Home | History | Annotate | Line # | Download | only in net
if_ethersubr.c revision 1.319
      1 /*	$NetBSD: if_ethersubr.c,v 1.319 2022/09/03 02:24:59 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1982, 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)if_ethersubr.c	8.2 (Berkeley) 4/4/96
     61  */
     62 
     63 #include <sys/cdefs.h>
     64 __KERNEL_RCSID(0, "$NetBSD: if_ethersubr.c,v 1.319 2022/09/03 02:24:59 thorpej Exp $");
     65 
     66 #ifdef _KERNEL_OPT
     67 #include "opt_inet.h"
     68 #include "opt_atalk.h"
     69 #include "opt_mbuftrace.h"
     70 #include "opt_mpls.h"
     71 #include "opt_gateway.h"
     72 #include "opt_pppoe.h"
     73 #include "opt_net_mpsafe.h"
     74 #endif
     75 
     76 #include "vlan.h"
     77 #include "pppoe.h"
     78 #include "bridge.h"
     79 #include "arp.h"
     80 #include "agr.h"
     81 
     82 #include <sys/sysctl.h>
     83 #include <sys/mbuf.h>
     84 #include <sys/mutex.h>
     85 #include <sys/ioctl.h>
     86 #include <sys/errno.h>
     87 #include <sys/device.h>
     88 #include <sys/entropy.h>
     89 #include <sys/rndsource.h>
     90 #include <sys/cpu.h>
     91 #include <sys/kmem.h>
     92 #include <sys/hook.h>
     93 
     94 #include <net/if.h>
     95 #include <net/netisr.h>
     96 #include <net/route.h>
     97 #include <net/if_llc.h>
     98 #include <net/if_dl.h>
     99 #include <net/if_types.h>
    100 #include <net/pktqueue.h>
    101 
    102 #include <net/if_media.h>
    103 #include <dev/mii/mii.h>
    104 #include <dev/mii/miivar.h>
    105 
    106 #if NARP == 0
    107 /*
    108  * XXX there should really be a way to issue this warning from within config(8)
    109  */
    110 #error You have included NETATALK or a pseudo-device in your configuration that depends on the presence of ethernet interfaces, but have no such interfaces configured. Check if you really need pseudo-device bridge, pppoe, vlan or options NETATALK.
    111 #endif
    112 
    113 #include <net/bpf.h>
    114 
    115 #include <net/if_ether.h>
    116 #include <net/if_vlanvar.h>
    117 
    118 #if NPPPOE > 0
    119 #include <net/if_pppoe.h>
    120 #endif
    121 
    122 #if NAGR > 0
    123 #include <net/ether_slowprotocols.h>
    124 #include <net/agr/ieee8023ad.h>
    125 #include <net/agr/if_agrvar.h>
    126 #endif
    127 
    128 #if NBRIDGE > 0
    129 #include <net/if_bridgevar.h>
    130 #endif
    131 
    132 #include <netinet/in.h>
    133 #ifdef INET
    134 #include <netinet/in_var.h>
    135 #endif
    136 #include <netinet/if_inarp.h>
    137 
    138 #ifdef INET6
    139 #ifndef INET
    140 #include <netinet/in.h>
    141 #endif
    142 #include <netinet6/in6_var.h>
    143 #include <netinet6/nd6.h>
    144 #endif
    145 
    146 #include "carp.h"
    147 #if NCARP > 0
    148 #include <netinet/ip_carp.h>
    149 #endif
    150 
    151 #ifdef NETATALK
    152 #include <netatalk/at.h>
    153 #include <netatalk/at_var.h>
    154 #include <netatalk/at_extern.h>
    155 
    156 #define llc_snap_org_code llc_un.type_snap.org_code
    157 #define llc_snap_ether_type llc_un.type_snap.ether_type
    158 
    159 extern u_char	at_org_code[3];
    160 extern u_char	aarp_org_code[3];
    161 #endif /* NETATALK */
    162 
    163 #ifdef MPLS
    164 #include <netmpls/mpls.h>
    165 #include <netmpls/mpls_var.h>
    166 #endif
    167 
    168 CTASSERT(sizeof(struct ether_addr) == 6);
    169 CTASSERT(sizeof(struct ether_header) == 14);
    170 
    171 #ifdef DIAGNOSTIC
    172 static struct timeval bigpktppslim_last;
    173 static int bigpktppslim = 2;	/* XXX */
    174 static int bigpktpps_count;
    175 static kmutex_t bigpktpps_lock __cacheline_aligned;
    176 #endif
    177 
    178 const uint8_t etherbroadcastaddr[ETHER_ADDR_LEN] =
    179     { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
    180 const uint8_t ethermulticastaddr_slowprotocols[ETHER_ADDR_LEN] =
    181     { 0x01, 0x80, 0xc2, 0x00, 0x00, 0x02 };
    182 #define senderr(e) { error = (e); goto bad;}
    183 
    184 static pktq_rps_hash_func_t ether_pktq_rps_hash_p;
    185 
    186 static int ether_output(struct ifnet *, struct mbuf *,
    187     const struct sockaddr *, const struct rtentry *);
    188 
    189 /*
    190  * Ethernet output routine.
    191  * Encapsulate a packet of type family for the local net.
    192  * Assumes that ifp is actually pointer to ethercom structure.
    193  */
    194 static int
    195 ether_output(struct ifnet * const ifp0, struct mbuf * const m0,
    196     const struct sockaddr * const dst, const struct rtentry *rt)
    197 {
    198 	uint8_t esrc[ETHER_ADDR_LEN], edst[ETHER_ADDR_LEN];
    199 	uint16_t etype = 0;
    200 	int error = 0, hdrcmplt = 0;
    201 	struct mbuf *m = m0;
    202 	struct mbuf *mcopy = NULL;
    203 	struct ether_header *eh;
    204 	struct ifnet *ifp = ifp0;
    205 #ifdef INET
    206 	struct arphdr *ah;
    207 #endif
    208 #ifdef NETATALK
    209 	struct at_ifaddr *aa;
    210 #endif
    211 
    212 #ifdef MBUFTRACE
    213 	m_claimm(m, ifp->if_mowner);
    214 #endif
    215 
    216 #if NCARP > 0
    217 	if (ifp->if_type == IFT_CARP) {
    218 		struct ifaddr *ifa;
    219 		int s = pserialize_read_enter();
    220 
    221 		/* loop back if this is going to the carp interface */
    222 		if (dst != NULL && ifp0->if_link_state == LINK_STATE_UP &&
    223 		    (ifa = ifa_ifwithaddr(dst)) != NULL) {
    224 			if (ifa->ifa_ifp == ifp0) {
    225 				pserialize_read_exit(s);
    226 				return looutput(ifp0, m, dst, rt);
    227 			}
    228 		}
    229 		pserialize_read_exit(s);
    230 
    231 		ifp = ifp->if_carpdev;
    232 		/* ac = (struct arpcom *)ifp; */
    233 
    234 		if ((ifp0->if_flags & (IFF_UP | IFF_RUNNING)) !=
    235 		    (IFF_UP | IFF_RUNNING))
    236 			senderr(ENETDOWN);
    237 	}
    238 #endif
    239 
    240 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) != (IFF_UP | IFF_RUNNING))
    241 		senderr(ENETDOWN);
    242 
    243 	switch (dst->sa_family) {
    244 
    245 #ifdef INET
    246 	case AF_INET:
    247 		if (m->m_flags & M_BCAST) {
    248 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
    249 		} else if (m->m_flags & M_MCAST) {
    250 			ETHER_MAP_IP_MULTICAST(&satocsin(dst)->sin_addr, edst);
    251 		} else {
    252 			error = arpresolve(ifp0, rt, m, dst, edst, sizeof(edst));
    253 			if (error)
    254 				return (error == EWOULDBLOCK) ? 0 : error;
    255 		}
    256 		/* If broadcasting on a simplex interface, loopback a copy */
    257 		if ((m->m_flags & M_BCAST) && (ifp->if_flags & IFF_SIMPLEX))
    258 			mcopy = m_copypacket(m, M_DONTWAIT);
    259 		etype = htons(ETHERTYPE_IP);
    260 		break;
    261 
    262 	case AF_ARP:
    263 		ah = mtod(m, struct arphdr *);
    264 		if (m->m_flags & M_BCAST) {
    265 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
    266 		} else {
    267 			void *tha = ar_tha(ah);
    268 
    269 			if (tha == NULL) {
    270 				/* fake with ARPHRD_IEEE1394 */
    271 				m_freem(m);
    272 				return 0;
    273 			}
    274 			memcpy(edst, tha, sizeof(edst));
    275 		}
    276 
    277 		ah->ar_hrd = htons(ARPHRD_ETHER);
    278 
    279 		switch (ntohs(ah->ar_op)) {
    280 		case ARPOP_REVREQUEST:
    281 		case ARPOP_REVREPLY:
    282 			etype = htons(ETHERTYPE_REVARP);
    283 			break;
    284 
    285 		case ARPOP_REQUEST:
    286 		case ARPOP_REPLY:
    287 		default:
    288 			etype = htons(ETHERTYPE_ARP);
    289 		}
    290 		break;
    291 #endif
    292 
    293 #ifdef INET6
    294 	case AF_INET6:
    295 		if (m->m_flags & M_BCAST) {
    296 			memcpy(edst, etherbroadcastaddr, sizeof(edst));
    297 		} else if (m->m_flags & M_MCAST) {
    298 			ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
    299 			    edst);
    300 		} else {
    301 			error = nd6_resolve(ifp0, rt, m, dst, edst,
    302 			    sizeof(edst));
    303 			if (error)
    304 				return (error == EWOULDBLOCK) ? 0 : error;
    305 		}
    306 		etype = htons(ETHERTYPE_IPV6);
    307 		break;
    308 #endif
    309 
    310 #ifdef NETATALK
    311 	case AF_APPLETALK: {
    312 		struct ifaddr *ifa;
    313 		int s;
    314 
    315 		KERNEL_LOCK(1, NULL);
    316 
    317 		if (!aarpresolve(ifp, m, (const struct sockaddr_at *)dst, edst)) {
    318 			KERNEL_UNLOCK_ONE(NULL);
    319 			return 0;
    320 		}
    321 
    322 		/*
    323 		 * ifaddr is the first thing in at_ifaddr
    324 		 */
    325 		s = pserialize_read_enter();
    326 		ifa = at_ifawithnet((const struct sockaddr_at *)dst, ifp);
    327 		if (ifa == NULL) {
    328 			pserialize_read_exit(s);
    329 			KERNEL_UNLOCK_ONE(NULL);
    330 			senderr(EADDRNOTAVAIL);
    331 		}
    332 		aa = (struct at_ifaddr *)ifa;
    333 
    334 		/*
    335 		 * In the phase 2 case, we need to prepend an mbuf for the
    336 		 * llc header.
    337 		 */
    338 		if (aa->aa_flags & AFA_PHASE2) {
    339 			struct llc llc;
    340 
    341 			M_PREPEND(m, sizeof(struct llc), M_DONTWAIT);
    342 			if (m == NULL) {
    343 				pserialize_read_exit(s);
    344 				KERNEL_UNLOCK_ONE(NULL);
    345 				senderr(ENOBUFS);
    346 			}
    347 
    348 			llc.llc_dsap = llc.llc_ssap = LLC_SNAP_LSAP;
    349 			llc.llc_control = LLC_UI;
    350 			memcpy(llc.llc_snap_org_code, at_org_code,
    351 			    sizeof(llc.llc_snap_org_code));
    352 			llc.llc_snap_ether_type = htons(ETHERTYPE_ATALK);
    353 			memcpy(mtod(m, void *), &llc, sizeof(struct llc));
    354 		} else {
    355 			etype = htons(ETHERTYPE_ATALK);
    356 		}
    357 		pserialize_read_exit(s);
    358 		KERNEL_UNLOCK_ONE(NULL);
    359 		break;
    360 	}
    361 #endif /* NETATALK */
    362 
    363 	case pseudo_AF_HDRCMPLT:
    364 		hdrcmplt = 1;
    365 		memcpy(esrc,
    366 		    ((const struct ether_header *)dst->sa_data)->ether_shost,
    367 		    sizeof(esrc));
    368 		/* FALLTHROUGH */
    369 
    370 	case AF_UNSPEC:
    371 		memcpy(edst,
    372 		    ((const struct ether_header *)dst->sa_data)->ether_dhost,
    373 		    sizeof(edst));
    374 		/* AF_UNSPEC doesn't swap the byte order of the ether_type. */
    375 		etype = ((const struct ether_header *)dst->sa_data)->ether_type;
    376 		break;
    377 
    378 	default:
    379 		printf("%s: can't handle af%d\n", ifp->if_xname,
    380 		    dst->sa_family);
    381 		senderr(EAFNOSUPPORT);
    382 	}
    383 
    384 #ifdef MPLS
    385 	{
    386 		struct m_tag *mtag;
    387 		mtag = m_tag_find(m, PACKET_TAG_MPLS);
    388 		if (mtag != NULL) {
    389 			/* Having the tag itself indicates it's MPLS */
    390 			etype = htons(ETHERTYPE_MPLS);
    391 			m_tag_delete(m, mtag);
    392 		}
    393 	}
    394 #endif
    395 
    396 	if (mcopy)
    397 		(void)looutput(ifp, mcopy, dst, rt);
    398 
    399 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    400 
    401 	/*
    402 	 * If no ether type is set, this must be a 802.2 formatted packet.
    403 	 */
    404 	if (etype == 0)
    405 		etype = htons(m->m_pkthdr.len);
    406 
    407 	/*
    408 	 * Add local net header. If no space in first mbuf, allocate another.
    409 	 */
    410 	M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
    411 	if (m == NULL)
    412 		senderr(ENOBUFS);
    413 
    414 	eh = mtod(m, struct ether_header *);
    415 	/* Note: etype is already in network byte order. */
    416 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
    417 	memcpy(eh->ether_dhost, edst, sizeof(edst));
    418 	if (hdrcmplt) {
    419 		memcpy(eh->ether_shost, esrc, sizeof(eh->ether_shost));
    420 	} else {
    421 	 	memcpy(eh->ether_shost, CLLADDR(ifp->if_sadl),
    422 		    sizeof(eh->ether_shost));
    423 	}
    424 
    425 #if NCARP > 0
    426 	if (ifp0 != ifp && ifp0->if_type == IFT_CARP) {
    427 	 	memcpy(eh->ether_shost, CLLADDR(ifp0->if_sadl),
    428 		    sizeof(eh->ether_shost));
    429 	}
    430 #endif
    431 
    432 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
    433 		return error;
    434 	if (m == NULL)
    435 		return 0;
    436 
    437 #if NBRIDGE > 0
    438 	/*
    439 	 * Bridges require special output handling.
    440 	 */
    441 	if (ifp->if_bridge)
    442 		return bridge_output(ifp, m, NULL, NULL);
    443 #endif
    444 
    445 #if NCARP > 0
    446 	if (ifp != ifp0)
    447 		if_statadd(ifp0, if_obytes, m->m_pkthdr.len + ETHER_HDR_LEN);
    448 #endif
    449 
    450 #ifdef ALTQ
    451 	KERNEL_LOCK(1, NULL);
    452 	/*
    453 	 * If ALTQ is enabled on the parent interface, do
    454 	 * classification; the queueing discipline might not
    455 	 * require classification, but might require the
    456 	 * address family/header pointer in the pktattr.
    457 	 */
    458 	if (ALTQ_IS_ENABLED(&ifp->if_snd))
    459 		altq_etherclassify(&ifp->if_snd, m);
    460 	KERNEL_UNLOCK_ONE(NULL);
    461 #endif
    462 	return ifq_enqueue(ifp, m);
    463 
    464 bad:
    465 	if_statinc(ifp, if_oerrors);
    466 	if (m)
    467 		m_freem(m);
    468 	return error;
    469 }
    470 
    471 #ifdef ALTQ
    472 /*
    473  * This routine is a slight hack to allow a packet to be classified
    474  * if the Ethernet headers are present.  It will go away when ALTQ's
    475  * classification engine understands link headers.
    476  *
    477  * XXX: We may need to do m_pullups here. First to ensure struct ether_header
    478  * is indeed contiguous, then to read the LLC and so on.
    479  */
    480 void
    481 altq_etherclassify(struct ifaltq *ifq, struct mbuf *m)
    482 {
    483 	struct ether_header *eh;
    484 	struct mbuf *mtop = m;
    485 	uint16_t ether_type;
    486 	int hlen, af, hdrsize;
    487 	void *hdr;
    488 
    489 	KASSERT((mtop->m_flags & M_PKTHDR) != 0);
    490 
    491 	hlen = ETHER_HDR_LEN;
    492 	eh = mtod(m, struct ether_header *);
    493 
    494 	ether_type = htons(eh->ether_type);
    495 
    496 	if (ether_type < ETHERMTU) {
    497 		/* LLC/SNAP */
    498 		struct llc *llc = (struct llc *)(eh + 1);
    499 		hlen += 8;
    500 
    501 		if (m->m_len < hlen ||
    502 		    llc->llc_dsap != LLC_SNAP_LSAP ||
    503 		    llc->llc_ssap != LLC_SNAP_LSAP ||
    504 		    llc->llc_control != LLC_UI) {
    505 			/* Not SNAP. */
    506 			goto bad;
    507 		}
    508 
    509 		ether_type = htons(llc->llc_un.type_snap.ether_type);
    510 	}
    511 
    512 	switch (ether_type) {
    513 	case ETHERTYPE_IP:
    514 		af = AF_INET;
    515 		hdrsize = 20;		/* sizeof(struct ip) */
    516 		break;
    517 
    518 	case ETHERTYPE_IPV6:
    519 		af = AF_INET6;
    520 		hdrsize = 40;		/* sizeof(struct ip6_hdr) */
    521 		break;
    522 
    523 	default:
    524 		af = AF_UNSPEC;
    525 		hdrsize = 0;
    526 		break;
    527 	}
    528 
    529 	while (m->m_len <= hlen) {
    530 		hlen -= m->m_len;
    531 		m = m->m_next;
    532 		if (m == NULL)
    533 			goto bad;
    534 	}
    535 
    536 	if (m->m_len < (hlen + hdrsize)) {
    537 		/*
    538 		 * protocol header not in a single mbuf.
    539 		 * We can't cope with this situation right
    540 		 * now (but it shouldn't ever happen, really, anyhow).
    541 		 */
    542 #ifdef DEBUG
    543 		printf("altq_etherclassify: headers span multiple mbufs: "
    544 		    "%d < %d\n", m->m_len, (hlen + hdrsize));
    545 #endif
    546 		goto bad;
    547 	}
    548 
    549 	m->m_data += hlen;
    550 	m->m_len -= hlen;
    551 
    552 	hdr = mtod(m, void *);
    553 
    554 	if (ALTQ_NEEDS_CLASSIFY(ifq)) {
    555 		mtop->m_pkthdr.pattr_class =
    556 		    (*ifq->altq_classify)(ifq->altq_clfier, m, af);
    557 	}
    558 	mtop->m_pkthdr.pattr_af = af;
    559 	mtop->m_pkthdr.pattr_hdr = hdr;
    560 
    561 	m->m_data -= hlen;
    562 	m->m_len += hlen;
    563 
    564 	return;
    565 
    566 bad:
    567 	mtop->m_pkthdr.pattr_class = NULL;
    568 	mtop->m_pkthdr.pattr_hdr = NULL;
    569 	mtop->m_pkthdr.pattr_af = AF_UNSPEC;
    570 }
    571 #endif /* ALTQ */
    572 
    573 #if defined (LLC) || defined (NETATALK)
    574 static void
    575 ether_input_llc(struct ifnet *ifp, struct mbuf *m, struct ether_header *eh)
    576 {
    577 	pktqueue_t *pktq = NULL;
    578 	struct llc *l;
    579 
    580 	if (m->m_len < sizeof(*eh) + sizeof(struct llc))
    581 		goto error;
    582 
    583 	l = (struct llc *)(eh+1);
    584 	switch (l->llc_dsap) {
    585 #ifdef NETATALK
    586 	case LLC_SNAP_LSAP:
    587 		switch (l->llc_control) {
    588 		case LLC_UI:
    589 			if (l->llc_ssap != LLC_SNAP_LSAP)
    590 				goto error;
    591 
    592 			if (memcmp(&(l->llc_snap_org_code)[0],
    593 			    at_org_code, sizeof(at_org_code)) == 0 &&
    594 			    ntohs(l->llc_snap_ether_type) ==
    595 			    ETHERTYPE_ATALK) {
    596 				pktq = at_pktq2;
    597 				m_adj(m, sizeof(struct ether_header)
    598 				    + sizeof(struct llc));
    599 				break;
    600 			}
    601 
    602 			if (memcmp(&(l->llc_snap_org_code)[0],
    603 			    aarp_org_code,
    604 			    sizeof(aarp_org_code)) == 0 &&
    605 			    ntohs(l->llc_snap_ether_type) ==
    606 			    ETHERTYPE_AARP) {
    607 				m_adj(m, sizeof(struct ether_header)
    608 				    + sizeof(struct llc));
    609 				aarpinput(ifp, m); /* XXX queue? */
    610 				return;
    611 			}
    612 
    613 		default:
    614 			goto error;
    615 		}
    616 		break;
    617 #endif
    618 	default:
    619 		goto noproto;
    620 	}
    621 
    622 	KASSERT(pktq != NULL);
    623 	if (__predict_false(!pktq_enqueue(pktq, m, 0))) {
    624 		m_freem(m);
    625 	}
    626 	return;
    627 
    628 noproto:
    629 	m_freem(m);
    630 	if_statinc(ifp, if_noproto);
    631 	return;
    632 error:
    633 	m_freem(m);
    634 	if_statinc(ifp, if_ierrors);
    635 	return;
    636 }
    637 #endif /* defined (LLC) || defined (NETATALK) */
    638 
    639 /*
    640  * Process a received Ethernet packet;
    641  * the packet is in the mbuf chain m with
    642  * the ether header.
    643  */
    644 void
    645 ether_input(struct ifnet *ifp, struct mbuf *m)
    646 {
    647 #if NVLAN > 0 || defined(MBUFTRACE)
    648 	struct ethercom *ec = (struct ethercom *) ifp;
    649 #endif
    650 	pktqueue_t *pktq = NULL;
    651 	uint16_t etype;
    652 	struct ether_header *eh;
    653 	size_t ehlen;
    654 	static int earlypkts;
    655 
    656 	/* No RPS for not-IP. */
    657 	pktq_rps_hash_func_t rps_hash = NULL;
    658 
    659 	KASSERT(!cpu_intr_p());
    660 	KASSERT((m->m_flags & M_PKTHDR) != 0);
    661 
    662 	if ((ifp->if_flags & IFF_UP) == 0)
    663 		goto drop;
    664 
    665 #ifdef MBUFTRACE
    666 	m_claimm(m, &ec->ec_rx_mowner);
    667 #endif
    668 
    669 	if (__predict_false(m->m_len < sizeof(*eh))) {
    670 		if ((m = m_pullup(m, sizeof(*eh))) == NULL) {
    671 			if_statinc(ifp, if_ierrors);
    672 			return;
    673 		}
    674 	}
    675 
    676 	eh = mtod(m, struct ether_header *);
    677 	etype = ntohs(eh->ether_type);
    678 	ehlen = sizeof(*eh);
    679 
    680 	if (__predict_false(earlypkts < 100 ||
    681 		entropy_epoch() == (unsigned)-1)) {
    682 		rnd_add_data(NULL, eh, ehlen, 0);
    683 		earlypkts++;
    684 	}
    685 
    686 	/*
    687 	 * Determine if the packet is within its size limits. For MPLS the
    688 	 * header length is variable, so we skip the check.
    689 	 */
    690 	if (etype != ETHERTYPE_MPLS && m->m_pkthdr.len >
    691 	    ETHER_MAX_FRAME(ifp, etype, m->m_flags & M_HASFCS)) {
    692 #ifdef DIAGNOSTIC
    693 		mutex_enter(&bigpktpps_lock);
    694 		if (ppsratecheck(&bigpktppslim_last, &bigpktpps_count,
    695 		    bigpktppslim)) {
    696 			printf("%s: discarding oversize frame (len=%d)\n",
    697 			    ifp->if_xname, m->m_pkthdr.len);
    698 		}
    699 		mutex_exit(&bigpktpps_lock);
    700 #endif
    701 		goto error;
    702 	}
    703 
    704 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
    705 		/*
    706 		 * If this is not a simplex interface, drop the packet
    707 		 * if it came from us.
    708 		 */
    709 		if ((ifp->if_flags & IFF_SIMPLEX) == 0 &&
    710 		    memcmp(CLLADDR(ifp->if_sadl), eh->ether_shost,
    711 		    ETHER_ADDR_LEN) == 0) {
    712 			goto drop;
    713 		}
    714 
    715 		if (memcmp(etherbroadcastaddr,
    716 		    eh->ether_dhost, ETHER_ADDR_LEN) == 0)
    717 			m->m_flags |= M_BCAST;
    718 		else
    719 			m->m_flags |= M_MCAST;
    720 		if_statinc(ifp, if_imcasts);
    721 	}
    722 
    723 	/* If the CRC is still on the packet, trim it off. */
    724 	if (m->m_flags & M_HASFCS) {
    725 		m_adj(m, -ETHER_CRC_LEN);
    726 		m->m_flags &= ~M_HASFCS;
    727 	}
    728 
    729 	if_statadd(ifp, if_ibytes, m->m_pkthdr.len);
    730 
    731 	if (!vlan_has_tag(m) && etype == ETHERTYPE_VLAN) {
    732 		m = ether_strip_vlantag(m);
    733 		if (m == NULL) {
    734 			if_statinc(ifp, if_ierrors);
    735 			return;
    736 		}
    737 
    738 		eh = mtod(m, struct ether_header *);
    739 		etype = ntohs(eh->ether_type);
    740 		ehlen = sizeof(*eh);
    741 	}
    742 
    743 	if ((m->m_flags & (M_BCAST | M_MCAST | M_PROMISC)) == 0 &&
    744 	    (ifp->if_flags & IFF_PROMISC) != 0 &&
    745 	    memcmp(CLLADDR(ifp->if_sadl), eh->ether_dhost,
    746 	     ETHER_ADDR_LEN) != 0) {
    747 		m->m_flags |= M_PROMISC;
    748 	}
    749 
    750 	if ((m->m_flags & M_PROMISC) == 0) {
    751 		if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0)
    752 			return;
    753 		if (m == NULL)
    754 			return;
    755 
    756 		eh = mtod(m, struct ether_header *);
    757 		etype = ntohs(eh->ether_type);
    758 	}
    759 
    760 	/*
    761 	 * Processing a logical interfaces that are able
    762 	 * to configure vlan(4).
    763 	*/
    764 #if NAGR > 0
    765 	if (ifp->if_lagg != NULL &&
    766 	    __predict_true(etype != ETHERTYPE_SLOWPROTOCOLS)) {
    767 		m->m_flags &= ~M_PROMISC;
    768 		agr_input(ifp, m);
    769 		return;
    770 	}
    771 #endif
    772 
    773 	/*
    774 	 * VLAN processing.
    775 	 *
    776 	 * VLAN provides service delimiting so the frames are
    777 	 * processed before other handlings. If a VLAN interface
    778 	 * does not exist to take those frames, they're returned
    779 	 * to ether_input().
    780 	 */
    781 
    782 	if (vlan_has_tag(m)) {
    783 		if (EVL_VLANOFTAG(vlan_get_tag(m)) == 0) {
    784 			if (etype == ETHERTYPE_VLAN ||
    785 			     etype == ETHERTYPE_QINQ)
    786 				goto drop;
    787 
    788 			/* XXX we should actually use the prio value? */
    789 			m->m_flags &= ~M_VLANTAG;
    790 		} else {
    791 #if NVLAN > 0
    792 			if (ec->ec_nvlans > 0) {
    793 				m = vlan_input(ifp, m);
    794 
    795 				/* vlan_input() called ether_input() recursively */
    796 				if (m == NULL)
    797 					return;
    798 			}
    799 #endif
    800 			/* drop VLAN frames not for this port. */
    801 			goto noproto;
    802 		}
    803 	}
    804 
    805 #if NCARP > 0
    806 	if (__predict_false(ifp->if_carp && ifp->if_type != IFT_CARP)) {
    807 		/*
    808 		 * Clear M_PROMISC, in case the packet comes from a
    809 		 * vlan.
    810 		 */
    811 		m->m_flags &= ~M_PROMISC;
    812 		if (carp_input(m, (uint8_t *)&eh->ether_shost,
    813 		    (uint8_t *)&eh->ether_dhost, eh->ether_type) == 0)
    814 			return;
    815 	}
    816 #endif
    817 
    818 	/*
    819 	 * Handle protocols that expect to have the Ethernet header
    820 	 * (and possibly FCS) intact.
    821 	 */
    822 	switch (etype) {
    823 #if NPPPOE > 0
    824 	case ETHERTYPE_PPPOEDISC:
    825 		pppoedisc_input(ifp, m);
    826 		return;
    827 
    828 	case ETHERTYPE_PPPOE:
    829 		pppoe_input(ifp, m);
    830 		return;
    831 #endif
    832 
    833 	case ETHERTYPE_SLOWPROTOCOLS: {
    834 		uint8_t subtype;
    835 
    836 		if (m->m_pkthdr.len < sizeof(*eh) + sizeof(subtype))
    837 			goto error;
    838 
    839 		m_copydata(m, sizeof(*eh), sizeof(subtype), &subtype);
    840 		switch (subtype) {
    841 #if NAGR > 0
    842 		case SLOWPROTOCOLS_SUBTYPE_LACP:
    843 			if (ifp->if_lagg != NULL) {
    844 				ieee8023ad_lacp_input(ifp, m);
    845 				return;
    846 			}
    847 			break;
    848 
    849 		case SLOWPROTOCOLS_SUBTYPE_MARKER:
    850 			if (ifp->if_lagg != NULL) {
    851 				ieee8023ad_marker_input(ifp, m);
    852 				return;
    853 			}
    854 			break;
    855 #endif
    856 
    857 		default:
    858 			if (subtype == 0 || subtype > 10) {
    859 				/* illegal value */
    860 				goto error;
    861 			}
    862 			/* unknown subtype */
    863 			break;
    864 		}
    865 	}
    866 	/* FALLTHROUGH */
    867 	default:
    868 		if (m->m_flags & M_PROMISC)
    869 			goto drop;
    870 	}
    871 
    872 	/* If the CRC is still on the packet, trim it off. */
    873 	if (m->m_flags & M_HASFCS) {
    874 		m_adj(m, -ETHER_CRC_LEN);
    875 		m->m_flags &= ~M_HASFCS;
    876 	}
    877 
    878 	/* etype represents the size of the payload in this case */
    879 	if (etype <= ETHERMTU + sizeof(struct ether_header)) {
    880 		KASSERT(ehlen == sizeof(*eh));
    881 #if defined (LLC) || defined (NETATALK)
    882 		ether_input_llc(ifp, m, eh);
    883 		return;
    884 #else
    885 		/* ethertype of 0-1500 is regarded as noproto */
    886 		goto noproto;
    887 #endif
    888 	}
    889 
    890 	/* Strip off the Ethernet header. */
    891 	m_adj(m, ehlen);
    892 
    893 	switch (etype) {
    894 #ifdef INET
    895 	case ETHERTYPE_IP:
    896 #ifdef GATEWAY
    897 		if (ipflow_fastforward(m))
    898 			return;
    899 #endif
    900 		pktq = ip_pktq;
    901 		rps_hash = atomic_load_relaxed(&ether_pktq_rps_hash_p);
    902 		break;
    903 
    904 	case ETHERTYPE_ARP:
    905 		pktq = arp_pktq;
    906 		break;
    907 
    908 	case ETHERTYPE_REVARP:
    909 		revarpinput(m);	/* XXX queue? */
    910 		return;
    911 #endif
    912 
    913 #ifdef INET6
    914 	case ETHERTYPE_IPV6:
    915 		if (__predict_false(!in6_present))
    916 			goto noproto;
    917 #ifdef GATEWAY
    918 		if (ip6flow_fastforward(&m))
    919 			return;
    920 #endif
    921 		pktq = ip6_pktq;
    922 		rps_hash = atomic_load_relaxed(&ether_pktq_rps_hash_p);
    923 		break;
    924 #endif
    925 
    926 #ifdef NETATALK
    927 	case ETHERTYPE_ATALK:
    928 		pktq = at_pktq1;
    929 		break;
    930 
    931 	case ETHERTYPE_AARP:
    932 		aarpinput(ifp, m); /* XXX queue? */
    933 		return;
    934 #endif
    935 
    936 #ifdef MPLS
    937 	case ETHERTYPE_MPLS:
    938 		pktq = mpls_pktq;
    939 		break;
    940 #endif
    941 
    942 	default:
    943 		goto noproto;
    944 	}
    945 
    946 	KASSERT(pktq != NULL);
    947 	const uint32_t h = rps_hash ? pktq_rps_hash(&rps_hash, m) : 0;
    948 	if (__predict_false(!pktq_enqueue(pktq, m, h))) {
    949 		m_freem(m);
    950 	}
    951 	return;
    952 
    953 drop:
    954 	m_freem(m);
    955 	if_statinc(ifp, if_iqdrops);
    956 	return;
    957 noproto:
    958 	m_freem(m);
    959 	if_statinc(ifp, if_noproto);
    960 	return;
    961 error:
    962 	m_freem(m);
    963 	if_statinc(ifp, if_ierrors);
    964 	return;
    965 }
    966 
    967 static void
    968 ether_bpf_mtap(struct bpf_if *bp, struct mbuf *m, u_int direction)
    969 {
    970 	struct ether_vlan_header evl;
    971 	struct m_hdr mh, md;
    972 
    973 	KASSERT(bp != NULL);
    974 
    975 	if (!vlan_has_tag(m)) {
    976 		bpf_mtap3(bp, m, direction);
    977 		return;
    978 	}
    979 
    980 	memcpy(&evl, mtod(m, char *), ETHER_HDR_LEN);
    981 	evl.evl_proto = evl.evl_encap_proto;
    982 	evl.evl_encap_proto = htons(ETHERTYPE_VLAN);
    983 	evl.evl_tag = htons(vlan_get_tag(m));
    984 
    985 	md.mh_flags = 0;
    986 	md.mh_data = m->m_data + ETHER_HDR_LEN;
    987 	md.mh_len = m->m_len - ETHER_HDR_LEN;
    988 	md.mh_next = m->m_next;
    989 
    990 	mh.mh_flags = 0;
    991 	mh.mh_data = (char *)&evl;
    992 	mh.mh_len = sizeof(evl);
    993 	mh.mh_next = (struct mbuf *)&md;
    994 
    995 	bpf_mtap3(bp, (struct mbuf *)&mh, direction);
    996 }
    997 
    998 /*
    999  * Convert Ethernet address to printable (loggable) representation.
   1000  */
   1001 char *
   1002 ether_sprintf(const u_char *ap)
   1003 {
   1004 	static char etherbuf[3 * ETHER_ADDR_LEN];
   1005 	return ether_snprintf(etherbuf, sizeof(etherbuf), ap);
   1006 }
   1007 
   1008 char *
   1009 ether_snprintf(char *buf, size_t len, const u_char *ap)
   1010 {
   1011 	char *cp = buf;
   1012 	size_t i;
   1013 
   1014 	for (i = 0; i < len / 3; i++) {
   1015 		*cp++ = hexdigits[*ap >> 4];
   1016 		*cp++ = hexdigits[*ap++ & 0xf];
   1017 		*cp++ = ':';
   1018 	}
   1019 	*--cp = '\0';
   1020 	return buf;
   1021 }
   1022 
   1023 /*
   1024  * Perform common duties while attaching to interface list
   1025  */
   1026 void
   1027 ether_ifattach(struct ifnet *ifp, const uint8_t *lla)
   1028 {
   1029 	struct ethercom *ec = (struct ethercom *)ifp;
   1030 	char xnamebuf[HOOKNAMSIZ];
   1031 
   1032 	ifp->if_type = IFT_ETHER;
   1033 	ifp->if_hdrlen = ETHER_HDR_LEN;
   1034 	ifp->if_dlt = DLT_EN10MB;
   1035 	ifp->if_mtu = ETHERMTU;
   1036 	ifp->if_output = ether_output;
   1037 	ifp->_if_input = ether_input;
   1038 	ifp->if_bpf_mtap = ether_bpf_mtap;
   1039 	if (ifp->if_baudrate == 0)
   1040 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
   1041 
   1042 	if (lla != NULL)
   1043 		if_set_sadl(ifp, lla, ETHER_ADDR_LEN, !ETHER_IS_LOCAL(lla));
   1044 
   1045 	LIST_INIT(&ec->ec_multiaddrs);
   1046 	SIMPLEQ_INIT(&ec->ec_vids);
   1047 	ec->ec_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
   1048 	ec->ec_flags = 0;
   1049 	ifp->if_broadcastaddr = etherbroadcastaddr;
   1050 	bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
   1051 	snprintf(xnamebuf, sizeof(xnamebuf),
   1052 	    "%s-ether_ifdetachhooks", ifp->if_xname);
   1053 	ec->ec_ifdetach_hooks = simplehook_create(IPL_NET, xnamebuf);
   1054 #ifdef MBUFTRACE
   1055 	mowner_init_owner(&ec->ec_tx_mowner, ifp->if_xname, "tx");
   1056 	mowner_init_owner(&ec->ec_rx_mowner, ifp->if_xname, "rx");
   1057 	MOWNER_ATTACH(&ec->ec_tx_mowner);
   1058 	MOWNER_ATTACH(&ec->ec_rx_mowner);
   1059 	ifp->if_mowner = &ec->ec_tx_mowner;
   1060 #endif
   1061 }
   1062 
   1063 void
   1064 ether_ifdetach(struct ifnet *ifp)
   1065 {
   1066 	struct ethercom *ec = (void *) ifp;
   1067 	struct ether_multi *enm;
   1068 
   1069 	IFNET_ASSERT_UNLOCKED(ifp);
   1070 	/*
   1071 	 * Prevent further calls to ioctl (for example turning off
   1072 	 * promiscuous mode from the bridge code), which eventually can
   1073 	 * call if_init() which can cause panics because the interface
   1074 	 * is in the process of being detached. Return device not configured
   1075 	 * instead.
   1076 	 */
   1077 	ifp->if_ioctl = __FPTRCAST(int (*)(struct ifnet *, u_long, void *),
   1078 	    enxio);
   1079 
   1080 	simplehook_dohooks(ec->ec_ifdetach_hooks);
   1081 	KASSERT(!simplehook_has_hooks(ec->ec_ifdetach_hooks));
   1082 	simplehook_destroy(ec->ec_ifdetach_hooks);
   1083 
   1084 	bpf_detach(ifp);
   1085 
   1086 	ETHER_LOCK(ec);
   1087 	KASSERT(ec->ec_nvlans == 0);
   1088 	while ((enm = LIST_FIRST(&ec->ec_multiaddrs)) != NULL) {
   1089 		LIST_REMOVE(enm, enm_list);
   1090 		kmem_free(enm, sizeof(*enm));
   1091 		ec->ec_multicnt--;
   1092 	}
   1093 	ETHER_UNLOCK(ec);
   1094 
   1095 	mutex_obj_free(ec->ec_lock);
   1096 	ec->ec_lock = NULL;
   1097 
   1098 	ifp->if_mowner = NULL;
   1099 	MOWNER_DETACH(&ec->ec_rx_mowner);
   1100 	MOWNER_DETACH(&ec->ec_tx_mowner);
   1101 }
   1102 
   1103 void *
   1104 ether_ifdetachhook_establish(struct ifnet *ifp,
   1105     void (*fn)(void *), void *arg)
   1106 {
   1107 	struct ethercom *ec;
   1108 	khook_t *hk;
   1109 
   1110 	if (ifp->if_type != IFT_ETHER)
   1111 		return NULL;
   1112 
   1113 	ec = (struct ethercom *)ifp;
   1114 	hk = simplehook_establish(ec->ec_ifdetach_hooks,
   1115 	    fn, arg);
   1116 
   1117 	return (void *)hk;
   1118 }
   1119 
   1120 void
   1121 ether_ifdetachhook_disestablish(struct ifnet *ifp,
   1122     void *vhook, kmutex_t *lock)
   1123 {
   1124 	struct ethercom *ec;
   1125 
   1126 	if (vhook == NULL)
   1127 		return;
   1128 
   1129 	ec = (struct ethercom *)ifp;
   1130 	simplehook_disestablish(ec->ec_ifdetach_hooks, vhook, lock);
   1131 }
   1132 
   1133 #if 0
   1134 /*
   1135  * This is for reference.  We have a table-driven version
   1136  * of the little-endian crc32 generator, which is faster
   1137  * than the double-loop.
   1138  */
   1139 uint32_t
   1140 ether_crc32_le(const uint8_t *buf, size_t len)
   1141 {
   1142 	uint32_t c, crc, carry;
   1143 	size_t i, j;
   1144 
   1145 	crc = 0xffffffffU;	/* initial value */
   1146 
   1147 	for (i = 0; i < len; i++) {
   1148 		c = buf[i];
   1149 		for (j = 0; j < 8; j++) {
   1150 			carry = ((crc & 0x01) ? 1 : 0) ^ (c & 0x01);
   1151 			crc >>= 1;
   1152 			c >>= 1;
   1153 			if (carry)
   1154 				crc = (crc ^ ETHER_CRC_POLY_LE);
   1155 		}
   1156 	}
   1157 
   1158 	return (crc);
   1159 }
   1160 #else
   1161 uint32_t
   1162 ether_crc32_le(const uint8_t *buf, size_t len)
   1163 {
   1164 	static const uint32_t crctab[] = {
   1165 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
   1166 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
   1167 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
   1168 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
   1169 	};
   1170 	uint32_t crc;
   1171 	size_t i;
   1172 
   1173 	crc = 0xffffffffU;	/* initial value */
   1174 
   1175 	for (i = 0; i < len; i++) {
   1176 		crc ^= buf[i];
   1177 		crc = (crc >> 4) ^ crctab[crc & 0xf];
   1178 		crc = (crc >> 4) ^ crctab[crc & 0xf];
   1179 	}
   1180 
   1181 	return (crc);
   1182 }
   1183 #endif
   1184 
   1185 uint32_t
   1186 ether_crc32_be(const uint8_t *buf, size_t len)
   1187 {
   1188 	uint32_t c, crc, carry;
   1189 	size_t i, j;
   1190 
   1191 	crc = 0xffffffffU;	/* initial value */
   1192 
   1193 	for (i = 0; i < len; i++) {
   1194 		c = buf[i];
   1195 		for (j = 0; j < 8; j++) {
   1196 			carry = ((crc & 0x80000000U) ? 1 : 0) ^ (c & 0x01);
   1197 			crc <<= 1;
   1198 			c >>= 1;
   1199 			if (carry)
   1200 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
   1201 		}
   1202 	}
   1203 
   1204 	return (crc);
   1205 }
   1206 
   1207 #ifdef INET
   1208 const uint8_t ether_ipmulticast_min[ETHER_ADDR_LEN] =
   1209     { 0x01, 0x00, 0x5e, 0x00, 0x00, 0x00 };
   1210 const uint8_t ether_ipmulticast_max[ETHER_ADDR_LEN] =
   1211     { 0x01, 0x00, 0x5e, 0x7f, 0xff, 0xff };
   1212 #endif
   1213 #ifdef INET6
   1214 const uint8_t ether_ip6multicast_min[ETHER_ADDR_LEN] =
   1215     { 0x33, 0x33, 0x00, 0x00, 0x00, 0x00 };
   1216 const uint8_t ether_ip6multicast_max[ETHER_ADDR_LEN] =
   1217     { 0x33, 0x33, 0xff, 0xff, 0xff, 0xff };
   1218 #endif
   1219 
   1220 /*
   1221  * ether_aton implementation, not using a static buffer.
   1222  */
   1223 int
   1224 ether_aton_r(u_char *dest, size_t len, const char *str)
   1225 {
   1226 	const u_char *cp = (const void *)str;
   1227 	u_char *ep;
   1228 
   1229 #define atox(c)	(((c) <= '9') ? ((c) - '0') : ((toupper(c) - 'A') + 10))
   1230 
   1231 	if (len < ETHER_ADDR_LEN)
   1232 		return ENOSPC;
   1233 
   1234 	ep = dest + ETHER_ADDR_LEN;
   1235 
   1236 	while (*cp) {
   1237 		if (!isxdigit(*cp))
   1238 			return EINVAL;
   1239 
   1240 		*dest = atox(*cp);
   1241 		cp++;
   1242 		if (isxdigit(*cp)) {
   1243 			*dest = (*dest << 4) | atox(*cp);
   1244 			cp++;
   1245 		}
   1246 		dest++;
   1247 
   1248 		if (dest == ep)
   1249 			return (*cp == '\0') ? 0 : ENAMETOOLONG;
   1250 
   1251 		switch (*cp) {
   1252 		case ':':
   1253 		case '-':
   1254 		case '.':
   1255 			cp++;
   1256 			break;
   1257 		}
   1258 	}
   1259 	return ENOBUFS;
   1260 }
   1261 
   1262 /*
   1263  * Convert a sockaddr into an Ethernet address or range of Ethernet
   1264  * addresses.
   1265  */
   1266 int
   1267 ether_multiaddr(const struct sockaddr *sa, uint8_t addrlo[ETHER_ADDR_LEN],
   1268     uint8_t addrhi[ETHER_ADDR_LEN])
   1269 {
   1270 #ifdef INET
   1271 	const struct sockaddr_in *sin;
   1272 #endif
   1273 #ifdef INET6
   1274 	const struct sockaddr_in6 *sin6;
   1275 #endif
   1276 
   1277 	switch (sa->sa_family) {
   1278 
   1279 	case AF_UNSPEC:
   1280 		memcpy(addrlo, sa->sa_data, ETHER_ADDR_LEN);
   1281 		memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
   1282 		break;
   1283 
   1284 #ifdef INET
   1285 	case AF_INET:
   1286 		sin = satocsin(sa);
   1287 		if (sin->sin_addr.s_addr == INADDR_ANY) {
   1288 			/*
   1289 			 * An IP address of INADDR_ANY means listen to
   1290 			 * or stop listening to all of the Ethernet
   1291 			 * multicast addresses used for IP.
   1292 			 * (This is for the sake of IP multicast routers.)
   1293 			 */
   1294 			memcpy(addrlo, ether_ipmulticast_min, ETHER_ADDR_LEN);
   1295 			memcpy(addrhi, ether_ipmulticast_max, ETHER_ADDR_LEN);
   1296 		} else {
   1297 			ETHER_MAP_IP_MULTICAST(&sin->sin_addr, addrlo);
   1298 			memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
   1299 		}
   1300 		break;
   1301 #endif
   1302 #ifdef INET6
   1303 	case AF_INET6:
   1304 		sin6 = satocsin6(sa);
   1305 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
   1306 			/*
   1307 			 * An IP6 address of 0 means listen to or stop
   1308 			 * listening to all of the Ethernet multicast
   1309 			 * address used for IP6.
   1310 			 * (This is used for multicast routers.)
   1311 			 */
   1312 			memcpy(addrlo, ether_ip6multicast_min, ETHER_ADDR_LEN);
   1313 			memcpy(addrhi, ether_ip6multicast_max, ETHER_ADDR_LEN);
   1314 		} else {
   1315 			ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, addrlo);
   1316 			memcpy(addrhi, addrlo, ETHER_ADDR_LEN);
   1317 		}
   1318 		break;
   1319 #endif
   1320 
   1321 	default:
   1322 		return EAFNOSUPPORT;
   1323 	}
   1324 	return 0;
   1325 }
   1326 
   1327 /*
   1328  * Add an Ethernet multicast address or range of addresses to the list for a
   1329  * given interface.
   1330  */
   1331 int
   1332 ether_addmulti(const struct sockaddr *sa, struct ethercom *ec)
   1333 {
   1334 	struct ether_multi *enm, *_enm;
   1335 	u_char addrlo[ETHER_ADDR_LEN];
   1336 	u_char addrhi[ETHER_ADDR_LEN];
   1337 	int error = 0;
   1338 
   1339 	/* Allocate out of lock */
   1340 	enm = kmem_alloc(sizeof(*enm), KM_SLEEP);
   1341 
   1342 	ETHER_LOCK(ec);
   1343 	error = ether_multiaddr(sa, addrlo, addrhi);
   1344 	if (error != 0)
   1345 		goto out;
   1346 
   1347 	/*
   1348 	 * Verify that we have valid Ethernet multicast addresses.
   1349 	 */
   1350 	if (!ETHER_IS_MULTICAST(addrlo) || !ETHER_IS_MULTICAST(addrhi)) {
   1351 		error = EINVAL;
   1352 		goto out;
   1353 	}
   1354 
   1355 	/*
   1356 	 * See if the address range is already in the list.
   1357 	 */
   1358 	_enm = ether_lookup_multi(addrlo, addrhi, ec);
   1359 	if (_enm != NULL) {
   1360 		/*
   1361 		 * Found it; just increment the reference count.
   1362 		 */
   1363 		++_enm->enm_refcount;
   1364 		error = 0;
   1365 		goto out;
   1366 	}
   1367 
   1368 	/*
   1369 	 * Link a new multicast record into the interface's multicast list.
   1370 	 */
   1371 	memcpy(enm->enm_addrlo, addrlo, ETHER_ADDR_LEN);
   1372 	memcpy(enm->enm_addrhi, addrhi, ETHER_ADDR_LEN);
   1373 	enm->enm_refcount = 1;
   1374 	LIST_INSERT_HEAD(&ec->ec_multiaddrs, enm, enm_list);
   1375 	ec->ec_multicnt++;
   1376 
   1377 	/*
   1378 	 * Return ENETRESET to inform the driver that the list has changed
   1379 	 * and its reception filter should be adjusted accordingly.
   1380 	 */
   1381 	error = ENETRESET;
   1382 	enm = NULL;
   1383 
   1384 out:
   1385 	ETHER_UNLOCK(ec);
   1386 	if (enm != NULL)
   1387 		kmem_free(enm, sizeof(*enm));
   1388 	return error;
   1389 }
   1390 
   1391 /*
   1392  * Delete a multicast address record.
   1393  */
   1394 int
   1395 ether_delmulti(const struct sockaddr *sa, struct ethercom *ec)
   1396 {
   1397 	struct ether_multi *enm;
   1398 	u_char addrlo[ETHER_ADDR_LEN];
   1399 	u_char addrhi[ETHER_ADDR_LEN];
   1400 	int error;
   1401 
   1402 	ETHER_LOCK(ec);
   1403 	error = ether_multiaddr(sa, addrlo, addrhi);
   1404 	if (error != 0)
   1405 		goto error;
   1406 
   1407 	/*
   1408 	 * Look up the address in our list.
   1409 	 */
   1410 	enm = ether_lookup_multi(addrlo, addrhi, ec);
   1411 	if (enm == NULL) {
   1412 		error = ENXIO;
   1413 		goto error;
   1414 	}
   1415 	if (--enm->enm_refcount != 0) {
   1416 		/*
   1417 		 * Still some claims to this record.
   1418 		 */
   1419 		error = 0;
   1420 		goto error;
   1421 	}
   1422 
   1423 	/*
   1424 	 * No remaining claims to this record; unlink and free it.
   1425 	 */
   1426 	LIST_REMOVE(enm, enm_list);
   1427 	ec->ec_multicnt--;
   1428 	ETHER_UNLOCK(ec);
   1429 	kmem_free(enm, sizeof(*enm));
   1430 
   1431 	/*
   1432 	 * Return ENETRESET to inform the driver that the list has changed
   1433 	 * and its reception filter should be adjusted accordingly.
   1434 	 */
   1435 	return ENETRESET;
   1436 
   1437 error:
   1438 	ETHER_UNLOCK(ec);
   1439 	return error;
   1440 }
   1441 
   1442 void
   1443 ether_set_ifflags_cb(struct ethercom *ec, ether_cb_t cb)
   1444 {
   1445 	ec->ec_ifflags_cb = cb;
   1446 }
   1447 
   1448 void
   1449 ether_set_vlan_cb(struct ethercom *ec, ether_vlancb_t cb)
   1450 {
   1451 
   1452 	ec->ec_vlan_cb = cb;
   1453 }
   1454 
   1455 static int
   1456 ether_ioctl_reinit(struct ethercom *ec)
   1457 {
   1458 	struct ifnet *ifp = &ec->ec_if;
   1459 	int error;
   1460 
   1461 	KASSERTMSG(IFNET_LOCKED(ifp), "%s", ifp->if_xname);
   1462 
   1463 	switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
   1464 	case IFF_RUNNING:
   1465 		/*
   1466 		 * If interface is marked down and it is running,
   1467 		 * then stop and disable it.
   1468 		 */
   1469 		if_stop(ifp, 1);
   1470 		break;
   1471 	case IFF_UP:
   1472 		/*
   1473 		 * If interface is marked up and it is stopped, then
   1474 		 * start it.
   1475 		 */
   1476 		return if_init(ifp);
   1477 	case IFF_UP | IFF_RUNNING:
   1478 		error = 0;
   1479 		if (ec->ec_ifflags_cb != NULL) {
   1480 			error = (*ec->ec_ifflags_cb)(ec);
   1481 			if (error == ENETRESET) {
   1482 				/*
   1483 				 * Reset the interface to pick up
   1484 				 * changes in any other flags that
   1485 				 * affect the hardware state.
   1486 				 */
   1487 				return if_init(ifp);
   1488 			}
   1489 		} else
   1490 			error = if_init(ifp);
   1491 		return error;
   1492 	case 0:
   1493 		break;
   1494 	}
   1495 
   1496 	return 0;
   1497 }
   1498 
   1499 /*
   1500  * Common ioctls for Ethernet interfaces.  Note, we must be
   1501  * called at splnet().
   1502  */
   1503 int
   1504 ether_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1505 {
   1506 	struct ethercom *ec = (void *)ifp;
   1507 	struct eccapreq *eccr;
   1508 	struct ifreq *ifr = (struct ifreq *)data;
   1509 	struct if_laddrreq *iflr = data;
   1510 	const struct sockaddr_dl *sdl;
   1511 	static const uint8_t zero[ETHER_ADDR_LEN];
   1512 	int error;
   1513 
   1514 	switch (cmd) {
   1515 	case SIOCINITIFADDR:
   1516 	    {
   1517 		struct ifaddr *ifa = (struct ifaddr *)data;
   1518 		if (ifa->ifa_addr->sa_family != AF_LINK
   1519 		    && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
   1520 		       (IFF_UP | IFF_RUNNING)) {
   1521 			ifp->if_flags |= IFF_UP;
   1522 			if ((error = if_init(ifp)) != 0)
   1523 				return error;
   1524 		}
   1525 #ifdef INET
   1526 		if (ifa->ifa_addr->sa_family == AF_INET)
   1527 			arp_ifinit(ifp, ifa);
   1528 #endif
   1529 		return 0;
   1530 	    }
   1531 
   1532 	case SIOCSIFMTU:
   1533 	    {
   1534 		int maxmtu;
   1535 
   1536 		if (ec->ec_capabilities & ETHERCAP_JUMBO_MTU)
   1537 			maxmtu = ETHERMTU_JUMBO;
   1538 		else
   1539 			maxmtu = ETHERMTU;
   1540 
   1541 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > maxmtu)
   1542 			return EINVAL;
   1543 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
   1544 			return error;
   1545 		else if (ifp->if_flags & IFF_UP) {
   1546 			/* Make sure the device notices the MTU change. */
   1547 			return if_init(ifp);
   1548 		} else
   1549 			return 0;
   1550 	    }
   1551 
   1552 	case SIOCSIFFLAGS:
   1553 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1554 			return error;
   1555 		return ether_ioctl_reinit(ec);
   1556 	case SIOCGIFFLAGS:
   1557 		error = ifioctl_common(ifp, cmd, data);
   1558 		if (error == 0) {
   1559 			/* Set IFF_ALLMULTI for backcompat */
   1560 			ifr->ifr_flags |= (ec->ec_flags & ETHER_F_ALLMULTI) ?
   1561 			    IFF_ALLMULTI : 0;
   1562 		}
   1563 		return error;
   1564 	case SIOCGETHERCAP:
   1565 		eccr = (struct eccapreq *)data;
   1566 		eccr->eccr_capabilities = ec->ec_capabilities;
   1567 		eccr->eccr_capenable = ec->ec_capenable;
   1568 		return 0;
   1569 	case SIOCSETHERCAP:
   1570 		eccr = (struct eccapreq *)data;
   1571 		if ((eccr->eccr_capenable & ~ec->ec_capabilities) != 0)
   1572 			return EINVAL;
   1573 		if (eccr->eccr_capenable == ec->ec_capenable)
   1574 			return 0;
   1575 #if 0 /* notyet */
   1576 		ec->ec_capenable = (ec->ec_capenable & ETHERCAP_CANTCHANGE)
   1577 		    | (eccr->eccr_capenable & ~ETHERCAP_CANTCHANGE);
   1578 #else
   1579 		ec->ec_capenable = eccr->eccr_capenable;
   1580 #endif
   1581 		return ether_ioctl_reinit(ec);
   1582 	case SIOCADDMULTI:
   1583 		return ether_addmulti(ifreq_getaddr(cmd, ifr), ec);
   1584 	case SIOCDELMULTI:
   1585 		return ether_delmulti(ifreq_getaddr(cmd, ifr), ec);
   1586 	case SIOCSIFMEDIA:
   1587 	case SIOCGIFMEDIA:
   1588 		if (ec->ec_mii != NULL)
   1589 			return ifmedia_ioctl(ifp, ifr, &ec->ec_mii->mii_media,
   1590 			    cmd);
   1591 		else if (ec->ec_ifmedia != NULL)
   1592 			return ifmedia_ioctl(ifp, ifr, ec->ec_ifmedia, cmd);
   1593 		else
   1594 			return ENOTTY;
   1595 		break;
   1596 	case SIOCALIFADDR:
   1597 		sdl = satocsdl(sstocsa(&iflr->addr));
   1598 		if (sdl->sdl_family != AF_LINK)
   1599 			;
   1600 		else if (ETHER_IS_MULTICAST(CLLADDR(sdl)))
   1601 			return EINVAL;
   1602 		else if (memcmp(zero, CLLADDR(sdl), sizeof(zero)) == 0)
   1603 			return EINVAL;
   1604 		/*FALLTHROUGH*/
   1605 	default:
   1606 		return ifioctl_common(ifp, cmd, data);
   1607 	}
   1608 	return 0;
   1609 }
   1610 
   1611 /*
   1612  * Enable/disable passing VLAN packets if the parent interface supports it.
   1613  * Return:
   1614  * 	 0: Ok
   1615  *	-1: Parent interface does not support vlans
   1616  *	>0: Error
   1617  */
   1618 int
   1619 ether_enable_vlan_mtu(struct ifnet *ifp)
   1620 {
   1621 	int error;
   1622 	struct ethercom *ec = (void *)ifp;
   1623 
   1624 	/* Parent does not support VLAN's */
   1625 	if ((ec->ec_capabilities & ETHERCAP_VLAN_MTU) == 0)
   1626 		return -1;
   1627 
   1628 	/*
   1629 	 * Parent supports the VLAN_MTU capability,
   1630 	 * i.e. can Tx/Rx larger than ETHER_MAX_LEN frames;
   1631 	 * enable it.
   1632 	 */
   1633 	ec->ec_capenable |= ETHERCAP_VLAN_MTU;
   1634 
   1635 	/* Interface is down, defer for later */
   1636 	if ((ifp->if_flags & IFF_UP) == 0)
   1637 		return 0;
   1638 
   1639 	if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
   1640 		return 0;
   1641 
   1642 	ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
   1643 	return error;
   1644 }
   1645 
   1646 int
   1647 ether_disable_vlan_mtu(struct ifnet *ifp)
   1648 {
   1649 	int error;
   1650 	struct ethercom *ec = (void *)ifp;
   1651 
   1652 	/* We still have VLAN's, defer for later */
   1653 	if (ec->ec_nvlans != 0)
   1654 		return 0;
   1655 
   1656 	/* Parent does not support VLAB's, nothing to do. */
   1657 	if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) == 0)
   1658 		return -1;
   1659 
   1660 	/*
   1661 	 * Disable Tx/Rx of VLAN-sized frames.
   1662 	 */
   1663 	ec->ec_capenable &= ~ETHERCAP_VLAN_MTU;
   1664 
   1665 	/* Interface is down, defer for later */
   1666 	if ((ifp->if_flags & IFF_UP) == 0)
   1667 		return 0;
   1668 
   1669 	if ((error = if_flags_set(ifp, ifp->if_flags)) == 0)
   1670 		return 0;
   1671 
   1672 	ec->ec_capenable |= ETHERCAP_VLAN_MTU;
   1673 	return error;
   1674 }
   1675 
   1676 /*
   1677  * Add and delete VLAN TAG
   1678  */
   1679 int
   1680 ether_add_vlantag(struct ifnet *ifp, uint16_t vtag, bool *vlanmtu_status)
   1681 {
   1682 	struct ethercom *ec = (void *)ifp;
   1683 	struct vlanid_list *vidp;
   1684 	bool vlanmtu_enabled;
   1685 	uint16_t vid = EVL_VLANOFTAG(vtag);
   1686 	int error;
   1687 
   1688 	vlanmtu_enabled = false;
   1689 
   1690 	/* Add a vid to the list */
   1691 	vidp = kmem_alloc(sizeof(*vidp), KM_SLEEP);
   1692 	vidp->vid = vid;
   1693 
   1694 	ETHER_LOCK(ec);
   1695 	ec->ec_nvlans++;
   1696 	SIMPLEQ_INSERT_TAIL(&ec->ec_vids, vidp, vid_list);
   1697 	ETHER_UNLOCK(ec);
   1698 
   1699 	if (ec->ec_nvlans == 1) {
   1700 		IFNET_LOCK(ifp);
   1701 		error = ether_enable_vlan_mtu(ifp);
   1702 		IFNET_UNLOCK(ifp);
   1703 
   1704 		if (error == 0) {
   1705 			vlanmtu_enabled = true;
   1706 		} else if (error != -1) {
   1707 			goto fail;
   1708 		}
   1709 	}
   1710 
   1711 	if (ec->ec_vlan_cb != NULL) {
   1712 		error = (*ec->ec_vlan_cb)(ec, vid, true);
   1713 		if (error != 0)
   1714 			goto fail;
   1715 	}
   1716 
   1717 	if (vlanmtu_status != NULL)
   1718 		*vlanmtu_status = vlanmtu_enabled;
   1719 
   1720 	return 0;
   1721 fail:
   1722 	ETHER_LOCK(ec);
   1723 	ec->ec_nvlans--;
   1724 	SIMPLEQ_REMOVE(&ec->ec_vids, vidp, vlanid_list, vid_list);
   1725 	ETHER_UNLOCK(ec);
   1726 
   1727 	if (vlanmtu_enabled) {
   1728 		IFNET_LOCK(ifp);
   1729 		(void)ether_disable_vlan_mtu(ifp);
   1730 		IFNET_UNLOCK(ifp);
   1731 	}
   1732 
   1733 	kmem_free(vidp, sizeof(*vidp));
   1734 
   1735 	return error;
   1736 }
   1737 
   1738 int
   1739 ether_del_vlantag(struct ifnet *ifp, uint16_t vtag)
   1740 {
   1741 	struct ethercom *ec = (void *)ifp;
   1742 	struct vlanid_list *vidp;
   1743 	uint16_t vid = EVL_VLANOFTAG(vtag);
   1744 
   1745 	ETHER_LOCK(ec);
   1746 	SIMPLEQ_FOREACH(vidp, &ec->ec_vids, vid_list) {
   1747 		if (vidp->vid == vid) {
   1748 			SIMPLEQ_REMOVE(&ec->ec_vids, vidp,
   1749 			    vlanid_list, vid_list);
   1750 			ec->ec_nvlans--;
   1751 			break;
   1752 		}
   1753 	}
   1754 	ETHER_UNLOCK(ec);
   1755 
   1756 	if (vidp == NULL)
   1757 		return ENOENT;
   1758 
   1759 	if (ec->ec_vlan_cb != NULL) {
   1760 		(void)(*ec->ec_vlan_cb)(ec, vidp->vid, false);
   1761 	}
   1762 
   1763 	if (ec->ec_nvlans == 0) {
   1764 		IFNET_LOCK(ifp);
   1765 		(void)ether_disable_vlan_mtu(ifp);
   1766 		IFNET_UNLOCK(ifp);
   1767 	}
   1768 
   1769 	kmem_free(vidp, sizeof(*vidp));
   1770 
   1771 	return 0;
   1772 }
   1773 
   1774 int
   1775 ether_inject_vlantag(struct mbuf **mp, uint16_t etype, uint16_t tag)
   1776 {
   1777 	static const size_t min_data_len =
   1778 	    ETHER_MIN_LEN - ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
   1779 	/* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
   1780 	static const char vlan_zero_pad_buff[ETHER_MIN_LEN] = { 0 };
   1781 
   1782 	struct ether_vlan_header *evl;
   1783 	struct mbuf *m = *mp;
   1784 	int error;
   1785 
   1786 	error = 0;
   1787 
   1788 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_DONTWAIT);
   1789 	if (m == NULL) {
   1790 		error = ENOBUFS;
   1791 		goto out;
   1792 	}
   1793 
   1794 	if (m->m_len < sizeof(*evl)) {
   1795 		m = m_pullup(m, sizeof(*evl));
   1796 		if (m == NULL) {
   1797 			error = ENOBUFS;
   1798 			goto out;
   1799 		}
   1800 	}
   1801 
   1802 	/*
   1803 	 * Transform the Ethernet header into an
   1804 	 * Ethernet header with 802.1Q encapsulation.
   1805 	 */
   1806 	memmove(mtod(m, void *),
   1807 	    mtod(m, char *) + ETHER_VLAN_ENCAP_LEN,
   1808 	    sizeof(struct ether_header));
   1809 	evl = mtod(m, struct ether_vlan_header *);
   1810 	evl->evl_proto = evl->evl_encap_proto;
   1811 	evl->evl_encap_proto = htons(etype);
   1812 	evl->evl_tag = htons(tag);
   1813 
   1814 	/*
   1815 	 * To cater for VLAN-aware layer 2 ethernet
   1816 	 * switches which may need to strip the tag
   1817 	 * before forwarding the packet, make sure
   1818 	 * the packet+tag is at least 68 bytes long.
   1819 	 * This is necessary because our parent will
   1820 	 * only pad to 64 bytes (ETHER_MIN_LEN) and
   1821 	 * some switches will not pad by themselves
   1822 	 * after deleting a tag.
   1823 	 */
   1824 	if (m->m_pkthdr.len < min_data_len) {
   1825 		m_copyback(m, m->m_pkthdr.len,
   1826 		    min_data_len - m->m_pkthdr.len,
   1827 		    vlan_zero_pad_buff);
   1828 	}
   1829 
   1830 	m->m_flags &= ~M_VLANTAG;
   1831 
   1832 out:
   1833 	*mp = m;
   1834 	return error;
   1835 }
   1836 
   1837 struct mbuf *
   1838 ether_strip_vlantag(struct mbuf *m)
   1839 {
   1840 	struct ether_vlan_header *evl;
   1841 
   1842 	if (m->m_len < sizeof(*evl) &&
   1843 	    (m = m_pullup(m, sizeof(*evl))) == NULL) {
   1844 		return NULL;
   1845 	}
   1846 
   1847 	if (m_makewritable(&m, 0, sizeof(*evl), M_DONTWAIT)) {
   1848 		m_freem(m);
   1849 		return NULL;
   1850 	}
   1851 
   1852 	evl = mtod(m, struct ether_vlan_header *);
   1853 	KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
   1854 
   1855 	vlan_set_tag(m, ntohs(evl->evl_tag));
   1856 
   1857 	/*
   1858 	 * Restore the original ethertype.  We'll remove
   1859 	 * the encapsulation after we've found the vlan
   1860 	 * interface corresponding to the tag.
   1861 	 */
   1862 	evl->evl_encap_proto = evl->evl_proto;
   1863 
   1864 	/*
   1865 	 * Remove the encapsulation header and append tag.
   1866 	 * The original header has already been fixed up above.
   1867 	 */
   1868 	vlan_set_tag(m, ntohs(evl->evl_tag));
   1869 	memmove((char *)evl + ETHER_VLAN_ENCAP_LEN, evl,
   1870 	    offsetof(struct ether_vlan_header, evl_encap_proto));
   1871 	m_adj(m, ETHER_VLAN_ENCAP_LEN);
   1872 
   1873 	return m;
   1874 }
   1875 
   1876 static int
   1877 ether_multicast_sysctl(SYSCTLFN_ARGS)
   1878 {
   1879 	struct ether_multi *enm;
   1880 	struct ifnet *ifp;
   1881 	struct ethercom *ec;
   1882 	int error = 0;
   1883 	size_t written;
   1884 	struct psref psref;
   1885 	int bound;
   1886 	unsigned int multicnt;
   1887 	struct ether_multi_sysctl *addrs;
   1888 	int i;
   1889 
   1890 	if (namelen != 1)
   1891 		return EINVAL;
   1892 
   1893 	bound = curlwp_bind();
   1894 	ifp = if_get_byindex(name[0], &psref);
   1895 	if (ifp == NULL) {
   1896 		error = ENODEV;
   1897 		goto out;
   1898 	}
   1899 	if (ifp->if_type != IFT_ETHER) {
   1900 		if_put(ifp, &psref);
   1901 		*oldlenp = 0;
   1902 		goto out;
   1903 	}
   1904 	ec = (struct ethercom *)ifp;
   1905 
   1906 	if (oldp == NULL) {
   1907 		if_put(ifp, &psref);
   1908 		*oldlenp = ec->ec_multicnt * sizeof(*addrs);
   1909 		goto out;
   1910 	}
   1911 
   1912 	/*
   1913 	 * ec->ec_lock is a spin mutex so we cannot call sysctl_copyout, which
   1914 	 * is sleepable, while holding it. Copy data to a local buffer first
   1915 	 * with the lock taken and then call sysctl_copyout without holding it.
   1916 	 */
   1917 retry:
   1918 	multicnt = ec->ec_multicnt;
   1919 
   1920 	if (multicnt == 0) {
   1921 		if_put(ifp, &psref);
   1922 		*oldlenp = 0;
   1923 		goto out;
   1924 	}
   1925 
   1926 	addrs = kmem_zalloc(sizeof(*addrs) * multicnt, KM_SLEEP);
   1927 
   1928 	ETHER_LOCK(ec);
   1929 	if (multicnt != ec->ec_multicnt) {
   1930 		/* The number of multicast addresses has changed */
   1931 		ETHER_UNLOCK(ec);
   1932 		kmem_free(addrs, sizeof(*addrs) * multicnt);
   1933 		goto retry;
   1934 	}
   1935 
   1936 	i = 0;
   1937 	LIST_FOREACH(enm, &ec->ec_multiaddrs, enm_list) {
   1938 		struct ether_multi_sysctl *addr = &addrs[i];
   1939 		addr->enm_refcount = enm->enm_refcount;
   1940 		memcpy(addr->enm_addrlo, enm->enm_addrlo, ETHER_ADDR_LEN);
   1941 		memcpy(addr->enm_addrhi, enm->enm_addrhi, ETHER_ADDR_LEN);
   1942 		i++;
   1943 	}
   1944 	ETHER_UNLOCK(ec);
   1945 
   1946 	error = 0;
   1947 	written = 0;
   1948 	for (i = 0; i < multicnt; i++) {
   1949 		struct ether_multi_sysctl *addr = &addrs[i];
   1950 
   1951 		if (written + sizeof(*addr) > *oldlenp)
   1952 			break;
   1953 		error = sysctl_copyout(l, addr, oldp, sizeof(*addr));
   1954 		if (error)
   1955 			break;
   1956 		written += sizeof(*addr);
   1957 		oldp = (char *)oldp + sizeof(*addr);
   1958 	}
   1959 	kmem_free(addrs, sizeof(*addrs) * multicnt);
   1960 
   1961 	if_put(ifp, &psref);
   1962 
   1963 	*oldlenp = written;
   1964 out:
   1965 	curlwp_bindx(bound);
   1966 	return error;
   1967 }
   1968 
   1969 static void
   1970 ether_sysctl_setup(struct sysctllog **clog)
   1971 {
   1972 	const struct sysctlnode *rnode = NULL;
   1973 
   1974 	sysctl_createv(clog, 0, NULL, &rnode,
   1975 		       CTLFLAG_PERMANENT,
   1976 		       CTLTYPE_NODE, "ether",
   1977 		       SYSCTL_DESCR("Ethernet-specific information"),
   1978 		       NULL, 0, NULL, 0,
   1979 		       CTL_NET, CTL_CREATE, CTL_EOL);
   1980 
   1981 	sysctl_createv(clog, 0, &rnode, NULL,
   1982 		       CTLFLAG_PERMANENT,
   1983 		       CTLTYPE_NODE, "multicast",
   1984 		       SYSCTL_DESCR("multicast addresses"),
   1985 		       ether_multicast_sysctl, 0, NULL, 0,
   1986 		       CTL_CREATE, CTL_EOL);
   1987 
   1988 	sysctl_createv(clog, 0, &rnode, NULL,
   1989 		       CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
   1990 		       CTLTYPE_STRING, "rps_hash",
   1991 		       SYSCTL_DESCR("Interface rps hash function control"),
   1992 		       sysctl_pktq_rps_hash_handler, 0, (void *)&ether_pktq_rps_hash_p,
   1993 		       PKTQ_RPS_HASH_NAME_LEN,
   1994 		       CTL_CREATE, CTL_EOL);
   1995 }
   1996 
   1997 void
   1998 etherinit(void)
   1999 {
   2000 
   2001 #ifdef DIAGNOSTIC
   2002 	mutex_init(&bigpktpps_lock, MUTEX_DEFAULT, IPL_NET);
   2003 #endif
   2004 	ether_pktq_rps_hash_p = pktq_rps_hash_default;
   2005 	ether_sysctl_setup(NULL);
   2006 }
   2007