1 1.136 mlelstv /* $NetBSD: if_tap.c,v 1.136 2024/11/10 10:57:52 mlelstv Exp $ */ 2 1.1 cube 3 1.1 cube /* 4 1.55 ad * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation. 5 1.1 cube * All rights reserved. 6 1.1 cube * 7 1.1 cube * Redistribution and use in source and binary forms, with or without 8 1.1 cube * modification, are permitted provided that the following conditions 9 1.1 cube * are met: 10 1.1 cube * 1. Redistributions of source code must retain the above copyright 11 1.1 cube * notice, this list of conditions and the following disclaimer. 12 1.1 cube * 2. Redistributions in binary form must reproduce the above copyright 13 1.1 cube * notice, this list of conditions and the following disclaimer in the 14 1.1 cube * documentation and/or other materials provided with the distribution. 15 1.6 perry * 16 1.1 cube * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 1.1 cube * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 1.1 cube * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 1.1 cube * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 1.1 cube * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 1.1 cube * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 1.1 cube * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 1.1 cube * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 1.1 cube * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 1.1 cube * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 1.1 cube * POSSIBILITY OF SUCH DAMAGE. 27 1.1 cube */ 28 1.1 cube 29 1.1 cube /* 30 1.1 cube * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet 31 1.1 cube * device to the system, but can also be accessed by userland through a 32 1.1 cube * character device interface, which allows reading and injecting frames. 33 1.1 cube */ 34 1.1 cube 35 1.1 cube #include <sys/cdefs.h> 36 1.136 mlelstv __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.136 2024/11/10 10:57:52 mlelstv Exp $"); 37 1.1 cube 38 1.2 cube #if defined(_KERNEL_OPT) 39 1.54 plunky #include "opt_modular.h" 40 1.134 rin #include "opt_net_mpsafe.h" 41 1.2 cube #endif 42 1.1 cube 43 1.1 cube #include <sys/param.h> 44 1.96 skrll #include <sys/atomic.h> 45 1.1 cube #include <sys/conf.h> 46 1.70 yamt #include <sys/cprng.h> 47 1.1 cube #include <sys/device.h> 48 1.1 cube #include <sys/file.h> 49 1.1 cube #include <sys/filedesc.h> 50 1.96 skrll #include <sys/intr.h> 51 1.96 skrll #include <sys/kauth.h> 52 1.96 skrll #include <sys/kernel.h> 53 1.98 skrll #include <sys/kmem.h> 54 1.96 skrll #include <sys/module.h> 55 1.96 skrll #include <sys/mutex.h> 56 1.102 jmcneill #include <sys/condvar.h> 57 1.1 cube #include <sys/poll.h> 58 1.54 plunky #include <sys/proc.h> 59 1.1 cube #include <sys/select.h> 60 1.1 cube #include <sys/sockio.h> 61 1.96 skrll #include <sys/stat.h> 62 1.1 cube #include <sys/sysctl.h> 63 1.96 skrll #include <sys/systm.h> 64 1.1 cube 65 1.1 cube #include <net/if.h> 66 1.1 cube #include <net/if_dl.h> 67 1.1 cube #include <net/if_ether.h> 68 1.1 cube #include <net/if_tap.h> 69 1.1 cube #include <net/bpf.h> 70 1.1 cube 71 1.82 christos #include "ioconf.h" 72 1.82 christos 73 1.1 cube /* 74 1.1 cube * sysctl node management 75 1.1 cube * 76 1.1 cube * It's not really possible to use a SYSCTL_SETUP block with 77 1.51 ad * current module implementation, so it is easier to just define 78 1.1 cube * our own function. 79 1.1 cube * 80 1.1 cube * The handler function is a "helper" in Andrew Brown's sysctl 81 1.1 cube * framework terminology. It is used as a gateway for sysctl 82 1.1 cube * requests over the nodes. 83 1.1 cube * 84 1.1 cube * tap_log allows the module to log creations of nodes and 85 1.1 cube * destroy them all at once using sysctl_teardown. 86 1.1 cube */ 87 1.91 christos static int tap_node; 88 1.1 cube static int tap_sysctl_handler(SYSCTLFN_PROTO); 89 1.91 christos static void sysctl_tap_setup(struct sysctllog **); 90 1.1 cube 91 1.1 cube struct tap_softc { 92 1.40 cube device_t sc_dev; 93 1.1 cube struct ethercom sc_ec; 94 1.1 cube int sc_flags; 95 1.1 cube #define TAP_INUSE 0x00000001 /* tap device can only be opened once */ 96 1.1 cube #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */ 97 1.1 cube #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */ 98 1.1 cube #define TAP_GOING 0x00000008 /* interface is being destroyed */ 99 1.1 cube struct selinfo sc_rsel; 100 1.1 cube pid_t sc_pgid; /* For async. IO */ 101 1.102 jmcneill kmutex_t sc_lock; 102 1.102 jmcneill kcondvar_t sc_cv; 103 1.42 ad void *sc_sih; 104 1.56 christos struct timespec sc_atime; 105 1.56 christos struct timespec sc_mtime; 106 1.56 christos struct timespec sc_btime; 107 1.1 cube }; 108 1.1 cube 109 1.1 cube /* autoconf(9) glue */ 110 1.1 cube 111 1.40 cube static int tap_match(device_t, cfdata_t, void *); 112 1.40 cube static void tap_attach(device_t, device_t, void *); 113 1.40 cube static int tap_detach(device_t, int); 114 1.1 cube 115 1.40 cube CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc), 116 1.1 cube tap_match, tap_attach, tap_detach, NULL); 117 1.1 cube extern struct cfdriver tap_cd; 118 1.1 cube 119 1.1 cube /* Real device access routines */ 120 1.129 riastrad static void tap_dev_close(struct tap_softc *); 121 1.1 cube static int tap_dev_read(int, struct uio *, int); 122 1.1 cube static int tap_dev_write(int, struct uio *, int); 123 1.26 christos static int tap_dev_ioctl(int, u_long, void *, struct lwp *); 124 1.11 christos static int tap_dev_poll(int, int, struct lwp *); 125 1.1 cube static int tap_dev_kqfilter(int, struct knote *); 126 1.1 cube 127 1.1 cube /* Fileops access routines */ 128 1.41 ad static int tap_fops_close(file_t *); 129 1.41 ad static int tap_fops_read(file_t *, off_t *, struct uio *, 130 1.17 elad kauth_cred_t, int); 131 1.41 ad static int tap_fops_write(file_t *, off_t *, struct uio *, 132 1.17 elad kauth_cred_t, int); 133 1.41 ad static int tap_fops_ioctl(file_t *, u_long, void *); 134 1.41 ad static int tap_fops_poll(file_t *, int); 135 1.56 christos static int tap_fops_stat(file_t *, struct stat *); 136 1.41 ad static int tap_fops_kqfilter(file_t *, struct knote *); 137 1.1 cube 138 1.1 cube static const struct fileops tap_fileops = { 139 1.104 christos .fo_name = "tap", 140 1.55 ad .fo_read = tap_fops_read, 141 1.55 ad .fo_write = tap_fops_write, 142 1.55 ad .fo_ioctl = tap_fops_ioctl, 143 1.55 ad .fo_fcntl = fnullop_fcntl, 144 1.55 ad .fo_poll = tap_fops_poll, 145 1.56 christos .fo_stat = tap_fops_stat, 146 1.55 ad .fo_close = tap_fops_close, 147 1.55 ad .fo_kqfilter = tap_fops_kqfilter, 148 1.62 dsl .fo_restart = fnullop_restart, 149 1.1 cube }; 150 1.1 cube 151 1.1 cube /* Helper for cloning open() */ 152 1.11 christos static int tap_dev_cloner(struct lwp *); 153 1.1 cube 154 1.1 cube /* Character device routines */ 155 1.11 christos static int tap_cdev_open(dev_t, int, int, struct lwp *); 156 1.11 christos static int tap_cdev_close(dev_t, int, int, struct lwp *); 157 1.1 cube static int tap_cdev_read(dev_t, struct uio *, int); 158 1.1 cube static int tap_cdev_write(dev_t, struct uio *, int); 159 1.26 christos static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *); 160 1.11 christos static int tap_cdev_poll(dev_t, int, struct lwp *); 161 1.1 cube static int tap_cdev_kqfilter(dev_t, struct knote *); 162 1.1 cube 163 1.1 cube const struct cdevsw tap_cdevsw = { 164 1.73 dholland .d_open = tap_cdev_open, 165 1.73 dholland .d_close = tap_cdev_close, 166 1.73 dholland .d_read = tap_cdev_read, 167 1.73 dholland .d_write = tap_cdev_write, 168 1.73 dholland .d_ioctl = tap_cdev_ioctl, 169 1.73 dholland .d_stop = nostop, 170 1.73 dholland .d_tty = notty, 171 1.73 dholland .d_poll = tap_cdev_poll, 172 1.73 dholland .d_mmap = nommap, 173 1.73 dholland .d_kqfilter = tap_cdev_kqfilter, 174 1.77 dholland .d_discard = nodiscard, 175 1.102 jmcneill .d_flag = D_OTHER | D_MPSAFE 176 1.1 cube }; 177 1.1 cube 178 1.1 cube #define TAP_CLONER 0xfffff /* Maximal minor value */ 179 1.1 cube 180 1.1 cube /* kqueue-related routines */ 181 1.1 cube static void tap_kqdetach(struct knote *); 182 1.1 cube static int tap_kqread(struct knote *, long); 183 1.1 cube 184 1.1 cube /* 185 1.1 cube * Those are needed by the ifnet interface, and would typically be 186 1.1 cube * there for any network interface driver. 187 1.1 cube * Some other routines are optional: watchdog and drain. 188 1.1 cube */ 189 1.1 cube static void tap_start(struct ifnet *); 190 1.1 cube static void tap_stop(struct ifnet *, int); 191 1.1 cube static int tap_init(struct ifnet *); 192 1.26 christos static int tap_ioctl(struct ifnet *, u_long, void *); 193 1.1 cube 194 1.42 ad /* Internal functions */ 195 1.1 cube static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *); 196 1.42 ad static void tap_softintr(void *); 197 1.1 cube 198 1.1 cube /* 199 1.1 cube * tap is a clonable interface, although it is highly unrealistic for 200 1.1 cube * an Ethernet device. 201 1.1 cube * 202 1.1 cube * Here are the bits needed for a clonable interface. 203 1.1 cube */ 204 1.1 cube static int tap_clone_create(struct if_clone *, int); 205 1.1 cube static int tap_clone_destroy(struct ifnet *); 206 1.1 cube 207 1.1 cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap", 208 1.1 cube tap_clone_create, 209 1.1 cube tap_clone_destroy); 210 1.1 cube 211 1.97 skrll /* Helper functions shared by the two cloning code paths */ 212 1.1 cube static struct tap_softc * tap_clone_creator(int); 213 1.130 riastrad static void tap_clone_destroyer(device_t); 214 1.1 cube 215 1.86 pgoyette static struct sysctllog *tap_sysctl_clog; 216 1.87 pgoyette 217 1.91 christos #ifdef _MODULE 218 1.87 pgoyette devmajor_t tap_bmajor = -1, tap_cmajor = -1; 219 1.86 pgoyette #endif 220 1.86 pgoyette 221 1.85 christos static u_int tap_count; 222 1.85 christos 223 1.1 cube void 224 1.23 christos tapattach(int n) 225 1.1 cube { 226 1.1 cube 227 1.85 christos /* 228 1.85 christos * Nothing to do here, initialization is handled by the 229 1.85 christos * module initialization code in tapinit() below). 230 1.85 christos */ 231 1.85 christos } 232 1.1 cube 233 1.85 christos static void 234 1.85 christos tapinit(void) 235 1.85 christos { 236 1.126 pgoyette int error; 237 1.126 pgoyette 238 1.126 pgoyette #ifdef _MODULE 239 1.126 pgoyette devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor); 240 1.126 pgoyette #endif 241 1.126 pgoyette error = config_cfattach_attach(tap_cd.cd_name, &tap_ca); 242 1.112 msaitoh 243 1.99 skrll if (error) { 244 1.99 skrll aprint_error("%s: unable to register cfattach\n", 245 1.99 skrll tap_cd.cd_name); 246 1.99 skrll (void)config_cfdriver_detach(&tap_cd); 247 1.99 skrll return; 248 1.99 skrll } 249 1.95 skrll 250 1.1 cube if_clone_attach(&tap_cloners); 251 1.91 christos sysctl_tap_setup(&tap_sysctl_clog); 252 1.1 cube } 253 1.1 cube 254 1.85 christos static int 255 1.85 christos tapdetach(void) 256 1.85 christos { 257 1.85 christos int error = 0; 258 1.85 christos 259 1.108 pgoyette if_clone_detach(&tap_cloners); 260 1.108 pgoyette 261 1.108 pgoyette if (tap_count != 0) { 262 1.126 pgoyette if_clone_attach(&tap_cloners); 263 1.126 pgoyette return EBUSY; 264 1.108 pgoyette } 265 1.108 pgoyette 266 1.108 pgoyette error = config_cfattach_detach(tap_cd.cd_name, &tap_ca); 267 1.126 pgoyette if (error == 0) { 268 1.88 pgoyette #ifdef _MODULE 269 1.126 pgoyette devsw_detach(NULL, &tap_cdevsw); 270 1.91 christos #endif 271 1.126 pgoyette sysctl_teardown(&tap_sysctl_clog); 272 1.126 pgoyette } else 273 1.126 pgoyette if_clone_attach(&tap_cloners); 274 1.91 christos 275 1.85 christos return error; 276 1.85 christos } 277 1.85 christos 278 1.1 cube /* Pretty much useless for a pseudo-device */ 279 1.1 cube static int 280 1.40 cube tap_match(device_t parent, cfdata_t cfdata, void *arg) 281 1.1 cube { 282 1.40 cube 283 1.95 skrll return 1; 284 1.1 cube } 285 1.1 cube 286 1.1 cube void 287 1.40 cube tap_attach(device_t parent, device_t self, void *aux) 288 1.1 cube { 289 1.40 cube struct tap_softc *sc = device_private(self); 290 1.1 cube struct ifnet *ifp; 291 1.18 kardel const struct sysctlnode *node; 292 1.54 plunky int error; 293 1.38 matt uint8_t enaddr[ETHER_ADDR_LEN] = 294 1.7 cube { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff }; 295 1.14 christos char enaddrstr[3 * ETHER_ADDR_LEN]; 296 1.1 cube 297 1.40 cube sc->sc_dev = self; 298 1.71 yamt sc->sc_sih = NULL; 299 1.56 christos getnanotime(&sc->sc_btime); 300 1.56 christos sc->sc_atime = sc->sc_mtime = sc->sc_btime; 301 1.80 ozaki sc->sc_flags = 0; 302 1.80 ozaki selinit(&sc->sc_rsel); 303 1.80 ozaki 304 1.102 jmcneill cv_init(&sc->sc_cv, "tapread"); 305 1.102 jmcneill mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET); 306 1.40 cube 307 1.48 hans if (!pmf_device_register(self, NULL, NULL)) 308 1.48 hans aprint_error_dev(self, "couldn't establish power handler\n"); 309 1.48 hans 310 1.1 cube /* 311 1.1 cube * In order to obtain unique initial Ethernet address on a host, 312 1.70 yamt * do some randomisation. It's not meant for anything but avoiding 313 1.70 yamt * hard-coding an address. 314 1.1 cube */ 315 1.70 yamt cprng_fast(&enaddr[3], 3); 316 1.1 cube 317 1.40 cube aprint_verbose_dev(self, "Ethernet address %s\n", 318 1.14 christos ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr)); 319 1.1 cube 320 1.1 cube /* 321 1.1 cube * One should note that an interface must do multicast in order 322 1.1 cube * to support IPv6. 323 1.1 cube */ 324 1.1 cube ifp = &sc->sc_ec.ec_if; 325 1.40 cube strcpy(ifp->if_xname, device_xname(self)); 326 1.1 cube ifp->if_softc = sc; 327 1.1 cube ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 328 1.105 ozaki #ifdef NET_MPSAFE 329 1.119 roy ifp->if_extflags = IFEF_MPSAFE; 330 1.105 ozaki #endif 331 1.1 cube ifp->if_ioctl = tap_ioctl; 332 1.1 cube ifp->if_start = tap_start; 333 1.1 cube ifp->if_stop = tap_stop; 334 1.1 cube ifp->if_init = tap_init; 335 1.1 cube IFQ_SET_READY(&ifp->if_snd); 336 1.1 cube 337 1.1 cube sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU; 338 1.1 cube 339 1.81 ozaki /* Those steps are mandatory for an Ethernet driver. */ 340 1.122 riastrad if_initialize(ifp); 341 1.102 jmcneill ifp->if_percpuq = if_percpuq_create(ifp); 342 1.1 cube ether_ifattach(ifp, enaddr); 343 1.119 roy /* Opening the device will bring the link state up. */ 344 1.119 roy ifp->if_link_state = LINK_STATE_DOWN; 345 1.81 ozaki if_register(ifp); 346 1.1 cube 347 1.1 cube /* 348 1.1 cube * Add a sysctl node for that interface. 349 1.1 cube * 350 1.1 cube * The pointer transmitted is not a string, but instead a pointer to 351 1.1 cube * the softc structure, which we can use to build the string value on 352 1.1 cube * the fly in the helper function of the node. See the comments for 353 1.1 cube * tap_sysctl_handler for details. 354 1.21 cube * 355 1.21 cube * Usually sysctl_createv is called with CTL_CREATE as the before-last 356 1.21 cube * component. However, we can allocate a number ourselves, as we are 357 1.21 cube * the only consumer of the net.link.<iface> node. In this case, the 358 1.21 cube * unit number is conveniently used to number the node. CTL_CREATE 359 1.21 cube * would just work, too. 360 1.1 cube */ 361 1.1 cube if ((error = sysctl_createv(NULL, 0, NULL, 362 1.1 cube &node, CTLFLAG_READWRITE, 363 1.40 cube CTLTYPE_STRING, device_xname(self), NULL, 364 1.67 dsl tap_sysctl_handler, 0, (void *)sc, 18, 365 1.40 cube CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev), 366 1.15 thorpej CTL_EOL)) != 0) 367 1.100 msaitoh aprint_error_dev(self, 368 1.100 msaitoh "sysctl_createv returned %d, ignoring\n", error); 369 1.1 cube } 370 1.1 cube 371 1.1 cube /* 372 1.1 cube * When detaching, we do the inverse of what is done in the attach 373 1.1 cube * routine, in reversed order. 374 1.1 cube */ 375 1.1 cube static int 376 1.40 cube tap_detach(device_t self, int flags) 377 1.1 cube { 378 1.40 cube struct tap_softc *sc = device_private(self); 379 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if; 380 1.54 plunky int error; 381 1.1 cube 382 1.1 cube sc->sc_flags |= TAP_GOING; 383 1.1 cube tap_stop(ifp, 1); 384 1.1 cube if_down(ifp); 385 1.1 cube 386 1.71 yamt if (sc->sc_sih != NULL) { 387 1.71 yamt softint_disestablish(sc->sc_sih); 388 1.71 yamt sc->sc_sih = NULL; 389 1.71 yamt } 390 1.42 ad 391 1.1 cube /* 392 1.1 cube * Destroying a single leaf is a very straightforward operation using 393 1.1 cube * sysctl_destroyv. One should be sure to always end the path with 394 1.1 cube * CTL_EOL. 395 1.1 cube */ 396 1.3 cube if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node, 397 1.40 cube device_unit(sc->sc_dev), CTL_EOL)) != 0) 398 1.40 cube aprint_error_dev(self, 399 1.40 cube "sysctl_destroyv returned %d, ignoring\n", error); 400 1.1 cube ether_ifdetach(ifp); 401 1.1 cube if_detach(ifp); 402 1.47 rmind seldestroy(&sc->sc_rsel); 403 1.102 jmcneill mutex_destroy(&sc->sc_lock); 404 1.102 jmcneill cv_destroy(&sc->sc_cv); 405 1.1 cube 406 1.49 hans pmf_device_deregister(self); 407 1.49 hans 408 1.95 skrll return 0; 409 1.1 cube } 410 1.1 cube 411 1.1 cube /* 412 1.1 cube * This is the function where we SEND packets. 413 1.1 cube * 414 1.1 cube * There is no 'receive' equivalent. A typical driver will get 415 1.1 cube * interrupts from the hardware, and from there will inject new packets 416 1.1 cube * into the network stack. 417 1.1 cube * 418 1.1 cube * Once handled, a packet must be freed. A real driver might not be able 419 1.1 cube * to fit all the pending packets into the hardware, and is allowed to 420 1.1 cube * return before having sent all the packets. It should then use the 421 1.1 cube * if_flags flag IFF_OACTIVE to notify the upper layer. 422 1.1 cube * 423 1.1 cube * There are also other flags one should check, such as IFF_PAUSE. 424 1.1 cube * 425 1.1 cube * It is our duty to make packets available to BPF listeners. 426 1.1 cube * 427 1.1 cube * You should be aware that this function is called by the Ethernet layer 428 1.1 cube * at splnet(). 429 1.1 cube * 430 1.1 cube * When the device is opened, we have to pass the packet(s) to the 431 1.1 cube * userland. For that we stay in OACTIVE mode while the userland gets 432 1.1 cube * the packets, and we send a signal to the processes waiting to read. 433 1.1 cube * 434 1.1 cube * wakeup(sc) is the counterpart to the tsleep call in 435 1.1 cube * tap_dev_read, while selnotify() is used for kevent(2) and 436 1.1 cube * poll(2) (which includes select(2)) listeners. 437 1.1 cube */ 438 1.1 cube static void 439 1.1 cube tap_start(struct ifnet *ifp) 440 1.1 cube { 441 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 442 1.1 cube struct mbuf *m0; 443 1.1 cube 444 1.102 jmcneill mutex_enter(&sc->sc_lock); 445 1.1 cube if ((sc->sc_flags & TAP_INUSE) == 0) { 446 1.1 cube /* Simply drop packets */ 447 1.112 msaitoh for (;;) { 448 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m0); 449 1.1 cube if (m0 == NULL) 450 1.102 jmcneill goto done; 451 1.1 cube 452 1.116 thorpej if_statadd2(ifp, if_opackets, 1, if_obytes, m0->m_len); 453 1.106 msaitoh bpf_mtap(ifp, m0, BPF_D_OUT); 454 1.1 cube 455 1.1 cube m_freem(m0); 456 1.1 cube } 457 1.1 cube } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) { 458 1.1 cube ifp->if_flags |= IFF_OACTIVE; 459 1.102 jmcneill cv_broadcast(&sc->sc_cv); 460 1.39 rmind selnotify(&sc->sc_rsel, 0, 1); 461 1.114 knakahar if (sc->sc_flags & TAP_ASYNCIO) { 462 1.114 knakahar kpreempt_disable(); 463 1.42 ad softint_schedule(sc->sc_sih); 464 1.114 knakahar kpreempt_enable(); 465 1.114 knakahar } 466 1.42 ad } 467 1.102 jmcneill done: 468 1.102 jmcneill mutex_exit(&sc->sc_lock); 469 1.42 ad } 470 1.42 ad 471 1.42 ad static void 472 1.42 ad tap_softintr(void *cookie) 473 1.42 ad { 474 1.42 ad struct tap_softc *sc; 475 1.42 ad struct ifnet *ifp; 476 1.42 ad int a, b; 477 1.42 ad 478 1.42 ad sc = cookie; 479 1.42 ad 480 1.42 ad if (sc->sc_flags & TAP_ASYNCIO) { 481 1.42 ad ifp = &sc->sc_ec.ec_if; 482 1.42 ad if (ifp->if_flags & IFF_RUNNING) { 483 1.42 ad a = POLL_IN; 484 1.112 msaitoh b = POLLIN | POLLRDNORM; 485 1.42 ad } else { 486 1.42 ad a = POLL_HUP; 487 1.42 ad b = 0; 488 1.42 ad } 489 1.42 ad fownsignal(sc->sc_pgid, SIGIO, a, b, NULL); 490 1.1 cube } 491 1.1 cube } 492 1.1 cube 493 1.1 cube /* 494 1.1 cube * A typical driver will only contain the following handlers for 495 1.1 cube * ioctl calls, except SIOCSIFPHYADDR. 496 1.1 cube * The latter is a hack I used to set the Ethernet address of the 497 1.1 cube * faked device. 498 1.1 cube * 499 1.118 roy * Note that ether_ioctl() has to be called under splnet(). 500 1.1 cube */ 501 1.1 cube static int 502 1.26 christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data) 503 1.1 cube { 504 1.1 cube int s, error; 505 1.1 cube 506 1.1 cube s = splnet(); 507 1.1 cube 508 1.1 cube switch (cmd) { 509 1.1 cube case SIOCSIFPHYADDR: 510 1.1 cube error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data); 511 1.1 cube break; 512 1.1 cube default: 513 1.1 cube error = ether_ioctl(ifp, cmd, data); 514 1.1 cube if (error == ENETRESET) 515 1.1 cube error = 0; 516 1.1 cube break; 517 1.1 cube } 518 1.1 cube 519 1.1 cube splx(s); 520 1.1 cube 521 1.95 skrll return error; 522 1.1 cube } 523 1.1 cube 524 1.1 cube /* 525 1.54 plunky * Helper function to set Ethernet address. This has been replaced by 526 1.54 plunky * the generic SIOCALIFADDR ioctl on a PF_LINK socket. 527 1.1 cube */ 528 1.1 cube static int 529 1.23 christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra) 530 1.1 cube { 531 1.53 plunky const struct sockaddr *sa = &ifra->ifra_addr; 532 1.1 cube 533 1.53 plunky if (sa->sa_family != AF_LINK) 534 1.95 skrll return EINVAL; 535 1.1 cube 536 1.53 plunky if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false); 537 1.1 cube 538 1.95 skrll return 0; 539 1.1 cube } 540 1.1 cube 541 1.1 cube /* 542 1.1 cube * _init() would typically be called when an interface goes up, 543 1.1 cube * meaning it should configure itself into the state in which it 544 1.1 cube * can send packets. 545 1.1 cube */ 546 1.1 cube static int 547 1.1 cube tap_init(struct ifnet *ifp) 548 1.1 cube { 549 1.1 cube ifp->if_flags |= IFF_RUNNING; 550 1.1 cube 551 1.1 cube tap_start(ifp); 552 1.1 cube 553 1.95 skrll return 0; 554 1.1 cube } 555 1.1 cube 556 1.1 cube /* 557 1.1 cube * _stop() is called when an interface goes down. It is our 558 1.127 andvar * responsibility to validate that state by clearing the 559 1.1 cube * IFF_RUNNING flag. 560 1.1 cube * 561 1.1 cube * We have to wake up all the sleeping processes to have the pending 562 1.1 cube * read requests cancelled. 563 1.1 cube */ 564 1.1 cube static void 565 1.23 christos tap_stop(struct ifnet *ifp, int disable) 566 1.1 cube { 567 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc; 568 1.1 cube 569 1.102 jmcneill mutex_enter(&sc->sc_lock); 570 1.1 cube ifp->if_flags &= ~IFF_RUNNING; 571 1.102 jmcneill cv_broadcast(&sc->sc_cv); 572 1.39 rmind selnotify(&sc->sc_rsel, 0, 1); 573 1.114 knakahar if (sc->sc_flags & TAP_ASYNCIO) { 574 1.114 knakahar kpreempt_disable(); 575 1.42 ad softint_schedule(sc->sc_sih); 576 1.114 knakahar kpreempt_enable(); 577 1.114 knakahar } 578 1.102 jmcneill mutex_exit(&sc->sc_lock); 579 1.1 cube } 580 1.1 cube 581 1.1 cube /* 582 1.1 cube * The 'create' command of ifconfig can be used to create 583 1.1 cube * any numbered instance of a given device. Thus we have to 584 1.1 cube * make sure we have enough room in cd_devs to create the 585 1.1 cube * user-specified instance. config_attach_pseudo will do this 586 1.1 cube * for us. 587 1.1 cube */ 588 1.1 cube static int 589 1.23 christos tap_clone_create(struct if_clone *ifc, int unit) 590 1.1 cube { 591 1.112 msaitoh 592 1.1 cube if (tap_clone_creator(unit) == NULL) { 593 1.1 cube aprint_error("%s%d: unable to attach an instance\n", 594 1.99 skrll tap_cd.cd_name, unit); 595 1.95 skrll return ENXIO; 596 1.1 cube } 597 1.85 christos atomic_inc_uint(&tap_count); 598 1.95 skrll return 0; 599 1.1 cube } 600 1.1 cube 601 1.1 cube /* 602 1.1 cube * tap(4) can be cloned by two ways: 603 1.1 cube * using 'ifconfig tap0 create', which will use the network 604 1.1 cube * interface cloning API, and call tap_clone_create above. 605 1.1 cube * opening the cloning device node, whose minor number is TAP_CLONER. 606 1.1 cube * See below for an explanation on how this part work. 607 1.1 cube */ 608 1.1 cube static struct tap_softc * 609 1.1 cube tap_clone_creator(int unit) 610 1.1 cube { 611 1.98 skrll cfdata_t cf; 612 1.1 cube 613 1.98 skrll cf = kmem_alloc(sizeof(*cf), KM_SLEEP); 614 1.1 cube cf->cf_name = tap_cd.cd_name; 615 1.1 cube cf->cf_atname = tap_ca.ca_name; 616 1.27 drochner if (unit == -1) { 617 1.27 drochner /* let autoconf find the first free one */ 618 1.27 drochner cf->cf_unit = 0; 619 1.27 drochner cf->cf_fstate = FSTATE_STAR; 620 1.27 drochner } else { 621 1.27 drochner cf->cf_unit = unit; 622 1.58 plunky cf->cf_fstate = FSTATE_NOTFOUND; 623 1.27 drochner } 624 1.1 cube 625 1.40 cube return device_private(config_attach_pseudo(cf)); 626 1.1 cube } 627 1.1 cube 628 1.1 cube static int 629 1.1 cube tap_clone_destroy(struct ifnet *ifp) 630 1.1 cube { 631 1.45 dyoung struct tap_softc *sc = ifp->if_softc; 632 1.45 dyoung 633 1.130 riastrad tap_clone_destroyer(sc->sc_dev); 634 1.130 riastrad atomic_dec_uint(&tap_count); 635 1.130 riastrad return 0; 636 1.1 cube } 637 1.1 cube 638 1.130 riastrad static void 639 1.40 cube tap_clone_destroyer(device_t dev) 640 1.1 cube { 641 1.40 cube cfdata_t cf = device_cfdata(dev); 642 1.1 cube int error; 643 1.1 cube 644 1.131 riastrad error = config_detach(dev, DETACH_FORCE); 645 1.130 riastrad KASSERTMSG(error == 0, "error=%d", error); 646 1.98 skrll kmem_free(cf, sizeof(*cf)); 647 1.1 cube } 648 1.1 cube 649 1.1 cube /* 650 1.1 cube * tap(4) is a bit of an hybrid device. It can be used in two different 651 1.1 cube * ways: 652 1.1 cube * 1. ifconfig tapN create, then use /dev/tapN to read/write off it. 653 1.1 cube * 2. open /dev/tap, get a new interface created and read/write off it. 654 1.1 cube * That interface is destroyed when the process that had it created exits. 655 1.1 cube * 656 1.1 cube * The first way is managed by the cdevsw structure, and you access interfaces 657 1.1 cube * through a (major, minor) mapping: tap4 is obtained by the minor number 658 1.1 cube * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_. 659 1.1 cube * 660 1.1 cube * The second way is the so-called "cloning" device. It's a special minor 661 1.1 cube * number (chosen as the maximal number, to allow as much tap devices as 662 1.1 cube * possible). The user first opens the cloner (e.g., /dev/tap), and that 663 1.1 cube * call ends in tap_cdev_open. The actual place where it is handled is 664 1.1 cube * tap_dev_cloner. 665 1.1 cube * 666 1.135 rillig * A tap device cannot be opened more than once at a time, so the cdevsw 667 1.1 cube * part of open() does nothing but noting that the interface is being used and 668 1.1 cube * hence ready to actually handle packets. 669 1.1 cube */ 670 1.1 cube 671 1.1 cube static int 672 1.23 christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l) 673 1.1 cube { 674 1.1 cube struct tap_softc *sc; 675 1.1 cube 676 1.1 cube if (minor(dev) == TAP_CLONER) 677 1.11 christos return tap_dev_cloner(l); 678 1.1 cube 679 1.46 cegger sc = device_lookup_private(&tap_cd, minor(dev)); 680 1.1 cube if (sc == NULL) 681 1.95 skrll return ENXIO; 682 1.1 cube 683 1.1 cube /* The device can only be opened once */ 684 1.1 cube if (sc->sc_flags & TAP_INUSE) 685 1.95 skrll return EBUSY; 686 1.1 cube sc->sc_flags |= TAP_INUSE; 687 1.119 roy if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP); 688 1.119 roy 689 1.95 skrll return 0; 690 1.1 cube } 691 1.1 cube 692 1.1 cube /* 693 1.1 cube * There are several kinds of cloning devices, and the most simple is the one 694 1.1 cube * tap(4) uses. What it does is change the file descriptor with a new one, 695 1.1 cube * with its own fileops structure (which maps to the various read, write, 696 1.1 cube * ioctl functions). It starts allocating a new file descriptor with falloc, 697 1.1 cube * then actually creates the new tap devices. 698 1.1 cube * 699 1.1 cube * Once those two steps are successful, we can re-wire the existing file 700 1.1 cube * descriptor to its new self. This is done with fdclone(): it fills the fp 701 1.78 matt * structure as needed (notably f_devunit gets filled with the fifth parameter 702 1.1 cube * passed, the unit of the tap device which will allows us identifying the 703 1.1 cube * device later), and returns EMOVEFD. 704 1.1 cube * 705 1.1 cube * That magic value is interpreted by sys_open() which then replaces the 706 1.1 cube * current file descriptor by the new one (through a magic member of struct 707 1.13 pooka * lwp, l_dupfd). 708 1.1 cube * 709 1.1 cube * The tap device is flagged as being busy since it otherwise could be 710 1.1 cube * externally accessed through the corresponding device node with the cdevsw 711 1.1 cube * interface. 712 1.1 cube */ 713 1.1 cube 714 1.1 cube static int 715 1.11 christos tap_dev_cloner(struct lwp *l) 716 1.1 cube { 717 1.1 cube struct tap_softc *sc; 718 1.41 ad file_t *fp; 719 1.1 cube int error, fd; 720 1.1 cube 721 1.41 ad if ((error = fd_allocfile(&fp, &fd)) != 0) 722 1.95 skrll return error; 723 1.1 cube 724 1.27 drochner if ((sc = tap_clone_creator(-1)) == NULL) { 725 1.41 ad fd_abort(curproc, fp, fd); 726 1.95 skrll return ENXIO; 727 1.1 cube } 728 1.1 cube 729 1.1 cube sc->sc_flags |= TAP_INUSE; 730 1.128 ozaki if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP); 731 1.1 cube 732 1.112 msaitoh return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops, 733 1.40 cube (void *)(intptr_t)device_unit(sc->sc_dev)); 734 1.1 cube } 735 1.1 cube 736 1.1 cube /* 737 1.1 cube * While all other operations (read, write, ioctl, poll and kqfilter) are 738 1.1 cube * really the same whether we are in cdevsw or fileops mode, the close() 739 1.1 cube * function is slightly different in the two cases. 740 1.1 cube * 741 1.1 cube * As for the other, the core of it is shared in tap_dev_close. What 742 1.1 cube * it does is sufficient for the cdevsw interface, but the cloning interface 743 1.1 cube * needs another thing: the interface is destroyed when the processes that 744 1.1 cube * created it closes it. 745 1.1 cube */ 746 1.1 cube static int 747 1.112 msaitoh tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l) 748 1.1 cube { 749 1.112 msaitoh struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev)); 750 1.1 cube 751 1.1 cube if (sc == NULL) 752 1.95 skrll return ENXIO; 753 1.1 cube 754 1.129 riastrad tap_dev_close(sc); 755 1.129 riastrad return 0; 756 1.1 cube } 757 1.1 cube 758 1.1 cube /* 759 1.1 cube * It might happen that the administrator used ifconfig to externally destroy 760 1.1 cube * the interface. In that case, tap_fops_close will be called while 761 1.1 cube * tap_detach is already happening. If we called it again from here, we 762 1.1 cube * would dead lock. TAP_GOING ensures that this situation doesn't happen. 763 1.1 cube */ 764 1.1 cube static int 765 1.41 ad tap_fops_close(file_t *fp) 766 1.1 cube { 767 1.112 msaitoh struct tap_softc *sc; 768 1.78 matt int unit = fp->f_devunit; 769 1.1 cube 770 1.46 cegger sc = device_lookup_private(&tap_cd, unit); 771 1.1 cube if (sc == NULL) 772 1.95 skrll return ENXIO; 773 1.1 cube 774 1.44 ad KERNEL_LOCK(1, NULL); 775 1.129 riastrad tap_dev_close(sc); 776 1.1 cube 777 1.130 riastrad /* 778 1.130 riastrad * Destroy the device now that it is no longer useful, unless 779 1.130 riastrad * it's already being destroyed. 780 1.130 riastrad */ 781 1.130 riastrad if ((sc->sc_flags & TAP_GOING) != 0) 782 1.130 riastrad goto out; 783 1.130 riastrad tap_clone_destroyer(sc->sc_dev); 784 1.1 cube 785 1.130 riastrad out: KERNEL_UNLOCK_ONE(NULL); 786 1.130 riastrad return 0; 787 1.1 cube } 788 1.1 cube 789 1.129 riastrad static void 790 1.1 cube tap_dev_close(struct tap_softc *sc) 791 1.1 cube { 792 1.1 cube struct ifnet *ifp; 793 1.1 cube int s; 794 1.1 cube 795 1.1 cube s = splnet(); 796 1.1 cube /* Let tap_start handle packets again */ 797 1.1 cube ifp = &sc->sc_ec.ec_if; 798 1.1 cube ifp->if_flags &= ~IFF_OACTIVE; 799 1.1 cube 800 1.1 cube /* Purge output queue */ 801 1.1 cube if (!(IFQ_IS_EMPTY(&ifp->if_snd))) { 802 1.1 cube struct mbuf *m; 803 1.1 cube 804 1.1 cube for (;;) { 805 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m); 806 1.1 cube if (m == NULL) 807 1.1 cube break; 808 1.1 cube 809 1.116 thorpej if_statadd2(ifp, if_opackets, 1, if_obytes, m->m_len); 810 1.106 msaitoh bpf_mtap(ifp, m, BPF_D_OUT); 811 1.60 plunky m_freem(m); 812 1.1 cube } 813 1.1 cube } 814 1.1 cube splx(s); 815 1.1 cube 816 1.71 yamt if (sc->sc_sih != NULL) { 817 1.71 yamt softint_disestablish(sc->sc_sih); 818 1.71 yamt sc->sc_sih = NULL; 819 1.71 yamt } 820 1.1 cube sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO); 821 1.119 roy if_link_state_change(ifp, LINK_STATE_DOWN); 822 1.1 cube } 823 1.1 cube 824 1.1 cube static int 825 1.1 cube tap_cdev_read(dev_t dev, struct uio *uio, int flags) 826 1.1 cube { 827 1.112 msaitoh 828 1.1 cube return tap_dev_read(minor(dev), uio, flags); 829 1.1 cube } 830 1.1 cube 831 1.1 cube static int 832 1.41 ad tap_fops_read(file_t *fp, off_t *offp, struct uio *uio, 833 1.23 christos kauth_cred_t cred, int flags) 834 1.1 cube { 835 1.44 ad int error; 836 1.44 ad 837 1.44 ad KERNEL_LOCK(1, NULL); 838 1.78 matt error = tap_dev_read(fp->f_devunit, uio, flags); 839 1.44 ad KERNEL_UNLOCK_ONE(NULL); 840 1.44 ad return error; 841 1.1 cube } 842 1.1 cube 843 1.1 cube static int 844 1.23 christos tap_dev_read(int unit, struct uio *uio, int flags) 845 1.1 cube { 846 1.78 matt struct tap_softc *sc = device_lookup_private(&tap_cd, unit); 847 1.1 cube struct ifnet *ifp; 848 1.1 cube struct mbuf *m, *n; 849 1.102 jmcneill int error = 0; 850 1.1 cube 851 1.1 cube if (sc == NULL) 852 1.95 skrll return ENXIO; 853 1.1 cube 854 1.56 christos getnanotime(&sc->sc_atime); 855 1.56 christos 856 1.1 cube ifp = &sc->sc_ec.ec_if; 857 1.1 cube if ((ifp->if_flags & IFF_UP) == 0) 858 1.95 skrll return EHOSTDOWN; 859 1.1 cube 860 1.132 riastrad mutex_enter(&sc->sc_lock); 861 1.1 cube if (IFQ_IS_EMPTY(&ifp->if_snd)) { 862 1.1 cube ifp->if_flags &= ~IFF_OACTIVE; 863 1.1 cube if (sc->sc_flags & TAP_NBIO) 864 1.1 cube error = EWOULDBLOCK; 865 1.1 cube else 866 1.102 jmcneill error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock); 867 1.52 pooka 868 1.102 jmcneill if (error != 0) { 869 1.102 jmcneill mutex_exit(&sc->sc_lock); 870 1.95 skrll return error; 871 1.102 jmcneill } 872 1.1 cube /* The device might have been downed */ 873 1.102 jmcneill if ((ifp->if_flags & IFF_UP) == 0) { 874 1.102 jmcneill mutex_exit(&sc->sc_lock); 875 1.95 skrll return EHOSTDOWN; 876 1.34 ad } 877 1.1 cube } 878 1.1 cube 879 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m); 880 1.102 jmcneill mutex_exit(&sc->sc_lock); 881 1.102 jmcneill 882 1.1 cube ifp->if_flags &= ~IFF_OACTIVE; 883 1.1 cube if (m == NULL) { 884 1.1 cube error = 0; 885 1.1 cube goto out; 886 1.1 cube } 887 1.1 cube 888 1.116 thorpej if_statadd2(ifp, if_opackets, 1, 889 1.116 thorpej if_obytes, m->m_len); /* XXX only first in chain */ 890 1.106 msaitoh bpf_mtap(ifp, m, BPF_D_OUT); 891 1.115 christos if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0) 892 1.115 christos goto out; 893 1.115 christos if (m == NULL) 894 1.115 christos goto out; 895 1.1 cube 896 1.1 cube /* 897 1.1 cube * One read is one packet. 898 1.1 cube */ 899 1.1 cube do { 900 1.26 christos error = uiomove(mtod(m, void *), 901 1.107 riastrad uimin(m->m_len, uio->uio_resid), uio); 902 1.93 christos m = n = m_free(m); 903 1.1 cube } while (m != NULL && uio->uio_resid > 0 && error == 0); 904 1.1 cube 905 1.133 rin m_freem(m); 906 1.1 cube 907 1.1 cube out: 908 1.95 skrll return error; 909 1.1 cube } 910 1.1 cube 911 1.1 cube static int 912 1.56 christos tap_fops_stat(file_t *fp, struct stat *st) 913 1.56 christos { 914 1.59 drochner int error = 0; 915 1.57 christos struct tap_softc *sc; 916 1.78 matt int unit = fp->f_devunit; 917 1.57 christos 918 1.57 christos (void)memset(st, 0, sizeof(*st)); 919 1.57 christos 920 1.56 christos KERNEL_LOCK(1, NULL); 921 1.57 christos sc = device_lookup_private(&tap_cd, unit); 922 1.57 christos if (sc == NULL) { 923 1.57 christos error = ENXIO; 924 1.57 christos goto out; 925 1.57 christos } 926 1.56 christos 927 1.56 christos st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit); 928 1.56 christos st->st_atimespec = sc->sc_atime; 929 1.56 christos st->st_mtimespec = sc->sc_mtime; 930 1.56 christos st->st_ctimespec = st->st_birthtimespec = sc->sc_btime; 931 1.57 christos st->st_uid = kauth_cred_geteuid(fp->f_cred); 932 1.57 christos st->st_gid = kauth_cred_getegid(fp->f_cred); 933 1.57 christos out: 934 1.57 christos KERNEL_UNLOCK_ONE(NULL); 935 1.57 christos return error; 936 1.56 christos } 937 1.56 christos 938 1.56 christos static int 939 1.1 cube tap_cdev_write(dev_t dev, struct uio *uio, int flags) 940 1.1 cube { 941 1.112 msaitoh 942 1.1 cube return tap_dev_write(minor(dev), uio, flags); 943 1.1 cube } 944 1.1 cube 945 1.1 cube static int 946 1.41 ad tap_fops_write(file_t *fp, off_t *offp, struct uio *uio, 947 1.23 christos kauth_cred_t cred, int flags) 948 1.1 cube { 949 1.44 ad int error; 950 1.44 ad 951 1.44 ad KERNEL_LOCK(1, NULL); 952 1.78 matt error = tap_dev_write(fp->f_devunit, uio, flags); 953 1.44 ad KERNEL_UNLOCK_ONE(NULL); 954 1.44 ad return error; 955 1.1 cube } 956 1.1 cube 957 1.1 cube static int 958 1.23 christos tap_dev_write(int unit, struct uio *uio, int flags) 959 1.1 cube { 960 1.1 cube struct tap_softc *sc = 961 1.46 cegger device_lookup_private(&tap_cd, unit); 962 1.1 cube struct ifnet *ifp; 963 1.1 cube struct mbuf *m, **mp; 964 1.115 christos size_t len = 0; 965 1.1 cube int error = 0; 966 1.1 cube 967 1.1 cube if (sc == NULL) 968 1.95 skrll return ENXIO; 969 1.1 cube 970 1.56 christos getnanotime(&sc->sc_mtime); 971 1.1 cube ifp = &sc->sc_ec.ec_if; 972 1.1 cube 973 1.1 cube /* One write, one packet, that's the rule */ 974 1.1 cube MGETHDR(m, M_DONTWAIT, MT_DATA); 975 1.1 cube if (m == NULL) { 976 1.116 thorpej if_statinc(ifp, if_ierrors); 977 1.95 skrll return ENOBUFS; 978 1.1 cube } 979 1.136 mlelstv MCLAIM(m, &sc->sc_ec.ec_rx_mowner); 980 1.1 cube m->m_pkthdr.len = uio->uio_resid; 981 1.1 cube 982 1.1 cube mp = &m; 983 1.1 cube while (error == 0 && uio->uio_resid > 0) { 984 1.1 cube if (*mp != m) { 985 1.1 cube MGET(*mp, M_DONTWAIT, MT_DATA); 986 1.1 cube if (*mp == NULL) { 987 1.1 cube error = ENOBUFS; 988 1.1 cube break; 989 1.1 cube } 990 1.136 mlelstv MCLAIM(*mp, &sc->sc_ec.ec_rx_mowner); 991 1.1 cube } 992 1.107 riastrad (*mp)->m_len = uimin(MHLEN, uio->uio_resid); 993 1.115 christos len += (*mp)->m_len; 994 1.26 christos error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio); 995 1.1 cube mp = &(*mp)->m_next; 996 1.1 cube } 997 1.1 cube if (error) { 998 1.116 thorpej if_statinc(ifp, if_ierrors); 999 1.1 cube m_freem(m); 1000 1.95 skrll return error; 1001 1.1 cube } 1002 1.1 cube 1003 1.84 ozaki m_set_rcvif(m, ifp); 1004 1.1 cube 1005 1.116 thorpej if_statadd2(ifp, if_ipackets, 1, if_ibytes, len); 1006 1.115 christos bpf_mtap(ifp, m, BPF_D_IN); 1007 1.115 christos if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN)) != 0) 1008 1.115 christos return error; 1009 1.115 christos if (m == NULL) 1010 1.115 christos return 0; 1011 1.115 christos 1012 1.102 jmcneill if_percpuq_enqueue(ifp->if_percpuq, m); 1013 1.1 cube 1014 1.95 skrll return 0; 1015 1.1 cube } 1016 1.1 cube 1017 1.1 cube static int 1018 1.112 msaitoh tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l) 1019 1.1 cube { 1020 1.112 msaitoh 1021 1.11 christos return tap_dev_ioctl(minor(dev), cmd, data, l); 1022 1.1 cube } 1023 1.1 cube 1024 1.1 cube static int 1025 1.41 ad tap_fops_ioctl(file_t *fp, u_long cmd, void *data) 1026 1.1 cube { 1027 1.112 msaitoh 1028 1.78 matt return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp); 1029 1.1 cube } 1030 1.1 cube 1031 1.1 cube static int 1032 1.26 christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l) 1033 1.1 cube { 1034 1.66 christos struct tap_softc *sc = device_lookup_private(&tap_cd, unit); 1035 1.1 cube 1036 1.1 cube if (sc == NULL) 1037 1.66 christos return ENXIO; 1038 1.1 cube 1039 1.1 cube switch (cmd) { 1040 1.1 cube case FIONREAD: 1041 1.1 cube { 1042 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if; 1043 1.1 cube struct mbuf *m; 1044 1.1 cube int s; 1045 1.1 cube 1046 1.1 cube s = splnet(); 1047 1.1 cube IFQ_POLL(&ifp->if_snd, m); 1048 1.1 cube 1049 1.1 cube if (m == NULL) 1050 1.1 cube *(int *)data = 0; 1051 1.1 cube else 1052 1.1 cube *(int *)data = m->m_pkthdr.len; 1053 1.1 cube splx(s); 1054 1.66 christos return 0; 1055 1.95 skrll } 1056 1.1 cube case TIOCSPGRP: 1057 1.1 cube case FIOSETOWN: 1058 1.66 christos return fsetown(&sc->sc_pgid, cmd, data); 1059 1.1 cube case TIOCGPGRP: 1060 1.1 cube case FIOGETOWN: 1061 1.66 christos return fgetown(sc->sc_pgid, cmd, data); 1062 1.1 cube case FIOASYNC: 1063 1.71 yamt if (*(int *)data) { 1064 1.71 yamt if (sc->sc_sih == NULL) { 1065 1.71 yamt sc->sc_sih = softint_establish(SOFTINT_CLOCK, 1066 1.71 yamt tap_softintr, sc); 1067 1.71 yamt if (sc->sc_sih == NULL) 1068 1.71 yamt return EBUSY; /* XXX */ 1069 1.71 yamt } 1070 1.1 cube sc->sc_flags |= TAP_ASYNCIO; 1071 1.71 yamt } else { 1072 1.1 cube sc->sc_flags &= ~TAP_ASYNCIO; 1073 1.71 yamt if (sc->sc_sih != NULL) { 1074 1.71 yamt softint_disestablish(sc->sc_sih); 1075 1.71 yamt sc->sc_sih = NULL; 1076 1.71 yamt } 1077 1.71 yamt } 1078 1.66 christos return 0; 1079 1.1 cube case FIONBIO: 1080 1.1 cube if (*(int *)data) 1081 1.1 cube sc->sc_flags |= TAP_NBIO; 1082 1.1 cube else 1083 1.1 cube sc->sc_flags &= ~TAP_NBIO; 1084 1.66 christos return 0; 1085 1.1 cube case TAPGIFNAME: 1086 1.1 cube { 1087 1.1 cube struct ifreq *ifr = (struct ifreq *)data; 1088 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if; 1089 1.1 cube 1090 1.1 cube strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ); 1091 1.66 christos return 0; 1092 1.66 christos } 1093 1.1 cube default: 1094 1.66 christos return ENOTTY; 1095 1.1 cube } 1096 1.1 cube } 1097 1.1 cube 1098 1.1 cube static int 1099 1.11 christos tap_cdev_poll(dev_t dev, int events, struct lwp *l) 1100 1.1 cube { 1101 1.112 msaitoh 1102 1.11 christos return tap_dev_poll(minor(dev), events, l); 1103 1.1 cube } 1104 1.1 cube 1105 1.1 cube static int 1106 1.41 ad tap_fops_poll(file_t *fp, int events) 1107 1.1 cube { 1108 1.112 msaitoh 1109 1.78 matt return tap_dev_poll(fp->f_devunit, events, curlwp); 1110 1.1 cube } 1111 1.1 cube 1112 1.1 cube static int 1113 1.11 christos tap_dev_poll(int unit, int events, struct lwp *l) 1114 1.1 cube { 1115 1.112 msaitoh struct tap_softc *sc = device_lookup_private(&tap_cd, unit); 1116 1.1 cube int revents = 0; 1117 1.1 cube 1118 1.1 cube if (sc == NULL) 1119 1.28 christos return POLLERR; 1120 1.1 cube 1121 1.112 msaitoh if (events & (POLLIN | POLLRDNORM)) { 1122 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if; 1123 1.1 cube struct mbuf *m; 1124 1.1 cube int s; 1125 1.1 cube 1126 1.1 cube s = splnet(); 1127 1.1 cube IFQ_POLL(&ifp->if_snd, m); 1128 1.1 cube 1129 1.1 cube if (m != NULL) 1130 1.112 msaitoh revents |= events & (POLLIN | POLLRDNORM); 1131 1.1 cube else { 1132 1.102 jmcneill mutex_spin_enter(&sc->sc_lock); 1133 1.11 christos selrecord(l, &sc->sc_rsel); 1134 1.102 jmcneill mutex_spin_exit(&sc->sc_lock); 1135 1.1 cube } 1136 1.76 cube splx(s); 1137 1.1 cube } 1138 1.112 msaitoh revents |= events & (POLLOUT | POLLWRNORM); 1139 1.1 cube 1140 1.95 skrll return revents; 1141 1.1 cube } 1142 1.1 cube 1143 1.120 christos static struct filterops tap_read_filterops = { 1144 1.123 thorpej .f_flags = FILTEROP_ISFD, 1145 1.120 christos .f_attach = NULL, 1146 1.120 christos .f_detach = tap_kqdetach, 1147 1.120 christos .f_event = tap_kqread, 1148 1.120 christos }; 1149 1.120 christos 1150 1.1 cube static int 1151 1.1 cube tap_cdev_kqfilter(dev_t dev, struct knote *kn) 1152 1.1 cube { 1153 1.112 msaitoh 1154 1.1 cube return tap_dev_kqfilter(minor(dev), kn); 1155 1.1 cube } 1156 1.1 cube 1157 1.1 cube static int 1158 1.41 ad tap_fops_kqfilter(file_t *fp, struct knote *kn) 1159 1.1 cube { 1160 1.112 msaitoh 1161 1.78 matt return tap_dev_kqfilter(fp->f_devunit, kn); 1162 1.1 cube } 1163 1.1 cube 1164 1.1 cube static int 1165 1.1 cube tap_dev_kqfilter(int unit, struct knote *kn) 1166 1.1 cube { 1167 1.112 msaitoh struct tap_softc *sc = device_lookup_private(&tap_cd, unit); 1168 1.1 cube 1169 1.1 cube if (sc == NULL) 1170 1.95 skrll return ENXIO; 1171 1.1 cube 1172 1.1 cube switch(kn->kn_filter) { 1173 1.1 cube case EVFILT_READ: 1174 1.1 cube kn->kn_fop = &tap_read_filterops; 1175 1.124 thorpej kn->kn_hook = sc; 1176 1.124 thorpej KERNEL_LOCK(1, NULL); 1177 1.124 thorpej mutex_spin_enter(&sc->sc_lock); 1178 1.124 thorpej selrecord_knote(&sc->sc_rsel, kn); 1179 1.124 thorpej mutex_spin_exit(&sc->sc_lock); 1180 1.124 thorpej KERNEL_UNLOCK_ONE(NULL); 1181 1.1 cube break; 1182 1.124 thorpej 1183 1.1 cube case EVFILT_WRITE: 1184 1.124 thorpej kn->kn_fop = &seltrue_filtops; 1185 1.1 cube break; 1186 1.124 thorpej 1187 1.1 cube default: 1188 1.95 skrll return EINVAL; 1189 1.1 cube } 1190 1.1 cube 1191 1.95 skrll return 0; 1192 1.1 cube } 1193 1.1 cube 1194 1.1 cube static void 1195 1.1 cube tap_kqdetach(struct knote *kn) 1196 1.1 cube { 1197 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook; 1198 1.1 cube 1199 1.44 ad KERNEL_LOCK(1, NULL); 1200 1.102 jmcneill mutex_spin_enter(&sc->sc_lock); 1201 1.121 thorpej selremove_knote(&sc->sc_rsel, kn); 1202 1.102 jmcneill mutex_spin_exit(&sc->sc_lock); 1203 1.44 ad KERNEL_UNLOCK_ONE(NULL); 1204 1.1 cube } 1205 1.1 cube 1206 1.1 cube static int 1207 1.23 christos tap_kqread(struct knote *kn, long hint) 1208 1.1 cube { 1209 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook; 1210 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if; 1211 1.1 cube struct mbuf *m; 1212 1.44 ad int s, rv; 1213 1.1 cube 1214 1.44 ad KERNEL_LOCK(1, NULL); 1215 1.1 cube s = splnet(); 1216 1.1 cube IFQ_POLL(&ifp->if_snd, m); 1217 1.1 cube 1218 1.1 cube if (m == NULL) 1219 1.1 cube kn->kn_data = 0; 1220 1.1 cube else 1221 1.1 cube kn->kn_data = m->m_pkthdr.len; 1222 1.1 cube splx(s); 1223 1.44 ad rv = (kn->kn_data != 0 ? 1 : 0); 1224 1.44 ad KERNEL_UNLOCK_ONE(NULL); 1225 1.44 ad return rv; 1226 1.1 cube } 1227 1.1 cube 1228 1.1 cube /* 1229 1.1 cube * sysctl management routines 1230 1.1 cube * You can set the address of an interface through: 1231 1.1 cube * net.link.tap.tap<number> 1232 1.1 cube * 1233 1.1 cube * Note the consistent use of tap_log in order to use 1234 1.1 cube * sysctl_teardown at unload time. 1235 1.1 cube * 1236 1.1 cube * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those 1237 1.1 cube * blocks register a function in a special section of the kernel 1238 1.1 cube * (called a link set) which is used at init_sysctl() time to cycle 1239 1.1 cube * through all those functions to create the kernel's sysctl tree. 1240 1.1 cube * 1241 1.51 ad * It is not possible to use link sets in a module, so the 1242 1.1 cube * easiest is to simply call our own setup routine at load time. 1243 1.1 cube * 1244 1.1 cube * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the 1245 1.1 cube * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the 1246 1.1 cube * whole kernel sysctl tree is built, it is not possible to add any 1247 1.1 cube * permanent node. 1248 1.1 cube * 1249 1.1 cube * It should be noted that we're not saving the sysctlnode pointer 1250 1.1 cube * we are returned when creating the "tap" node. That structure 1251 1.1 cube * cannot be trusted once out of the calling function, as it might 1252 1.1 cube * get reused. So we just save the MIB number, and always give the 1253 1.1 cube * full path starting from the root for later calls to sysctl_createv 1254 1.1 cube * and sysctl_destroyv. 1255 1.1 cube */ 1256 1.91 christos static void 1257 1.91 christos sysctl_tap_setup(struct sysctllog **clog) 1258 1.1 cube { 1259 1.10 atatat const struct sysctlnode *node; 1260 1.1 cube int error = 0; 1261 1.1 cube 1262 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL, 1263 1.1 cube CTLFLAG_PERMANENT, 1264 1.1 cube CTLTYPE_NODE, "link", NULL, 1265 1.1 cube NULL, 0, NULL, 0, 1266 1.3 cube CTL_NET, AF_LINK, CTL_EOL)) != 0) 1267 1.1 cube return; 1268 1.1 cube 1269 1.1 cube /* 1270 1.1 cube * The first four parameters of sysctl_createv are for management. 1271 1.1 cube * 1272 1.1 cube * The four that follows, here starting with a '0' for the flags, 1273 1.1 cube * describe the node. 1274 1.1 cube * 1275 1.1 cube * The next series of four set its value, through various possible 1276 1.1 cube * means. 1277 1.1 cube * 1278 1.1 cube * Last but not least, the path to the node is described. That path 1279 1.1 cube * is relative to the given root (third argument). Here we're 1280 1.1 cube * starting from the root. 1281 1.1 cube */ 1282 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, &node, 1283 1.1 cube CTLFLAG_PERMANENT, 1284 1.1 cube CTLTYPE_NODE, "tap", NULL, 1285 1.1 cube NULL, 0, NULL, 0, 1286 1.3 cube CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0) 1287 1.1 cube return; 1288 1.1 cube tap_node = node->sysctl_num; 1289 1.1 cube } 1290 1.1 cube 1291 1.1 cube /* 1292 1.1 cube * The helper functions make Andrew Brown's interface really 1293 1.1 cube * shine. It makes possible to create value on the fly whether 1294 1.1 cube * the sysctl value is read or written. 1295 1.1 cube * 1296 1.1 cube * As shown as an example in the man page, the first step is to 1297 1.1 cube * create a copy of the node to have sysctl_lookup work on it. 1298 1.1 cube * 1299 1.1 cube * Here, we have more work to do than just a copy, since we have 1300 1.1 cube * to create the string. The first step is to collect the actual 1301 1.1 cube * value of the node, which is a convenient pointer to the softc 1302 1.1 cube * of the interface. From there we create the string and use it 1303 1.1 cube * as the value, but only for the *copy* of the node. 1304 1.1 cube * 1305 1.1 cube * Then we let sysctl_lookup do the magic, which consists in 1306 1.1 cube * setting oldp and newp as required by the operation. When the 1307 1.1 cube * value is read, that means that the string will be copied to 1308 1.1 cube * the user, and when it is written, the new value will be copied 1309 1.1 cube * over in the addr array. 1310 1.1 cube * 1311 1.1 cube * If newp is NULL, the user was reading the value, so we don't 1312 1.1 cube * have anything else to do. If a new value was written, we 1313 1.1 cube * have to check it. 1314 1.1 cube * 1315 1.1 cube * If it is incorrect, we can return an error and leave 'node' as 1316 1.1 cube * it is: since it is a copy of the actual node, the change will 1317 1.1 cube * be forgotten. 1318 1.1 cube * 1319 1.1 cube * Upon a correct input, we commit the change to the ifnet 1320 1.1 cube * structure of our interface. 1321 1.1 cube */ 1322 1.1 cube static int 1323 1.1 cube tap_sysctl_handler(SYSCTLFN_ARGS) 1324 1.1 cube { 1325 1.1 cube struct sysctlnode node; 1326 1.1 cube struct tap_softc *sc; 1327 1.1 cube struct ifnet *ifp; 1328 1.1 cube int error; 1329 1.1 cube size_t len; 1330 1.14 christos char addr[3 * ETHER_ADDR_LEN]; 1331 1.32 dyoung uint8_t enaddr[ETHER_ADDR_LEN]; 1332 1.1 cube 1333 1.1 cube node = *rnode; 1334 1.1 cube sc = node.sysctl_data; 1335 1.1 cube ifp = &sc->sc_ec.ec_if; 1336 1.31 dyoung (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl)); 1337 1.1 cube node.sysctl_data = addr; 1338 1.1 cube error = sysctl_lookup(SYSCTLFN_CALL(&node)); 1339 1.1 cube if (error || newp == NULL) 1340 1.95 skrll return error; 1341 1.1 cube 1342 1.1 cube len = strlen(addr); 1343 1.1 cube if (len < 11 || len > 17) 1344 1.95 skrll return EINVAL; 1345 1.1 cube 1346 1.1 cube /* Commit change */ 1347 1.65 christos if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0) 1348 1.95 skrll return EINVAL; 1349 1.50 dyoung if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false); 1350 1.95 skrll return error; 1351 1.1 cube } 1352 1.85 christos 1353 1.85 christos /* 1354 1.85 christos * Module infrastructure 1355 1.85 christos */ 1356 1.85 christos #include "if_module.h" 1357 1.85 christos 1358 1.111 pgoyette IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL) 1359