAFNOSUPPORT);
376 }
377
378 #ifdef MPLS
379 {
380 struct m_tag *mtag;
381 mtag = m_tag_find(m, PACKET_TAG_MPLS);
382 if (mtag != NULL) {
383 /* Having the tag itself indicates it's MPLS */
384 etype = htons(ETHERTYPE_MPLS);
385 m_tag_delete(m, mtag);
386 }
387 }
388 #endif
389
390 if (mcopy)
391 (void)looutput(ifp, mcopy, dst, rt);
392
393 KASSERT((m->m_flags & M_PKTHDR) != 0);
394
395 /*
396 * If no ether type is set, this must be a 802.2 formatted packet.
397 */
398 if (etype == 0)
399 etype = htons(m->m_pkthdr.len);
400
401 /*
402 * Add local net header. If no space in first mbuf, allocate another.
403 */
404 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
405 if (m == NULL)
406 senderr(ENOBUFS);
407
408 eh = mtod(m, struct ether_header *);
409 /* Note: etype is already in network byte order. */
410 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
411 memcpy(eh->ether_dhost, edst, sizeof(edst));
412 if (hdrcmplt) {
413 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
414 } else {
415 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
416 sizeof(eh->ether_shost));
417 }
418
419 #if NCARP > 0
420 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
421 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
422 sizeof(eh->ether_shost));
423 }
424 #endif
425
426 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
427 return error;
428 if (m == NULL)
429 return 0;
430
431 #if NBRIDGE > 0
432 /*
433 * Bridges require special output handling.
434 */
435 if (ifp->if_bridge)
436 return bridge_output(ifp, m, NULL, NULL);
437 #endif
438
439 #if NCARP > 0
440 if (ifp != ifp0)
441 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
442 #endif
443
444 #ifdef ALTQ
445 KERNEL_LOCK(1, NULL);
446 /*
447 * If ALTQ is enabled on the parent interface, do
448 * classification; the queueing discipline might not
449 * require classification, but might require the
450 * address family/header pointer in the pktattr.
451 */
452 if (ALTQ_IS_ENABLED(&ifp->if_snd))
453 altq_etherclassify(&ifp->if_snd, m);
454 KERNEL_UNLOCK_ONE(NULL);
455 #endif
456 return ifq_enqueue(ifp, m);
457
458 bad:
459 if_statinc(ifp, if_oerrors);
460 if (m)
461 m_freem(m);
462 return error;
463 }
464
465 #ifdef ALTQ
466 /*
467 * This routine is a slight hack to allow a packet to be classified
468 * if the Ethernet headers are present. It will go away when ALTQ's
469 * classification engine understands link headers.
470 *
471 * XXX: We may need to do m_pullups here. First to ensure struct ether_header
472 * is indeed contiguous, then to read the LLC and so on.
473 */
474 void
475 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
476 {
477 struct ether_header *eh;
478 struct mbuf *mtop = m;
479 uint16_t ether_type;
480 int hlen, af, hdrsize;
481 void *hdr;
482
483 KASSERT((mtop->m_flags & M_PKTHDR) != 0);
484
485 hlen = ETHER_HDR_LEN;
486 eh = mtod(m, struct ether_header *);
487
488 ether_type = htons(eh->ether_type);
489
490 if (ether_type < ETHERMTU) {
491 /* LLC/SNAP */
492 struct llc *llc = (struct llc *)(eh + 1);
493 hlen += 8;
494
495 if (m->m_len < hlen ||
496 llc->llc_dsap != LLC_SNAP_LSAP ||
497 llc->llc_ssap != LLC_SNAP_LSAP ||
498 llc->llc_control != LLC_UI) {
499 /* Not SNAP. */
500 goto bad;
501 }
502
503 ether_type = htons(llc->llc_un.type_snap.ether_type);
504 }
505
506 switch (ether_type) {
507 case ETHERTYPE_IP:
508 af = AF_INET;
509 hdrsize = 20; /* sizeof(struct ip) */
510 break;
511
512 case ETHERTYPE_IPV6:
513 af = AF_INET6;
514 hdrsize = 40; /* sizeof(struct ip6_hdr) */
515 break;
516
517 default:
518 af = AF_UNSPEC;
519 hdrsize = 0;
520 break;
521 }
522
523 while (m->m_len <= hlen) {
524 hlen -= m->m_len;
525 m = m->m_next;
526 if (m == NULL)
527 goto bad;
528 }
529
530 if (m->m_len < (hlen + hdrsize)) {
531 /*
532 * protocol header not in a single mbuf.
533 * We can't cope with this situation right
534 * now (but it shouldn't ever happen, really, anyhow).
535 */
536 #ifdef DEBUG
537 printf("altq_etherclassify: headers span multiple mbufs: "
538 "%d < %d\n", m->m_len, (hlen + hdrsize));
539 #endif
540 goto bad;
541 }
542
543 m->m_data += hlen;
544 m->m_len -= hlen;
545
546 hdr = mtod(m, void *);
547
548 if (ALTQ_NEEDS_CLASSIFY(ifq)) {
549 mtop->m_pkthdr.pattr_class =
550 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
551 }
552 mtop->m_pkthdr.pattr_af = af;
553 mtop->m_pkthdr.pattr_hdr = hdr;
554
555 m->m_data -= hlen;
556 m->m_len += hlen;
557
558 return;
559
560 bad:
561 mtop->m_pkthdr.pattr_class = NULL;
562 mtop->m_pkthdr.pattr_hdr = NULL;
563 mtop->m_pkthdr.pattr_af = AF_UNSPEC;
564 }
565 #endif /* ALTQ */
566
567 #if defined (LLC) || defined (NETATALK)
568 static void
569 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh)
570 {
571 struct ifqueue *inq = NULL;
572 int isr = 0;
573 struct llc *l;
574
575 if (m->m_len < sizeof(*eh) + sizeof(struct llc))
576 goto drop;
577
578 l = (struct llc *)(eh+1);
579 switch (l->llc_dsap) {
580 #ifdef NETATALK
581 case LLC_SNAP_LSAP:
582 switch (l->llc_control) {
583 case LLC_UI:
584 if (l->llc_ssap != LLC_SNAP_LSAP)
585 goto drop;
586
587 if (memcmp(&(l->llc_snap_org_code)[0],
588 at_org_code, sizeof(at_org_code)) == 0 &&
589 ntohs(l->llc_snap_ether_type) ==
590 ETHERTYPE_ATALK) {
591 inq = &atintrq2;
592 m_adj(m, sizeof(struct ether_header)
593 + sizeof(struct llc));
594 isr = NETISR_ATALK;
595 break;
596 }
597
598 if (memcmp(&(l->llc_snap_org_code)[0],
599 aarp_org_code,
600 sizeof(aarp_org_code)) == 0 &&
601 ntohs(l->llc_snap_ether_type) ==
602 ETHERTYPE_AARP) {
603 m_adj(m, sizeof(struct ether_header)
604 + sizeof(struct llc));
605 aarpinput(ifp, m); /* XXX queue? */
606 return;
607 }
608
609 default:
610 goto drop;
611 }
612 break;
613 #endif
614 default:
615 goto drop;
616 }
617
618 KASSERT(inq != NULL);
619 IFQ_ENQUEUE_ISR(inq, m, isr);
620 return;
621
622 drop:
623 m_freem(m);
624 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */
625 return;
626 }
627 #endif /* defined (LLC) || defined (NETATALK) */
628
629 /*
630 * Process a received Ethernet packet;
631 * the packet is in the mbuf chain m with
632 * the ether header.
633 */
634 void
635 ether_input(struct ifnet *ifp, struct mbuf *m)
636 {
637 struct ethercom *ec = (struct ethercom *) ifp;
638 pktqueue_t *pktq = NULL;
639 struct ifqueue *inq = NULL;
640 uint16_t etype;
641 struct ether_header *eh;
642 size_t ehlen;
643 static int earlypkts;
644 int isr = 0;
645
646 KASSERT(!cpu_intr_p());
647 KASSERT((m->m_flags & M_PKTHDR) != 0);
648
649 if ((ifp->if_flags & IFF_UP) == 0)
650 goto drop;
651
652 #ifdef MBUFTRACE
653 m_claimm(m, &ec->ec_rx_mowner);
654 #endif
655
656 /* Enforce alignement */
657 if (ETHER_HDR_ALIGNED_P(mtod(m, void *)) == 0) {
658 if ((m = m_copyup(m, sizeof(*eh), 0)) == NULL)
659 goto dropped;
660 } else if (__predict_false(m->m_len < sizeof(*eh))) {
661 if ((m = m_pullup(m, sizeof(*eh))) == NULL)
662 goto dropped;
663 }
664
665 eh = mtod(m, struct ether_header *);
666 etype = ntohs(eh->ether_type);
667 ehlen = sizeof(*eh);
668
669 if (__predict_false(earlypkts < 100 ||
670 entropy_epoch() == (unsigned)-1)) {
671 rnd_add_data(NULL, eh, ehlen, 0);
672 earlypkts++;
673 }
674
675 /*
676 * Determine if the packet is within its size limits. For MPLS the
677 * header length is variable, so we skip the check.
678 */
679 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
680 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
681 #ifdef DIAGNOSTIC
682 mutex_enter(&bigpktpps_lock);
683 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
684 bigpktppslim)) {
685 printf("%s: discarding oversize frame (len=%d)\n",
686 ifp->if_xname, m->m_pkthdr.len);
687 }
688 mutex_exit(&bigpktpps_lock);
689 #endif
690 goto drop;
691 }
692
693 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
694 /*
695 * If this is not a simplex interface, drop the packet
696 * if it came from us.
697 */
698 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
699 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
700 ETHER_ADDR_LEN) == 0) {
701 goto drop;
702 }
703
704 if (memcmp(etherbroadcastaddr,
705 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
706 m->m_flags |= M_BCAST;
707 else
708 m->m_flags |= M_MCAST;
709 if_statinc(ifp, if_imcasts);
710 }
711
712 /* If the CRC is still on the packet, trim it off. */
713 if (m->m_flags & M_HASFCS) {
714 m_adj(m, -ETHER_CRC_LEN);
715 m->m_flags &= ~M_HASFCS;
716 }
717
718 if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
719
720 #if NCARP > 0
721 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
722 /*
723 * Clear M_PROMISC, in case the packet comes from a
724 * vlan.
725 */
726 m->m_flags &= ~M_PROMISC;
727 if (carp_input(m, (uint8_t *)&eh->ether_shost,
728 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
729 return;
730 }
731 #endif
732
733 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
734 (ifp->if_flags & IFF_PROMISC) != 0 &&
735 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
736 ETHER_ADDR_LEN) != 0) {
737 m->m_flags |= M_PROMISC;
738 }
739
740 if ((m->m_flags & M_PROMISC) == 0) {
741 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
742 return;
743 if (m == NULL)
744 return;
745
746 eh = mtod(m, struct ether_header *);
747 etype = ntohs(eh->ether_type);
748 }
749
750 #if NAGR > 0
751 if (ifp->if_agrprivate &&
752 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
753 m->m_flags &= ~M_PROMISC;
754 agr_input(ifp, m);
755 return;
756 }
757 #endif
758
759 /*
760 * If VLANs are configured on the interface, check to
761 * see if the device performed the decapsulation and
762 * provided us with the tag.
763 */
764 if (ec->ec_nvlans && vlan_has_tag(m)) {
765 #if NVLAN > 0
766 /*
767 * vlan_input() will either recursively call ether_input()
768 * or drop the packet.
769 */
770 vlan_input(ifp, m);
771 return;
772 #else
773 goto drop;
774 #endif
775 }
776
777 /*
778 * Handle protocols that expect to have the Ethernet header
779 * (and possibly FCS) intact.
780 */
781 switch (etype) {
782 case ETHERTYPE_VLAN: {
783 struct ether_vlan_header *evl = (void *)eh;
784
785 /*
786 * If there is a tag of 0, then the VLAN header was probably
787 * just being used to store the priority. Extract the ether
788 * type, and if IP or IPV6, let them deal with it.
789 */
790 if (m->m_len >= sizeof(*evl) &&
791 EVL_VLANOFTAG(evl->evl_tag) == 0) {
792 etype = ntohs(evl->evl_proto);
793 ehlen = sizeof(*evl);
794 if ((m->m_flags & M_PROMISC) == 0 &&
795 (etype == ETHERTYPE_IP ||
796 etype == ETHERTYPE_IPV6))
797 break;
798 }
799
800 #if NVLAN > 0
801 /*
802 * vlan_input() will either recursively call ether_input()
803 * or drop the packet.
804 */
805 if (ec->ec_nvlans != 0) {
806 vlan_input(ifp, m);
807 return;
808 } else
809 #endif
810 goto drop;
811 }
812
813 #if NPPPOE > 0
814 case ETHERTYPE_PPPOEDISC:
815 pppoedisc_input(ifp, m);
816 return;
817
818 case ETHERTYPE_PPPOE:
819 pppoe_input(ifp, m);
820 return;
821 #endif
822
823 case ETHERTYPE_SLOWPROTOCOLS: {
824 uint8_t subtype;
825
826 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype))
827 goto drop;
828
829 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
830 switch (subtype) {
831 #if NAGR > 0
832 case SLOWPROTOCOLS_SUBTYPE_LACP:
833 if (ifp->if_agrprivate) {
834 ieee8023ad_lacp_input(ifp, m);
835 return;
836 }
837 break;
838
839 case SLOWPROTOCOLS_SUBTYPE_MARKER:
840 if (ifp->if_agrprivate) {
841 ieee8023ad_marker_input(ifp, m);
842 return;
843 }
844 break;
845 #endif
846
847 default:
848 if (subtype == 0 || subtype > 10) {
849 /* illegal value */
850 goto drop;
851 }
852 /* unknown subtype */
853 break;
854 }
855 }
856 /* FALLTHROUGH */
857 default:
858 if (m->m_flags & M_PROMISC)
859 goto drop;
860 }
861
862 /* If the CRC is still on the packet, trim it off. */
863 if (m->m_flags & M_HASFCS) {
864 m_adj(m, -ETHER_CRC_LEN);
865 m->m_flags &= ~M_HASFCS;
866 }
867
868 /* etype represents the size of the payload in this case */
869 if (etype <= ETHERMTU + sizeof(struct ether_header)) {
870 KASSERT(ehlen == sizeof(*eh));
871 #if defined (LLC) || defined (NETATALK)
872 ether_input_llc(ifp, m, eh);
873 return;
874 #else
875 goto drop;
876 #endif
877 }
878
879 /* Strip off the Ethernet header. */
880 m_adj(m, ehlen);
881
882 switch (etype) {
883 #ifdef INET
884 case ETHERTYPE_IP:
885 #ifdef GATEWAY
886 if (ipflow_fastforward(m))
887 return;
888 #endif
889 pktq = ip_pktq;
890 break;
891
892 case ETHERTYPE_ARP:
893 isr = NETISR_ARP;
894 inq = &arpintrq;
895 break;
896
897 case ETHERTYPE_REVARP:
898 revarpinput(m); /* XXX queue? */
899 return;
900 #endif
901
902 #ifdef INET6
903 case ETHERTYPE_IPV6:
904 if (__predict_false(!in6_present))
905 goto drop;
906 #ifdef GATEWAY
907 if (ip6flow_fastforward(&m))
908 return;
909 #endif
910 pktq = ip6_pktq;
911 break;
912 #endif
913
914 #ifdef NETATALK
915 case ETHERTYPE_ATALK:
916 isr = NETISR_ATALK;
917 inq = &atintrq1;
918 break;
919
920 case ETHERTYPE_AARP:
921 aarpinput(ifp, m); /* XXX queue? */
922 return;
923 #endif
924
925 #ifdef MPLS
926 case ETHERTYPE_MPLS:
927 isr = NETISR_MPLS;
928 inq = &mplsintrq;
929 break;
930 #endif
931
932 default:
933 goto drop;
934 }
935
936 if (__predict_true(pktq)) {
937 #ifdef NET_MPSAFE
938 const u_int h = curcpu()->ci_index;
939 #else
940 const uint32_t h = pktq_rps_hash(m);
941 #endif
942 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
943 m_freem(m);
944 }
945 return;
946 }
947
948 if (__predict_false(!inq)) {
949 /* Should not happen. */
950 goto drop;
951 }
952
953 IFQ_ENQUEUE_ISR(inq, m, isr);
954 return;
955
956 drop:
957 m_freem(m);
958 dropped:
959 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */
960 }
961
962 /*
963 * Convert Ethernet address to printable (loggable) representation.
964 */
965 char *
966 ether_sprintf(const u_char *ap)
967 {
968 static char etherbuf[3 * ETHER_ADDR_LEN];
969 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
970 }
971
972 char *
973 ether_snprintf(char *buf, size_t len, const u_char *ap)
974 {
975 char *cp = buf;
976 size_t i;
977
978 for (i = 0; i < len / 3; i++) {
979 *cp++ = hexdigits[*ap >> 4];
980 *cp++ = hexdigits[*ap++ & 0xf];
981 *cp++ = ':';
982 }
983 *--cp = '\0';
984 return buf;
985 }
986
987 static void
988 ether_link_state_changed(struct ifnet *ifp, int link_state)
989 {
990 #if NVLAN > 0
991 struct ethercom *ec = (void *)ifp;
992
993 if (ec->ec_nvlans)
994 vlan_link_state_changed(ifp, link_state);
995 #endif
996 }
997
998 /*
999 * Perform common duties while attaching to interface list
1000 */
1001 void
1002 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
1003 {
1004 struct ethercom *ec = (struct ethercom *)ifp;
1005
1006 ifp->if_type = IFT_ETHER;
1007 ifp->if_hdrlen = ETHER_HDR_LEN;
1008 ifp->if_dlt = DLT_EN10MB;
1009 ifp->if_mtu = ETHERMTU;
1010 ifp->if_output = ether_output;
1011 ifp->_if_input = ether_input;
1012 ifp->if_link_state_changed = ether_link_state_changed;
1013 if (ifp->if_baudrate == 0)
1014 ifp->if_baudrate = IF_Mbps(10); /* just a default */
1015
1016 if (lla != NULL)
1017 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
1018
1019 LIST_INIT(&ec->ec_multiaddrs);
1020 SIMPLEQ_INIT(&ec->ec_vids);
1021 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1022 ec->ec_flags = 0;
1023 ifp->if_broadcastaddr = etherbroadcastaddr;
1024 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1025 #ifdef MBUFTRACE
1026 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
1027 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
1028 MOWNER_ATTACH(&ec->ec_tx_mowner);
1029 MOWNER_ATTACH(&ec->ec_rx_mowner);
1030 ifp->if_mowner = &ec->ec_tx_mowner;
1031 #endif
1032 }
1033
1034 void
1035 ether_ifdetach(struct ifnet *ifp)
1036 {
1037 struct ethercom *ec = (void *) ifp;
1038 struct ether_multi *enm;
1039
1040 IFNET_ASSERT_UNLOCKED(ifp);
1041 /*
1042 * Prevent further calls to ioctl (for example turning off
1043 * promiscuous mode from the bridge code), which eventually can
1044 * call if_init() which can cause panics because the interface
1045 * is in the process of being detached. Return device not configured
1046 * instead.
1047 */
1048 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
1049 enxio);
1050
1051 #if NBRIDGE > 0
1052 if (ifp->if_bridge)
1053 bridge_ifdetach(ifp);
1054 #endif
1055 bpf_detach(ifp);
1056 #if NVLAN > 0
1057 if (ec->ec_nvlans)
1058 vlan_ifdetach(ifp);
1059 #endif
1060
1061 ETHER_LOCK(ec);
1062 KASSERT(ec->ec_nvlans == 0);
1063 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1064 LIST_REMOVE(enm, enm_list);
1065 kmem_free(enm, sizeof(*enm));
1066 ec->ec_multicnt--;
1067 }
1068 ETHER_UNLOCK(ec);
1069
1070 mutex_obj_free(ec->ec_lock);
1071 ec->ec_lock = NULL;
1072
1073 ifp->if_mowner = NULL;
1074 MOWNER_DETACH(&ec->ec_rx_mowner);
1075 MOWNER_DETACH(&ec->ec_tx_mowner);
1076 }
1077
1078 #if 0
1079 /*
1080 * This is for reference. We have a table-driven version
1081 * of the little-endian crc32 generator, which is faster
1082 * than the double-loop.
1083 */
1084 uint32_t
1085 ether_crc32_le(const uint8_t *buf, size_t len)
1086 {
1087 uint32_t c, crc, carry;
1088 size_t i, j;
1089
1090 crc = 0xffffffffU; /* initial value */
1091
1092 for (i = 0; i < len; i++) {
1093 c = buf[i];
1094 for (j = 0; j < 8; j++) {
1095 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1096 crc >>= 1;
1097 c >>= 1;
1098 if (carry)
1099 crc = (crc ^ ETHER_CRC_POLY_LE);
1100 }
1101 }
1102
1103 return (crc);
1104 }
1105 #else
1106 uint32_t
1107 ether_crc32_le(const uint8_t *buf, size_t len)
1108 {
1109 static const uint32_t crctab[] = {
1110 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1111 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1112 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1113 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1114 };
1115 uint32_t crc;
1116 size_t i;
1117
1118 crc = 0xffffffffU; /* initial value */
1119
1120 for (i = 0; i < len; i++) {
1121 crc ^= buf[i];
1122 crc = (crc >> 4) ^ crctab[crc & 0xf];
1123 crc = (crc >> 4) ^ crctab[crc & 0xf];
1124 }
1125
1126 return (crc);
1127 }
1128 #endif
1129
1130 uint32_t
1131 ether_crc32_be(const uint8_t *buf, size_t len)
1132 {
1133 uint32_t c, crc, carry;
1134 size_t i, j;
1135
1136 crc = 0xffffffffU; /* initial value */
1137
1138 for (i = 0; i < len; i++) {
1139 c = buf[i];
1140 for (j = 0; j < 8; j++) {
1141 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1142 crc <<= 1;
1143 c >>= 1;
1144 if (carry)
1145 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1146 }
1147 }
1148
1149 return (crc);
1150 }
1151
1152 #ifdef INET
1153 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1154 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1155 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1156 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1157 #endif
1158 #ifdef INET6
1159 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1160 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1161 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1162 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1163 #endif
1164
1165 /*
1166 * ether_aton implementation, not using a static buffer.
1167 */
1168 int
1169 ether_aton_r(u_char *dest, size_t len, const char *str)
1170 {
1171 const u_char *cp = (const void *)str;
1172 u_char *ep;
1173
1174 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1175
1176 if (len < ETHER_ADDR_LEN)
1177 return ENOSPC;
1178
1179 ep = dest + ETHER_ADDR_LEN;
1180
1181 while (*cp) {
1182 if (!isxdigit(*cp))
1183 return EINVAL;
1184
1185 *dest = atox(*cp);
1186 cp++;
1187 if (isxdigit(*cp)) {
1188 *dest = (*dest << 4) | atox(*cp);
1189 cp++;
1190 }
1191 dest++;
1192
1193 if (dest == ep)
1194 return (*cp == '\0') ? 0 : ENAMETOOLONG;
1195
1196 switch (*cp) {
1197 case ':':
1198 case '-':
1199 case '.':
1200 cp++;
1201 break;
1202 }
1203 }
1204 return ENOBUFS;
1205 }
1206
1207 /*
1208 * Convert a sockaddr into an Ethernet address or range of Ethernet
1209 * addresses.
1210 */
1211 int
1212 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1213 uint8_t addrhi[ETHER_ADDR_LEN])
1214 {
1215 #ifdef INET
1216 const struct sockaddr_in *sin;
1217 #endif
1218 #ifdef INET6
1219 const struct sockaddr_in6 *sin6;
1220 #endif
1221
1222 switch (sa->sa_family) {
1223
1224 case AF_UNSPEC:
1225 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1226 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1227 break;
1228
1229 #ifdef INET
1230 case AF_INET:
1231 sin = satocsin(sa);
1232 if (sin->sin_addr.s_addr == INADDR_ANY) {
1233 /*
1234 * An IP address of INADDR_ANY means listen to
1235 * or stop listening to all of the Ethernet
1236 * multicast addresses used for IP.
1237 * (This is for the sake of IP multicast routers.)
1238 */
1239 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1240 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1241 } else {
1242 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1243 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1244 }
1245 break;
1246 #endif
1247 #ifdef INET6
1248 case AF_INET6:
1249 sin6 = satocsin6(sa);
1250 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1251 /*
1252 * An IP6 address of 0 means listen to or stop
1253 * listening to all of the Ethernet multicast
1254 * address used for IP6.
1255 * (This is used for multicast routers.)
1256 */
1257 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1258 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1259 } else {
1260 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1261 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1262 }
1263 break;
1264 #endif
1265
1266 default:
1267 return EAFNOSUPPORT;
1268 }
1269 return 0;
1270 }
1271
1272 /*
1273 * Add an Ethernet multicast address or range of addresses to the list for a
1274 * given interface.
1275 */
1276 int
1277 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1278 {
1279 struct ether_multi *enm, *_enm;
1280 u_char addrlo[ETHER_ADDR_LEN];
1281 u_char addrhi[ETHER_ADDR_LEN];
1282 int error = 0;
1283
1284 /* Allocate out of lock */
1285 enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1286
1287 ETHER_LOCK(ec);
1288 error = ether_multiaddr(sa, addrlo, addrhi);
1289 if (error != 0)
1290 goto out;
1291
1292 /*
1293 * Verify that we have valid Ethernet multicast addresses.
1294 */
1295 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1296 error = EINVAL;
1297 goto out;
1298 }
1299
1300 /*
1301 * See if the address range is already in the list.
1302 */
1303 _enm = ether_lookup_multi(addrlo, addrhi, ec);
1304 if (_enm != NULL) {
1305 /*
1306 * Found it; just increment the reference count.
1307 */
1308 ++_enm->enm_refcount;
1309 error = 0;
1310 goto out;
1311 }
1312
1313 /*
1314 * Link a new multicast record into the interface's multicast list.
1315 */
1316 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1317 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1318 enm->enm_refcount = 1;
1319 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1320 ec->ec_multicnt++;
1321
1322 /*
1323 * Return ENETRESET to inform the driver that the list has changed
1324 * and its reception filter should be adjusted accordingly.
1325 */
1326 error = ENETRESET;
1327 enm = NULL;
1328
1329 out:
1330 ETHER_UNLOCK(ec);
1331 if (enm != NULL)
1332 kmem_free(enm, sizeof(*enm));
1333 return error;
1334 }
1335
1336 /*
1337 * Delete a multicast address record.
1338 */
1339 int
1340 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1341 {
1342 struct ether_multi *enm;
1343 u_char addrlo[ETHER_ADDR_LEN];
1344 u_char addrhi[ETHER_ADDR_LEN];
1345 int error;
1346
1347 ETHER_LOCK(ec);
1348 error = ether_multiaddr(sa, addrlo, addrhi);
1349 if (error != 0)
1350 goto error;
1351
1352 /*
1353 * Look up the address in our list.
1354 */
1355 enm = ether_lookup_multi(addrlo, addrhi, ec);
1356 if (enm == NULL) {
1357 error = ENXIO;
1358 goto error;
1359 }
1360 if (--enm->enm_refcount != 0) {
1361 /*
1362 * Still some claims to this record.
1363 */
1364 error = 0;
1365 goto error;
1366 }
1367
1368 /*
1369 * No remaining claims to this record; unlink and free it.
1370 */
1371 LIST_REMOVE(enm, enm_list);
1372 ec->ec_multicnt--;
1373 ETHER_UNLOCK(ec);
1374 kmem_free(enm, sizeof(*enm));
1375
1376 /*
1377 * Return ENETRESET to inform the driver that the list has changed
1378 * and its reception filter should be adjusted accordingly.
1379 */
1380 return ENETRESET;
1381
1382 error:
1383 ETHER_UNLOCK(ec);
1384 return error;
1385 }
1386
1387 void
1388 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1389 {
1390 ec->ec_ifflags_cb = cb;
1391 }
1392
1393 void
1394 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
1395 {
1396
1397 ec->ec_vlan_cb = cb;
1398 }
1399
1400 static int
1401 ether_ioctl_reinit(struct ethercom *ec)
1402 {
1403 struct ifnet *ifp = &ec->ec_if;
1404 int error;
1405
1406 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1407 case IFF_RUNNING:
1408 /*
1409 * If interface is marked down and it is running,
1410 * then stop and disable it.
1411 */
1412 (*ifp->if_stop)(ifp, 1);
1413 break;
1414 case IFF_UP:
1415 /*
1416 * If interface is marked up and it is stopped, then
1417 * start it.
1418 */
1419 return (*ifp->if_init)(ifp);
1420 case IFF_UP | IFF_RUNNING:
1421 error = 0;
1422 if (ec->ec_ifflags_cb != NULL) {
1423 error = (*ec->ec_ifflags_cb)(ec);
1424 if (error == ENETRESET) {
1425 /*
1426 * Reset the interface to pick up
1427 * changes in any other flags that
1428 * affect the hardware state.
1429 */
1430 return (*ifp->if_init)(ifp);
1431 }
1432 } else
1433 error = (*ifp->if_init)(ifp);
1434 return error;
1435 case 0:
1436 break;
1437 }
1438
1439 return 0;
1440 }
1441
1442 /*
1443 * Common ioctls for Ethernet interfaces. Note, we must be
1444 * called at splnet().
1445 */
1446 int
1447 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1448 {
1449 struct ethercom *ec = (void *)ifp;
1450 struct eccapreq *eccr;
1451 struct ifreq *ifr = (struct ifreq *)data;
1452 struct if_laddrreq *iflr = data;
1453 const struct sockaddr_dl *sdl;
1454 static const uint8_t zero[ETHER_ADDR_LEN];
1455 int error;
1456
1457 switch (cmd) {
1458 case SIOCINITIFADDR:
1459 {
1460 struct ifaddr *ifa = (struct ifaddr *)data;
1461 if (ifa->ifa_addr->sa_family != AF_LINK
1462 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1463 (IFF_UP | IFF_RUNNING)) {
1464 ifp->if_flags |= IFF_UP;
1465 if ((error = (*ifp->if_init)(ifp)) != 0)
1466 return error;
1467 }
1468 #ifdef INET
1469 if (ifa->ifa_addr->sa_family == AF_INET)
1470 arp_ifinit(ifp, ifa);
1471 #endif
1472 return 0;
1473 }
1474
1475 case SIOCSIFMTU:
1476 {
1477 int maxmtu;
1478
1479 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1480 maxmtu = ETHERMTU_JUMBO;
1481 else
1482 maxmtu = ETHERMTU;
1483
1484 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1485 return EINVAL;
1486 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1487 return error;
1488 else if (ifp->if_flags & IFF_UP) {
1489 /* Make sure the device notices the MTU change. */
1490 return (*ifp->if_init)(ifp);
1491 } else
1492 return 0;
1493 }
1494
1495 case SIOCSIFFLAGS:
1496 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1497 return error;
1498 return ether_ioctl_reinit(ec);
1499 case SIOCGIFFLAGS:
1500 error = ifioctl_common(ifp, cmd, data);
1501 if (error == 0) {
1502 /* Set IFF_ALLMULTI for backcompat */
1503 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
1504 IFF_ALLMULTI : 0;
1505 }
1506 return error;
1507 case SIOCGETHERCAP:
1508 eccr = (struct eccapreq *)data;
1509 eccr->eccr_capabilities = ec->ec_capabilities;
1510 eccr->eccr_capenable = ec->ec_capenable;
1511 return 0;
1512 case SIOCSETHERCAP:
1513 eccr = (struct eccapreq *)data;
1514 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1515 return EINVAL;
1516 if (eccr->eccr_capenable == ec->ec_capenable)
1517 return 0;
1518 #if 0 /* notyet */
1519 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1520 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1521 #else
1522 ec->ec_capenable = eccr->eccr_capenable;
1523 #endif
1524 return ether_ioctl_reinit(ec);
1525 case SIOCADDMULTI:
1526 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1527 case SIOCDELMULTI:
1528 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1529 case SIOCSIFMEDIA:
1530 case SIOCGIFMEDIA:
1531 if (ec->ec_mii != NULL)
1532 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
1533 cmd);
1534 else if (ec->ec_ifmedia != NULL)
1535 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
1536 else
1537 return ENOTTY;
1538 break;
1539 case SIOCALIFADDR:
1540 sdl = satocsdl(sstocsa(&iflr->addr));
1541 if (sdl->sdl_family != AF_LINK)
1542 ;
1543 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1544 return EINVAL;
1545 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1546 return EINVAL;
1547 /*FALLTHROUGH*/
1548 default:
1549 return ifioctl_common(ifp, cmd, data);
1550 }
1551 return 0;
1552 }
1553
1554 /*
1555 * Enable/disable passing VLAN packets if the parent interface supports it.
1556 * Return:
1557 * 0: Ok
1558 * -1: Parent interface does not support vlans
1559 * >0: Error
1560 */
1561 int
1562 ether_enable_vlan_mtu(struct ifnet *ifp)
1563 {
1564 int error;
1565 struct ethercom *ec = (void *)ifp;
1566
1567 /* Parent does not support VLAN's */
1568 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1569 return -1;
1570
1571 /*
1572 * Parent supports the VLAN_MTU capability,
1573 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1574 * enable it.
1575 */
1576 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1577
1578 /* Interface is down, defer for later */
1579 if ((ifp->if_flags & IFF_UP) == 0)
1580 return 0;
1581
1582 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1583 return 0;
1584
1585 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1586 return error;
1587 }
1588
1589 int
1590 ether_disable_vlan_mtu(struct ifnet *ifp)
1591 {
1592 int error;
1593 struct ethercom *ec = (void *)ifp;
1594
1595 /* We still have VLAN's, defer for later */
1596 if (ec->ec_nvlans != 0)
1597 return 0;
1598
1599 /* Parent does not support VLAB's, nothing to do. */
1600 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1601 return -1;
1602
1603 /*
1604 * Disable Tx/Rx of VLAN-sized frames.
1605 */
1606 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1607
1608 /* Interface is down, defer for later */
1609 if ((ifp->if_flags & IFF_UP) == 0)
1610 return 0;
1611
1612 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1613 return 0;
1614
1615 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1616 return error;
1617 }
1618
1619 static int
1620 ether_multicast_sysctl(SYSCTLFN_ARGS)
1621 {
1622 struct ether_multi *enm;
1623 struct ifnet *ifp;
1624 struct ethercom *ec;
1625 int error = 0;
1626 size_t written;
1627 struct psref psref;
1628 int bound;
1629 unsigned int multicnt;
1630 struct ether_multi_sysctl *addrs;
1631 int i;
1632
1633 if (namelen != 1)
1634 return EINVAL;
1635
1636 bound = curlwp_bind();
1637 ifp = if_get_byindex(name[0], &psref);
1638 if (ifp == NULL) {
1639 error = ENODEV;
1640 goto out;
1641 }
1642 if (ifp->if_type != IFT_ETHER) {
1643 if_put(ifp, &psref);
1644 *oldlenp = 0;
1645 goto out;
1646 }
1647 ec = (struct ethercom *)ifp;
1648
1649 if (oldp == NULL) {
1650 if_put(ifp, &psref);
1651 *oldlenp = ec->ec_multicnt * sizeof(*addrs);
1652 goto out;
1653 }
1654
1655 /*
1656 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1657 * is sleepable, while holding it. Copy data to a local buffer first
1658 * with the lock taken and then call sysctl_copyout without holding it.
1659 */
1660 retry:
1661 multicnt = ec->ec_multicnt;
1662
1663 if (multicnt == 0) {
1664 if_put(ifp, &psref);
1665 *oldlenp = 0;
1666 goto out;
1667 }
1668
1669 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1670
1671 ETHER_LOCK(ec);
1672 if (multicnt != ec->ec_multicnt) {
1673 /* The number of multicast addresses has changed */
1674 ETHER_UNLOCK(ec);
1675 kmem_free(addrs, sizeof(*addrs) * multicnt);
1676 goto retry;
1677 }
1678
1679 i = 0;
1680 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1681 struct ether_multi_sysctl *addr = &addrs[i];
1682 addr->enm_refcount = enm->enm_refcount;
1683 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1684 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1685 i++;
1686 }
1687 ETHER_UNLOCK(ec);
1688
1689 error = 0;
1690 written = 0;
1691 for (i = 0; i < multicnt; i++) {
1692 struct ether_multi_sysctl *addr = &addrs[i];
1693
1694 if (written + sizeof(*addr) > *oldlenp)
1695 break;
1696 error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1697 if (error)
1698 break;
1699 written += sizeof(*addr);
1700 oldp = (char *)oldp + sizeof(*addr);
1701 }
1702 kmem_free(addrs, sizeof(*addrs) * multicnt);
1703
1704 if_put(ifp, &psref);
1705
1706 *oldlenp = written;
1707 out:
1708 curlwp_bindx(bound);
1709 return error;
1710 }
1711
1712 static void
1713 ether_sysctl_setup(struct sysctllog **clog)
1714 {
1715 const struct sysctlnode *rnode = NULL;
1716
1717 sysctl_createv(clog, 0, NULL, &rnode,
1718 CTLFLAG_PERMANENT,
1719 CTLTYPE_NODE, "ether",
1720 SYSCTL_DESCR("Ethernet-specific information"),
1721 NULL, 0, NULL, 0,
1722 CTL_NET, CTL_CREATE, CTL_EOL);
1723
1724 sysctl_createv(clog, 0, &rnode, NULL,
1725 CTLFLAG_PERMANENT,
1726 CTLTYPE_NODE, "multicast",
1727 SYSCTL_DESCR("multicast addresses"),
1728 ether_multicast_sysctl, 0, NULL, 0,
1729 CTL_CREATE, CTL_EOL);
1730 }
1731
1732 void
1733 etherinit(void)
1734 {
1735
1736 #ifdef DIAGNOSTIC
1737 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1738 #endif
1739 ether_sysctl_setup(NULL);
1740 }
1741