if_ethersubr.c revision 1.292 1 /* $NetBSD: if_ethersubr.c,v 1.292 2021/02/14 19:35:37 roy Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.292 2021/02/14 19:35:37 roy Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/entropy.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92
93 #include <net/if.h>
94 #include <net/netisr.h>
95 #include <net/route.h>
96 #include <net/if_llc.h>
97 #include <net/if_dl.h>
98 #include <net/if_types.h>
99 #include <net/pktqueue.h>
100
101 #include <net/if_media.h>
102 #include <dev/mii/mii.h>
103 #include <dev/mii/miivar.h>
104
105 #if NARP == 0
106 /*
107 * XXX there should really be a way to issue this warning from within config(8)
108 */
109 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
110 #endif
111
112 #include <net/bpf.h>
113
114 #include <net/if_ether.h>
115 #include <net/if_vlanvar.h>
116
117 #if NPPPOE > 0
118 #include <net/if_pppoe.h>
119 #endif
120
121 #if NAGR > 0
122 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
123 #include <net/agr/ieee8023ad.h>
124 #include <net/agr/if_agrvar.h>
125 #endif
126
127 #if NBRIDGE > 0
128 #include <net/if_bridgevar.h>
129 #endif
130
131 #include <netinet/in.h>
132 #ifdef INET
133 #include <netinet/in_var.h>
134 #endif
135 #include <netinet/if_inarp.h>
136
137 #ifdef INET6
138 #ifndef INET
139 #include <netinet/in.h>
140 #endif
141 #include <netinet6/in6_var.h>
142 #include <netinet6/nd6.h>
143 #endif
144
145 #include "carp.h"
146 #if NCARP > 0
147 #include <netinet/ip_carp.h>
148 #endif
149
150 #ifdef NETATALK
151 #include <netatalk/at.h>
152 #include <netatalk/at_var.h>
153 #include <netatalk/at_extern.h>
154
155 #define llc_snap_org_code llc_un.type_snap.org_code
156 #define llc_snap_ether_type llc_un.type_snap.ether_type
157
158 extern u_char at_org_code[3];
159 extern u_char aarp_org_code[3];
160 #endif /* NETATALK */
161
162 #ifdef MPLS
163 #include <netmpls/mpls.h>
164 #include <netmpls/mpls_var.h>
165 #endif
166
167 CTASSERT(sizeof(struct ether_addr) == 6);
168 CTASSERT(sizeof(struct ether_header) == 14);
169
170 #ifdef DIAGNOSTIC
171 static struct timeval bigpktppslim_last;
172 static int bigpktppslim = 2; /* XXX */
173 static int bigpktpps_count;
174 static kmutex_t bigpktpps_lock __cacheline_aligned;
175 #endif
176
177 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
178 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
179 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
180 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
181 #define senderr(e) { error = (e); goto bad;}
182
183 static int ether_output(struct ifnet *, struct mbuf *,
184 const struct sockaddr *, const struct rtentry *);
185
186 /*
187 * Ethernet output routine.
188 * Encapsulate a packet of type family for the local net.
189 * Assumes that ifp is actually pointer to ethercom structure.
190 */
191 static int
192 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
193 const struct sockaddr * const dst, const struct rtentry *rt)
194 {
195 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
196 uint16_t etype = 0;
197 int error = 0, hdrcmplt = 0;
198 struct mbuf *m = m0;
199 struct mbuf *mcopy = NULL;
200 struct ether_header *eh;
201 struct ifnet *ifp = ifp0;
202 #ifdef INET
203 struct arphdr *ah;
204 #endif
205 #ifdef NETATALK
206 struct at_ifaddr *aa;
207 #endif
208
209 #ifdef MBUFTRACE
210 m_claimm(m, ifp->if_mowner);
211 #endif
212
213 #if NCARP > 0
214 if (ifp->if_type == IFT_CARP) {
215 struct ifaddr *ifa;
216 int s = pserialize_read_enter();
217
218 /* loop back if this is going to the carp interface */
219 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
220 (ifa = ifa_ifwithaddr(dst)) != NULL) {
221 if (ifa->ifa_ifp == ifp0) {
222 pserialize_read_exit(s);
223 return looutput(ifp0, m, dst, rt);
224 }
225 }
226 pserialize_read_exit(s);
227
228 ifp = ifp->if_carpdev;
229 /* ac = (struct arpcom *)ifp; */
230
231 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
232 (IFF_UP | IFF_RUNNING))
233 senderr(ENETDOWN);
234 }
235 #endif
236
237 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
238 senderr(ENETDOWN);
239
240 switch (dst->sa_family) {
241
242 #ifdef INET
243 case AF_INET:
244 if (m->m_flags & M_BCAST) {
245 memcpy(edst, etherbroadcastaddr, sizeof(edst));
246 } else if (m->m_flags & M_MCAST) {
247 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
248 } else {
249 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
250 if (error)
251 return (error == EWOULDBLOCK) ? 0 : error;
252 }
253 /* If broadcasting on a simplex interface, loopback a copy */
254 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
255 mcopy = m_copypacket(m, M_DONTWAIT);
256 etype = htons(ETHERTYPE_IP);
257 break;
258
259 case AF_ARP:
260 ah = mtod(m, struct arphdr *);
261 if (m->m_flags & M_BCAST) {
262 memcpy(edst, etherbroadcastaddr, sizeof(edst));
263 } else {
264 void *tha = ar_tha(ah);
265
266 if (tha == NULL) {
267 /* fake with ARPHRD_IEEE1394 */
268 m_freem(m);
269 return 0;
270 }
271 memcpy(edst, tha, sizeof(edst));
272 }
273
274 ah->ar_hrd = htons(ARPHRD_ETHER);
275
276 switch (ntohs(ah->ar_op)) {
277 case ARPOP_REVREQUEST:
278 case ARPOP_REVREPLY:
279 etype = htons(ETHERTYPE_REVARP);
280 break;
281
282 case ARPOP_REQUEST:
283 case ARPOP_REPLY:
284 default:
285 etype = htons(ETHERTYPE_ARP);
286 }
287 break;
288 #endif
289
290 #ifdef INET6
291 case AF_INET6:
292 if (m->m_flags & M_BCAST) {
293 memcpy(edst, etherbroadcastaddr, sizeof(edst));
294 } else if (m->m_flags & M_MCAST) {
295 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
296 edst);
297 } else {
298 error = nd6_resolve(ifp0, rt, m, dst, edst,
299 sizeof(edst));
300 if (error)
301 return (error == EWOULDBLOCK) ? 0 : error;
302 }
303 etype = htons(ETHERTYPE_IPV6);
304 break;
305 #endif
306
307 #ifdef NETATALK
308 case AF_APPLETALK: {
309 struct ifaddr *ifa;
310 int s;
311
312 KERNEL_LOCK(1, NULL);
313
314 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
315 KERNEL_UNLOCK_ONE(NULL);
316 return 0;
317 }
318
319 /*
320 * ifaddr is the first thing in at_ifaddr
321 */
322 s = pserialize_read_enter();
323 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
324 if (ifa == NULL) {
325 pserialize_read_exit(s);
326 KERNEL_UNLOCK_ONE(NULL);
327 senderr(EADDRNOTAVAIL);
328 }
329 aa = (struct at_ifaddr *)ifa;
330
331 /*
332 * In the phase 2 case, we need to prepend an mbuf for the
333 * llc header.
334 */
335 if (aa->aa_flags & AFA_PHASE2) {
336 struct llc llc;
337
338 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
339 if (m == NULL) {
340 pserialize_read_exit(s);
341 KERNEL_UNLOCK_ONE(NULL);
342 senderr(ENOBUFS);
343 }
344
345 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
346 llc.llc_control = LLC_UI;
347 memcpy(llc.llc_snap_org_code, at_org_code,
348 sizeof(llc.llc_snap_org_code));
349 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
350 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
351 } else {
352 etype = htons(ETHERTYPE_ATALK);
353 }
354 pserialize_read_exit(s);
355 KERNEL_UNLOCK_ONE(NULL);
356 break;
357 }
358 #endif /* NETATALK */
359
360 case pseudo_AF_HDRCMPLT:
361 hdrcmplt = 1;
362 memcpy(esrc,
363 ((const struct ether_header *)dst->sa_data)->ether_shost,
364 sizeof(esrc));
365 /* FALLTHROUGH */
366
367 case AF_UNSPEC:
368 memcpy(edst,
369 ((const struct ether_header *)dst->sa_data)->ether_dhost,
370 sizeof(edst));
371 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
372 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
373 break;
374
375 default:
376 printf("%s: can't handle af%d\n", ifp->if_xname,
377 dst->sa_family);
378 senderr(EAFNOSUPPORT);
379 }
380
381 #ifdef MPLS
382 {
383 struct m_tag *mtag;
384 mtag = m_tag_find(m, PACKET_TAG_MPLS);
385 if (mtag != NULL) {
386 /* Having the tag itself indicates it's MPLS */
387 etype = htons(ETHERTYPE_MPLS);
388 m_tag_delete(m, mtag);
389 }
390 }
391 #endif
392
393 if (mcopy)
394 (void)looutput(ifp, mcopy, dst, rt);
395
396 KASSERT((m->m_flags & M_PKTHDR) != 0);
397
398 /*
399 * If no ether type is set, this must be a 802.2 formatted packet.
400 */
401 if (etype == 0)
402 etype = htons(m->m_pkthdr.len);
403
404 /*
405 * Add local net header. If no space in first mbuf, allocate another.
406 */
407 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
408 if (m == NULL)
409 senderr(ENOBUFS);
410
411 eh = mtod(m, struct ether_header *);
412 /* Note: etype is already in network byte order. */
413 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
414 memcpy(eh->ether_dhost, edst, sizeof(edst));
415 if (hdrcmplt) {
416 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
417 } else {
418 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
419 sizeof(eh->ether_shost));
420 }
421
422 #if NCARP > 0
423 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
424 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
425 sizeof(eh->ether_shost));
426 }
427 #endif
428
429 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
430 return error;
431 if (m == NULL)
432 return 0;
433
434 #if NBRIDGE > 0
435 /*
436 * Bridges require special output handling.
437 */
438 if (ifp->if_bridge)
439 return bridge_output(ifp, m, NULL, NULL);
440 #endif
441
442 #if NCARP > 0
443 if (ifp != ifp0)
444 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
445 #endif
446
447 #ifdef ALTQ
448 KERNEL_LOCK(1, NULL);
449 /*
450 * If ALTQ is enabled on the parent interface, do
451 * classification; the queueing discipline might not
452 * require classification, but might require the
453 * address family/header pointer in the pktattr.
454 */
455 if (ALTQ_IS_ENABLED(&ifp->if_snd))
456 altq_etherclassify(&ifp->if_snd, m);
457 KERNEL_UNLOCK_ONE(NULL);
458 #endif
459 return ifq_enqueue(ifp, m);
460
461 bad:
462 if_statinc(ifp, if_oerrors);
463 if (m)
464 m_freem(m);
465 return error;
466 }
467
468 #ifdef ALTQ
469 /*
470 * This routine is a slight hack to allow a packet to be classified
471 * if the Ethernet headers are present. It will go away when ALTQ's
472 * classification engine understands link headers.
473 *
474 * XXX: We may need to do m_pullups here. First to ensure struct ether_header
475 * is indeed contiguous, then to read the LLC and so on.
476 */
477 void
478 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
479 {
480 struct ether_header *eh;
481 struct mbuf *mtop = m;
482 uint16_t ether_type;
483 int hlen, af, hdrsize;
484 void *hdr;
485
486 KASSERT((mtop->m_flags & M_PKTHDR) != 0);
487
488 hlen = ETHER_HDR_LEN;
489 eh = mtod(m, struct ether_header *);
490
491 ether_type = htons(eh->ether_type);
492
493 if (ether_type < ETHERMTU) {
494 /* LLC/SNAP */
495 struct llc *llc = (struct llc *)(eh + 1);
496 hlen += 8;
497
498 if (m->m_len < hlen ||
499 llc->llc_dsap != LLC_SNAP_LSAP ||
500 llc->llc_ssap != LLC_SNAP_LSAP ||
501 llc->llc_control != LLC_UI) {
502 /* Not SNAP. */
503 goto bad;
504 }
505
506 ether_type = htons(llc->llc_un.type_snap.ether_type);
507 }
508
509 switch (ether_type) {
510 case ETHERTYPE_IP:
511 af = AF_INET;
512 hdrsize = 20; /* sizeof(struct ip) */
513 break;
514
515 case ETHERTYPE_IPV6:
516 af = AF_INET6;
517 hdrsize = 40; /* sizeof(struct ip6_hdr) */
518 break;
519
520 default:
521 af = AF_UNSPEC;
522 hdrsize = 0;
523 break;
524 }
525
526 while (m->m_len <= hlen) {
527 hlen -= m->m_len;
528 m = m->m_next;
529 if (m == NULL)
530 goto bad;
531 }
532
533 if (m->m_len < (hlen + hdrsize)) {
534 /*
535 * protocol header not in a single mbuf.
536 * We can't cope with this situation right
537 * now (but it shouldn't ever happen, really, anyhow).
538 */
539 #ifdef DEBUG
540 printf("altq_etherclassify: headers span multiple mbufs: "
541 "%d < %d\n", m->m_len, (hlen + hdrsize));
542 #endif
543 goto bad;
544 }
545
546 m->m_data += hlen;
547 m->m_len -= hlen;
548
549 hdr = mtod(m, void *);
550
551 if (ALTQ_NEEDS_CLASSIFY(ifq)) {
552 mtop->m_pkthdr.pattr_class =
553 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
554 }
555 mtop->m_pkthdr.pattr_af = af;
556 mtop->m_pkthdr.pattr_hdr = hdr;
557
558 m->m_data -= hlen;
559 m->m_len += hlen;
560
561 return;
562
563 bad:
564 mtop->m_pkthdr.pattr_class = NULL;
565 mtop->m_pkthdr.pattr_hdr = NULL;
566 mtop->m_pkthdr.pattr_af = AF_UNSPEC;
567 }
568 #endif /* ALTQ */
569
570 #if defined (LLC) || defined (NETATALK)
571 static void
572 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh)
573 {
574 struct ifqueue *inq = NULL;
575 int isr = 0;
576 struct llc *l;
577
578 if (m->m_len < sizeof(*eh) + sizeof(struct llc))
579 goto drop;
580
581 l = (struct llc *)(eh+1);
582 switch (l->llc_dsap) {
583 #ifdef NETATALK
584 case LLC_SNAP_LSAP:
585 switch (l->llc_control) {
586 case LLC_UI:
587 if (l->llc_ssap != LLC_SNAP_LSAP)
588 goto drop;
589
590 if (memcmp(&(l->llc_snap_org_code)[0],
591 at_org_code, sizeof(at_org_code)) == 0 &&
592 ntohs(l->llc_snap_ether_type) ==
593 ETHERTYPE_ATALK) {
594 inq = &atintrq2;
595 m_adj(m, sizeof(struct ether_header)
596 + sizeof(struct llc));
597 isr = NETISR_ATALK;
598 break;
599 }
600
601 if (memcmp(&(l->llc_snap_org_code)[0],
602 aarp_org_code,
603 sizeof(aarp_org_code)) == 0 &&
604 ntohs(l->llc_snap_ether_type) ==
605 ETHERTYPE_AARP) {
606 m_adj(m, sizeof(struct ether_header)
607 + sizeof(struct llc));
608 aarpinput(ifp, m); /* XXX queue? */
609 return;
610 }
611
612 default:
613 goto drop;
614 }
615 break;
616 #endif
617 default:
618 goto drop;
619 }
620
621 KASSERT(inq != NULL);
622 IFQ_ENQUEUE_ISR(inq, m, isr);
623 return;
624
625 drop:
626 m_freem(m);
627 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */
628 return;
629 }
630 #endif /* defined (LLC) || defined (NETATALK) */
631
632 /*
633 * Process a received Ethernet packet;
634 * the packet is in the mbuf chain m with
635 * the ether header.
636 */
637 void
638 ether_input(struct ifnet *ifp, struct mbuf *m)
639 {
640 struct ethercom *ec = (struct ethercom *) ifp;
641 pktqueue_t *pktq = NULL;
642 struct ifqueue *inq = NULL;
643 uint16_t etype;
644 struct ether_header *eh;
645 size_t ehlen;
646 static int earlypkts;
647 int isr = 0;
648
649 KASSERT(!cpu_intr_p());
650 KASSERT((m->m_flags & M_PKTHDR) != 0);
651
652 if ((ifp->if_flags & IFF_UP) == 0)
653 goto drop;
654
655 #ifdef MBUFTRACE
656 m_claimm(m, &ec->ec_rx_mowner);
657 #endif
658
659 if (__predict_false(m->m_len < sizeof(*eh))) {
660 if ((m = m_pullup(m, sizeof(*eh))) == NULL)
661 goto dropped;
662 }
663
664 eh = mtod(m, struct ether_header *);
665 etype = ntohs(eh->ether_type);
666 ehlen = sizeof(*eh);
667
668 if (__predict_false(earlypkts < 100 ||
669 entropy_epoch() == (unsigned)-1)) {
670 rnd_add_data(NULL, eh, ehlen, 0);
671 earlypkts++;
672 }
673
674 /*
675 * Determine if the packet is within its size limits. For MPLS the
676 * header length is variable, so we skip the check.
677 */
678 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
679 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
680 #ifdef DIAGNOSTIC
681 mutex_enter(&bigpktpps_lock);
682 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
683 bigpktppslim)) {
684 printf("%s: discarding oversize frame (len=%d)\n",
685 ifp->if_xname, m->m_pkthdr.len);
686 }
687 mutex_exit(&bigpktpps_lock);
688 #endif
689 goto drop;
690 }
691
692 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
693 /*
694 * If this is not a simplex interface, drop the packet
695 * if it came from us.
696 */
697 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
698 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
699 ETHER_ADDR_LEN) == 0) {
700 goto drop;
701 }
702
703 if (memcmp(etherbroadcastaddr,
704 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
705 m->m_flags |= M_BCAST;
706 else
707 m->m_flags |= M_MCAST;
708 if_statinc(ifp, if_imcasts);
709 }
710
711 /* If the CRC is still on the packet, trim it off. */
712 if (m->m_flags & M_HASFCS) {
713 m_adj(m, -ETHER_CRC_LEN);
714 m->m_flags &= ~M_HASFCS;
715 }
716
717 if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
718
719 #if NCARP > 0
720 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
721 /*
722 * Clear M_PROMISC, in case the packet comes from a
723 * vlan.
724 */
725 m->m_flags &= ~M_PROMISC;
726 if (carp_input(m, (uint8_t *)&eh->ether_shost,
727 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
728 return;
729 }
730 #endif
731
732 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
733 (ifp->if_flags & IFF_PROMISC) != 0 &&
734 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
735 ETHER_ADDR_LEN) != 0) {
736 m->m_flags |= M_PROMISC;
737 }
738
739 if ((m->m_flags & M_PROMISC) == 0) {
740 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
741 return;
742 if (m == NULL)
743 return;
744
745 eh = mtod(m, struct ether_header *);
746 etype = ntohs(eh->ether_type);
747 }
748
749 #if NAGR > 0
750 if (ifp->if_agrprivate &&
751 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
752 m->m_flags &= ~M_PROMISC;
753 agr_input(ifp, m);
754 return;
755 }
756 #endif
757
758 /*
759 * If VLANs are configured on the interface, check to
760 * see if the device performed the decapsulation and
761 * provided us with the tag.
762 */
763 if (ec->ec_nvlans && vlan_has_tag(m)) {
764 #if NVLAN > 0
765 /*
766 * vlan_input() will either recursively call ether_input()
767 * or drop the packet.
768 */
769 vlan_input(ifp, m);
770 return;
771 #else
772 goto drop;
773 #endif
774 }
775
776 /*
777 * Handle protocols that expect to have the Ethernet header
778 * (and possibly FCS) intact.
779 */
780 switch (etype) {
781 case ETHERTYPE_VLAN: {
782 struct ether_vlan_header *evl = (void *)eh;
783
784 /*
785 * If there is a tag of 0, then the VLAN header was probably
786 * just being used to store the priority. Extract the ether
787 * type, and if IP or IPV6, let them deal with it.
788 */
789 if (m->m_len >= sizeof(*evl) &&
790 EVL_VLANOFTAG(evl->evl_tag) == 0) {
791 etype = ntohs(evl->evl_proto);
792 ehlen = sizeof(*evl);
793 if ((m->m_flags & M_PROMISC) == 0 &&
794 (etype == ETHERTYPE_IP ||
795 etype == ETHERTYPE_IPV6))
796 break;
797 }
798
799 #if NVLAN > 0
800 /*
801 * vlan_input() will either recursively call ether_input()
802 * or drop the packet.
803 */
804 if (ec->ec_nvlans != 0) {
805 vlan_input(ifp, m);
806 return;
807 } else
808 #endif
809 goto drop;
810 }
811
812 #if NPPPOE > 0
813 case ETHERTYPE_PPPOEDISC:
814 pppoedisc_input(ifp, m);
815 return;
816
817 case ETHERTYPE_PPPOE:
818 pppoe_input(ifp, m);
819 return;
820 #endif
821
822 case ETHERTYPE_SLOWPROTOCOLS: {
823 uint8_t subtype;
824
825 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype))
826 goto drop;
827
828 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
829 switch (subtype) {
830 #if NAGR > 0
831 case SLOWPROTOCOLS_SUBTYPE_LACP:
832 if (ifp->if_agrprivate) {
833 ieee8023ad_lacp_input(ifp, m);
834 return;
835 }
836 break;
837
838 case SLOWPROTOCOLS_SUBTYPE_MARKER:
839 if (ifp->if_agrprivate) {
840 ieee8023ad_marker_input(ifp, m);
841 return;
842 }
843 break;
844 #endif
845
846 default:
847 if (subtype == 0 || subtype > 10) {
848 /* illegal value */
849 goto drop;
850 }
851 /* unknown subtype */
852 break;
853 }
854 }
855 /* FALLTHROUGH */
856 default:
857 if (m->m_flags & M_PROMISC)
858 goto drop;
859 }
860
861 /* If the CRC is still on the packet, trim it off. */
862 if (m->m_flags & M_HASFCS) {
863 m_adj(m, -ETHER_CRC_LEN);
864 m->m_flags &= ~M_HASFCS;
865 }
866
867 /* etype represents the size of the payload in this case */
868 if (etype <= ETHERMTU + sizeof(struct ether_header)) {
869 KASSERT(ehlen == sizeof(*eh));
870 #if defined (LLC) || defined (NETATALK)
871 ether_input_llc(ifp, m, eh);
872 return;
873 #else
874 goto drop;
875 #endif
876 }
877
878 /* Strip off the Ethernet header. */
879 m_adj(m, ehlen);
880
881 switch (etype) {
882 #ifdef INET
883 case ETHERTYPE_IP:
884 #ifdef GATEWAY
885 if (ipflow_fastforward(m))
886 return;
887 #endif
888 pktq = ip_pktq;
889 break;
890
891 case ETHERTYPE_ARP:
892 isr = NETISR_ARP;
893 inq = &arpintrq;
894 break;
895
896 case ETHERTYPE_REVARP:
897 revarpinput(m); /* XXX queue? */
898 return;
899 #endif
900
901 #ifdef INET6
902 case ETHERTYPE_IPV6:
903 if (__predict_false(!in6_present))
904 goto drop;
905 #ifdef GATEWAY
906 if (ip6flow_fastforward(&m))
907 return;
908 #endif
909 pktq = ip6_pktq;
910 break;
911 #endif
912
913 #ifdef NETATALK
914 case ETHERTYPE_ATALK:
915 isr = NETISR_ATALK;
916 inq = &atintrq1;
917 break;
918
919 case ETHERTYPE_AARP:
920 aarpinput(ifp, m); /* XXX queue? */
921 return;
922 #endif
923
924 #ifdef MPLS
925 case ETHERTYPE_MPLS:
926 isr = NETISR_MPLS;
927 inq = &mplsintrq;
928 break;
929 #endif
930
931 default:
932 goto drop;
933 }
934
935 if (__predict_true(pktq)) {
936 #ifdef NET_MPSAFE
937 const u_int h = curcpu()->ci_index;
938 #else
939 const uint32_t h = pktq_rps_hash(m);
940 #endif
941 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
942 m_freem(m);
943 }
944 return;
945 }
946
947 if (__predict_false(!inq)) {
948 /* Should not happen. */
949 goto drop;
950 }
951
952 IFQ_ENQUEUE_ISR(inq, m, isr);
953 return;
954
955 drop:
956 m_freem(m);
957 dropped:
958 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */
959 }
960
961 /*
962 * Convert Ethernet address to printable (loggable) representation.
963 */
964 char *
965 ether_sprintf(const u_char *ap)
966 {
967 static char etherbuf[3 * ETHER_ADDR_LEN];
968 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
969 }
970
971 char *
972 ether_snprintf(char *buf, size_t len, const u_char *ap)
973 {
974 char *cp = buf;
975 size_t i;
976
977 for (i = 0; i < len / 3; i++) {
978 *cp++ = hexdigits[*ap >> 4];
979 *cp++ = hexdigits[*ap++ & 0xf];
980 *cp++ = ':';
981 }
982 *--cp = '\0';
983 return buf;
984 }
985
986 static void
987 ether_link_state_changed(struct ifnet *ifp, int link_state)
988 {
989 #if NVLAN > 0
990 struct ethercom *ec = (void *)ifp;
991
992 if (ec->ec_nvlans)
993 vlan_link_state_changed(ifp, link_state);
994 #endif
995 }
996
997 /*
998 * Perform common duties while attaching to interface list
999 */
1000 void
1001 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
1002 {
1003 struct ethercom *ec = (struct ethercom *)ifp;
1004
1005 ifp->if_type = IFT_ETHER;
1006 ifp->if_hdrlen = ETHER_HDR_LEN;
1007 ifp->if_dlt = DLT_EN10MB;
1008 ifp->if_mtu = ETHERMTU;
1009 ifp->if_output = ether_output;
1010 ifp->_if_input = ether_input;
1011 ifp->if_link_state_changed = ether_link_state_changed;
1012 if (ifp->if_baudrate == 0)
1013 ifp->if_baudrate = IF_Mbps(10); /* just a default */
1014
1015 if (lla != NULL)
1016 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
1017
1018 LIST_INIT(&ec->ec_multiaddrs);
1019 SIMPLEQ_INIT(&ec->ec_vids);
1020 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1021 ec->ec_flags = 0;
1022 ifp->if_broadcastaddr = etherbroadcastaddr;
1023 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1024 #ifdef MBUFTRACE
1025 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
1026 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
1027 MOWNER_ATTACH(&ec->ec_tx_mowner);
1028 MOWNER_ATTACH(&ec->ec_rx_mowner);
1029 ifp->if_mowner = &ec->ec_tx_mowner;
1030 #endif
1031 }
1032
1033 void
1034 ether_ifdetach(struct ifnet *ifp)
1035 {
1036 struct ethercom *ec = (void *) ifp;
1037 struct ether_multi *enm;
1038
1039 IFNET_ASSERT_UNLOCKED(ifp);
1040 /*
1041 * Prevent further calls to ioctl (for example turning off
1042 * promiscuous mode from the bridge code), which eventually can
1043 * call if_init() which can cause panics because the interface
1044 * is in the process of being detached. Return device not configured
1045 * instead.
1046 */
1047 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
1048 enxio);
1049
1050 #if NBRIDGE > 0
1051 if (ifp->if_bridge)
1052 bridge_ifdetach(ifp);
1053 #endif
1054 bpf_detach(ifp);
1055 #if NVLAN > 0
1056 if (ec->ec_nvlans)
1057 vlan_ifdetach(ifp);
1058 #endif
1059
1060 ETHER_LOCK(ec);
1061 KASSERT(ec->ec_nvlans == 0);
1062 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1063 LIST_REMOVE(enm, enm_list);
1064 kmem_free(enm, sizeof(*enm));
1065 ec->ec_multicnt--;
1066 }
1067 ETHER_UNLOCK(ec);
1068
1069 mutex_obj_free(ec->ec_lock);
1070 ec->ec_lock = NULL;
1071
1072 ifp->if_mowner = NULL;
1073 MOWNER_DETACH(&ec->ec_rx_mowner);
1074 MOWNER_DETACH(&ec->ec_tx_mowner);
1075 }
1076
1077 #if 0
1078 /*
1079 * This is for reference. We have a table-driven version
1080 * of the little-endian crc32 generator, which is faster
1081 * than the double-loop.
1082 */
1083 uint32_t
1084 ether_crc32_le(const uint8_t *buf, size_t len)
1085 {
1086 uint32_t c, crc, carry;
1087 size_t i, j;
1088
1089 crc = 0xffffffffU; /* initial value */
1090
1091 for (i = 0; i < len; i++) {
1092 c = buf[i];
1093 for (j = 0; j < 8; j++) {
1094 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1095 crc >>= 1;
1096 c >>= 1;
1097 if (carry)
1098 crc = (crc ^ ETHER_CRC_POLY_LE);
1099 }
1100 }
1101
1102 return (crc);
1103 }
1104 #else
1105 uint32_t
1106 ether_crc32_le(const uint8_t *buf, size_t len)
1107 {
1108 static const uint32_t crctab[] = {
1109 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1110 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1111 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1112 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1113 };
1114 uint32_t crc;
1115 size_t i;
1116
1117 crc = 0xffffffffU; /* initial value */
1118
1119 for (i = 0; i < len; i++) {
1120 crc ^= buf[i];
1121 crc = (crc >> 4) ^ crctab[crc & 0xf];
1122 crc = (crc >> 4) ^ crctab[crc & 0xf];
1123 }
1124
1125 return (crc);
1126 }
1127 #endif
1128
1129 uint32_t
1130 ether_crc32_be(const uint8_t *buf, size_t len)
1131 {
1132 uint32_t c, crc, carry;
1133 size_t i, j;
1134
1135 crc = 0xffffffffU; /* initial value */
1136
1137 for (i = 0; i < len; i++) {
1138 c = buf[i];
1139 for (j = 0; j < 8; j++) {
1140 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1141 crc <<= 1;
1142 c >>= 1;
1143 if (carry)
1144 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1145 }
1146 }
1147
1148 return (crc);
1149 }
1150
1151 #ifdef INET
1152 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1153 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1154 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1155 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1156 #endif
1157 #ifdef INET6
1158 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1159 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1160 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1161 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1162 #endif
1163
1164 /*
1165 * ether_aton implementation, not using a static buffer.
1166 */
1167 int
1168 ether_aton_r(u_char *dest, size_t len, const char *str)
1169 {
1170 const u_char *cp = (const void *)str;
1171 u_char *ep;
1172
1173 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1174
1175 if (len < ETHER_ADDR_LEN)
1176 return ENOSPC;
1177
1178 ep = dest + ETHER_ADDR_LEN;
1179
1180 while (*cp) {
1181 if (!isxdigit(*cp))
1182 return EINVAL;
1183
1184 *dest = atox(*cp);
1185 cp++;
1186 if (isxdigit(*cp)) {
1187 *dest = (*dest << 4) | atox(*cp);
1188 cp++;
1189 }
1190 dest++;
1191
1192 if (dest == ep)
1193 return (*cp == '\0') ? 0 : ENAMETOOLONG;
1194
1195 switch (*cp) {
1196 case ':':
1197 case '-':
1198 case '.':
1199 cp++;
1200 break;
1201 }
1202 }
1203 return ENOBUFS;
1204 }
1205
1206 /*
1207 * Convert a sockaddr into an Ethernet address or range of Ethernet
1208 * addresses.
1209 */
1210 int
1211 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1212 uint8_t addrhi[ETHER_ADDR_LEN])
1213 {
1214 #ifdef INET
1215 const struct sockaddr_in *sin;
1216 #endif
1217 #ifdef INET6
1218 const struct sockaddr_in6 *sin6;
1219 #endif
1220
1221 switch (sa->sa_family) {
1222
1223 case AF_UNSPEC:
1224 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1225 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1226 break;
1227
1228 #ifdef INET
1229 case AF_INET:
1230 sin = satocsin(sa);
1231 if (sin->sin_addr.s_addr == INADDR_ANY) {
1232 /*
1233 * An IP address of INADDR_ANY means listen to
1234 * or stop listening to all of the Ethernet
1235 * multicast addresses used for IP.
1236 * (This is for the sake of IP multicast routers.)
1237 */
1238 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1239 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1240 } else {
1241 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1242 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1243 }
1244 break;
1245 #endif
1246 #ifdef INET6
1247 case AF_INET6:
1248 sin6 = satocsin6(sa);
1249 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1250 /*
1251 * An IP6 address of 0 means listen to or stop
1252 * listening to all of the Ethernet multicast
1253 * address used for IP6.
1254 * (This is used for multicast routers.)
1255 */
1256 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1257 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1258 } else {
1259 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1260 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1261 }
1262 break;
1263 #endif
1264
1265 default:
1266 return EAFNOSUPPORT;
1267 }
1268 return 0;
1269 }
1270
1271 /*
1272 * Add an Ethernet multicast address or range of addresses to the list for a
1273 * given interface.
1274 */
1275 int
1276 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1277 {
1278 struct ether_multi *enm, *_enm;
1279 u_char addrlo[ETHER_ADDR_LEN];
1280 u_char addrhi[ETHER_ADDR_LEN];
1281 int error = 0;
1282
1283 /* Allocate out of lock */
1284 enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1285
1286 ETHER_LOCK(ec);
1287 error = ether_multiaddr(sa, addrlo, addrhi);
1288 if (error != 0)
1289 goto out;
1290
1291 /*
1292 * Verify that we have valid Ethernet multicast addresses.
1293 */
1294 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1295 error = EINVAL;
1296 goto out;
1297 }
1298
1299 /*
1300 * See if the address range is already in the list.
1301 */
1302 _enm = ether_lookup_multi(addrlo, addrhi, ec);
1303 if (_enm != NULL) {
1304 /*
1305 * Found it; just increment the reference count.
1306 */
1307 ++_enm->enm_refcount;
1308 error = 0;
1309 goto out;
1310 }
1311
1312 /*
1313 * Link a new multicast record into the interface's multicast list.
1314 */
1315 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1316 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1317 enm->enm_refcount = 1;
1318 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1319 ec->ec_multicnt++;
1320
1321 /*
1322 * Return ENETRESET to inform the driver that the list has changed
1323 * and its reception filter should be adjusted accordingly.
1324 */
1325 error = ENETRESET;
1326 enm = NULL;
1327
1328 out:
1329 ETHER_UNLOCK(ec);
1330 if (enm != NULL)
1331 kmem_free(enm, sizeof(*enm));
1332 return error;
1333 }
1334
1335 /*
1336 * Delete a multicast address record.
1337 */
1338 int
1339 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1340 {
1341 struct ether_multi *enm;
1342 u_char addrlo[ETHER_ADDR_LEN];
1343 u_char addrhi[ETHER_ADDR_LEN];
1344 int error;
1345
1346 ETHER_LOCK(ec);
1347 error = ether_multiaddr(sa, addrlo, addrhi);
1348 if (error != 0)
1349 goto error;
1350
1351 /*
1352 * Look up the address in our list.
1353 */
1354 enm = ether_lookup_multi(addrlo, addrhi, ec);
1355 if (enm == NULL) {
1356 error = ENXIO;
1357 goto error;
1358 }
1359 if (--enm->enm_refcount != 0) {
1360 /*
1361 * Still some claims to this record.
1362 */
1363 error = 0;
1364 goto error;
1365 }
1366
1367 /*
1368 * No remaining claims to this record; unlink and free it.
1369 */
1370 LIST_REMOVE(enm, enm_list);
1371 ec->ec_multicnt--;
1372 ETHER_UNLOCK(ec);
1373 kmem_free(enm, sizeof(*enm));
1374
1375 /*
1376 * Return ENETRESET to inform the driver that the list has changed
1377 * and its reception filter should be adjusted accordingly.
1378 */
1379 return ENETRESET;
1380
1381 error:
1382 ETHER_UNLOCK(ec);
1383 return error;
1384 }
1385
1386 void
1387 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1388 {
1389 ec->ec_ifflags_cb = cb;
1390 }
1391
1392 void
1393 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
1394 {
1395
1396 ec->ec_vlan_cb = cb;
1397 }
1398
1399 static int
1400 ether_ioctl_reinit(struct ethercom *ec)
1401 {
1402 struct ifnet *ifp = &ec->ec_if;
1403 int error;
1404
1405 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1406 case IFF_RUNNING:
1407 /*
1408 * If interface is marked down and it is running,
1409 * then stop and disable it.
1410 */
1411 (*ifp->if_stop)(ifp, 1);
1412 break;
1413 case IFF_UP:
1414 /*
1415 * If interface is marked up and it is stopped, then
1416 * start it.
1417 */
1418 return (*ifp->if_init)(ifp);
1419 case IFF_UP | IFF_RUNNING:
1420 error = 0;
1421 if (ec->ec_ifflags_cb != NULL) {
1422 error = (*ec->ec_ifflags_cb)(ec);
1423 if (error == ENETRESET) {
1424 /*
1425 * Reset the interface to pick up
1426 * changes in any other flags that
1427 * affect the hardware state.
1428 */
1429 return (*ifp->if_init)(ifp);
1430 }
1431 } else
1432 error = (*ifp->if_init)(ifp);
1433 return error;
1434 case 0:
1435 break;
1436 }
1437
1438 return 0;
1439 }
1440
1441 /*
1442 * Common ioctls for Ethernet interfaces. Note, we must be
1443 * called at splnet().
1444 */
1445 int
1446 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1447 {
1448 struct ethercom *ec = (void *)ifp;
1449 struct eccapreq *eccr;
1450 struct ifreq *ifr = (struct ifreq *)data;
1451 struct if_laddrreq *iflr = data;
1452 const struct sockaddr_dl *sdl;
1453 static const uint8_t zero[ETHER_ADDR_LEN];
1454 int error;
1455
1456 switch (cmd) {
1457 case SIOCINITIFADDR:
1458 {
1459 struct ifaddr *ifa = (struct ifaddr *)data;
1460 if (ifa->ifa_addr->sa_family != AF_LINK
1461 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1462 (IFF_UP | IFF_RUNNING)) {
1463 ifp->if_flags |= IFF_UP;
1464 if ((error = (*ifp->if_init)(ifp)) != 0)
1465 return error;
1466 }
1467 #ifdef INET
1468 if (ifa->ifa_addr->sa_family == AF_INET)
1469 arp_ifinit(ifp, ifa);
1470 #endif
1471 return 0;
1472 }
1473
1474 case SIOCSIFMTU:
1475 {
1476 int maxmtu;
1477
1478 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1479 maxmtu = ETHERMTU_JUMBO;
1480 else
1481 maxmtu = ETHERMTU;
1482
1483 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1484 return EINVAL;
1485 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1486 return error;
1487 else if (ifp->if_flags & IFF_UP) {
1488 /* Make sure the device notices the MTU change. */
1489 return (*ifp->if_init)(ifp);
1490 } else
1491 return 0;
1492 }
1493
1494 case SIOCSIFFLAGS:
1495 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1496 return error;
1497 return ether_ioctl_reinit(ec);
1498 case SIOCGIFFLAGS:
1499 error = ifioctl_common(ifp, cmd, data);
1500 if (error == 0) {
1501 /* Set IFF_ALLMULTI for backcompat */
1502 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
1503 IFF_ALLMULTI : 0;
1504 }
1505 return error;
1506 case SIOCGETHERCAP:
1507 eccr = (struct eccapreq *)data;
1508 eccr->eccr_capabilities = ec->ec_capabilities;
1509 eccr->eccr_capenable = ec->ec_capenable;
1510 return 0;
1511 case SIOCSETHERCAP:
1512 eccr = (struct eccapreq *)data;
1513 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1514 return EINVAL;
1515 if (eccr->eccr_capenable == ec->ec_capenable)
1516 return 0;
1517 #if 0 /* notyet */
1518 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1519 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1520 #else
1521 ec->ec_capenable = eccr->eccr_capenable;
1522 #endif
1523 return ether_ioctl_reinit(ec);
1524 case SIOCADDMULTI:
1525 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1526 case SIOCDELMULTI:
1527 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1528 case SIOCSIFMEDIA:
1529 case SIOCGIFMEDIA:
1530 if (ec->ec_mii != NULL)
1531 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
1532 cmd);
1533 else if (ec->ec_ifmedia != NULL)
1534 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
1535 else
1536 return ENOTTY;
1537 break;
1538 case SIOCALIFADDR:
1539 sdl = satocsdl(sstocsa(&iflr->addr));
1540 if (sdl->sdl_family != AF_LINK)
1541 ;
1542 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1543 return EINVAL;
1544 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1545 return EINVAL;
1546 /*FALLTHROUGH*/
1547 default:
1548 return ifioctl_common(ifp, cmd, data);
1549 }
1550 return 0;
1551 }
1552
1553 /*
1554 * Enable/disable passing VLAN packets if the parent interface supports it.
1555 * Return:
1556 * 0: Ok
1557 * -1: Parent interface does not support vlans
1558 * >0: Error
1559 */
1560 int
1561 ether_enable_vlan_mtu(struct ifnet *ifp)
1562 {
1563 int error;
1564 struct ethercom *ec = (void *)ifp;
1565
1566 /* Parent does not support VLAN's */
1567 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1568 return -1;
1569
1570 /*
1571 * Parent supports the VLAN_MTU capability,
1572 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1573 * enable it.
1574 */
1575 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1576
1577 /* Interface is down, defer for later */
1578 if ((ifp->if_flags & IFF_UP) == 0)
1579 return 0;
1580
1581 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1582 return 0;
1583
1584 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1585 return error;
1586 }
1587
1588 int
1589 ether_disable_vlan_mtu(struct ifnet *ifp)
1590 {
1591 int error;
1592 struct ethercom *ec = (void *)ifp;
1593
1594 /* We still have VLAN's, defer for later */
1595 if (ec->ec_nvlans != 0)
1596 return 0;
1597
1598 /* Parent does not support VLAB's, nothing to do. */
1599 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1600 return -1;
1601
1602 /*
1603 * Disable Tx/Rx of VLAN-sized frames.
1604 */
1605 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1606
1607 /* Interface is down, defer for later */
1608 if ((ifp->if_flags & IFF_UP) == 0)
1609 return 0;
1610
1611 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1612 return 0;
1613
1614 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1615 return error;
1616 }
1617
1618 static int
1619 ether_multicast_sysctl(SYSCTLFN_ARGS)
1620 {
1621 struct ether_multi *enm;
1622 struct ifnet *ifp;
1623 struct ethercom *ec;
1624 int error = 0;
1625 size_t written;
1626 struct psref psref;
1627 int bound;
1628 unsigned int multicnt;
1629 struct ether_multi_sysctl *addrs;
1630 int i;
1631
1632 if (namelen != 1)
1633 return EINVAL;
1634
1635 bound = curlwp_bind();
1636 ifp = if_get_byindex(name[0], &psref);
1637 if (ifp == NULL) {
1638 error = ENODEV;
1639 goto out;
1640 }
1641 if (ifp->if_type != IFT_ETHER) {
1642 if_put(ifp, &psref);
1643 *oldlenp = 0;
1644 goto out;
1645 }
1646 ec = (struct ethercom *)ifp;
1647
1648 if (oldp == NULL) {
1649 if_put(ifp, &psref);
1650 *oldlenp = ec->ec_multicnt * sizeof(*addrs);
1651 goto out;
1652 }
1653
1654 /*
1655 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1656 * is sleepable, while holding it. Copy data to a local buffer first
1657 * with the lock taken and then call sysctl_copyout without holding it.
1658 */
1659 retry:
1660 multicnt = ec->ec_multicnt;
1661
1662 if (multicnt == 0) {
1663 if_put(ifp, &psref);
1664 *oldlenp = 0;
1665 goto out;
1666 }
1667
1668 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1669
1670 ETHER_LOCK(ec);
1671 if (multicnt != ec->ec_multicnt) {
1672 /* The number of multicast addresses has changed */
1673 ETHER_UNLOCK(ec);
1674 kmem_free(addrs, sizeof(*addrs) * multicnt);
1675 goto retry;
1676 }
1677
1678 i = 0;
1679 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1680 struct ether_multi_sysctl *addr = &addrs[i];
1681 addr->enm_refcount = enm->enm_refcount;
1682 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1683 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1684 i++;
1685 }
1686 ETHER_UNLOCK(ec);
1687
1688 error = 0;
1689 written = 0;
1690 for (i = 0; i < multicnt; i++) {
1691 struct ether_multi_sysctl *addr = &addrs[i];
1692
1693 if (written + sizeof(*addr) > *oldlenp)
1694 break;
1695 error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1696 if (error)
1697 break;
1698 written += sizeof(*addr);
1699 oldp = (char *)oldp + sizeof(*addr);
1700 }
1701 kmem_free(addrs, sizeof(*addrs) * multicnt);
1702
1703 if_put(ifp, &psref);
1704
1705 *oldlenp = written;
1706 out:
1707 curlwp_bindx(bound);
1708 return error;
1709 }
1710
1711 static void
1712 ether_sysctl_setup(struct sysctllog **clog)
1713 {
1714 const struct sysctlnode *rnode = NULL;
1715
1716 sysctl_createv(clog, 0, NULL, &rnode,
1717 CTLFLAG_PERMANENT,
1718 CTLTYPE_NODE, "ether",
1719 SYSCTL_DESCR("Ethernet-specific information"),
1720 NULL, 0, NULL, 0,
1721 CTL_NET, CTL_CREATE, CTL_EOL);
1722
1723 sysctl_createv(clog, 0, &rnode, NULL,
1724 CTLFLAG_PERMANENT,
1725 CTLTYPE_NODE, "multicast",
1726 SYSCTL_DESCR("multicast addresses"),
1727 ether_multicast_sysctl, 0, NULL, 0,
1728 CTL_CREATE, CTL_EOL);
1729 }
1730
1731 void
1732 etherinit(void)
1733 {
1734
1735 #ifdef DIAGNOSTIC
1736 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1737 #endif
1738 ether_sysctl_setup(NULL);
1739 }
1740