if_ethersubr.c revision 1.302 1 /* $NetBSD: if_ethersubr.c,v 1.302 2021/10/25 17:05:43 ryo Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.302 2021/10/25 17:05:43 ryo Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/entropy.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92 #include <sys/hook.h>
93
94 #include <net/if.h>
95 #include <net/netisr.h>
96 #include <net/route.h>
97 #include <net/if_llc.h>
98 #include <net/if_dl.h>
99 #include <net/if_types.h>
100 #include <net/pktqueue.h>
101
102 #include <net/if_media.h>
103 #include <dev/mii/mii.h>
104 #include <dev/mii/miivar.h>
105
106 #if NARP == 0
107 /*
108 * XXX there should really be a way to issue this warning from within config(8)
109 */
110 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
111 #endif
112
113 #include <net/bpf.h>
114
115 #include <net/if_ether.h>
116 #include <net/if_vlanvar.h>
117
118 #if NPPPOE > 0
119 #include <net/if_pppoe.h>
120 #endif
121
122 #if NAGR > 0
123 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
124 #include <net/agr/ieee8023ad.h>
125 #include <net/agr/if_agrvar.h>
126 #endif
127
128 #include <net/lagg/if_laggvar.h>
129
130 #if NBRIDGE > 0
131 #include <net/if_bridgevar.h>
132 #endif
133
134 #include <netinet/in.h>
135 #ifdef INET
136 #include <netinet/in_var.h>
137 #endif
138 #include <netinet/if_inarp.h>
139
140 #ifdef INET6
141 #ifndef INET
142 #include <netinet/in.h>
143 #endif
144 #include <netinet6/in6_var.h>
145 #include <netinet6/nd6.h>
146 #endif
147
148 #include "carp.h"
149 #if NCARP > 0
150 #include <netinet/ip_carp.h>
151 #endif
152
153 #ifdef NETATALK
154 #include <netatalk/at.h>
155 #include <netatalk/at_var.h>
156 #include <netatalk/at_extern.h>
157
158 #define llc_snap_org_code llc_un.type_snap.org_code
159 #define llc_snap_ether_type llc_un.type_snap.ether_type
160
161 extern u_char at_org_code[3];
162 extern u_char aarp_org_code[3];
163 #endif /* NETATALK */
164
165 #ifdef MPLS
166 #include <netmpls/mpls.h>
167 #include <netmpls/mpls_var.h>
168 #endif
169
170 CTASSERT(sizeof(struct ether_addr) == 6);
171 CTASSERT(sizeof(struct ether_header) == 14);
172
173 #ifdef DIAGNOSTIC
174 static struct timeval bigpktppslim_last;
175 static int bigpktppslim = 2; /* XXX */
176 static int bigpktpps_count;
177 static kmutex_t bigpktpps_lock __cacheline_aligned;
178 #endif
179
180 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
181 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
182 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
183 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
184 #define senderr(e) { error = (e); goto bad;}
185
186 static pktq_rps_hash_func_t ether_pktq_rps_hash_p;
187
188 /* if_lagg(4) support */
189 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
190
191 static int ether_output(struct ifnet *, struct mbuf *,
192 const struct sockaddr *, const struct rtentry *);
193
194 /*
195 * Ethernet output routine.
196 * Encapsulate a packet of type family for the local net.
197 * Assumes that ifp is actually pointer to ethercom structure.
198 */
199 static int
200 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
201 const struct sockaddr * const dst, const struct rtentry *rt)
202 {
203 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
204 uint16_t etype = 0;
205 int error = 0, hdrcmplt = 0;
206 struct mbuf *m = m0;
207 struct mbuf *mcopy = NULL;
208 struct ether_header *eh;
209 struct ifnet *ifp = ifp0;
210 #ifdef INET
211 struct arphdr *ah;
212 #endif
213 #ifdef NETATALK
214 struct at_ifaddr *aa;
215 #endif
216
217 #ifdef MBUFTRACE
218 m_claimm(m, ifp->if_mowner);
219 #endif
220
221 #if NCARP > 0
222 if (ifp->if_type == IFT_CARP) {
223 struct ifaddr *ifa;
224 int s = pserialize_read_enter();
225
226 /* loop back if this is going to the carp interface */
227 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
228 (ifa = ifa_ifwithaddr(dst)) != NULL) {
229 if (ifa->ifa_ifp == ifp0) {
230 pserialize_read_exit(s);
231 return looutput(ifp0, m, dst, rt);
232 }
233 }
234 pserialize_read_exit(s);
235
236 ifp = ifp->if_carpdev;
237 /* ac = (struct arpcom *)ifp; */
238
239 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
240 (IFF_UP | IFF_RUNNING))
241 senderr(ENETDOWN);
242 }
243 #endif
244
245 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
246 senderr(ENETDOWN);
247
248 switch (dst->sa_family) {
249
250 #ifdef INET
251 case AF_INET:
252 if (m->m_flags & M_BCAST) {
253 memcpy(edst, etherbroadcastaddr, sizeof(edst));
254 } else if (m->m_flags & M_MCAST) {
255 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
256 } else {
257 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
258 if (error)
259 return (error == EWOULDBLOCK) ? 0 : error;
260 }
261 /* If broadcasting on a simplex interface, loopback a copy */
262 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
263 mcopy = m_copypacket(m, M_DONTWAIT);
264 etype = htons(ETHERTYPE_IP);
265 break;
266
267 case AF_ARP:
268 ah = mtod(m, struct arphdr *);
269 if (m->m_flags & M_BCAST) {
270 memcpy(edst, etherbroadcastaddr, sizeof(edst));
271 } else {
272 void *tha = ar_tha(ah);
273
274 if (tha == NULL) {
275 /* fake with ARPHRD_IEEE1394 */
276 m_freem(m);
277 return 0;
278 }
279 memcpy(edst, tha, sizeof(edst));
280 }
281
282 ah->ar_hrd = htons(ARPHRD_ETHER);
283
284 switch (ntohs(ah->ar_op)) {
285 case ARPOP_REVREQUEST:
286 case ARPOP_REVREPLY:
287 etype = htons(ETHERTYPE_REVARP);
288 break;
289
290 case ARPOP_REQUEST:
291 case ARPOP_REPLY:
292 default:
293 etype = htons(ETHERTYPE_ARP);
294 }
295 break;
296 #endif
297
298 #ifdef INET6
299 case AF_INET6:
300 if (m->m_flags & M_BCAST) {
301 memcpy(edst, etherbroadcastaddr, sizeof(edst));
302 } else if (m->m_flags & M_MCAST) {
303 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
304 edst);
305 } else {
306 error = nd6_resolve(ifp0, rt, m, dst, edst,
307 sizeof(edst));
308 if (error)
309 return (error == EWOULDBLOCK) ? 0 : error;
310 }
311 etype = htons(ETHERTYPE_IPV6);
312 break;
313 #endif
314
315 #ifdef NETATALK
316 case AF_APPLETALK: {
317 struct ifaddr *ifa;
318 int s;
319
320 KERNEL_LOCK(1, NULL);
321
322 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
323 KERNEL_UNLOCK_ONE(NULL);
324 return 0;
325 }
326
327 /*
328 * ifaddr is the first thing in at_ifaddr
329 */
330 s = pserialize_read_enter();
331 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
332 if (ifa == NULL) {
333 pserialize_read_exit(s);
334 KERNEL_UNLOCK_ONE(NULL);
335 senderr(EADDRNOTAVAIL);
336 }
337 aa = (struct at_ifaddr *)ifa;
338
339 /*
340 * In the phase 2 case, we need to prepend an mbuf for the
341 * llc header.
342 */
343 if (aa->aa_flags & AFA_PHASE2) {
344 struct llc llc;
345
346 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
347 if (m == NULL) {
348 pserialize_read_exit(s);
349 KERNEL_UNLOCK_ONE(NULL);
350 senderr(ENOBUFS);
351 }
352
353 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
354 llc.llc_control = LLC_UI;
355 memcpy(llc.llc_snap_org_code, at_org_code,
356 sizeof(llc.llc_snap_org_code));
357 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
358 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
359 } else {
360 etype = htons(ETHERTYPE_ATALK);
361 }
362 pserialize_read_exit(s);
363 KERNEL_UNLOCK_ONE(NULL);
364 break;
365 }
366 #endif /* NETATALK */
367
368 case pseudo_AF_HDRCMPLT:
369 hdrcmplt = 1;
370 memcpy(esrc,
371 ((const struct ether_header *)dst->sa_data)->ether_shost,
372 sizeof(esrc));
373 /* FALLTHROUGH */
374
375 case AF_UNSPEC:
376 memcpy(edst,
377 ((const struct ether_header *)dst->sa_data)->ether_dhost,
378 sizeof(edst));
379 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
380 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
381 break;
382
383 default:
384 printf("%s: can't handle af%d\n", ifp->if_xname,
385 dst->sa_family);
386 senderr(EAFNOSUPPORT);
387 }
388
389 #ifdef MPLS
390 {
391 struct m_tag *mtag;
392 mtag = m_tag_find(m, PACKET_TAG_MPLS);
393 if (mtag != NULL) {
394 /* Having the tag itself indicates it's MPLS */
395 etype = htons(ETHERTYPE_MPLS);
396 m_tag_delete(m, mtag);
397 }
398 }
399 #endif
400
401 if (mcopy)
402 (void)looutput(ifp, mcopy, dst, rt);
403
404 KASSERT((m->m_flags & M_PKTHDR) != 0);
405
406 /*
407 * If no ether type is set, this must be a 802.2 formatted packet.
408 */
409 if (etype == 0)
410 etype = htons(m->m_pkthdr.len);
411
412 /*
413 * Add local net header. If no space in first mbuf, allocate another.
414 */
415 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
416 if (m == NULL)
417 senderr(ENOBUFS);
418
419 eh = mtod(m, struct ether_header *);
420 /* Note: etype is already in network byte order. */
421 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
422 memcpy(eh->ether_dhost, edst, sizeof(edst));
423 if (hdrcmplt) {
424 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
425 } else {
426 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
427 sizeof(eh->ether_shost));
428 }
429
430 #if NCARP > 0
431 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
432 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
433 sizeof(eh->ether_shost));
434 }
435 #endif
436
437 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
438 return error;
439 if (m == NULL)
440 return 0;
441
442 #if NBRIDGE > 0
443 /*
444 * Bridges require special output handling.
445 */
446 if (ifp->if_bridge)
447 return bridge_output(ifp, m, NULL, NULL);
448 #endif
449
450 #if NCARP > 0
451 if (ifp != ifp0)
452 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
453 #endif
454
455 #ifdef ALTQ
456 KERNEL_LOCK(1, NULL);
457 /*
458 * If ALTQ is enabled on the parent interface, do
459 * classification; the queueing discipline might not
460 * require classification, but might require the
461 * address family/header pointer in the pktattr.
462 */
463 if (ALTQ_IS_ENABLED(&ifp->if_snd))
464 altq_etherclassify(&ifp->if_snd, m);
465 KERNEL_UNLOCK_ONE(NULL);
466 #endif
467 return ifq_enqueue(ifp, m);
468
469 bad:
470 if_statinc(ifp, if_oerrors);
471 if (m)
472 m_freem(m);
473 return error;
474 }
475
476 #ifdef ALTQ
477 /*
478 * This routine is a slight hack to allow a packet to be classified
479 * if the Ethernet headers are present. It will go away when ALTQ's
480 * classification engine understands link headers.
481 *
482 * XXX: We may need to do m_pullups here. First to ensure struct ether_header
483 * is indeed contiguous, then to read the LLC and so on.
484 */
485 void
486 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
487 {
488 struct ether_header *eh;
489 struct mbuf *mtop = m;
490 uint16_t ether_type;
491 int hlen, af, hdrsize;
492 void *hdr;
493
494 KASSERT((mtop->m_flags & M_PKTHDR) != 0);
495
496 hlen = ETHER_HDR_LEN;
497 eh = mtod(m, struct ether_header *);
498
499 ether_type = htons(eh->ether_type);
500
501 if (ether_type < ETHERMTU) {
502 /* LLC/SNAP */
503 struct llc *llc = (struct llc *)(eh + 1);
504 hlen += 8;
505
506 if (m->m_len < hlen ||
507 llc->llc_dsap != LLC_SNAP_LSAP ||
508 llc->llc_ssap != LLC_SNAP_LSAP ||
509 llc->llc_control != LLC_UI) {
510 /* Not SNAP. */
511 goto bad;
512 }
513
514 ether_type = htons(llc->llc_un.type_snap.ether_type);
515 }
516
517 switch (ether_type) {
518 case ETHERTYPE_IP:
519 af = AF_INET;
520 hdrsize = 20; /* sizeof(struct ip) */
521 break;
522
523 case ETHERTYPE_IPV6:
524 af = AF_INET6;
525 hdrsize = 40; /* sizeof(struct ip6_hdr) */
526 break;
527
528 default:
529 af = AF_UNSPEC;
530 hdrsize = 0;
531 break;
532 }
533
534 while (m->m_len <= hlen) {
535 hlen -= m->m_len;
536 m = m->m_next;
537 if (m == NULL)
538 goto bad;
539 }
540
541 if (m->m_len < (hlen + hdrsize)) {
542 /*
543 * protocol header not in a single mbuf.
544 * We can't cope with this situation right
545 * now (but it shouldn't ever happen, really, anyhow).
546 */
547 #ifdef DEBUG
548 printf("altq_etherclassify: headers span multiple mbufs: "
549 "%d < %d\n", m->m_len, (hlen + hdrsize));
550 #endif
551 goto bad;
552 }
553
554 m->m_data += hlen;
555 m->m_len -= hlen;
556
557 hdr = mtod(m, void *);
558
559 if (ALTQ_NEEDS_CLASSIFY(ifq)) {
560 mtop->m_pkthdr.pattr_class =
561 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
562 }
563 mtop->m_pkthdr.pattr_af = af;
564 mtop->m_pkthdr.pattr_hdr = hdr;
565
566 m->m_data -= hlen;
567 m->m_len += hlen;
568
569 return;
570
571 bad:
572 mtop->m_pkthdr.pattr_class = NULL;
573 mtop->m_pkthdr.pattr_hdr = NULL;
574 mtop->m_pkthdr.pattr_af = AF_UNSPEC;
575 }
576 #endif /* ALTQ */
577
578 #if defined (LLC) || defined (NETATALK)
579 static void
580 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh)
581 {
582 struct ifqueue *inq = NULL;
583 int isr = 0;
584 struct llc *l;
585
586 if (m->m_len < sizeof(*eh) + sizeof(struct llc))
587 goto drop;
588
589 l = (struct llc *)(eh+1);
590 switch (l->llc_dsap) {
591 #ifdef NETATALK
592 case LLC_SNAP_LSAP:
593 switch (l->llc_control) {
594 case LLC_UI:
595 if (l->llc_ssap != LLC_SNAP_LSAP)
596 goto drop;
597
598 if (memcmp(&(l->llc_snap_org_code)[0],
599 at_org_code, sizeof(at_org_code)) == 0 &&
600 ntohs(l->llc_snap_ether_type) ==
601 ETHERTYPE_ATALK) {
602 inq = &atintrq2;
603 m_adj(m, sizeof(struct ether_header)
604 + sizeof(struct llc));
605 isr = NETISR_ATALK;
606 break;
607 }
608
609 if (memcmp(&(l->llc_snap_org_code)[0],
610 aarp_org_code,
611 sizeof(aarp_org_code)) == 0 &&
612 ntohs(l->llc_snap_ether_type) ==
613 ETHERTYPE_AARP) {
614 m_adj(m, sizeof(struct ether_header)
615 + sizeof(struct llc));
616 aarpinput(ifp, m); /* XXX queue? */
617 return;
618 }
619
620 default:
621 goto drop;
622 }
623 break;
624 #endif
625 default:
626 goto drop;
627 }
628
629 KASSERT(inq != NULL);
630 IFQ_ENQUEUE_ISR(inq, m, isr);
631 return;
632
633 drop:
634 m_freem(m);
635 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */
636 return;
637 }
638 #endif /* defined (LLC) || defined (NETATALK) */
639
640 /*
641 * Process a received Ethernet packet;
642 * the packet is in the mbuf chain m with
643 * the ether header.
644 */
645 void
646 ether_input(struct ifnet *ifp, struct mbuf *m)
647 {
648 struct ethercom *ec = (struct ethercom *) ifp;
649 pktqueue_t *pktq = NULL;
650 struct ifqueue *inq = NULL;
651 uint16_t etype;
652 struct ether_header *eh;
653 size_t ehlen;
654 static int earlypkts;
655 int isr = 0;
656 #if NAGR > 0
657 void *agrprivate;
658 #endif
659
660 KASSERT(!cpu_intr_p());
661 KASSERT((m->m_flags & M_PKTHDR) != 0);
662
663 if ((ifp->if_flags & IFF_UP) == 0)
664 goto drop;
665
666 #ifdef MBUFTRACE
667 m_claimm(m, &ec->ec_rx_mowner);
668 #endif
669
670 if (__predict_false(m->m_len < sizeof(*eh))) {
671 if ((m = m_pullup(m, sizeof(*eh))) == NULL)
672 goto dropped;
673 }
674
675 eh = mtod(m, struct ether_header *);
676 etype = ntohs(eh->ether_type);
677 ehlen = sizeof(*eh);
678
679 if (__predict_false(earlypkts < 100 ||
680 entropy_epoch() == (unsigned)-1)) {
681 rnd_add_data(NULL, eh, ehlen, 0);
682 earlypkts++;
683 }
684
685 /*
686 * Determine if the packet is within its size limits. For MPLS the
687 * header length is variable, so we skip the check.
688 */
689 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
690 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
691 #ifdef DIAGNOSTIC
692 mutex_enter(&bigpktpps_lock);
693 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
694 bigpktppslim)) {
695 printf("%s: discarding oversize frame (len=%d)\n",
696 ifp->if_xname, m->m_pkthdr.len);
697 }
698 mutex_exit(&bigpktpps_lock);
699 #endif
700 goto drop;
701 }
702
703 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
704 /*
705 * If this is not a simplex interface, drop the packet
706 * if it came from us.
707 */
708 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
709 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
710 ETHER_ADDR_LEN) == 0) {
711 goto drop;
712 }
713
714 if (memcmp(etherbroadcastaddr,
715 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
716 m->m_flags |= M_BCAST;
717 else
718 m->m_flags |= M_MCAST;
719 if_statinc(ifp, if_imcasts);
720 }
721
722 /* If the CRC is still on the packet, trim it off. */
723 if (m->m_flags & M_HASFCS) {
724 m_adj(m, -ETHER_CRC_LEN);
725 m->m_flags &= ~M_HASFCS;
726 }
727
728 if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
729
730 #if NCARP > 0
731 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
732 /*
733 * Clear M_PROMISC, in case the packet comes from a
734 * vlan.
735 */
736 m->m_flags &= ~M_PROMISC;
737 if (carp_input(m, (uint8_t *)&eh->ether_shost,
738 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
739 return;
740 }
741 #endif
742
743 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
744 (ifp->if_flags & IFF_PROMISC) != 0 &&
745 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
746 ETHER_ADDR_LEN) != 0) {
747 m->m_flags |= M_PROMISC;
748 }
749
750 if ((m->m_flags & M_PROMISC) == 0) {
751 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
752 return;
753 if (m == NULL)
754 return;
755
756 eh = mtod(m, struct ether_header *);
757 etype = ntohs(eh->ether_type);
758 }
759
760 #if NAGR > 0
761 if (ifp->if_type != IFT_IEEE8023ADLAG) {
762 agrprivate = ifp->if_lagg;
763 } else {
764 agrprivate = NULL;
765 }
766 if (agrprivate != NULL &&
767 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
768 m->m_flags &= ~M_PROMISC;
769 agr_input(ifp, m);
770 return;
771 }
772 #endif
773
774 /* Handle input from a lagg(4) port */
775 if (ifp->if_type == IFT_IEEE8023ADLAG) {
776 KASSERT(lagg_input_ethernet_p != NULL);
777 m = (*lagg_input_ethernet_p)(ifp, m);
778 if (m == NULL)
779 return;
780 }
781
782 /*
783 * If VLANs are configured on the interface, check to
784 * see if the device performed the decapsulation and
785 * provided us with the tag.
786 */
787 if (ec->ec_nvlans && vlan_has_tag(m)) {
788 #if NVLAN > 0
789 /*
790 * vlan_input() will either recursively call ether_input()
791 * or drop the packet.
792 */
793 vlan_input(ifp, m);
794 return;
795 #else
796 goto drop;
797 #endif
798 }
799
800 /*
801 * Handle protocols that expect to have the Ethernet header
802 * (and possibly FCS) intact.
803 */
804 switch (etype) {
805 case ETHERTYPE_VLAN: {
806 struct ether_vlan_header *evl = (void *)eh;
807
808 /*
809 * If there is a tag of 0, then the VLAN header was probably
810 * just being used to store the priority. Extract the ether
811 * type, and if IP or IPV6, let them deal with it.
812 */
813 if (m->m_len >= sizeof(*evl) &&
814 EVL_VLANOFTAG(ntohs(evl->evl_tag)) == 0) {
815 etype = ntohs(evl->evl_proto);
816 ehlen = sizeof(*evl);
817 if ((m->m_flags & M_PROMISC) == 0 &&
818 (etype == ETHERTYPE_IP ||
819 etype == ETHERTYPE_IPV6))
820 break;
821 }
822
823 #if NVLAN > 0
824 /*
825 * vlan_input() will either recursively call ether_input()
826 * or drop the packet.
827 */
828 if (ec->ec_nvlans != 0) {
829 vlan_input(ifp, m);
830 return;
831 } else
832 #endif
833 goto drop;
834 }
835
836 #if NPPPOE > 0
837 case ETHERTYPE_PPPOEDISC:
838 pppoedisc_input(ifp, m);
839 return;
840
841 case ETHERTYPE_PPPOE:
842 pppoe_input(ifp, m);
843 return;
844 #endif
845
846 case ETHERTYPE_SLOWPROTOCOLS: {
847 uint8_t subtype;
848
849 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype))
850 goto drop;
851
852 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
853 switch (subtype) {
854 #if NAGR > 0
855 case SLOWPROTOCOLS_SUBTYPE_LACP:
856 if (agrprivate != NULL) {
857 ieee8023ad_lacp_input(ifp, m);
858 return;
859 }
860 break;
861
862 case SLOWPROTOCOLS_SUBTYPE_MARKER:
863 if (agrprivate != NULL) {
864 ieee8023ad_marker_input(ifp, m);
865 return;
866 }
867 break;
868 #endif
869
870 default:
871 if (subtype == 0 || subtype > 10) {
872 /* illegal value */
873 goto drop;
874 }
875 /* unknown subtype */
876 break;
877 }
878 }
879 /* FALLTHROUGH */
880 default:
881 if (m->m_flags & M_PROMISC)
882 goto drop;
883 }
884
885 /* If the CRC is still on the packet, trim it off. */
886 if (m->m_flags & M_HASFCS) {
887 m_adj(m, -ETHER_CRC_LEN);
888 m->m_flags &= ~M_HASFCS;
889 }
890
891 /* etype represents the size of the payload in this case */
892 if (etype <= ETHERMTU + sizeof(struct ether_header)) {
893 KASSERT(ehlen == sizeof(*eh));
894 #if defined (LLC) || defined (NETATALK)
895 ether_input_llc(ifp, m, eh);
896 return;
897 #else
898 goto drop;
899 #endif
900 }
901
902 /* Strip off the Ethernet header. */
903 m_adj(m, ehlen);
904
905 switch (etype) {
906 #ifdef INET
907 case ETHERTYPE_IP:
908 #ifdef GATEWAY
909 if (ipflow_fastforward(m))
910 return;
911 #endif
912 pktq = ip_pktq;
913 break;
914
915 case ETHERTYPE_ARP:
916 isr = NETISR_ARP;
917 inq = &arpintrq;
918 break;
919
920 case ETHERTYPE_REVARP:
921 revarpinput(m); /* XXX queue? */
922 return;
923 #endif
924
925 #ifdef INET6
926 case ETHERTYPE_IPV6:
927 if (__predict_false(!in6_present))
928 goto drop;
929 #ifdef GATEWAY
930 if (ip6flow_fastforward(&m))
931 return;
932 #endif
933 pktq = ip6_pktq;
934 break;
935 #endif
936
937 #ifdef NETATALK
938 case ETHERTYPE_ATALK:
939 isr = NETISR_ATALK;
940 inq = &atintrq1;
941 break;
942
943 case ETHERTYPE_AARP:
944 aarpinput(ifp, m); /* XXX queue? */
945 return;
946 #endif
947
948 #ifdef MPLS
949 case ETHERTYPE_MPLS:
950 isr = NETISR_MPLS;
951 inq = &mplsintrq;
952 break;
953 #endif
954
955 default:
956 goto drop;
957 }
958
959 if (__predict_true(pktq)) {
960 const uint32_t h = pktq_rps_hash(ðer_pktq_rps_hash_p, m);
961 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
962 m_freem(m);
963 }
964 return;
965 }
966
967 if (__predict_false(!inq)) {
968 /* Should not happen. */
969 goto drop;
970 }
971
972 IFQ_ENQUEUE_ISR(inq, m, isr);
973 return;
974
975 drop:
976 m_freem(m);
977 dropped:
978 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */
979 }
980
981 /*
982 * Convert Ethernet address to printable (loggable) representation.
983 */
984 char *
985 ether_sprintf(const u_char *ap)
986 {
987 static char etherbuf[3 * ETHER_ADDR_LEN];
988 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
989 }
990
991 char *
992 ether_snprintf(char *buf, size_t len, const u_char *ap)
993 {
994 char *cp = buf;
995 size_t i;
996
997 for (i = 0; i < len / 3; i++) {
998 *cp++ = hexdigits[*ap >> 4];
999 *cp++ = hexdigits[*ap++ & 0xf];
1000 *cp++ = ':';
1001 }
1002 *--cp = '\0';
1003 return buf;
1004 }
1005
1006 /*
1007 * Perform common duties while attaching to interface list
1008 */
1009 void
1010 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
1011 {
1012 struct ethercom *ec = (struct ethercom *)ifp;
1013 char xnamebuf[HOOKNAMSIZ];
1014
1015 ifp->if_type = IFT_ETHER;
1016 ifp->if_hdrlen = ETHER_HDR_LEN;
1017 ifp->if_dlt = DLT_EN10MB;
1018 ifp->if_mtu = ETHERMTU;
1019 ifp->if_output = ether_output;
1020 ifp->_if_input = ether_input;
1021 if (ifp->if_baudrate == 0)
1022 ifp->if_baudrate = IF_Mbps(10); /* just a default */
1023
1024 if (lla != NULL)
1025 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
1026
1027 LIST_INIT(&ec->ec_multiaddrs);
1028 SIMPLEQ_INIT(&ec->ec_vids);
1029 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1030 ec->ec_flags = 0;
1031 ifp->if_broadcastaddr = etherbroadcastaddr;
1032 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1033 snprintf(xnamebuf, sizeof(xnamebuf),
1034 "%s-ether_ifdetachhooks", ifp->if_xname);
1035 ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf);
1036 #ifdef MBUFTRACE
1037 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
1038 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
1039 MOWNER_ATTACH(&ec->ec_tx_mowner);
1040 MOWNER_ATTACH(&ec->ec_rx_mowner);
1041 ifp->if_mowner = &ec->ec_tx_mowner;
1042 #endif
1043 }
1044
1045 void
1046 ether_ifdetach(struct ifnet *ifp)
1047 {
1048 struct ethercom *ec = (void *) ifp;
1049 struct ether_multi *enm;
1050
1051 IFNET_ASSERT_UNLOCKED(ifp);
1052 /*
1053 * Prevent further calls to ioctl (for example turning off
1054 * promiscuous mode from the bridge code), which eventually can
1055 * call if_init() which can cause panics because the interface
1056 * is in the process of being detached. Return device not configured
1057 * instead.
1058 */
1059 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
1060 enxio);
1061
1062 simplehook_dohooks(ec->ec_ifdetach_hooks);
1063 KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks));
1064 simplehook_destroy(ec->ec_ifdetach_hooks);
1065
1066 bpf_detach(ifp);
1067
1068 ETHER_LOCK(ec);
1069 KASSERT(ec->ec_nvlans == 0);
1070 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1071 LIST_REMOVE(enm, enm_list);
1072 kmem_free(enm, sizeof(*enm));
1073 ec->ec_multicnt--;
1074 }
1075 ETHER_UNLOCK(ec);
1076
1077 mutex_obj_free(ec->ec_lock);
1078 ec->ec_lock = NULL;
1079
1080 ifp->if_mowner = NULL;
1081 MOWNER_DETACH(&ec->ec_rx_mowner);
1082 MOWNER_DETACH(&ec->ec_tx_mowner);
1083 }
1084
1085 void *
1086 ether_ifdetachhook_establish(struct ifnet *ifp,
1087 void (*fn)(void *), void *arg)
1088 {
1089 struct ethercom *ec;
1090 khook_t *hk;
1091
1092 if (ifp->if_type != IFT_ETHER)
1093 return NULL;
1094
1095 ec = (struct ethercom *)ifp;
1096 hk = simplehook_establish(ec->ec_ifdetach_hooks,
1097 fn, arg);
1098
1099 return (void *)hk;
1100 }
1101
1102 void
1103 ether_ifdetachhook_disestablish(struct ifnet *ifp,
1104 void *vhook, kmutex_t *lock)
1105 {
1106 struct ethercom *ec;
1107
1108 if (vhook == NULL)
1109 return;
1110
1111 ec = (struct ethercom *)ifp;
1112 simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock);
1113 }
1114
1115 #if 0
1116 /*
1117 * This is for reference. We have a table-driven version
1118 * of the little-endian crc32 generator, which is faster
1119 * than the double-loop.
1120 */
1121 uint32_t
1122 ether_crc32_le(const uint8_t *buf, size_t len)
1123 {
1124 uint32_t c, crc, carry;
1125 size_t i, j;
1126
1127 crc = 0xffffffffU; /* initial value */
1128
1129 for (i = 0; i < len; i++) {
1130 c = buf[i];
1131 for (j = 0; j < 8; j++) {
1132 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1133 crc >>= 1;
1134 c >>= 1;
1135 if (carry)
1136 crc = (crc ^ ETHER_CRC_POLY_LE);
1137 }
1138 }
1139
1140 return (crc);
1141 }
1142 #else
1143 uint32_t
1144 ether_crc32_le(const uint8_t *buf, size_t len)
1145 {
1146 static const uint32_t crctab[] = {
1147 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1148 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1149 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1150 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1151 };
1152 uint32_t crc;
1153 size_t i;
1154
1155 crc = 0xffffffffU; /* initial value */
1156
1157 for (i = 0; i < len; i++) {
1158 crc ^= buf[i];
1159 crc = (crc >> 4) ^ crctab[crc & 0xf];
1160 crc = (crc >> 4) ^ crctab[crc & 0xf];
1161 }
1162
1163 return (crc);
1164 }
1165 #endif
1166
1167 uint32_t
1168 ether_crc32_be(const uint8_t *buf, size_t len)
1169 {
1170 uint32_t c, crc, carry;
1171 size_t i, j;
1172
1173 crc = 0xffffffffU; /* initial value */
1174
1175 for (i = 0; i < len; i++) {
1176 c = buf[i];
1177 for (j = 0; j < 8; j++) {
1178 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1179 crc <<= 1;
1180 c >>= 1;
1181 if (carry)
1182 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1183 }
1184 }
1185
1186 return (crc);
1187 }
1188
1189 #ifdef INET
1190 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1191 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1192 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1193 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1194 #endif
1195 #ifdef INET6
1196 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1197 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1198 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1199 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1200 #endif
1201
1202 /*
1203 * ether_aton implementation, not using a static buffer.
1204 */
1205 int
1206 ether_aton_r(u_char *dest, size_t len, const char *str)
1207 {
1208 const u_char *cp = (const void *)str;
1209 u_char *ep;
1210
1211 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1212
1213 if (len < ETHER_ADDR_LEN)
1214 return ENOSPC;
1215
1216 ep = dest + ETHER_ADDR_LEN;
1217
1218 while (*cp) {
1219 if (!isxdigit(*cp))
1220 return EINVAL;
1221
1222 *dest = atox(*cp);
1223 cp++;
1224 if (isxdigit(*cp)) {
1225 *dest = (*dest << 4) | atox(*cp);
1226 cp++;
1227 }
1228 dest++;
1229
1230 if (dest == ep)
1231 return (*cp == '\0') ? 0 : ENAMETOOLONG;
1232
1233 switch (*cp) {
1234 case ':':
1235 case '-':
1236 case '.':
1237 cp++;
1238 break;
1239 }
1240 }
1241 return ENOBUFS;
1242 }
1243
1244 /*
1245 * Convert a sockaddr into an Ethernet address or range of Ethernet
1246 * addresses.
1247 */
1248 int
1249 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1250 uint8_t addrhi[ETHER_ADDR_LEN])
1251 {
1252 #ifdef INET
1253 const struct sockaddr_in *sin;
1254 #endif
1255 #ifdef INET6
1256 const struct sockaddr_in6 *sin6;
1257 #endif
1258
1259 switch (sa->sa_family) {
1260
1261 case AF_UNSPEC:
1262 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1263 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1264 break;
1265
1266 #ifdef INET
1267 case AF_INET:
1268 sin = satocsin(sa);
1269 if (sin->sin_addr.s_addr == INADDR_ANY) {
1270 /*
1271 * An IP address of INADDR_ANY means listen to
1272 * or stop listening to all of the Ethernet
1273 * multicast addresses used for IP.
1274 * (This is for the sake of IP multicast routers.)
1275 */
1276 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1277 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1278 } else {
1279 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1280 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1281 }
1282 break;
1283 #endif
1284 #ifdef INET6
1285 case AF_INET6:
1286 sin6 = satocsin6(sa);
1287 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1288 /*
1289 * An IP6 address of 0 means listen to or stop
1290 * listening to all of the Ethernet multicast
1291 * address used for IP6.
1292 * (This is used for multicast routers.)
1293 */
1294 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1295 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1296 } else {
1297 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1298 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1299 }
1300 break;
1301 #endif
1302
1303 default:
1304 return EAFNOSUPPORT;
1305 }
1306 return 0;
1307 }
1308
1309 /*
1310 * Add an Ethernet multicast address or range of addresses to the list for a
1311 * given interface.
1312 */
1313 int
1314 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1315 {
1316 struct ether_multi *enm, *_enm;
1317 u_char addrlo[ETHER_ADDR_LEN];
1318 u_char addrhi[ETHER_ADDR_LEN];
1319 int error = 0;
1320
1321 /* Allocate out of lock */
1322 enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1323
1324 ETHER_LOCK(ec);
1325 error = ether_multiaddr(sa, addrlo, addrhi);
1326 if (error != 0)
1327 goto out;
1328
1329 /*
1330 * Verify that we have valid Ethernet multicast addresses.
1331 */
1332 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1333 error = EINVAL;
1334 goto out;
1335 }
1336
1337 /*
1338 * See if the address range is already in the list.
1339 */
1340 _enm = ether_lookup_multi(addrlo, addrhi, ec);
1341 if (_enm != NULL) {
1342 /*
1343 * Found it; just increment the reference count.
1344 */
1345 ++_enm->enm_refcount;
1346 error = 0;
1347 goto out;
1348 }
1349
1350 /*
1351 * Link a new multicast record into the interface's multicast list.
1352 */
1353 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1354 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1355 enm->enm_refcount = 1;
1356 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1357 ec->ec_multicnt++;
1358
1359 /*
1360 * Return ENETRESET to inform the driver that the list has changed
1361 * and its reception filter should be adjusted accordingly.
1362 */
1363 error = ENETRESET;
1364 enm = NULL;
1365
1366 out:
1367 ETHER_UNLOCK(ec);
1368 if (enm != NULL)
1369 kmem_free(enm, sizeof(*enm));
1370 return error;
1371 }
1372
1373 /*
1374 * Delete a multicast address record.
1375 */
1376 int
1377 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1378 {
1379 struct ether_multi *enm;
1380 u_char addrlo[ETHER_ADDR_LEN];
1381 u_char addrhi[ETHER_ADDR_LEN];
1382 int error;
1383
1384 ETHER_LOCK(ec);
1385 error = ether_multiaddr(sa, addrlo, addrhi);
1386 if (error != 0)
1387 goto error;
1388
1389 /*
1390 * Look up the address in our list.
1391 */
1392 enm = ether_lookup_multi(addrlo, addrhi, ec);
1393 if (enm == NULL) {
1394 error = ENXIO;
1395 goto error;
1396 }
1397 if (--enm->enm_refcount != 0) {
1398 /*
1399 * Still some claims to this record.
1400 */
1401 error = 0;
1402 goto error;
1403 }
1404
1405 /*
1406 * No remaining claims to this record; unlink and free it.
1407 */
1408 LIST_REMOVE(enm, enm_list);
1409 ec->ec_multicnt--;
1410 ETHER_UNLOCK(ec);
1411 kmem_free(enm, sizeof(*enm));
1412
1413 /*
1414 * Return ENETRESET to inform the driver that the list has changed
1415 * and its reception filter should be adjusted accordingly.
1416 */
1417 return ENETRESET;
1418
1419 error:
1420 ETHER_UNLOCK(ec);
1421 return error;
1422 }
1423
1424 void
1425 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1426 {
1427 ec->ec_ifflags_cb = cb;
1428 }
1429
1430 void
1431 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
1432 {
1433
1434 ec->ec_vlan_cb = cb;
1435 }
1436
1437 static int
1438 ether_ioctl_reinit(struct ethercom *ec)
1439 {
1440 struct ifnet *ifp = &ec->ec_if;
1441 int error;
1442
1443 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1444 case IFF_RUNNING:
1445 /*
1446 * If interface is marked down and it is running,
1447 * then stop and disable it.
1448 */
1449 (*ifp->if_stop)(ifp, 1);
1450 break;
1451 case IFF_UP:
1452 /*
1453 * If interface is marked up and it is stopped, then
1454 * start it.
1455 */
1456 return (*ifp->if_init)(ifp);
1457 case IFF_UP | IFF_RUNNING:
1458 error = 0;
1459 if (ec->ec_ifflags_cb != NULL) {
1460 error = (*ec->ec_ifflags_cb)(ec);
1461 if (error == ENETRESET) {
1462 /*
1463 * Reset the interface to pick up
1464 * changes in any other flags that
1465 * affect the hardware state.
1466 */
1467 return (*ifp->if_init)(ifp);
1468 }
1469 } else
1470 error = (*ifp->if_init)(ifp);
1471 return error;
1472 case 0:
1473 break;
1474 }
1475
1476 return 0;
1477 }
1478
1479 /*
1480 * Common ioctls for Ethernet interfaces. Note, we must be
1481 * called at splnet().
1482 */
1483 int
1484 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1485 {
1486 struct ethercom *ec = (void *)ifp;
1487 struct eccapreq *eccr;
1488 struct ifreq *ifr = (struct ifreq *)data;
1489 struct if_laddrreq *iflr = data;
1490 const struct sockaddr_dl *sdl;
1491 static const uint8_t zero[ETHER_ADDR_LEN];
1492 int error;
1493
1494 switch (cmd) {
1495 case SIOCINITIFADDR:
1496 {
1497 struct ifaddr *ifa = (struct ifaddr *)data;
1498 if (ifa->ifa_addr->sa_family != AF_LINK
1499 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1500 (IFF_UP | IFF_RUNNING)) {
1501 ifp->if_flags |= IFF_UP;
1502 if ((error = (*ifp->if_init)(ifp)) != 0)
1503 return error;
1504 }
1505 #ifdef INET
1506 if (ifa->ifa_addr->sa_family == AF_INET)
1507 arp_ifinit(ifp, ifa);
1508 #endif
1509 return 0;
1510 }
1511
1512 case SIOCSIFMTU:
1513 {
1514 int maxmtu;
1515
1516 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1517 maxmtu = ETHERMTU_JUMBO;
1518 else
1519 maxmtu = ETHERMTU;
1520
1521 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1522 return EINVAL;
1523 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1524 return error;
1525 else if (ifp->if_flags & IFF_UP) {
1526 /* Make sure the device notices the MTU change. */
1527 return (*ifp->if_init)(ifp);
1528 } else
1529 return 0;
1530 }
1531
1532 case SIOCSIFFLAGS:
1533 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1534 return error;
1535 return ether_ioctl_reinit(ec);
1536 case SIOCGIFFLAGS:
1537 error = ifioctl_common(ifp, cmd, data);
1538 if (error == 0) {
1539 /* Set IFF_ALLMULTI for backcompat */
1540 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
1541 IFF_ALLMULTI : 0;
1542 }
1543 return error;
1544 case SIOCGETHERCAP:
1545 eccr = (struct eccapreq *)data;
1546 eccr->eccr_capabilities = ec->ec_capabilities;
1547 eccr->eccr_capenable = ec->ec_capenable;
1548 return 0;
1549 case SIOCSETHERCAP:
1550 eccr = (struct eccapreq *)data;
1551 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1552 return EINVAL;
1553 if (eccr->eccr_capenable == ec->ec_capenable)
1554 return 0;
1555 #if 0 /* notyet */
1556 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1557 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1558 #else
1559 ec->ec_capenable = eccr->eccr_capenable;
1560 #endif
1561 return ether_ioctl_reinit(ec);
1562 case SIOCADDMULTI:
1563 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1564 case SIOCDELMULTI:
1565 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1566 case SIOCSIFMEDIA:
1567 case SIOCGIFMEDIA:
1568 if (ec->ec_mii != NULL)
1569 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
1570 cmd);
1571 else if (ec->ec_ifmedia != NULL)
1572 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
1573 else
1574 return ENOTTY;
1575 break;
1576 case SIOCALIFADDR:
1577 sdl = satocsdl(sstocsa(&iflr->addr));
1578 if (sdl->sdl_family != AF_LINK)
1579 ;
1580 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1581 return EINVAL;
1582 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1583 return EINVAL;
1584 /*FALLTHROUGH*/
1585 default:
1586 return ifioctl_common(ifp, cmd, data);
1587 }
1588 return 0;
1589 }
1590
1591 /*
1592 * Enable/disable passing VLAN packets if the parent interface supports it.
1593 * Return:
1594 * 0: Ok
1595 * -1: Parent interface does not support vlans
1596 * >0: Error
1597 */
1598 int
1599 ether_enable_vlan_mtu(struct ifnet *ifp)
1600 {
1601 int error;
1602 struct ethercom *ec = (void *)ifp;
1603
1604 /* Parent does not support VLAN's */
1605 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1606 return -1;
1607
1608 /*
1609 * Parent supports the VLAN_MTU capability,
1610 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1611 * enable it.
1612 */
1613 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1614
1615 /* Interface is down, defer for later */
1616 if ((ifp->if_flags & IFF_UP) == 0)
1617 return 0;
1618
1619 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1620 return 0;
1621
1622 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1623 return error;
1624 }
1625
1626 int
1627 ether_disable_vlan_mtu(struct ifnet *ifp)
1628 {
1629 int error;
1630 struct ethercom *ec = (void *)ifp;
1631
1632 /* We still have VLAN's, defer for later */
1633 if (ec->ec_nvlans != 0)
1634 return 0;
1635
1636 /* Parent does not support VLAB's, nothing to do. */
1637 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1638 return -1;
1639
1640 /*
1641 * Disable Tx/Rx of VLAN-sized frames.
1642 */
1643 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1644
1645 /* Interface is down, defer for later */
1646 if ((ifp->if_flags & IFF_UP) == 0)
1647 return 0;
1648
1649 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1650 return 0;
1651
1652 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1653 return error;
1654 }
1655
1656 static int
1657 ether_multicast_sysctl(SYSCTLFN_ARGS)
1658 {
1659 struct ether_multi *enm;
1660 struct ifnet *ifp;
1661 struct ethercom *ec;
1662 int error = 0;
1663 size_t written;
1664 struct psref psref;
1665 int bound;
1666 unsigned int multicnt;
1667 struct ether_multi_sysctl *addrs;
1668 int i;
1669
1670 if (namelen != 1)
1671 return EINVAL;
1672
1673 bound = curlwp_bind();
1674 ifp = if_get_byindex(name[0], &psref);
1675 if (ifp == NULL) {
1676 error = ENODEV;
1677 goto out;
1678 }
1679 if (ifp->if_type != IFT_ETHER) {
1680 if_put(ifp, &psref);
1681 *oldlenp = 0;
1682 goto out;
1683 }
1684 ec = (struct ethercom *)ifp;
1685
1686 if (oldp == NULL) {
1687 if_put(ifp, &psref);
1688 *oldlenp = ec->ec_multicnt * sizeof(*addrs);
1689 goto out;
1690 }
1691
1692 /*
1693 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1694 * is sleepable, while holding it. Copy data to a local buffer first
1695 * with the lock taken and then call sysctl_copyout without holding it.
1696 */
1697 retry:
1698 multicnt = ec->ec_multicnt;
1699
1700 if (multicnt == 0) {
1701 if_put(ifp, &psref);
1702 *oldlenp = 0;
1703 goto out;
1704 }
1705
1706 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1707
1708 ETHER_LOCK(ec);
1709 if (multicnt != ec->ec_multicnt) {
1710 /* The number of multicast addresses has changed */
1711 ETHER_UNLOCK(ec);
1712 kmem_free(addrs, sizeof(*addrs) * multicnt);
1713 goto retry;
1714 }
1715
1716 i = 0;
1717 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1718 struct ether_multi_sysctl *addr = &addrs[i];
1719 addr->enm_refcount = enm->enm_refcount;
1720 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1721 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1722 i++;
1723 }
1724 ETHER_UNLOCK(ec);
1725
1726 error = 0;
1727 written = 0;
1728 for (i = 0; i < multicnt; i++) {
1729 struct ether_multi_sysctl *addr = &addrs[i];
1730
1731 if (written + sizeof(*addr) > *oldlenp)
1732 break;
1733 error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1734 if (error)
1735 break;
1736 written += sizeof(*addr);
1737 oldp = (char *)oldp + sizeof(*addr);
1738 }
1739 kmem_free(addrs, sizeof(*addrs) * multicnt);
1740
1741 if_put(ifp, &psref);
1742
1743 *oldlenp = written;
1744 out:
1745 curlwp_bindx(bound);
1746 return error;
1747 }
1748
1749 static void
1750 ether_sysctl_setup(struct sysctllog **clog)
1751 {
1752 const struct sysctlnode *rnode = NULL;
1753
1754 sysctl_createv(clog, 0, NULL, &rnode,
1755 CTLFLAG_PERMANENT,
1756 CTLTYPE_NODE, "ether",
1757 SYSCTL_DESCR("Ethernet-specific information"),
1758 NULL, 0, NULL, 0,
1759 CTL_NET, CTL_CREATE, CTL_EOL);
1760
1761 sysctl_createv(clog, 0, &rnode, NULL,
1762 CTLFLAG_PERMANENT,
1763 CTLTYPE_NODE, "multicast",
1764 SYSCTL_DESCR("multicast addresses"),
1765 ether_multicast_sysctl, 0, NULL, 0,
1766 CTL_CREATE, CTL_EOL);
1767
1768 sysctl_createv(clog, 0, &rnode, NULL,
1769 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1770 CTLTYPE_STRING, "rps_hash",
1771 SYSCTL_DESCR("Interface rps hash function control"),
1772 sysctl_pktq_rps_hash_handler, 0, (void *)ðer_pktq_rps_hash_p,
1773 PKTQ_RPS_HASH_NAME_LEN,
1774 CTL_CREATE, CTL_EOL);
1775 }
1776
1777 void
1778 etherinit(void)
1779 {
1780
1781 #ifdef DIAGNOSTIC
1782 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1783 #endif
1784 ether_pktq_rps_hash_p = pktq_rps_hash_default;
1785 ether_sysctl_setup(NULL);
1786 }
1787