if_ethersubr.c revision 1.304 1 /* $NetBSD: if_ethersubr.c,v 1.304 2021/11/15 07:07:05 yamaguchi Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)if_ethersubr.c 8.2 (Berkeley) 4/4/96
61 */
62
63 #include <sys/cdefs.h>
64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.304 2021/11/15 07:07:05 yamaguchi Exp $");
65
66 #ifdef _KERNEL_OPT
67 #include "opt_inet.h"
68 #include "opt_atalk.h"
69 #include "opt_mbuftrace.h"
70 #include "opt_mpls.h"
71 #include "opt_gateway.h"
72 #include "opt_pppoe.h"
73 #include "opt_net_mpsafe.h"
74 #endif
75
76 #include "vlan.h"
77 #include "pppoe.h"
78 #include "bridge.h"
79 #include "arp.h"
80 #include "agr.h"
81
82 #include <sys/sysctl.h>
83 #include <sys/mbuf.h>
84 #include <sys/mutex.h>
85 #include <sys/ioctl.h>
86 #include <sys/errno.h>
87 #include <sys/device.h>
88 #include <sys/entropy.h>
89 #include <sys/rndsource.h>
90 #include <sys/cpu.h>
91 #include <sys/kmem.h>
92 #include <sys/hook.h>
93
94 #include <net/if.h>
95 #include <net/netisr.h>
96 #include <net/route.h>
97 #include <net/if_llc.h>
98 #include <net/if_dl.h>
99 #include <net/if_types.h>
100 #include <net/pktqueue.h>
101
102 #include <net/if_media.h>
103 #include <dev/mii/mii.h>
104 #include <dev/mii/miivar.h>
105
106 #if NARP == 0
107 /*
108 * XXX there should really be a way to issue this warning from within config(8)
109 */
110 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
111 #endif
112
113 #include <net/bpf.h>
114
115 #include <net/if_ether.h>
116 #include <net/if_vlanvar.h>
117
118 #if NPPPOE > 0
119 #include <net/if_pppoe.h>
120 #endif
121
122 #if NAGR > 0
123 #include <net/agr/ieee8023_slowprotocols.h> /* XXX */
124 #include <net/agr/ieee8023ad.h>
125 #include <net/agr/if_agrvar.h>
126 #endif
127
128 #include <net/lagg/if_laggvar.h>
129
130 #if NBRIDGE > 0
131 #include <net/if_bridgevar.h>
132 #endif
133
134 #include <netinet/in.h>
135 #ifdef INET
136 #include <netinet/in_var.h>
137 #endif
138 #include <netinet/if_inarp.h>
139
140 #ifdef INET6
141 #ifndef INET
142 #include <netinet/in.h>
143 #endif
144 #include <netinet6/in6_var.h>
145 #include <netinet6/nd6.h>
146 #endif
147
148 #include "carp.h"
149 #if NCARP > 0
150 #include <netinet/ip_carp.h>
151 #endif
152
153 #ifdef NETATALK
154 #include <netatalk/at.h>
155 #include <netatalk/at_var.h>
156 #include <netatalk/at_extern.h>
157
158 #define llc_snap_org_code llc_un.type_snap.org_code
159 #define llc_snap_ether_type llc_un.type_snap.ether_type
160
161 extern u_char at_org_code[3];
162 extern u_char aarp_org_code[3];
163 #endif /* NETATALK */
164
165 #ifdef MPLS
166 #include <netmpls/mpls.h>
167 #include <netmpls/mpls_var.h>
168 #endif
169
170 CTASSERT(sizeof(struct ether_addr) == 6);
171 CTASSERT(sizeof(struct ether_header) == 14);
172
173 #ifdef DIAGNOSTIC
174 static struct timeval bigpktppslim_last;
175 static int bigpktppslim = 2; /* XXX */
176 static int bigpktpps_count;
177 static kmutex_t bigpktpps_lock __cacheline_aligned;
178 #endif
179
180 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
181 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
182 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
183 { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
184 #define senderr(e) { error = (e); goto bad;}
185
186 static pktq_rps_hash_func_t ether_pktq_rps_hash_p;
187
188 /* if_lagg(4) support */
189 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
190
191 static int ether_output(struct ifnet *, struct mbuf *,
192 const struct sockaddr *, const struct rtentry *);
193
194 /*
195 * Ethernet output routine.
196 * Encapsulate a packet of type family for the local net.
197 * Assumes that ifp is actually pointer to ethercom structure.
198 */
199 static int
200 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
201 const struct sockaddr * const dst, const struct rtentry *rt)
202 {
203 uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
204 uint16_t etype = 0;
205 int error = 0, hdrcmplt = 0;
206 struct mbuf *m = m0;
207 struct mbuf *mcopy = NULL;
208 struct ether_header *eh;
209 struct ifnet *ifp = ifp0;
210 #ifdef INET
211 struct arphdr *ah;
212 #endif
213 #ifdef NETATALK
214 struct at_ifaddr *aa;
215 #endif
216
217 #ifdef MBUFTRACE
218 m_claimm(m, ifp->if_mowner);
219 #endif
220
221 #if NCARP > 0
222 if (ifp->if_type == IFT_CARP) {
223 struct ifaddr *ifa;
224 int s = pserialize_read_enter();
225
226 /* loop back if this is going to the carp interface */
227 if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
228 (ifa = ifa_ifwithaddr(dst)) != NULL) {
229 if (ifa->ifa_ifp == ifp0) {
230 pserialize_read_exit(s);
231 return looutput(ifp0, m, dst, rt);
232 }
233 }
234 pserialize_read_exit(s);
235
236 ifp = ifp->if_carpdev;
237 /* ac = (struct arpcom *)ifp; */
238
239 if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
240 (IFF_UP | IFF_RUNNING))
241 senderr(ENETDOWN);
242 }
243 #endif
244
245 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
246 senderr(ENETDOWN);
247
248 switch (dst->sa_family) {
249
250 #ifdef INET
251 case AF_INET:
252 if (m->m_flags & M_BCAST) {
253 memcpy(edst, etherbroadcastaddr, sizeof(edst));
254 } else if (m->m_flags & M_MCAST) {
255 ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
256 } else {
257 error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
258 if (error)
259 return (error == EWOULDBLOCK) ? 0 : error;
260 }
261 /* If broadcasting on a simplex interface, loopback a copy */
262 if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
263 mcopy = m_copypacket(m, M_DONTWAIT);
264 etype = htons(ETHERTYPE_IP);
265 break;
266
267 case AF_ARP:
268 ah = mtod(m, struct arphdr *);
269 if (m->m_flags & M_BCAST) {
270 memcpy(edst, etherbroadcastaddr, sizeof(edst));
271 } else {
272 void *tha = ar_tha(ah);
273
274 if (tha == NULL) {
275 /* fake with ARPHRD_IEEE1394 */
276 m_freem(m);
277 return 0;
278 }
279 memcpy(edst, tha, sizeof(edst));
280 }
281
282 ah->ar_hrd = htons(ARPHRD_ETHER);
283
284 switch (ntohs(ah->ar_op)) {
285 case ARPOP_REVREQUEST:
286 case ARPOP_REVREPLY:
287 etype = htons(ETHERTYPE_REVARP);
288 break;
289
290 case ARPOP_REQUEST:
291 case ARPOP_REPLY:
292 default:
293 etype = htons(ETHERTYPE_ARP);
294 }
295 break;
296 #endif
297
298 #ifdef INET6
299 case AF_INET6:
300 if (m->m_flags & M_BCAST) {
301 memcpy(edst, etherbroadcastaddr, sizeof(edst));
302 } else if (m->m_flags & M_MCAST) {
303 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
304 edst);
305 } else {
306 error = nd6_resolve(ifp0, rt, m, dst, edst,
307 sizeof(edst));
308 if (error)
309 return (error == EWOULDBLOCK) ? 0 : error;
310 }
311 etype = htons(ETHERTYPE_IPV6);
312 break;
313 #endif
314
315 #ifdef NETATALK
316 case AF_APPLETALK: {
317 struct ifaddr *ifa;
318 int s;
319
320 KERNEL_LOCK(1, NULL);
321
322 if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
323 KERNEL_UNLOCK_ONE(NULL);
324 return 0;
325 }
326
327 /*
328 * ifaddr is the first thing in at_ifaddr
329 */
330 s = pserialize_read_enter();
331 ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
332 if (ifa == NULL) {
333 pserialize_read_exit(s);
334 KERNEL_UNLOCK_ONE(NULL);
335 senderr(EADDRNOTAVAIL);
336 }
337 aa = (struct at_ifaddr *)ifa;
338
339 /*
340 * In the phase 2 case, we need to prepend an mbuf for the
341 * llc header.
342 */
343 if (aa->aa_flags & AFA_PHASE2) {
344 struct llc llc;
345
346 M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
347 if (m == NULL) {
348 pserialize_read_exit(s);
349 KERNEL_UNLOCK_ONE(NULL);
350 senderr(ENOBUFS);
351 }
352
353 llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
354 llc.llc_control = LLC_UI;
355 memcpy(llc.llc_snap_org_code, at_org_code,
356 sizeof(llc.llc_snap_org_code));
357 llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
358 memcpy(mtod(m, void *), &llc, sizeof(struct llc));
359 } else {
360 etype = htons(ETHERTYPE_ATALK);
361 }
362 pserialize_read_exit(s);
363 KERNEL_UNLOCK_ONE(NULL);
364 break;
365 }
366 #endif /* NETATALK */
367
368 case pseudo_AF_HDRCMPLT:
369 hdrcmplt = 1;
370 memcpy(esrc,
371 ((const struct ether_header *)dst->sa_data)->ether_shost,
372 sizeof(esrc));
373 /* FALLTHROUGH */
374
375 case AF_UNSPEC:
376 memcpy(edst,
377 ((const struct ether_header *)dst->sa_data)->ether_dhost,
378 sizeof(edst));
379 /* AF_UNSPEC doesn't swap the byte order of the ether_type. */
380 etype = ((const struct ether_header *)dst->sa_data)->ether_type;
381 break;
382
383 default:
384 printf("%s: can't handle af%d\n", ifp->if_xname,
385 dst->sa_family);
386 senderr(EAFNOSUPPORT);
387 }
388
389 #ifdef MPLS
390 {
391 struct m_tag *mtag;
392 mtag = m_tag_find(m, PACKET_TAG_MPLS);
393 if (mtag != NULL) {
394 /* Having the tag itself indicates it's MPLS */
395 etype = htons(ETHERTYPE_MPLS);
396 m_tag_delete(m, mtag);
397 }
398 }
399 #endif
400
401 if (mcopy)
402 (void)looutput(ifp, mcopy, dst, rt);
403
404 KASSERT((m->m_flags & M_PKTHDR) != 0);
405
406 /*
407 * If no ether type is set, this must be a 802.2 formatted packet.
408 */
409 if (etype == 0)
410 etype = htons(m->m_pkthdr.len);
411
412 /*
413 * Add local net header. If no space in first mbuf, allocate another.
414 */
415 M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
416 if (m == NULL)
417 senderr(ENOBUFS);
418
419 eh = mtod(m, struct ether_header *);
420 /* Note: etype is already in network byte order. */
421 memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
422 memcpy(eh->ether_dhost, edst, sizeof(edst));
423 if (hdrcmplt) {
424 memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
425 } else {
426 memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
427 sizeof(eh->ether_shost));
428 }
429
430 #if NCARP > 0
431 if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
432 memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
433 sizeof(eh->ether_shost));
434 }
435 #endif
436
437 if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
438 return error;
439 if (m == NULL)
440 return 0;
441
442 #if NBRIDGE > 0
443 /*
444 * Bridges require special output handling.
445 */
446 if (ifp->if_bridge)
447 return bridge_output(ifp, m, NULL, NULL);
448 #endif
449
450 #if NCARP > 0
451 if (ifp != ifp0)
452 if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
453 #endif
454
455 #ifdef ALTQ
456 KERNEL_LOCK(1, NULL);
457 /*
458 * If ALTQ is enabled on the parent interface, do
459 * classification; the queueing discipline might not
460 * require classification, but might require the
461 * address family/header pointer in the pktattr.
462 */
463 if (ALTQ_IS_ENABLED(&ifp->if_snd))
464 altq_etherclassify(&ifp->if_snd, m);
465 KERNEL_UNLOCK_ONE(NULL);
466 #endif
467 return ifq_enqueue(ifp, m);
468
469 bad:
470 if_statinc(ifp, if_oerrors);
471 if (m)
472 m_freem(m);
473 return error;
474 }
475
476 #ifdef ALTQ
477 /*
478 * This routine is a slight hack to allow a packet to be classified
479 * if the Ethernet headers are present. It will go away when ALTQ's
480 * classification engine understands link headers.
481 *
482 * XXX: We may need to do m_pullups here. First to ensure struct ether_header
483 * is indeed contiguous, then to read the LLC and so on.
484 */
485 void
486 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
487 {
488 struct ether_header *eh;
489 struct mbuf *mtop = m;
490 uint16_t ether_type;
491 int hlen, af, hdrsize;
492 void *hdr;
493
494 KASSERT((mtop->m_flags & M_PKTHDR) != 0);
495
496 hlen = ETHER_HDR_LEN;
497 eh = mtod(m, struct ether_header *);
498
499 ether_type = htons(eh->ether_type);
500
501 if (ether_type < ETHERMTU) {
502 /* LLC/SNAP */
503 struct llc *llc = (struct llc *)(eh + 1);
504 hlen += 8;
505
506 if (m->m_len < hlen ||
507 llc->llc_dsap != LLC_SNAP_LSAP ||
508 llc->llc_ssap != LLC_SNAP_LSAP ||
509 llc->llc_control != LLC_UI) {
510 /* Not SNAP. */
511 goto bad;
512 }
513
514 ether_type = htons(llc->llc_un.type_snap.ether_type);
515 }
516
517 switch (ether_type) {
518 case ETHERTYPE_IP:
519 af = AF_INET;
520 hdrsize = 20; /* sizeof(struct ip) */
521 break;
522
523 case ETHERTYPE_IPV6:
524 af = AF_INET6;
525 hdrsize = 40; /* sizeof(struct ip6_hdr) */
526 break;
527
528 default:
529 af = AF_UNSPEC;
530 hdrsize = 0;
531 break;
532 }
533
534 while (m->m_len <= hlen) {
535 hlen -= m->m_len;
536 m = m->m_next;
537 if (m == NULL)
538 goto bad;
539 }
540
541 if (m->m_len < (hlen + hdrsize)) {
542 /*
543 * protocol header not in a single mbuf.
544 * We can't cope with this situation right
545 * now (but it shouldn't ever happen, really, anyhow).
546 */
547 #ifdef DEBUG
548 printf("altq_etherclassify: headers span multiple mbufs: "
549 "%d < %d\n", m->m_len, (hlen + hdrsize));
550 #endif
551 goto bad;
552 }
553
554 m->m_data += hlen;
555 m->m_len -= hlen;
556
557 hdr = mtod(m, void *);
558
559 if (ALTQ_NEEDS_CLASSIFY(ifq)) {
560 mtop->m_pkthdr.pattr_class =
561 (*ifq->altq_classify)(ifq->altq_clfier, m, af);
562 }
563 mtop->m_pkthdr.pattr_af = af;
564 mtop->m_pkthdr.pattr_hdr = hdr;
565
566 m->m_data -= hlen;
567 m->m_len += hlen;
568
569 return;
570
571 bad:
572 mtop->m_pkthdr.pattr_class = NULL;
573 mtop->m_pkthdr.pattr_hdr = NULL;
574 mtop->m_pkthdr.pattr_af = AF_UNSPEC;
575 }
576 #endif /* ALTQ */
577
578 #if defined (LLC) || defined (NETATALK)
579 static void
580 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh)
581 {
582 struct ifqueue *inq = NULL;
583 int isr = 0;
584 struct llc *l;
585
586 if (m->m_len < sizeof(*eh) + sizeof(struct llc))
587 goto drop;
588
589 l = (struct llc *)(eh+1);
590 switch (l->llc_dsap) {
591 #ifdef NETATALK
592 case LLC_SNAP_LSAP:
593 switch (l->llc_control) {
594 case LLC_UI:
595 if (l->llc_ssap != LLC_SNAP_LSAP)
596 goto drop;
597
598 if (memcmp(&(l->llc_snap_org_code)[0],
599 at_org_code, sizeof(at_org_code)) == 0 &&
600 ntohs(l->llc_snap_ether_type) ==
601 ETHERTYPE_ATALK) {
602 inq = &atintrq2;
603 m_adj(m, sizeof(struct ether_header)
604 + sizeof(struct llc));
605 isr = NETISR_ATALK;
606 break;
607 }
608
609 if (memcmp(&(l->llc_snap_org_code)[0],
610 aarp_org_code,
611 sizeof(aarp_org_code)) == 0 &&
612 ntohs(l->llc_snap_ether_type) ==
613 ETHERTYPE_AARP) {
614 m_adj(m, sizeof(struct ether_header)
615 + sizeof(struct llc));
616 aarpinput(ifp, m); /* XXX queue? */
617 return;
618 }
619
620 default:
621 goto drop;
622 }
623 break;
624 #endif
625 default:
626 goto drop;
627 }
628
629 KASSERT(inq != NULL);
630 IFQ_ENQUEUE_ISR(inq, m, isr);
631 return;
632
633 drop:
634 m_freem(m);
635 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */
636 return;
637 }
638 #endif /* defined (LLC) || defined (NETATALK) */
639
640 /*
641 * Process a received Ethernet packet;
642 * the packet is in the mbuf chain m with
643 * the ether header.
644 */
645 void
646 ether_input(struct ifnet *ifp, struct mbuf *m)
647 {
648 struct ethercom *ec = (struct ethercom *) ifp;
649 pktqueue_t *pktq = NULL;
650 struct ifqueue *inq = NULL;
651 uint16_t etype;
652 struct ether_header *eh;
653 size_t ehlen;
654 static int earlypkts;
655 int isr = 0;
656 #if NAGR > 0
657 void *agrprivate;
658 #endif
659
660 KASSERT(!cpu_intr_p());
661 KASSERT((m->m_flags & M_PKTHDR) != 0);
662
663 if ((ifp->if_flags & IFF_UP) == 0)
664 goto drop;
665
666 #ifdef MBUFTRACE
667 m_claimm(m, &ec->ec_rx_mowner);
668 #endif
669
670 if (__predict_false(m->m_len < sizeof(*eh))) {
671 if ((m = m_pullup(m, sizeof(*eh))) == NULL) {
672 if_statinc(ifp, if_ierrors);
673 return;
674 }
675 }
676
677 eh = mtod(m, struct ether_header *);
678 etype = ntohs(eh->ether_type);
679 ehlen = sizeof(*eh);
680
681 if (__predict_false(earlypkts < 100 ||
682 entropy_epoch() == (unsigned)-1)) {
683 rnd_add_data(NULL, eh, ehlen, 0);
684 earlypkts++;
685 }
686
687 /*
688 * Determine if the packet is within its size limits. For MPLS the
689 * header length is variable, so we skip the check.
690 */
691 if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
692 ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
693 #ifdef DIAGNOSTIC
694 mutex_enter(&bigpktpps_lock);
695 if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
696 bigpktppslim)) {
697 printf("%s: discarding oversize frame (len=%d)\n",
698 ifp->if_xname, m->m_pkthdr.len);
699 }
700 mutex_exit(&bigpktpps_lock);
701 #endif
702 goto drop;
703 }
704
705 if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
706 /*
707 * If this is not a simplex interface, drop the packet
708 * if it came from us.
709 */
710 if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
711 memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
712 ETHER_ADDR_LEN) == 0) {
713 goto drop;
714 }
715
716 if (memcmp(etherbroadcastaddr,
717 eh->ether_dhost, ETHER_ADDR_LEN) == 0)
718 m->m_flags |= M_BCAST;
719 else
720 m->m_flags |= M_MCAST;
721 if_statinc(ifp, if_imcasts);
722 }
723
724 /* If the CRC is still on the packet, trim it off. */
725 if (m->m_flags & M_HASFCS) {
726 m_adj(m, -ETHER_CRC_LEN);
727 m->m_flags &= ~M_HASFCS;
728 }
729
730 if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
731
732 #if NCARP > 0
733 if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
734 /*
735 * Clear M_PROMISC, in case the packet comes from a
736 * vlan.
737 */
738 m->m_flags &= ~M_PROMISC;
739 if (carp_input(m, (uint8_t *)&eh->ether_shost,
740 (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
741 return;
742 }
743 #endif
744
745 if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
746 (ifp->if_flags & IFF_PROMISC) != 0 &&
747 memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
748 ETHER_ADDR_LEN) != 0) {
749 m->m_flags |= M_PROMISC;
750 }
751
752 if ((m->m_flags & M_PROMISC) == 0) {
753 if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
754 return;
755 if (m == NULL)
756 return;
757
758 eh = mtod(m, struct ether_header *);
759 etype = ntohs(eh->ether_type);
760 }
761
762 #if NAGR > 0
763 if (ifp->if_type != IFT_IEEE8023ADLAG) {
764 agrprivate = ifp->if_lagg;
765 } else {
766 agrprivate = NULL;
767 }
768 if (agrprivate != NULL &&
769 __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
770 m->m_flags &= ~M_PROMISC;
771 agr_input(ifp, m);
772 return;
773 }
774 #endif
775
776 /* Handle input from a lagg(4) port */
777 if (ifp->if_type == IFT_IEEE8023ADLAG) {
778 KASSERT(lagg_input_ethernet_p != NULL);
779 m = (*lagg_input_ethernet_p)(ifp, m);
780 if (m == NULL)
781 return;
782 }
783
784 /*
785 * If VLANs are configured on the interface, check to
786 * see if the device performed the decapsulation and
787 * provided us with the tag.
788 */
789 if (ec->ec_nvlans && vlan_has_tag(m)) {
790 #if NVLAN > 0
791 /*
792 * vlan_input() will either recursively call ether_input()
793 * or drop the packet.
794 */
795 vlan_input(ifp, m);
796 return;
797 #else
798 goto drop;
799 #endif
800 }
801
802 /*
803 * Handle protocols that expect to have the Ethernet header
804 * (and possibly FCS) intact.
805 */
806 switch (etype) {
807 case ETHERTYPE_VLAN: {
808 struct ether_vlan_header *evl = (void *)eh;
809
810 /*
811 * If there is a tag of 0, then the VLAN header was probably
812 * just being used to store the priority. Extract the ether
813 * type, and if IP or IPV6, let them deal with it.
814 */
815 if (m->m_len >= sizeof(*evl) &&
816 EVL_VLANOFTAG(ntohs(evl->evl_tag)) == 0) {
817 etype = ntohs(evl->evl_proto);
818 ehlen = sizeof(*evl);
819 if ((m->m_flags & M_PROMISC) == 0 &&
820 (etype == ETHERTYPE_IP ||
821 etype == ETHERTYPE_IPV6))
822 break;
823 }
824
825 #if NVLAN > 0
826 /*
827 * vlan_input() will either recursively call ether_input()
828 * or drop the packet.
829 */
830 if (ec->ec_nvlans != 0) {
831 vlan_input(ifp, m);
832 return;
833 } else
834 #endif
835 goto drop;
836 }
837
838 #if NPPPOE > 0
839 case ETHERTYPE_PPPOEDISC:
840 pppoedisc_input(ifp, m);
841 return;
842
843 case ETHERTYPE_PPPOE:
844 pppoe_input(ifp, m);
845 return;
846 #endif
847
848 case ETHERTYPE_SLOWPROTOCOLS: {
849 uint8_t subtype;
850
851 if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype))
852 goto drop;
853
854 m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
855 switch (subtype) {
856 #if NAGR > 0
857 case SLOWPROTOCOLS_SUBTYPE_LACP:
858 if (agrprivate != NULL) {
859 ieee8023ad_lacp_input(ifp, m);
860 return;
861 }
862 break;
863
864 case SLOWPROTOCOLS_SUBTYPE_MARKER:
865 if (agrprivate != NULL) {
866 ieee8023ad_marker_input(ifp, m);
867 return;
868 }
869 break;
870 #endif
871
872 default:
873 if (subtype == 0 || subtype > 10) {
874 /* illegal value */
875 goto error;
876 }
877 /* unknown subtype */
878 break;
879 }
880 }
881 /* FALLTHROUGH */
882 default:
883 if (m->m_flags & M_PROMISC)
884 goto drop;
885 }
886
887 /* If the CRC is still on the packet, trim it off. */
888 if (m->m_flags & M_HASFCS) {
889 m_adj(m, -ETHER_CRC_LEN);
890 m->m_flags &= ~M_HASFCS;
891 }
892
893 /* etype represents the size of the payload in this case */
894 if (etype <= ETHERMTU + sizeof(struct ether_header)) {
895 KASSERT(ehlen == sizeof(*eh));
896 #if defined (LLC) || defined (NETATALK)
897 ether_input_llc(ifp, m, eh);
898 return;
899 #else
900 goto error;
901 #endif
902 }
903
904 /* Strip off the Ethernet header. */
905 m_adj(m, ehlen);
906
907 switch (etype) {
908 #ifdef INET
909 case ETHERTYPE_IP:
910 #ifdef GATEWAY
911 if (ipflow_fastforward(m))
912 return;
913 #endif
914 pktq = ip_pktq;
915 break;
916
917 case ETHERTYPE_ARP:
918 isr = NETISR_ARP;
919 inq = &arpintrq;
920 break;
921
922 case ETHERTYPE_REVARP:
923 revarpinput(m); /* XXX queue? */
924 return;
925 #endif
926
927 #ifdef INET6
928 case ETHERTYPE_IPV6:
929 if (__predict_false(!in6_present))
930 goto drop;
931 #ifdef GATEWAY
932 if (ip6flow_fastforward(&m))
933 return;
934 #endif
935 pktq = ip6_pktq;
936 break;
937 #endif
938
939 #ifdef NETATALK
940 case ETHERTYPE_ATALK:
941 isr = NETISR_ATALK;
942 inq = &atintrq1;
943 break;
944
945 case ETHERTYPE_AARP:
946 aarpinput(ifp, m); /* XXX queue? */
947 return;
948 #endif
949
950 #ifdef MPLS
951 case ETHERTYPE_MPLS:
952 isr = NETISR_MPLS;
953 inq = &mplsintrq;
954 break;
955 #endif
956
957 default:
958 goto drop;
959 }
960
961 if (__predict_true(pktq)) {
962 const uint32_t h = pktq_rps_hash(ðer_pktq_rps_hash_p, m);
963 if (__predict_false(!pktq_enqueue(pktq, m, h))) {
964 m_freem(m);
965 }
966 return;
967 }
968
969 if (__predict_false(!inq)) {
970 /* Should not happen. */
971 goto error;
972 }
973
974 IFQ_ENQUEUE_ISR(inq, m, isr);
975 return;
976
977 drop:
978 m_freem(m);
979 if_statinc(ifp, if_iqdrops); /* XXX should have a dedicated counter? */
980 return;
981 error:
982 m_freem(m);
983 if_statinc(ifp, if_ierrors); /* XXX should have a dedicated counter? */
984 return;
985 }
986
987 /*
988 * Convert Ethernet address to printable (loggable) representation.
989 */
990 char *
991 ether_sprintf(const u_char *ap)
992 {
993 static char etherbuf[3 * ETHER_ADDR_LEN];
994 return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
995 }
996
997 char *
998 ether_snprintf(char *buf, size_t len, const u_char *ap)
999 {
1000 char *cp = buf;
1001 size_t i;
1002
1003 for (i = 0; i < len / 3; i++) {
1004 *cp++ = hexdigits[*ap >> 4];
1005 *cp++ = hexdigits[*ap++ & 0xf];
1006 *cp++ = ':';
1007 }
1008 *--cp = '\0';
1009 return buf;
1010 }
1011
1012 /*
1013 * Perform common duties while attaching to interface list
1014 */
1015 void
1016 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
1017 {
1018 struct ethercom *ec = (struct ethercom *)ifp;
1019 char xnamebuf[HOOKNAMSIZ];
1020
1021 ifp->if_type = IFT_ETHER;
1022 ifp->if_hdrlen = ETHER_HDR_LEN;
1023 ifp->if_dlt = DLT_EN10MB;
1024 ifp->if_mtu = ETHERMTU;
1025 ifp->if_output = ether_output;
1026 ifp->_if_input = ether_input;
1027 if (ifp->if_baudrate == 0)
1028 ifp->if_baudrate = IF_Mbps(10); /* just a default */
1029
1030 if (lla != NULL)
1031 if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
1032
1033 LIST_INIT(&ec->ec_multiaddrs);
1034 SIMPLEQ_INIT(&ec->ec_vids);
1035 ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
1036 ec->ec_flags = 0;
1037 ifp->if_broadcastaddr = etherbroadcastaddr;
1038 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
1039 snprintf(xnamebuf, sizeof(xnamebuf),
1040 "%s-ether_ifdetachhooks", ifp->if_xname);
1041 ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf);
1042 #ifdef MBUFTRACE
1043 mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
1044 mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
1045 MOWNER_ATTACH(&ec->ec_tx_mowner);
1046 MOWNER_ATTACH(&ec->ec_rx_mowner);
1047 ifp->if_mowner = &ec->ec_tx_mowner;
1048 #endif
1049 }
1050
1051 void
1052 ether_ifdetach(struct ifnet *ifp)
1053 {
1054 struct ethercom *ec = (void *) ifp;
1055 struct ether_multi *enm;
1056
1057 IFNET_ASSERT_UNLOCKED(ifp);
1058 /*
1059 * Prevent further calls to ioctl (for example turning off
1060 * promiscuous mode from the bridge code), which eventually can
1061 * call if_init() which can cause panics because the interface
1062 * is in the process of being detached. Return device not configured
1063 * instead.
1064 */
1065 ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
1066 enxio);
1067
1068 simplehook_dohooks(ec->ec_ifdetach_hooks);
1069 KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks));
1070 simplehook_destroy(ec->ec_ifdetach_hooks);
1071
1072 bpf_detach(ifp);
1073
1074 ETHER_LOCK(ec);
1075 KASSERT(ec->ec_nvlans == 0);
1076 while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
1077 LIST_REMOVE(enm, enm_list);
1078 kmem_free(enm, sizeof(*enm));
1079 ec->ec_multicnt--;
1080 }
1081 ETHER_UNLOCK(ec);
1082
1083 mutex_obj_free(ec->ec_lock);
1084 ec->ec_lock = NULL;
1085
1086 ifp->if_mowner = NULL;
1087 MOWNER_DETACH(&ec->ec_rx_mowner);
1088 MOWNER_DETACH(&ec->ec_tx_mowner);
1089 }
1090
1091 void *
1092 ether_ifdetachhook_establish(struct ifnet *ifp,
1093 void (*fn)(void *), void *arg)
1094 {
1095 struct ethercom *ec;
1096 khook_t *hk;
1097
1098 if (ifp->if_type != IFT_ETHER)
1099 return NULL;
1100
1101 ec = (struct ethercom *)ifp;
1102 hk = simplehook_establish(ec->ec_ifdetach_hooks,
1103 fn, arg);
1104
1105 return (void *)hk;
1106 }
1107
1108 void
1109 ether_ifdetachhook_disestablish(struct ifnet *ifp,
1110 void *vhook, kmutex_t *lock)
1111 {
1112 struct ethercom *ec;
1113
1114 if (vhook == NULL)
1115 return;
1116
1117 ec = (struct ethercom *)ifp;
1118 simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock);
1119 }
1120
1121 #if 0
1122 /*
1123 * This is for reference. We have a table-driven version
1124 * of the little-endian crc32 generator, which is faster
1125 * than the double-loop.
1126 */
1127 uint32_t
1128 ether_crc32_le(const uint8_t *buf, size_t len)
1129 {
1130 uint32_t c, crc, carry;
1131 size_t i, j;
1132
1133 crc = 0xffffffffU; /* initial value */
1134
1135 for (i = 0; i < len; i++) {
1136 c = buf[i];
1137 for (j = 0; j < 8; j++) {
1138 carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
1139 crc >>= 1;
1140 c >>= 1;
1141 if (carry)
1142 crc = (crc ^ ETHER_CRC_POLY_LE);
1143 }
1144 }
1145
1146 return (crc);
1147 }
1148 #else
1149 uint32_t
1150 ether_crc32_le(const uint8_t *buf, size_t len)
1151 {
1152 static const uint32_t crctab[] = {
1153 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1154 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1155 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1156 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1157 };
1158 uint32_t crc;
1159 size_t i;
1160
1161 crc = 0xffffffffU; /* initial value */
1162
1163 for (i = 0; i < len; i++) {
1164 crc ^= buf[i];
1165 crc = (crc >> 4) ^ crctab[crc & 0xf];
1166 crc = (crc >> 4) ^ crctab[crc & 0xf];
1167 }
1168
1169 return (crc);
1170 }
1171 #endif
1172
1173 uint32_t
1174 ether_crc32_be(const uint8_t *buf, size_t len)
1175 {
1176 uint32_t c, crc, carry;
1177 size_t i, j;
1178
1179 crc = 0xffffffffU; /* initial value */
1180
1181 for (i = 0; i < len; i++) {
1182 c = buf[i];
1183 for (j = 0; j < 8; j++) {
1184 carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
1185 crc <<= 1;
1186 c >>= 1;
1187 if (carry)
1188 crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1189 }
1190 }
1191
1192 return (crc);
1193 }
1194
1195 #ifdef INET
1196 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
1197 { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
1198 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
1199 { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
1200 #endif
1201 #ifdef INET6
1202 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
1203 { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
1204 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
1205 { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
1206 #endif
1207
1208 /*
1209 * ether_aton implementation, not using a static buffer.
1210 */
1211 int
1212 ether_aton_r(u_char *dest, size_t len, const char *str)
1213 {
1214 const u_char *cp = (const void *)str;
1215 u_char *ep;
1216
1217 #define atox(c) (((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
1218
1219 if (len < ETHER_ADDR_LEN)
1220 return ENOSPC;
1221
1222 ep = dest + ETHER_ADDR_LEN;
1223
1224 while (*cp) {
1225 if (!isxdigit(*cp))
1226 return EINVAL;
1227
1228 *dest = atox(*cp);
1229 cp++;
1230 if (isxdigit(*cp)) {
1231 *dest = (*dest << 4) | atox(*cp);
1232 cp++;
1233 }
1234 dest++;
1235
1236 if (dest == ep)
1237 return (*cp == '\0') ? 0 : ENAMETOOLONG;
1238
1239 switch (*cp) {
1240 case ':':
1241 case '-':
1242 case '.':
1243 cp++;
1244 break;
1245 }
1246 }
1247 return ENOBUFS;
1248 }
1249
1250 /*
1251 * Convert a sockaddr into an Ethernet address or range of Ethernet
1252 * addresses.
1253 */
1254 int
1255 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
1256 uint8_t addrhi[ETHER_ADDR_LEN])
1257 {
1258 #ifdef INET
1259 const struct sockaddr_in *sin;
1260 #endif
1261 #ifdef INET6
1262 const struct sockaddr_in6 *sin6;
1263 #endif
1264
1265 switch (sa->sa_family) {
1266
1267 case AF_UNSPEC:
1268 memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
1269 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1270 break;
1271
1272 #ifdef INET
1273 case AF_INET:
1274 sin = satocsin(sa);
1275 if (sin->sin_addr.s_addr == INADDR_ANY) {
1276 /*
1277 * An IP address of INADDR_ANY means listen to
1278 * or stop listening to all of the Ethernet
1279 * multicast addresses used for IP.
1280 * (This is for the sake of IP multicast routers.)
1281 */
1282 memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
1283 memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
1284 } else {
1285 ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
1286 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1287 }
1288 break;
1289 #endif
1290 #ifdef INET6
1291 case AF_INET6:
1292 sin6 = satocsin6(sa);
1293 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1294 /*
1295 * An IP6 address of 0 means listen to or stop
1296 * listening to all of the Ethernet multicast
1297 * address used for IP6.
1298 * (This is used for multicast routers.)
1299 */
1300 memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
1301 memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
1302 } else {
1303 ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
1304 memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
1305 }
1306 break;
1307 #endif
1308
1309 default:
1310 return EAFNOSUPPORT;
1311 }
1312 return 0;
1313 }
1314
1315 /*
1316 * Add an Ethernet multicast address or range of addresses to the list for a
1317 * given interface.
1318 */
1319 int
1320 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
1321 {
1322 struct ether_multi *enm, *_enm;
1323 u_char addrlo[ETHER_ADDR_LEN];
1324 u_char addrhi[ETHER_ADDR_LEN];
1325 int error = 0;
1326
1327 /* Allocate out of lock */
1328 enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
1329
1330 ETHER_LOCK(ec);
1331 error = ether_multiaddr(sa, addrlo, addrhi);
1332 if (error != 0)
1333 goto out;
1334
1335 /*
1336 * Verify that we have valid Ethernet multicast addresses.
1337 */
1338 if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
1339 error = EINVAL;
1340 goto out;
1341 }
1342
1343 /*
1344 * See if the address range is already in the list.
1345 */
1346 _enm = ether_lookup_multi(addrlo, addrhi, ec);
1347 if (_enm != NULL) {
1348 /*
1349 * Found it; just increment the reference count.
1350 */
1351 ++_enm->enm_refcount;
1352 error = 0;
1353 goto out;
1354 }
1355
1356 /*
1357 * Link a new multicast record into the interface's multicast list.
1358 */
1359 memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
1360 memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
1361 enm->enm_refcount = 1;
1362 LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
1363 ec->ec_multicnt++;
1364
1365 /*
1366 * Return ENETRESET to inform the driver that the list has changed
1367 * and its reception filter should be adjusted accordingly.
1368 */
1369 error = ENETRESET;
1370 enm = NULL;
1371
1372 out:
1373 ETHER_UNLOCK(ec);
1374 if (enm != NULL)
1375 kmem_free(enm, sizeof(*enm));
1376 return error;
1377 }
1378
1379 /*
1380 * Delete a multicast address record.
1381 */
1382 int
1383 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
1384 {
1385 struct ether_multi *enm;
1386 u_char addrlo[ETHER_ADDR_LEN];
1387 u_char addrhi[ETHER_ADDR_LEN];
1388 int error;
1389
1390 ETHER_LOCK(ec);
1391 error = ether_multiaddr(sa, addrlo, addrhi);
1392 if (error != 0)
1393 goto error;
1394
1395 /*
1396 * Look up the address in our list.
1397 */
1398 enm = ether_lookup_multi(addrlo, addrhi, ec);
1399 if (enm == NULL) {
1400 error = ENXIO;
1401 goto error;
1402 }
1403 if (--enm->enm_refcount != 0) {
1404 /*
1405 * Still some claims to this record.
1406 */
1407 error = 0;
1408 goto error;
1409 }
1410
1411 /*
1412 * No remaining claims to this record; unlink and free it.
1413 */
1414 LIST_REMOVE(enm, enm_list);
1415 ec->ec_multicnt--;
1416 ETHER_UNLOCK(ec);
1417 kmem_free(enm, sizeof(*enm));
1418
1419 /*
1420 * Return ENETRESET to inform the driver that the list has changed
1421 * and its reception filter should be adjusted accordingly.
1422 */
1423 return ENETRESET;
1424
1425 error:
1426 ETHER_UNLOCK(ec);
1427 return error;
1428 }
1429
1430 void
1431 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
1432 {
1433 ec->ec_ifflags_cb = cb;
1434 }
1435
1436 void
1437 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
1438 {
1439
1440 ec->ec_vlan_cb = cb;
1441 }
1442
1443 static int
1444 ether_ioctl_reinit(struct ethercom *ec)
1445 {
1446 struct ifnet *ifp = &ec->ec_if;
1447 int error;
1448
1449 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
1450 case IFF_RUNNING:
1451 /*
1452 * If interface is marked down and it is running,
1453 * then stop and disable it.
1454 */
1455 (*ifp->if_stop)(ifp, 1);
1456 break;
1457 case IFF_UP:
1458 /*
1459 * If interface is marked up and it is stopped, then
1460 * start it.
1461 */
1462 return (*ifp->if_init)(ifp);
1463 case IFF_UP | IFF_RUNNING:
1464 error = 0;
1465 if (ec->ec_ifflags_cb != NULL) {
1466 error = (*ec->ec_ifflags_cb)(ec);
1467 if (error == ENETRESET) {
1468 /*
1469 * Reset the interface to pick up
1470 * changes in any other flags that
1471 * affect the hardware state.
1472 */
1473 return (*ifp->if_init)(ifp);
1474 }
1475 } else
1476 error = (*ifp->if_init)(ifp);
1477 return error;
1478 case 0:
1479 break;
1480 }
1481
1482 return 0;
1483 }
1484
1485 /*
1486 * Common ioctls for Ethernet interfaces. Note, we must be
1487 * called at splnet().
1488 */
1489 int
1490 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1491 {
1492 struct ethercom *ec = (void *)ifp;
1493 struct eccapreq *eccr;
1494 struct ifreq *ifr = (struct ifreq *)data;
1495 struct if_laddrreq *iflr = data;
1496 const struct sockaddr_dl *sdl;
1497 static const uint8_t zero[ETHER_ADDR_LEN];
1498 int error;
1499
1500 switch (cmd) {
1501 case SIOCINITIFADDR:
1502 {
1503 struct ifaddr *ifa = (struct ifaddr *)data;
1504 if (ifa->ifa_addr->sa_family != AF_LINK
1505 && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
1506 (IFF_UP | IFF_RUNNING)) {
1507 ifp->if_flags |= IFF_UP;
1508 if ((error = (*ifp->if_init)(ifp)) != 0)
1509 return error;
1510 }
1511 #ifdef INET
1512 if (ifa->ifa_addr->sa_family == AF_INET)
1513 arp_ifinit(ifp, ifa);
1514 #endif
1515 return 0;
1516 }
1517
1518 case SIOCSIFMTU:
1519 {
1520 int maxmtu;
1521
1522 if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
1523 maxmtu = ETHERMTU_JUMBO;
1524 else
1525 maxmtu = ETHERMTU;
1526
1527 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
1528 return EINVAL;
1529 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1530 return error;
1531 else if (ifp->if_flags & IFF_UP) {
1532 /* Make sure the device notices the MTU change. */
1533 return (*ifp->if_init)(ifp);
1534 } else
1535 return 0;
1536 }
1537
1538 case SIOCSIFFLAGS:
1539 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1540 return error;
1541 return ether_ioctl_reinit(ec);
1542 case SIOCGIFFLAGS:
1543 error = ifioctl_common(ifp, cmd, data);
1544 if (error == 0) {
1545 /* Set IFF_ALLMULTI for backcompat */
1546 ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
1547 IFF_ALLMULTI : 0;
1548 }
1549 return error;
1550 case SIOCGETHERCAP:
1551 eccr = (struct eccapreq *)data;
1552 eccr->eccr_capabilities = ec->ec_capabilities;
1553 eccr->eccr_capenable = ec->ec_capenable;
1554 return 0;
1555 case SIOCSETHERCAP:
1556 eccr = (struct eccapreq *)data;
1557 if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
1558 return EINVAL;
1559 if (eccr->eccr_capenable == ec->ec_capenable)
1560 return 0;
1561 #if 0 /* notyet */
1562 ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
1563 | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
1564 #else
1565 ec->ec_capenable = eccr->eccr_capenable;
1566 #endif
1567 return ether_ioctl_reinit(ec);
1568 case SIOCADDMULTI:
1569 return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
1570 case SIOCDELMULTI:
1571 return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
1572 case SIOCSIFMEDIA:
1573 case SIOCGIFMEDIA:
1574 if (ec->ec_mii != NULL)
1575 return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
1576 cmd);
1577 else if (ec->ec_ifmedia != NULL)
1578 return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
1579 else
1580 return ENOTTY;
1581 break;
1582 case SIOCALIFADDR:
1583 sdl = satocsdl(sstocsa(&iflr->addr));
1584 if (sdl->sdl_family != AF_LINK)
1585 ;
1586 else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
1587 return EINVAL;
1588 else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
1589 return EINVAL;
1590 /*FALLTHROUGH*/
1591 default:
1592 return ifioctl_common(ifp, cmd, data);
1593 }
1594 return 0;
1595 }
1596
1597 /*
1598 * Enable/disable passing VLAN packets if the parent interface supports it.
1599 * Return:
1600 * 0: Ok
1601 * -1: Parent interface does not support vlans
1602 * >0: Error
1603 */
1604 int
1605 ether_enable_vlan_mtu(struct ifnet *ifp)
1606 {
1607 int error;
1608 struct ethercom *ec = (void *)ifp;
1609
1610 /* Parent does not support VLAN's */
1611 if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
1612 return -1;
1613
1614 /*
1615 * Parent supports the VLAN_MTU capability,
1616 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
1617 * enable it.
1618 */
1619 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1620
1621 /* Interface is down, defer for later */
1622 if ((ifp->if_flags & IFF_UP) == 0)
1623 return 0;
1624
1625 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1626 return 0;
1627
1628 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1629 return error;
1630 }
1631
1632 int
1633 ether_disable_vlan_mtu(struct ifnet *ifp)
1634 {
1635 int error;
1636 struct ethercom *ec = (void *)ifp;
1637
1638 /* We still have VLAN's, defer for later */
1639 if (ec->ec_nvlans != 0)
1640 return 0;
1641
1642 /* Parent does not support VLAB's, nothing to do. */
1643 if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
1644 return -1;
1645
1646 /*
1647 * Disable Tx/Rx of VLAN-sized frames.
1648 */
1649 ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
1650
1651 /* Interface is down, defer for later */
1652 if ((ifp->if_flags & IFF_UP) == 0)
1653 return 0;
1654
1655 if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
1656 return 0;
1657
1658 ec->ec_capenable |= ETHERCAP_VLAN_MTU;
1659 return error;
1660 }
1661
1662 /*
1663 * Add and delete VLAN TAG
1664 */
1665 int
1666 ether_add_vlantag(struct ifnet *ifp, uint16_t vtag, bool *vlanmtu_status)
1667 {
1668 struct ethercom *ec = (void *)ifp;
1669 struct vlanid_list *vidp;
1670 bool vlanmtu_enabled;
1671 uint16_t vid = EVL_VLANOFTAG(vtag);
1672 int error;
1673
1674 vlanmtu_enabled = false;
1675
1676 /* Add a vid to the list */
1677 vidp = kmem_alloc(sizeof(*vidp), KM_SLEEP);
1678 vidp->vid = vid;
1679
1680 ETHER_LOCK(ec);
1681 ec->ec_nvlans++;
1682 SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidp, vid_list);
1683 ETHER_UNLOCK(ec);
1684
1685 if (ec->ec_nvlans == 1) {
1686 IFNET_LOCK(ifp);
1687 error = ether_enable_vlan_mtu(ifp);
1688 IFNET_UNLOCK(ifp);
1689
1690 if (error == 0) {
1691 vlanmtu_enabled = true;
1692 } else if (error != -1) {
1693 goto fail;
1694 }
1695 }
1696
1697 if (ec->ec_vlan_cb != NULL) {
1698 error = (*ec->ec_vlan_cb)(ec, vid, true);
1699 if (error != 0)
1700 goto fail;
1701 }
1702
1703 if (vlanmtu_status != NULL)
1704 *vlanmtu_status = vlanmtu_enabled;
1705
1706 return 0;
1707 fail:
1708 ETHER_LOCK(ec);
1709 ec->ec_nvlans--;
1710 SIMPLEQ_REMOVE(&ec->ec_vids, vidp, vlanid_list, vid_list);
1711 ETHER_UNLOCK(ec);
1712
1713 if (vlanmtu_enabled) {
1714 IFNET_LOCK(ifp);
1715 (void)ether_disable_vlan_mtu(ifp);
1716 IFNET_UNLOCK(ifp);
1717 }
1718
1719 kmem_free(vidp, sizeof(*vidp));
1720
1721 return error;
1722 }
1723
1724 int
1725 ether_del_vlantag(struct ifnet *ifp, uint16_t vtag)
1726 {
1727 struct ethercom *ec = (void *)ifp;
1728 struct vlanid_list *vidp;
1729 uint16_t vid = EVL_VLANOFTAG(vtag);
1730
1731 ETHER_LOCK(ec);
1732 SIMPLEQ_FOREACH(vidp, &ec->ec_vids, vid_list) {
1733 if (vidp->vid == vid) {
1734 SIMPLEQ_REMOVE(&ec->ec_vids, vidp,
1735 vlanid_list, vid_list);
1736 ec->ec_nvlans--;
1737 break;
1738 }
1739 }
1740 ETHER_UNLOCK(ec);
1741
1742 if (vidp == NULL)
1743 return ENOENT;
1744
1745 if (ec->ec_vlan_cb != NULL) {
1746 (void)(*ec->ec_vlan_cb)(ec, vidp->vid, false);
1747 }
1748
1749 if (ec->ec_nvlans == 0) {
1750 IFNET_LOCK(ifp);
1751 (void)ether_disable_vlan_mtu(ifp);
1752 IFNET_UNLOCK(ifp);
1753 }
1754
1755 kmem_free(vidp, sizeof(*vidp));
1756
1757 return 0;
1758 }
1759
1760 static int
1761 ether_multicast_sysctl(SYSCTLFN_ARGS)
1762 {
1763 struct ether_multi *enm;
1764 struct ifnet *ifp;
1765 struct ethercom *ec;
1766 int error = 0;
1767 size_t written;
1768 struct psref psref;
1769 int bound;
1770 unsigned int multicnt;
1771 struct ether_multi_sysctl *addrs;
1772 int i;
1773
1774 if (namelen != 1)
1775 return EINVAL;
1776
1777 bound = curlwp_bind();
1778 ifp = if_get_byindex(name[0], &psref);
1779 if (ifp == NULL) {
1780 error = ENODEV;
1781 goto out;
1782 }
1783 if (ifp->if_type != IFT_ETHER) {
1784 if_put(ifp, &psref);
1785 *oldlenp = 0;
1786 goto out;
1787 }
1788 ec = (struct ethercom *)ifp;
1789
1790 if (oldp == NULL) {
1791 if_put(ifp, &psref);
1792 *oldlenp = ec->ec_multicnt * sizeof(*addrs);
1793 goto out;
1794 }
1795
1796 /*
1797 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
1798 * is sleepable, while holding it. Copy data to a local buffer first
1799 * with the lock taken and then call sysctl_copyout without holding it.
1800 */
1801 retry:
1802 multicnt = ec->ec_multicnt;
1803
1804 if (multicnt == 0) {
1805 if_put(ifp, &psref);
1806 *oldlenp = 0;
1807 goto out;
1808 }
1809
1810 addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
1811
1812 ETHER_LOCK(ec);
1813 if (multicnt != ec->ec_multicnt) {
1814 /* The number of multicast addresses has changed */
1815 ETHER_UNLOCK(ec);
1816 kmem_free(addrs, sizeof(*addrs) * multicnt);
1817 goto retry;
1818 }
1819
1820 i = 0;
1821 LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
1822 struct ether_multi_sysctl *addr = &addrs[i];
1823 addr->enm_refcount = enm->enm_refcount;
1824 memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
1825 memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
1826 i++;
1827 }
1828 ETHER_UNLOCK(ec);
1829
1830 error = 0;
1831 written = 0;
1832 for (i = 0; i < multicnt; i++) {
1833 struct ether_multi_sysctl *addr = &addrs[i];
1834
1835 if (written + sizeof(*addr) > *oldlenp)
1836 break;
1837 error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
1838 if (error)
1839 break;
1840 written += sizeof(*addr);
1841 oldp = (char *)oldp + sizeof(*addr);
1842 }
1843 kmem_free(addrs, sizeof(*addrs) * multicnt);
1844
1845 if_put(ifp, &psref);
1846
1847 *oldlenp = written;
1848 out:
1849 curlwp_bindx(bound);
1850 return error;
1851 }
1852
1853 static void
1854 ether_sysctl_setup(struct sysctllog **clog)
1855 {
1856 const struct sysctlnode *rnode = NULL;
1857
1858 sysctl_createv(clog, 0, NULL, &rnode,
1859 CTLFLAG_PERMANENT,
1860 CTLTYPE_NODE, "ether",
1861 SYSCTL_DESCR("Ethernet-specific information"),
1862 NULL, 0, NULL, 0,
1863 CTL_NET, CTL_CREATE, CTL_EOL);
1864
1865 sysctl_createv(clog, 0, &rnode, NULL,
1866 CTLFLAG_PERMANENT,
1867 CTLTYPE_NODE, "multicast",
1868 SYSCTL_DESCR("multicast addresses"),
1869 ether_multicast_sysctl, 0, NULL, 0,
1870 CTL_CREATE, CTL_EOL);
1871
1872 sysctl_createv(clog, 0, &rnode, NULL,
1873 CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
1874 CTLTYPE_STRING, "rps_hash",
1875 SYSCTL_DESCR("Interface rps hash function control"),
1876 sysctl_pktq_rps_hash_handler, 0, (void *)ðer_pktq_rps_hash_p,
1877 PKTQ_RPS_HASH_NAME_LEN,
1878 CTL_CREATE, CTL_EOL);
1879 }
1880
1881 void
1882 etherinit(void)
1883 {
1884
1885 #ifdef DIAGNOSTIC
1886 mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
1887 #endif
1888 ether_pktq_rps_hash_p = pktq_rps_hash_default;
1889 ether_sysctl_setup(NULL);
1890 }
1891