Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.10.2.5
      1  1.10.2.5    yamt /*	$NetBSD: if_tap.c,v 1.10.2.5 2007/12/07 17:34:17 yamt Exp $	*/
      2       1.1    cube 
      3       1.1    cube /*
      4       1.1    cube  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5       1.1    cube  *  All rights reserved.
      6       1.1    cube  *
      7       1.1    cube  *  Redistribution and use in source and binary forms, with or without
      8       1.1    cube  *  modification, are permitted provided that the following conditions
      9       1.1    cube  *  are met:
     10       1.1    cube  *  1. Redistributions of source code must retain the above copyright
     11       1.1    cube  *     notice, this list of conditions and the following disclaimer.
     12       1.1    cube  *  2. Redistributions in binary form must reproduce the above copyright
     13       1.1    cube  *     notice, this list of conditions and the following disclaimer in the
     14       1.1    cube  *     documentation and/or other materials provided with the distribution.
     15  1.10.2.4    yamt  *  3. Neither the name of The NetBSD Foundation nor the names of its
     16       1.1    cube  *     contributors may be used to endorse or promote products derived
     17       1.1    cube  *     from this software without specific prior written permission.
     18       1.6   perry  *
     19       1.1    cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.1    cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1    cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1    cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.1    cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1    cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1    cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1    cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1    cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1    cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1    cube  *  POSSIBILITY OF SUCH DAMAGE.
     30       1.1    cube  */
     31       1.1    cube 
     32       1.1    cube /*
     33       1.1    cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     34       1.1    cube  * device to the system, but can also be accessed by userland through a
     35       1.1    cube  * character device interface, which allows reading and injecting frames.
     36       1.1    cube  */
     37       1.1    cube 
     38       1.1    cube #include <sys/cdefs.h>
     39  1.10.2.5    yamt __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.10.2.5 2007/12/07 17:34:17 yamt Exp $");
     40       1.1    cube 
     41       1.2    cube #if defined(_KERNEL_OPT)
     42       1.1    cube #include "bpfilter.h"
     43       1.2    cube #endif
     44       1.1    cube 
     45       1.1    cube #include <sys/param.h>
     46       1.1    cube #include <sys/systm.h>
     47       1.1    cube #include <sys/kernel.h>
     48       1.1    cube #include <sys/malloc.h>
     49       1.1    cube #include <sys/conf.h>
     50       1.1    cube #include <sys/device.h>
     51       1.1    cube #include <sys/file.h>
     52       1.1    cube #include <sys/filedesc.h>
     53       1.1    cube #include <sys/ksyms.h>
     54       1.1    cube #include <sys/poll.h>
     55       1.1    cube #include <sys/select.h>
     56       1.1    cube #include <sys/sockio.h>
     57       1.1    cube #include <sys/sysctl.h>
     58  1.10.2.1    yamt #include <sys/kauth.h>
     59  1.10.2.5    yamt #include <sys/mutex.h>
     60       1.1    cube 
     61       1.1    cube #include <net/if.h>
     62       1.1    cube #include <net/if_dl.h>
     63       1.1    cube #include <net/if_ether.h>
     64       1.1    cube #include <net/if_media.h>
     65       1.1    cube #include <net/if_tap.h>
     66       1.1    cube #if NBPFILTER > 0
     67       1.1    cube #include <net/bpf.h>
     68       1.1    cube #endif
     69       1.1    cube 
     70  1.10.2.3    yamt #include <compat/sys/sockio.h>
     71  1.10.2.3    yamt 
     72       1.1    cube /*
     73       1.1    cube  * sysctl node management
     74       1.1    cube  *
     75       1.1    cube  * It's not really possible to use a SYSCTL_SETUP block with
     76       1.1    cube  * current LKM implementation, so it is easier to just define
     77       1.1    cube  * our own function.
     78       1.1    cube  *
     79       1.1    cube  * The handler function is a "helper" in Andrew Brown's sysctl
     80       1.1    cube  * framework terminology.  It is used as a gateway for sysctl
     81       1.1    cube  * requests over the nodes.
     82       1.1    cube  *
     83       1.1    cube  * tap_log allows the module to log creations of nodes and
     84       1.1    cube  * destroy them all at once using sysctl_teardown.
     85       1.1    cube  */
     86       1.1    cube static int tap_node;
     87       1.1    cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     88       1.2    cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     89       1.1    cube 
     90       1.1    cube /*
     91       1.1    cube  * Since we're an Ethernet device, we need the 3 following
     92       1.1    cube  * components: a leading struct device, a struct ethercom,
     93       1.1    cube  * and also a struct ifmedia since we don't attach a PHY to
     94       1.1    cube  * ourselves. We could emulate one, but there's no real
     95       1.1    cube  * point.
     96       1.1    cube  */
     97       1.1    cube 
     98       1.1    cube struct tap_softc {
     99       1.1    cube 	struct device	sc_dev;
    100       1.1    cube 	struct ifmedia	sc_im;
    101       1.1    cube 	struct ethercom	sc_ec;
    102       1.1    cube 	int		sc_flags;
    103       1.1    cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    104       1.1    cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    105       1.1    cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    106       1.1    cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
    107       1.1    cube 	struct selinfo	sc_rsel;
    108       1.1    cube 	pid_t		sc_pgid; /* For async. IO */
    109  1.10.2.5    yamt 	kmutex_t	sc_rdlock;
    110       1.1    cube 	struct simplelock	sc_kqlock;
    111       1.1    cube };
    112       1.1    cube 
    113       1.1    cube /* autoconf(9) glue */
    114       1.1    cube 
    115       1.1    cube void	tapattach(int);
    116       1.1    cube 
    117       1.1    cube static int	tap_match(struct device *, struct cfdata *, void *);
    118       1.1    cube static void	tap_attach(struct device *, struct device *, void *);
    119       1.1    cube static int	tap_detach(struct device*, int);
    120       1.1    cube 
    121       1.1    cube CFATTACH_DECL(tap, sizeof(struct tap_softc),
    122       1.1    cube     tap_match, tap_attach, tap_detach, NULL);
    123       1.1    cube extern struct cfdriver tap_cd;
    124       1.1    cube 
    125       1.1    cube /* Real device access routines */
    126       1.1    cube static int	tap_dev_close(struct tap_softc *);
    127       1.1    cube static int	tap_dev_read(int, struct uio *, int);
    128       1.1    cube static int	tap_dev_write(int, struct uio *, int);
    129  1.10.2.3    yamt static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    130  1.10.2.1    yamt static int	tap_dev_poll(int, int, struct lwp *);
    131       1.1    cube static int	tap_dev_kqfilter(int, struct knote *);
    132       1.1    cube 
    133       1.1    cube /* Fileops access routines */
    134  1.10.2.1    yamt static int	tap_fops_close(struct file *, struct lwp *);
    135       1.1    cube static int	tap_fops_read(struct file *, off_t *, struct uio *,
    136  1.10.2.1    yamt     kauth_cred_t, int);
    137       1.1    cube static int	tap_fops_write(struct file *, off_t *, struct uio *,
    138  1.10.2.1    yamt     kauth_cred_t, int);
    139       1.1    cube static int	tap_fops_ioctl(struct file *, u_long, void *,
    140  1.10.2.1    yamt     struct lwp *);
    141  1.10.2.1    yamt static int	tap_fops_poll(struct file *, int, struct lwp *);
    142       1.1    cube static int	tap_fops_kqfilter(struct file *, struct knote *);
    143       1.1    cube 
    144       1.1    cube static const struct fileops tap_fileops = {
    145       1.1    cube 	tap_fops_read,
    146       1.1    cube 	tap_fops_write,
    147       1.1    cube 	tap_fops_ioctl,
    148       1.1    cube 	fnullop_fcntl,
    149       1.1    cube 	tap_fops_poll,
    150       1.1    cube 	fbadop_stat,
    151       1.1    cube 	tap_fops_close,
    152       1.1    cube 	tap_fops_kqfilter,
    153       1.1    cube };
    154       1.1    cube 
    155       1.1    cube /* Helper for cloning open() */
    156  1.10.2.1    yamt static int	tap_dev_cloner(struct lwp *);
    157       1.1    cube 
    158       1.1    cube /* Character device routines */
    159  1.10.2.1    yamt static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    160  1.10.2.1    yamt static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    161       1.1    cube static int	tap_cdev_read(dev_t, struct uio *, int);
    162       1.1    cube static int	tap_cdev_write(dev_t, struct uio *, int);
    163  1.10.2.3    yamt static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    164  1.10.2.1    yamt static int	tap_cdev_poll(dev_t, int, struct lwp *);
    165       1.1    cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    166       1.1    cube 
    167       1.1    cube const struct cdevsw tap_cdevsw = {
    168       1.1    cube 	tap_cdev_open, tap_cdev_close,
    169       1.1    cube 	tap_cdev_read, tap_cdev_write,
    170       1.1    cube 	tap_cdev_ioctl, nostop, notty,
    171       1.1    cube 	tap_cdev_poll, nommap,
    172       1.1    cube 	tap_cdev_kqfilter,
    173  1.10.2.2    yamt 	D_OTHER,
    174       1.1    cube };
    175       1.1    cube 
    176       1.1    cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    177       1.1    cube 
    178       1.1    cube /* kqueue-related routines */
    179       1.1    cube static void	tap_kqdetach(struct knote *);
    180       1.1    cube static int	tap_kqread(struct knote *, long);
    181       1.1    cube 
    182       1.1    cube /*
    183       1.1    cube  * Those are needed by the if_media interface.
    184       1.1    cube  */
    185       1.1    cube 
    186       1.1    cube static int	tap_mediachange(struct ifnet *);
    187       1.1    cube static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    188       1.1    cube 
    189       1.1    cube /*
    190       1.1    cube  * Those are needed by the ifnet interface, and would typically be
    191       1.1    cube  * there for any network interface driver.
    192       1.1    cube  * Some other routines are optional: watchdog and drain.
    193       1.1    cube  */
    194       1.1    cube 
    195       1.1    cube static void	tap_start(struct ifnet *);
    196       1.1    cube static void	tap_stop(struct ifnet *, int);
    197       1.1    cube static int	tap_init(struct ifnet *);
    198  1.10.2.3    yamt static int	tap_ioctl(struct ifnet *, u_long, void *);
    199       1.1    cube 
    200       1.1    cube /* This is an internal function to keep tap_ioctl readable */
    201       1.1    cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    202       1.1    cube 
    203       1.1    cube /*
    204       1.1    cube  * tap is a clonable interface, although it is highly unrealistic for
    205       1.1    cube  * an Ethernet device.
    206       1.1    cube  *
    207       1.1    cube  * Here are the bits needed for a clonable interface.
    208       1.1    cube  */
    209       1.1    cube static int	tap_clone_create(struct if_clone *, int);
    210       1.1    cube static int	tap_clone_destroy(struct ifnet *);
    211       1.1    cube 
    212       1.1    cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    213       1.1    cube 					tap_clone_create,
    214       1.1    cube 					tap_clone_destroy);
    215       1.1    cube 
    216       1.1    cube /* Helper functionis shared by the two cloning code paths */
    217       1.1    cube static struct tap_softc *	tap_clone_creator(int);
    218  1.10.2.1    yamt int	tap_clone_destroyer(struct device *);
    219       1.1    cube 
    220       1.1    cube void
    221       1.1    cube tapattach(int n)
    222       1.1    cube {
    223       1.1    cube 	int error;
    224       1.1    cube 
    225       1.1    cube 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    226       1.1    cube 	if (error) {
    227       1.1    cube 		aprint_error("%s: unable to register cfattach\n",
    228       1.1    cube 		    tap_cd.cd_name);
    229       1.1    cube 		(void)config_cfdriver_detach(&tap_cd);
    230       1.1    cube 		return;
    231       1.1    cube 	}
    232       1.1    cube 
    233       1.1    cube 	if_clone_attach(&tap_cloners);
    234       1.1    cube }
    235       1.1    cube 
    236       1.1    cube /* Pretty much useless for a pseudo-device */
    237       1.1    cube static int
    238  1.10.2.2    yamt tap_match(struct device *self, struct cfdata *cfdata,
    239  1.10.2.2    yamt     void *arg)
    240       1.1    cube {
    241       1.1    cube 	return (1);
    242       1.1    cube }
    243       1.1    cube 
    244       1.1    cube void
    245  1.10.2.2    yamt tap_attach(struct device *parent, struct device *self,
    246  1.10.2.2    yamt     void *aux)
    247       1.1    cube {
    248       1.1    cube 	struct tap_softc *sc = (struct tap_softc *)self;
    249       1.1    cube 	struct ifnet *ifp;
    250  1.10.2.1    yamt 	const struct sysctlnode *node;
    251       1.1    cube 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    252       1.7    cube 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    253  1.10.2.1    yamt 	char enaddrstr[3 * ETHER_ADDR_LEN];
    254  1.10.2.1    yamt 	struct timeval tv;
    255       1.1    cube 	uint32_t ui;
    256       1.1    cube 	int error;
    257       1.1    cube 
    258       1.1    cube 	/*
    259       1.1    cube 	 * In order to obtain unique initial Ethernet address on a host,
    260  1.10.2.1    yamt 	 * do some randomisation using the current uptime.  It's not meant
    261  1.10.2.1    yamt 	 * for anything but avoiding hard-coding an address.
    262       1.1    cube 	 */
    263  1.10.2.1    yamt 	getmicrouptime(&tv);
    264  1.10.2.1    yamt 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    265       1.1    cube 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    266       1.1    cube 
    267  1.10.2.3    yamt 	aprint_verbose("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
    268  1.10.2.1    yamt 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    269       1.1    cube 
    270       1.1    cube 	/*
    271       1.1    cube 	 * Why 1000baseT? Why not? You can add more.
    272       1.1    cube 	 *
    273       1.1    cube 	 * Note that there are 3 steps: init, one or several additions to
    274       1.1    cube 	 * list of supported media, and in the end, the selection of one
    275       1.1    cube 	 * of them.
    276       1.1    cube 	 */
    277       1.1    cube 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    278       1.1    cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    279       1.1    cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    280       1.1    cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    281       1.1    cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    282       1.1    cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    283       1.1    cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    284       1.1    cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    285       1.1    cube 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    286       1.1    cube 
    287       1.1    cube 	/*
    288       1.1    cube 	 * One should note that an interface must do multicast in order
    289       1.1    cube 	 * to support IPv6.
    290       1.1    cube 	 */
    291       1.1    cube 	ifp = &sc->sc_ec.ec_if;
    292       1.1    cube 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    293       1.1    cube 	ifp->if_softc	= sc;
    294       1.1    cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    295       1.1    cube 	ifp->if_ioctl	= tap_ioctl;
    296       1.1    cube 	ifp->if_start	= tap_start;
    297       1.1    cube 	ifp->if_stop	= tap_stop;
    298       1.1    cube 	ifp->if_init	= tap_init;
    299       1.1    cube 	IFQ_SET_READY(&ifp->if_snd);
    300       1.1    cube 
    301       1.1    cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    302       1.1    cube 
    303       1.1    cube 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    304       1.1    cube 	 * being common to all network interface drivers. */
    305       1.1    cube 	if_attach(ifp);
    306       1.1    cube 	ether_ifattach(ifp, enaddr);
    307       1.1    cube 
    308       1.1    cube 	sc->sc_flags = 0;
    309       1.1    cube 
    310       1.1    cube 	/*
    311       1.1    cube 	 * Add a sysctl node for that interface.
    312       1.1    cube 	 *
    313       1.1    cube 	 * The pointer transmitted is not a string, but instead a pointer to
    314       1.1    cube 	 * the softc structure, which we can use to build the string value on
    315       1.1    cube 	 * the fly in the helper function of the node.  See the comments for
    316       1.1    cube 	 * tap_sysctl_handler for details.
    317  1.10.2.2    yamt 	 *
    318  1.10.2.2    yamt 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    319  1.10.2.2    yamt 	 * component.  However, we can allocate a number ourselves, as we are
    320  1.10.2.2    yamt 	 * the only consumer of the net.link.<iface> node.  In this case, the
    321  1.10.2.2    yamt 	 * unit number is conveniently used to number the node.  CTL_CREATE
    322  1.10.2.2    yamt 	 * would just work, too.
    323       1.1    cube 	 */
    324       1.1    cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    325       1.1    cube 	    &node, CTLFLAG_READWRITE,
    326       1.1    cube 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    327       1.1    cube 	    tap_sysctl_handler, 0, sc, 18,
    328  1.10.2.1    yamt 	    CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
    329  1.10.2.1    yamt 	    CTL_EOL)) != 0)
    330       1.1    cube 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    331       1.1    cube 		    sc->sc_dev.dv_xname, error);
    332       1.1    cube 
    333       1.1    cube 	/*
    334       1.1    cube 	 * Initialize the two locks for the device.
    335       1.1    cube 	 *
    336       1.1    cube 	 * We need a lock here because even though the tap device can be
    337       1.1    cube 	 * opened only once, the file descriptor might be passed to another
    338       1.1    cube 	 * process, say a fork(2)ed child.
    339       1.1    cube 	 *
    340       1.1    cube 	 * The Giant saves us from most of the hassle, but since the read
    341       1.1    cube 	 * operation can sleep, we don't want two processes to wake up at
    342       1.1    cube 	 * the same moment and both try and dequeue a single packet.
    343       1.1    cube 	 *
    344       1.1    cube 	 * The queue for event listeners (used by kqueue(9), see below) has
    345       1.1    cube 	 * to be protected, too, but we don't need the same level of
    346       1.1    cube 	 * complexity for that lock, so a simple spinning lock is fine.
    347       1.1    cube 	 */
    348  1.10.2.5    yamt 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    349       1.1    cube 	simple_lock_init(&sc->sc_kqlock);
    350       1.1    cube }
    351       1.1    cube 
    352       1.1    cube /*
    353       1.1    cube  * When detaching, we do the inverse of what is done in the attach
    354       1.1    cube  * routine, in reversed order.
    355       1.1    cube  */
    356       1.1    cube static int
    357       1.1    cube tap_detach(struct device* self, int flags)
    358       1.1    cube {
    359       1.1    cube 	struct tap_softc *sc = (struct tap_softc *)self;
    360       1.1    cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    361       1.1    cube 	int error, s;
    362       1.1    cube 
    363       1.1    cube 	sc->sc_flags |= TAP_GOING;
    364       1.1    cube 	s = splnet();
    365       1.1    cube 	tap_stop(ifp, 1);
    366       1.1    cube 	if_down(ifp);
    367       1.1    cube 	splx(s);
    368       1.1    cube 
    369       1.1    cube 	/*
    370       1.1    cube 	 * Destroying a single leaf is a very straightforward operation using
    371       1.1    cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    372       1.1    cube 	 * CTL_EOL.
    373       1.1    cube 	 */
    374       1.3    cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    375  1.10.2.1    yamt 	    device_unit(&sc->sc_dev), CTL_EOL)) != 0)
    376       1.1    cube 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    377       1.1    cube 		    sc->sc_dev.dv_xname, error);
    378       1.1    cube 	ether_ifdetach(ifp);
    379       1.1    cube 	if_detach(ifp);
    380       1.1    cube 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    381  1.10.2.5    yamt 	mutex_destroy(&sc->sc_rdlock);
    382       1.1    cube 
    383       1.1    cube 	return (0);
    384       1.1    cube }
    385       1.1    cube 
    386       1.1    cube /*
    387       1.1    cube  * This function is called by the ifmedia layer to notify the driver
    388       1.1    cube  * that the user requested a media change.  A real driver would
    389       1.1    cube  * reconfigure the hardware.
    390       1.1    cube  */
    391       1.1    cube static int
    392       1.1    cube tap_mediachange(struct ifnet *ifp)
    393       1.1    cube {
    394       1.1    cube 	return (0);
    395       1.1    cube }
    396       1.1    cube 
    397       1.1    cube /*
    398       1.1    cube  * Here the user asks for the currently used media.
    399       1.1    cube  */
    400       1.1    cube static void
    401       1.1    cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    402       1.1    cube {
    403       1.1    cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    404       1.1    cube 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    405       1.1    cube }
    406       1.1    cube 
    407       1.1    cube /*
    408       1.1    cube  * This is the function where we SEND packets.
    409       1.1    cube  *
    410       1.1    cube  * There is no 'receive' equivalent.  A typical driver will get
    411       1.1    cube  * interrupts from the hardware, and from there will inject new packets
    412       1.1    cube  * into the network stack.
    413       1.1    cube  *
    414       1.1    cube  * Once handled, a packet must be freed.  A real driver might not be able
    415       1.1    cube  * to fit all the pending packets into the hardware, and is allowed to
    416       1.1    cube  * return before having sent all the packets.  It should then use the
    417       1.1    cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    418       1.1    cube  *
    419       1.1    cube  * There are also other flags one should check, such as IFF_PAUSE.
    420       1.1    cube  *
    421       1.1    cube  * It is our duty to make packets available to BPF listeners.
    422       1.1    cube  *
    423       1.1    cube  * You should be aware that this function is called by the Ethernet layer
    424       1.1    cube  * at splnet().
    425       1.1    cube  *
    426       1.1    cube  * When the device is opened, we have to pass the packet(s) to the
    427       1.1    cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    428       1.1    cube  * the packets, and we send a signal to the processes waiting to read.
    429       1.1    cube  *
    430       1.1    cube  * wakeup(sc) is the counterpart to the tsleep call in
    431       1.1    cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    432       1.1    cube  * poll(2) (which includes select(2)) listeners.
    433       1.1    cube  */
    434       1.1    cube static void
    435       1.1    cube tap_start(struct ifnet *ifp)
    436       1.1    cube {
    437       1.1    cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    438       1.1    cube 	struct mbuf *m0;
    439       1.1    cube 
    440       1.1    cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    441       1.1    cube 		/* Simply drop packets */
    442       1.1    cube 		for(;;) {
    443       1.1    cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    444       1.1    cube 			if (m0 == NULL)
    445       1.1    cube 				return;
    446       1.1    cube 
    447       1.1    cube 			ifp->if_opackets++;
    448       1.1    cube #if NBPFILTER > 0
    449       1.1    cube 			if (ifp->if_bpf)
    450       1.1    cube 				bpf_mtap(ifp->if_bpf, m0);
    451       1.1    cube #endif
    452       1.1    cube 
    453       1.1    cube 			m_freem(m0);
    454       1.1    cube 		}
    455       1.1    cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    456       1.1    cube 		ifp->if_flags |= IFF_OACTIVE;
    457       1.1    cube 		wakeup(sc);
    458       1.1    cube 		selnotify(&sc->sc_rsel, 1);
    459       1.1    cube 		if (sc->sc_flags & TAP_ASYNCIO)
    460       1.1    cube 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    461       1.1    cube 			    POLLIN|POLLRDNORM, NULL);
    462       1.1    cube 	}
    463       1.1    cube }
    464       1.1    cube 
    465       1.1    cube /*
    466       1.1    cube  * A typical driver will only contain the following handlers for
    467       1.1    cube  * ioctl calls, except SIOCSIFPHYADDR.
    468       1.1    cube  * The latter is a hack I used to set the Ethernet address of the
    469       1.1    cube  * faked device.
    470       1.1    cube  *
    471       1.1    cube  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    472       1.1    cube  * called under splnet().
    473       1.1    cube  */
    474       1.1    cube static int
    475  1.10.2.3    yamt tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    476       1.1    cube {
    477       1.1    cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    478       1.1    cube 	struct ifreq *ifr = (struct ifreq *)data;
    479       1.1    cube 	int s, error;
    480       1.1    cube 
    481       1.1    cube 	s = splnet();
    482       1.1    cube 
    483       1.1    cube 	switch (cmd) {
    484  1.10.2.3    yamt #ifdef OSIOCSIFMEDIA
    485  1.10.2.3    yamt 	case OSIOCSIFMEDIA:
    486  1.10.2.3    yamt #endif
    487       1.1    cube 	case SIOCSIFMEDIA:
    488       1.1    cube 	case SIOCGIFMEDIA:
    489       1.1    cube 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    490       1.1    cube 		break;
    491       1.1    cube 	case SIOCSIFPHYADDR:
    492       1.1    cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    493       1.1    cube 		break;
    494       1.1    cube 	default:
    495       1.1    cube 		error = ether_ioctl(ifp, cmd, data);
    496       1.1    cube 		if (error == ENETRESET)
    497       1.1    cube 			error = 0;
    498       1.1    cube 		break;
    499       1.1    cube 	}
    500       1.1    cube 
    501       1.1    cube 	splx(s);
    502       1.1    cube 
    503       1.1    cube 	return (error);
    504       1.1    cube }
    505       1.1    cube 
    506       1.1    cube /*
    507       1.1    cube  * Helper function to set Ethernet address.  This shouldn't be done there,
    508       1.1    cube  * and should actually be available to all Ethernet drivers, real or not.
    509       1.1    cube  */
    510       1.1    cube static int
    511       1.1    cube tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    512       1.1    cube {
    513       1.1    cube 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    514       1.1    cube 
    515       1.1    cube 	if (sa->sa_family != AF_LINK)
    516       1.1    cube 		return (EINVAL);
    517       1.1    cube 
    518  1.10.2.3    yamt 	(void)sockaddr_dl_setaddr(ifp->if_sadl, ifp->if_sadl->sdl_len,
    519  1.10.2.3    yamt 	    sa->sa_data, ETHER_ADDR_LEN);
    520       1.1    cube 
    521       1.1    cube 	return (0);
    522       1.1    cube }
    523       1.1    cube 
    524       1.1    cube /*
    525       1.1    cube  * _init() would typically be called when an interface goes up,
    526       1.1    cube  * meaning it should configure itself into the state in which it
    527       1.1    cube  * can send packets.
    528       1.1    cube  */
    529       1.1    cube static int
    530       1.1    cube tap_init(struct ifnet *ifp)
    531       1.1    cube {
    532       1.1    cube 	ifp->if_flags |= IFF_RUNNING;
    533       1.1    cube 
    534       1.1    cube 	tap_start(ifp);
    535       1.1    cube 
    536       1.1    cube 	return (0);
    537       1.1    cube }
    538       1.1    cube 
    539       1.1    cube /*
    540       1.1    cube  * _stop() is called when an interface goes down.  It is our
    541       1.1    cube  * responsability to validate that state by clearing the
    542       1.1    cube  * IFF_RUNNING flag.
    543       1.1    cube  *
    544       1.1    cube  * We have to wake up all the sleeping processes to have the pending
    545       1.1    cube  * read requests cancelled.
    546       1.1    cube  */
    547       1.1    cube static void
    548       1.1    cube tap_stop(struct ifnet *ifp, int disable)
    549       1.1    cube {
    550       1.1    cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    551       1.1    cube 
    552       1.1    cube 	ifp->if_flags &= ~IFF_RUNNING;
    553       1.1    cube 	wakeup(sc);
    554       1.1    cube 	selnotify(&sc->sc_rsel, 1);
    555       1.1    cube 	if (sc->sc_flags & TAP_ASYNCIO)
    556       1.1    cube 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    557       1.1    cube }
    558       1.1    cube 
    559       1.1    cube /*
    560       1.1    cube  * The 'create' command of ifconfig can be used to create
    561       1.1    cube  * any numbered instance of a given device.  Thus we have to
    562       1.1    cube  * make sure we have enough room in cd_devs to create the
    563       1.1    cube  * user-specified instance.  config_attach_pseudo will do this
    564       1.1    cube  * for us.
    565       1.1    cube  */
    566       1.1    cube static int
    567       1.1    cube tap_clone_create(struct if_clone *ifc, int unit)
    568       1.1    cube {
    569       1.1    cube 	if (tap_clone_creator(unit) == NULL) {
    570       1.1    cube 		aprint_error("%s%d: unable to attach an instance\n",
    571       1.1    cube                     tap_cd.cd_name, unit);
    572       1.1    cube 		return (ENXIO);
    573       1.1    cube 	}
    574       1.1    cube 
    575       1.1    cube 	return (0);
    576       1.1    cube }
    577       1.1    cube 
    578       1.1    cube /*
    579       1.1    cube  * tap(4) can be cloned by two ways:
    580       1.1    cube  *   using 'ifconfig tap0 create', which will use the network
    581       1.1    cube  *     interface cloning API, and call tap_clone_create above.
    582       1.1    cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    583       1.1    cube  *     See below for an explanation on how this part work.
    584       1.1    cube  */
    585       1.1    cube static struct tap_softc *
    586       1.1    cube tap_clone_creator(int unit)
    587       1.1    cube {
    588       1.1    cube 	struct cfdata *cf;
    589       1.1    cube 
    590       1.1    cube 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    591       1.1    cube 	cf->cf_name = tap_cd.cd_name;
    592       1.1    cube 	cf->cf_atname = tap_ca.ca_name;
    593  1.10.2.3    yamt 	if (unit == -1) {
    594  1.10.2.3    yamt 		/* let autoconf find the first free one */
    595  1.10.2.3    yamt 		cf->cf_unit = 0;
    596  1.10.2.3    yamt 		cf->cf_fstate = FSTATE_STAR;
    597  1.10.2.3    yamt 	} else {
    598  1.10.2.3    yamt 		cf->cf_unit = unit;
    599  1.10.2.3    yamt 		cf->cf_fstate = FSTATE_NOTFOUND;
    600  1.10.2.3    yamt 	}
    601       1.1    cube 
    602       1.1    cube 	return (struct tap_softc *)config_attach_pseudo(cf);
    603       1.1    cube }
    604       1.1    cube 
    605       1.1    cube /*
    606       1.1    cube  * The clean design of if_clone and autoconf(9) makes that part
    607       1.1    cube  * really straightforward.  The second argument of config_detach
    608       1.1    cube  * means neither QUIET nor FORCED.
    609       1.1    cube  */
    610       1.1    cube static int
    611       1.1    cube tap_clone_destroy(struct ifnet *ifp)
    612       1.1    cube {
    613       1.1    cube 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    614       1.1    cube }
    615       1.1    cube 
    616  1.10.2.1    yamt int
    617       1.1    cube tap_clone_destroyer(struct device *dev)
    618       1.1    cube {
    619  1.10.2.1    yamt 	struct cfdata *cf = device_cfdata(dev);
    620       1.1    cube 	int error;
    621       1.1    cube 
    622       1.1    cube 	if ((error = config_detach(dev, 0)) != 0)
    623       1.1    cube 		aprint_error("%s: unable to detach instance\n",
    624       1.1    cube 		    dev->dv_xname);
    625       1.1    cube 	free(cf, M_DEVBUF);
    626       1.1    cube 
    627       1.1    cube 	return (error);
    628       1.1    cube }
    629       1.1    cube 
    630       1.1    cube /*
    631       1.1    cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    632       1.1    cube  * ways:
    633       1.1    cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    634       1.1    cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    635       1.1    cube  *     That interface is destroyed when the process that had it created exits.
    636       1.1    cube  *
    637       1.1    cube  * The first way is managed by the cdevsw structure, and you access interfaces
    638       1.1    cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    639       1.1    cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    640       1.1    cube  *
    641       1.1    cube  * The second way is the so-called "cloning" device.  It's a special minor
    642       1.1    cube  * number (chosen as the maximal number, to allow as much tap devices as
    643       1.1    cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    644       1.1    cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    645       1.1    cube  * tap_dev_cloner.
    646       1.1    cube  *
    647       1.1    cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    648       1.1    cube  * part of open() does nothing but noting that the interface is being used and
    649       1.1    cube  * hence ready to actually handle packets.
    650       1.1    cube  */
    651       1.1    cube 
    652       1.1    cube static int
    653  1.10.2.1    yamt tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    654       1.1    cube {
    655       1.1    cube 	struct tap_softc *sc;
    656       1.1    cube 
    657       1.1    cube 	if (minor(dev) == TAP_CLONER)
    658  1.10.2.1    yamt 		return tap_dev_cloner(l);
    659       1.1    cube 
    660       1.1    cube 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    661       1.1    cube 	if (sc == NULL)
    662       1.1    cube 		return (ENXIO);
    663       1.1    cube 
    664       1.1    cube 	/* The device can only be opened once */
    665       1.1    cube 	if (sc->sc_flags & TAP_INUSE)
    666       1.1    cube 		return (EBUSY);
    667       1.1    cube 	sc->sc_flags |= TAP_INUSE;
    668       1.1    cube 	return (0);
    669       1.1    cube }
    670       1.1    cube 
    671       1.1    cube /*
    672       1.1    cube  * There are several kinds of cloning devices, and the most simple is the one
    673       1.1    cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    674       1.1    cube  * with its own fileops structure (which maps to the various read, write,
    675       1.1    cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    676       1.1    cube  * then actually creates the new tap devices.
    677       1.1    cube  *
    678       1.1    cube  * Once those two steps are successful, we can re-wire the existing file
    679       1.1    cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    680       1.1    cube  * structure as needed (notably f_data gets filled with the fifth parameter
    681       1.1    cube  * passed, the unit of the tap device which will allows us identifying the
    682       1.1    cube  * device later), and returns EMOVEFD.
    683       1.1    cube  *
    684       1.1    cube  * That magic value is interpreted by sys_open() which then replaces the
    685       1.1    cube  * current file descriptor by the new one (through a magic member of struct
    686  1.10.2.1    yamt  * lwp, l_dupfd).
    687       1.1    cube  *
    688       1.1    cube  * The tap device is flagged as being busy since it otherwise could be
    689       1.1    cube  * externally accessed through the corresponding device node with the cdevsw
    690       1.1    cube  * interface.
    691       1.1    cube  */
    692       1.1    cube 
    693       1.1    cube static int
    694  1.10.2.1    yamt tap_dev_cloner(struct lwp *l)
    695       1.1    cube {
    696       1.1    cube 	struct tap_softc *sc;
    697       1.1    cube 	struct file *fp;
    698       1.1    cube 	int error, fd;
    699       1.1    cube 
    700  1.10.2.2    yamt 	if ((error = falloc(l, &fp, &fd)) != 0)
    701       1.1    cube 		return (error);
    702       1.1    cube 
    703  1.10.2.3    yamt 	if ((sc = tap_clone_creator(-1)) == NULL) {
    704  1.10.2.1    yamt 		FILE_UNUSE(fp, l);
    705       1.1    cube 		ffree(fp);
    706       1.1    cube 		return (ENXIO);
    707       1.1    cube 	}
    708       1.1    cube 
    709       1.1    cube 	sc->sc_flags |= TAP_INUSE;
    710       1.1    cube 
    711  1.10.2.1    yamt 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
    712  1.10.2.1    yamt 	    (void *)(intptr_t)device_unit(&sc->sc_dev));
    713       1.1    cube }
    714       1.1    cube 
    715       1.1    cube /*
    716       1.1    cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    717       1.1    cube  * really the same whether we are in cdevsw or fileops mode, the close()
    718       1.1    cube  * function is slightly different in the two cases.
    719       1.1    cube  *
    720       1.1    cube  * As for the other, the core of it is shared in tap_dev_close.  What
    721       1.1    cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    722       1.1    cube  * needs another thing:  the interface is destroyed when the processes that
    723       1.1    cube  * created it closes it.
    724       1.1    cube  */
    725       1.1    cube static int
    726  1.10.2.2    yamt tap_cdev_close(dev_t dev, int flags, int fmt,
    727  1.10.2.2    yamt     struct lwp *l)
    728       1.1    cube {
    729       1.1    cube 	struct tap_softc *sc =
    730       1.1    cube 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    731       1.1    cube 
    732       1.1    cube 	if (sc == NULL)
    733       1.1    cube 		return (ENXIO);
    734       1.1    cube 
    735       1.1    cube 	return tap_dev_close(sc);
    736       1.1    cube }
    737       1.1    cube 
    738       1.1    cube /*
    739       1.1    cube  * It might happen that the administrator used ifconfig to externally destroy
    740       1.1    cube  * the interface.  In that case, tap_fops_close will be called while
    741       1.1    cube  * tap_detach is already happening.  If we called it again from here, we
    742       1.1    cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    743       1.1    cube  */
    744       1.1    cube static int
    745  1.10.2.1    yamt tap_fops_close(struct file *fp, struct lwp *l)
    746       1.1    cube {
    747       1.1    cube 	int unit = (intptr_t)fp->f_data;
    748       1.1    cube 	struct tap_softc *sc;
    749       1.1    cube 	int error;
    750       1.1    cube 
    751       1.1    cube 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    752       1.1    cube 	if (sc == NULL)
    753       1.1    cube 		return (ENXIO);
    754       1.1    cube 
    755       1.1    cube 	/* tap_dev_close currently always succeeds, but it might not
    756       1.1    cube 	 * always be the case. */
    757       1.1    cube 	if ((error = tap_dev_close(sc)) != 0)
    758       1.1    cube 		return (error);
    759       1.1    cube 
    760       1.1    cube 	/* Destroy the device now that it is no longer useful,
    761       1.1    cube 	 * unless it's already being destroyed. */
    762       1.1    cube 	if ((sc->sc_flags & TAP_GOING) != 0)
    763       1.1    cube 		return (0);
    764       1.1    cube 
    765       1.1    cube 	return tap_clone_destroyer((struct device *)sc);
    766       1.1    cube }
    767       1.1    cube 
    768       1.1    cube static int
    769       1.1    cube tap_dev_close(struct tap_softc *sc)
    770       1.1    cube {
    771       1.1    cube 	struct ifnet *ifp;
    772       1.1    cube 	int s;
    773       1.1    cube 
    774       1.1    cube 	s = splnet();
    775       1.1    cube 	/* Let tap_start handle packets again */
    776       1.1    cube 	ifp = &sc->sc_ec.ec_if;
    777       1.1    cube 	ifp->if_flags &= ~IFF_OACTIVE;
    778       1.1    cube 
    779       1.1    cube 	/* Purge output queue */
    780       1.1    cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    781       1.1    cube 		struct mbuf *m;
    782       1.1    cube 
    783       1.1    cube 		for (;;) {
    784       1.1    cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    785       1.1    cube 			if (m == NULL)
    786       1.1    cube 				break;
    787       1.1    cube 
    788       1.1    cube 			ifp->if_opackets++;
    789       1.1    cube #if NBPFILTER > 0
    790       1.1    cube 			if (ifp->if_bpf)
    791       1.1    cube 				bpf_mtap(ifp->if_bpf, m);
    792       1.1    cube #endif
    793       1.1    cube 		}
    794       1.1    cube 	}
    795       1.1    cube 	splx(s);
    796       1.1    cube 
    797       1.1    cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    798       1.1    cube 
    799       1.1    cube 	return (0);
    800       1.1    cube }
    801       1.1    cube 
    802       1.1    cube static int
    803       1.1    cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    804       1.1    cube {
    805       1.1    cube 	return tap_dev_read(minor(dev), uio, flags);
    806       1.1    cube }
    807       1.1    cube 
    808       1.1    cube static int
    809       1.1    cube tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    810  1.10.2.1    yamt     kauth_cred_t cred, int flags)
    811       1.1    cube {
    812       1.1    cube 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    813       1.1    cube }
    814       1.1    cube 
    815       1.1    cube static int
    816       1.1    cube tap_dev_read(int unit, struct uio *uio, int flags)
    817       1.1    cube {
    818       1.1    cube 	struct tap_softc *sc =
    819       1.1    cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    820       1.1    cube 	struct ifnet *ifp;
    821       1.1    cube 	struct mbuf *m, *n;
    822       1.1    cube 	int error = 0, s;
    823       1.1    cube 
    824       1.1    cube 	if (sc == NULL)
    825       1.1    cube 		return (ENXIO);
    826       1.1    cube 
    827       1.1    cube 	ifp = &sc->sc_ec.ec_if;
    828       1.1    cube 	if ((ifp->if_flags & IFF_UP) == 0)
    829       1.1    cube 		return (EHOSTDOWN);
    830       1.1    cube 
    831       1.1    cube 	/*
    832       1.1    cube 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    833       1.1    cube 	 */
    834  1.10.2.5    yamt 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    835  1.10.2.5    yamt 		if (!mutex_tryenter(&sc->sc_rdlock))
    836  1.10.2.5    yamt 			return (EWOULDBLOCK);
    837  1.10.2.5    yamt 	} else {
    838  1.10.2.5    yamt 		mutex_enter(&sc->sc_rdlock);
    839  1.10.2.5    yamt 	}
    840       1.1    cube 
    841       1.1    cube 	s = splnet();
    842       1.1    cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    843       1.1    cube 		ifp->if_flags &= ~IFF_OACTIVE;
    844       1.1    cube 		splx(s);
    845       1.1    cube 		/*
    846       1.1    cube 		 * We must release the lock before sleeping, and re-acquire it
    847       1.1    cube 		 * after.
    848       1.1    cube 		 */
    849  1.10.2.5    yamt 		mutex_exit(&sc->sc_rdlock);
    850       1.1    cube 		if (sc->sc_flags & TAP_NBIO)
    851       1.1    cube 			error = EWOULDBLOCK;
    852       1.1    cube 		else
    853       1.1    cube 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    854       1.1    cube 		if (error != 0)
    855       1.1    cube 			return (error);
    856       1.1    cube 		/* The device might have been downed */
    857       1.1    cube 		if ((ifp->if_flags & IFF_UP) == 0)
    858       1.1    cube 			return (EHOSTDOWN);
    859  1.10.2.5    yamt 		if ((sc->sc_flags & TAP_NBIO)) {
    860  1.10.2.5    yamt 			if (!mutex_tryenter(&sc->sc_rdlock))
    861  1.10.2.5    yamt 				return (EWOULDBLOCK);
    862  1.10.2.5    yamt 		} else {
    863  1.10.2.5    yamt 			mutex_enter(&sc->sc_rdlock);
    864  1.10.2.5    yamt 		}
    865       1.1    cube 		s = splnet();
    866       1.1    cube 	}
    867       1.1    cube 
    868       1.1    cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    869       1.1    cube 	ifp->if_flags &= ~IFF_OACTIVE;
    870       1.1    cube 	splx(s);
    871       1.1    cube 	if (m == NULL) {
    872       1.1    cube 		error = 0;
    873       1.1    cube 		goto out;
    874       1.1    cube 	}
    875       1.1    cube 
    876       1.1    cube 	ifp->if_opackets++;
    877       1.1    cube #if NBPFILTER > 0
    878       1.1    cube 	if (ifp->if_bpf)
    879       1.1    cube 		bpf_mtap(ifp->if_bpf, m);
    880       1.1    cube #endif
    881       1.1    cube 
    882       1.1    cube 	/*
    883       1.1    cube 	 * One read is one packet.
    884       1.1    cube 	 */
    885       1.1    cube 	do {
    886  1.10.2.3    yamt 		error = uiomove(mtod(m, void *),
    887       1.1    cube 		    min(m->m_len, uio->uio_resid), uio);
    888       1.1    cube 		MFREE(m, n);
    889       1.1    cube 		m = n;
    890       1.1    cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    891       1.1    cube 
    892       1.1    cube 	if (m != NULL)
    893       1.1    cube 		m_freem(m);
    894       1.1    cube 
    895       1.1    cube out:
    896  1.10.2.5    yamt 	mutex_exit(&sc->sc_rdlock);
    897       1.1    cube 	return (error);
    898       1.1    cube }
    899       1.1    cube 
    900       1.1    cube static int
    901       1.1    cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    902       1.1    cube {
    903       1.1    cube 	return tap_dev_write(minor(dev), uio, flags);
    904       1.1    cube }
    905       1.1    cube 
    906       1.1    cube static int
    907       1.1    cube tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    908  1.10.2.1    yamt     kauth_cred_t cred, int flags)
    909       1.1    cube {
    910       1.1    cube 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    911       1.1    cube }
    912       1.1    cube 
    913       1.1    cube static int
    914       1.1    cube tap_dev_write(int unit, struct uio *uio, int flags)
    915       1.1    cube {
    916       1.1    cube 	struct tap_softc *sc =
    917       1.1    cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    918       1.1    cube 	struct ifnet *ifp;
    919       1.1    cube 	struct mbuf *m, **mp;
    920       1.1    cube 	int error = 0;
    921       1.9  bouyer 	int s;
    922       1.1    cube 
    923       1.1    cube 	if (sc == NULL)
    924       1.1    cube 		return (ENXIO);
    925       1.1    cube 
    926       1.1    cube 	ifp = &sc->sc_ec.ec_if;
    927       1.1    cube 
    928       1.1    cube 	/* One write, one packet, that's the rule */
    929       1.1    cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    930       1.1    cube 	if (m == NULL) {
    931       1.1    cube 		ifp->if_ierrors++;
    932       1.1    cube 		return (ENOBUFS);
    933       1.1    cube 	}
    934       1.1    cube 	m->m_pkthdr.len = uio->uio_resid;
    935       1.1    cube 
    936       1.1    cube 	mp = &m;
    937       1.1    cube 	while (error == 0 && uio->uio_resid > 0) {
    938       1.1    cube 		if (*mp != m) {
    939       1.1    cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
    940       1.1    cube 			if (*mp == NULL) {
    941       1.1    cube 				error = ENOBUFS;
    942       1.1    cube 				break;
    943       1.1    cube 			}
    944       1.1    cube 		}
    945       1.1    cube 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    946  1.10.2.3    yamt 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
    947       1.1    cube 		mp = &(*mp)->m_next;
    948       1.1    cube 	}
    949       1.1    cube 	if (error) {
    950       1.1    cube 		ifp->if_ierrors++;
    951       1.1    cube 		m_freem(m);
    952       1.1    cube 		return (error);
    953       1.1    cube 	}
    954       1.1    cube 
    955       1.1    cube 	ifp->if_ipackets++;
    956       1.1    cube 	m->m_pkthdr.rcvif = ifp;
    957       1.1    cube 
    958       1.1    cube #if NBPFILTER > 0
    959       1.1    cube 	if (ifp->if_bpf)
    960       1.1    cube 		bpf_mtap(ifp->if_bpf, m);
    961       1.1    cube #endif
    962       1.9  bouyer 	s =splnet();
    963       1.1    cube 	(*ifp->if_input)(ifp, m);
    964       1.9  bouyer 	splx(s);
    965       1.1    cube 
    966       1.1    cube 	return (0);
    967       1.1    cube }
    968       1.1    cube 
    969       1.1    cube static int
    970  1.10.2.3    yamt tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
    971  1.10.2.1    yamt     struct lwp *l)
    972       1.1    cube {
    973  1.10.2.1    yamt 	return tap_dev_ioctl(minor(dev), cmd, data, l);
    974       1.1    cube }
    975       1.1    cube 
    976       1.1    cube static int
    977  1.10.2.1    yamt tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
    978       1.1    cube {
    979  1.10.2.3    yamt 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (void *)data, l);
    980       1.1    cube }
    981       1.1    cube 
    982       1.1    cube static int
    983  1.10.2.3    yamt tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
    984       1.1    cube {
    985       1.1    cube 	struct tap_softc *sc =
    986       1.1    cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    987       1.1    cube 	int error = 0;
    988       1.1    cube 
    989       1.1    cube 	if (sc == NULL)
    990       1.1    cube 		return (ENXIO);
    991       1.1    cube 
    992       1.1    cube 	switch (cmd) {
    993       1.1    cube 	case FIONREAD:
    994       1.1    cube 		{
    995       1.1    cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
    996       1.1    cube 			struct mbuf *m;
    997       1.1    cube 			int s;
    998       1.1    cube 
    999       1.1    cube 			s = splnet();
   1000       1.1    cube 			IFQ_POLL(&ifp->if_snd, m);
   1001       1.1    cube 
   1002       1.1    cube 			if (m == NULL)
   1003       1.1    cube 				*(int *)data = 0;
   1004       1.1    cube 			else
   1005       1.1    cube 				*(int *)data = m->m_pkthdr.len;
   1006       1.1    cube 			splx(s);
   1007       1.1    cube 		} break;
   1008       1.1    cube 	case TIOCSPGRP:
   1009       1.1    cube 	case FIOSETOWN:
   1010  1.10.2.1    yamt 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
   1011       1.1    cube 		break;
   1012       1.1    cube 	case TIOCGPGRP:
   1013       1.1    cube 	case FIOGETOWN:
   1014  1.10.2.1    yamt 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
   1015       1.1    cube 		break;
   1016       1.1    cube 	case FIOASYNC:
   1017       1.1    cube 		if (*(int *)data)
   1018       1.1    cube 			sc->sc_flags |= TAP_ASYNCIO;
   1019       1.1    cube 		else
   1020       1.1    cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1021       1.1    cube 		break;
   1022       1.1    cube 	case FIONBIO:
   1023       1.1    cube 		if (*(int *)data)
   1024       1.1    cube 			sc->sc_flags |= TAP_NBIO;
   1025       1.1    cube 		else
   1026       1.1    cube 			sc->sc_flags &= ~TAP_NBIO;
   1027       1.1    cube 		break;
   1028  1.10.2.3    yamt #ifdef OTAPGIFNAME
   1029  1.10.2.3    yamt 	case OTAPGIFNAME:
   1030  1.10.2.3    yamt #endif
   1031       1.1    cube 	case TAPGIFNAME:
   1032       1.1    cube 		{
   1033       1.1    cube 			struct ifreq *ifr = (struct ifreq *)data;
   1034       1.1    cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1035       1.1    cube 
   1036       1.1    cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1037       1.1    cube 		} break;
   1038       1.1    cube 	default:
   1039       1.1    cube 		error = ENOTTY;
   1040       1.1    cube 		break;
   1041       1.1    cube 	}
   1042       1.1    cube 
   1043       1.1    cube 	return (0);
   1044       1.1    cube }
   1045       1.1    cube 
   1046       1.1    cube static int
   1047  1.10.2.1    yamt tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1048       1.1    cube {
   1049  1.10.2.1    yamt 	return tap_dev_poll(minor(dev), events, l);
   1050       1.1    cube }
   1051       1.1    cube 
   1052       1.1    cube static int
   1053  1.10.2.1    yamt tap_fops_poll(struct file *fp, int events, struct lwp *l)
   1054       1.1    cube {
   1055  1.10.2.1    yamt 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
   1056       1.1    cube }
   1057       1.1    cube 
   1058       1.1    cube static int
   1059  1.10.2.1    yamt tap_dev_poll(int unit, int events, struct lwp *l)
   1060       1.1    cube {
   1061       1.1    cube 	struct tap_softc *sc =
   1062       1.1    cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1063       1.1    cube 	int revents = 0;
   1064       1.1    cube 
   1065       1.1    cube 	if (sc == NULL)
   1066  1.10.2.3    yamt 		return POLLERR;
   1067       1.1    cube 
   1068       1.1    cube 	if (events & (POLLIN|POLLRDNORM)) {
   1069       1.1    cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1070       1.1    cube 		struct mbuf *m;
   1071       1.1    cube 		int s;
   1072       1.1    cube 
   1073       1.1    cube 		s = splnet();
   1074       1.1    cube 		IFQ_POLL(&ifp->if_snd, m);
   1075       1.1    cube 		splx(s);
   1076       1.1    cube 
   1077       1.1    cube 		if (m != NULL)
   1078       1.1    cube 			revents |= events & (POLLIN|POLLRDNORM);
   1079       1.1    cube 		else {
   1080       1.4   ragge 			simple_lock(&sc->sc_kqlock);
   1081  1.10.2.1    yamt 			selrecord(l, &sc->sc_rsel);
   1082       1.1    cube 			simple_unlock(&sc->sc_kqlock);
   1083       1.1    cube 		}
   1084       1.1    cube 	}
   1085       1.1    cube 	revents |= events & (POLLOUT|POLLWRNORM);
   1086       1.1    cube 
   1087       1.1    cube 	return (revents);
   1088       1.1    cube }
   1089       1.1    cube 
   1090       1.1    cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1091       1.1    cube 	tap_kqread };
   1092       1.1    cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1093       1.1    cube 	filt_seltrue };
   1094       1.1    cube 
   1095       1.1    cube static int
   1096       1.1    cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1097       1.1    cube {
   1098       1.1    cube 	return tap_dev_kqfilter(minor(dev), kn);
   1099       1.1    cube }
   1100       1.1    cube 
   1101       1.1    cube static int
   1102       1.1    cube tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1103       1.1    cube {
   1104       1.1    cube 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1105       1.1    cube }
   1106       1.1    cube 
   1107       1.1    cube static int
   1108       1.1    cube tap_dev_kqfilter(int unit, struct knote *kn)
   1109       1.1    cube {
   1110       1.1    cube 	struct tap_softc *sc =
   1111       1.1    cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1112       1.1    cube 
   1113       1.1    cube 	if (sc == NULL)
   1114       1.1    cube 		return (ENXIO);
   1115       1.1    cube 
   1116       1.1    cube 	switch(kn->kn_filter) {
   1117       1.1    cube 	case EVFILT_READ:
   1118       1.1    cube 		kn->kn_fop = &tap_read_filterops;
   1119       1.1    cube 		break;
   1120       1.1    cube 	case EVFILT_WRITE:
   1121       1.1    cube 		kn->kn_fop = &tap_seltrue_filterops;
   1122       1.1    cube 		break;
   1123       1.1    cube 	default:
   1124  1.10.2.5    yamt 		return (EINVAL);
   1125       1.1    cube 	}
   1126       1.1    cube 
   1127       1.1    cube 	kn->kn_hook = sc;
   1128       1.4   ragge 	simple_lock(&sc->sc_kqlock);
   1129       1.1    cube 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1130       1.1    cube 	simple_unlock(&sc->sc_kqlock);
   1131       1.1    cube 	return (0);
   1132       1.1    cube }
   1133       1.1    cube 
   1134       1.1    cube static void
   1135       1.1    cube tap_kqdetach(struct knote *kn)
   1136       1.1    cube {
   1137       1.1    cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1138       1.1    cube 
   1139       1.4   ragge 	simple_lock(&sc->sc_kqlock);
   1140       1.1    cube 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1141       1.1    cube 	simple_unlock(&sc->sc_kqlock);
   1142       1.1    cube }
   1143       1.1    cube 
   1144       1.1    cube static int
   1145       1.1    cube tap_kqread(struct knote *kn, long hint)
   1146       1.1    cube {
   1147       1.1    cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1148       1.1    cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1149       1.1    cube 	struct mbuf *m;
   1150       1.1    cube 	int s;
   1151       1.1    cube 
   1152       1.1    cube 	s = splnet();
   1153       1.1    cube 	IFQ_POLL(&ifp->if_snd, m);
   1154       1.1    cube 
   1155       1.1    cube 	if (m == NULL)
   1156       1.1    cube 		kn->kn_data = 0;
   1157       1.1    cube 	else
   1158       1.1    cube 		kn->kn_data = m->m_pkthdr.len;
   1159       1.1    cube 	splx(s);
   1160       1.1    cube 	return (kn->kn_data != 0 ? 1 : 0);
   1161       1.1    cube }
   1162       1.1    cube 
   1163       1.1    cube /*
   1164       1.1    cube  * sysctl management routines
   1165       1.1    cube  * You can set the address of an interface through:
   1166       1.1    cube  * net.link.tap.tap<number>
   1167       1.1    cube  *
   1168       1.1    cube  * Note the consistent use of tap_log in order to use
   1169       1.1    cube  * sysctl_teardown at unload time.
   1170       1.1    cube  *
   1171       1.1    cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1172       1.1    cube  * blocks register a function in a special section of the kernel
   1173       1.1    cube  * (called a link set) which is used at init_sysctl() time to cycle
   1174       1.1    cube  * through all those functions to create the kernel's sysctl tree.
   1175       1.1    cube  *
   1176       1.1    cube  * It is not (currently) possible to use link sets in a LKM, so the
   1177       1.1    cube  * easiest is to simply call our own setup routine at load time.
   1178       1.1    cube  *
   1179       1.1    cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1180       1.1    cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1181       1.1    cube  * whole kernel sysctl tree is built, it is not possible to add any
   1182       1.1    cube  * permanent node.
   1183       1.1    cube  *
   1184       1.1    cube  * It should be noted that we're not saving the sysctlnode pointer
   1185       1.1    cube  * we are returned when creating the "tap" node.  That structure
   1186       1.1    cube  * cannot be trusted once out of the calling function, as it might
   1187       1.1    cube  * get reused.  So we just save the MIB number, and always give the
   1188       1.1    cube  * full path starting from the root for later calls to sysctl_createv
   1189       1.1    cube  * and sysctl_destroyv.
   1190       1.1    cube  */
   1191       1.1    cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1192       1.1    cube {
   1193      1.10  atatat 	const struct sysctlnode *node;
   1194       1.1    cube 	int error = 0;
   1195       1.1    cube 
   1196       1.1    cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1197       1.1    cube 	    CTLFLAG_PERMANENT,
   1198       1.1    cube 	    CTLTYPE_NODE, "net", NULL,
   1199       1.1    cube 	    NULL, 0, NULL, 0,
   1200       1.1    cube 	    CTL_NET, CTL_EOL)) != 0)
   1201       1.1    cube 		return;
   1202       1.1    cube 
   1203       1.1    cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1204       1.1    cube 	    CTLFLAG_PERMANENT,
   1205       1.1    cube 	    CTLTYPE_NODE, "link", NULL,
   1206       1.1    cube 	    NULL, 0, NULL, 0,
   1207       1.3    cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1208       1.1    cube 		return;
   1209       1.1    cube 
   1210       1.1    cube 	/*
   1211       1.1    cube 	 * The first four parameters of sysctl_createv are for management.
   1212       1.1    cube 	 *
   1213       1.1    cube 	 * The four that follows, here starting with a '0' for the flags,
   1214       1.1    cube 	 * describe the node.
   1215       1.1    cube 	 *
   1216       1.1    cube 	 * The next series of four set its value, through various possible
   1217       1.1    cube 	 * means.
   1218       1.1    cube 	 *
   1219       1.1    cube 	 * Last but not least, the path to the node is described.  That path
   1220       1.1    cube 	 * is relative to the given root (third argument).  Here we're
   1221       1.1    cube 	 * starting from the root.
   1222       1.1    cube 	 */
   1223       1.1    cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1224       1.1    cube 	    CTLFLAG_PERMANENT,
   1225       1.1    cube 	    CTLTYPE_NODE, "tap", NULL,
   1226       1.1    cube 	    NULL, 0, NULL, 0,
   1227       1.3    cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1228       1.1    cube 		return;
   1229       1.1    cube 	tap_node = node->sysctl_num;
   1230       1.1    cube }
   1231       1.1    cube 
   1232       1.1    cube /*
   1233       1.1    cube  * The helper functions make Andrew Brown's interface really
   1234       1.1    cube  * shine.  It makes possible to create value on the fly whether
   1235       1.1    cube  * the sysctl value is read or written.
   1236       1.1    cube  *
   1237       1.1    cube  * As shown as an example in the man page, the first step is to
   1238       1.1    cube  * create a copy of the node to have sysctl_lookup work on it.
   1239       1.1    cube  *
   1240       1.1    cube  * Here, we have more work to do than just a copy, since we have
   1241       1.1    cube  * to create the string.  The first step is to collect the actual
   1242       1.1    cube  * value of the node, which is a convenient pointer to the softc
   1243       1.1    cube  * of the interface.  From there we create the string and use it
   1244       1.1    cube  * as the value, but only for the *copy* of the node.
   1245       1.1    cube  *
   1246       1.1    cube  * Then we let sysctl_lookup do the magic, which consists in
   1247       1.1    cube  * setting oldp and newp as required by the operation.  When the
   1248       1.1    cube  * value is read, that means that the string will be copied to
   1249       1.1    cube  * the user, and when it is written, the new value will be copied
   1250       1.1    cube  * over in the addr array.
   1251       1.1    cube  *
   1252       1.1    cube  * If newp is NULL, the user was reading the value, so we don't
   1253       1.1    cube  * have anything else to do.  If a new value was written, we
   1254       1.1    cube  * have to check it.
   1255       1.1    cube  *
   1256       1.1    cube  * If it is incorrect, we can return an error and leave 'node' as
   1257       1.1    cube  * it is:  since it is a copy of the actual node, the change will
   1258       1.1    cube  * be forgotten.
   1259       1.1    cube  *
   1260       1.1    cube  * Upon a correct input, we commit the change to the ifnet
   1261       1.1    cube  * structure of our interface.
   1262       1.1    cube  */
   1263       1.1    cube static int
   1264       1.1    cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1265       1.1    cube {
   1266       1.1    cube 	struct sysctlnode node;
   1267       1.1    cube 	struct tap_softc *sc;
   1268       1.1    cube 	struct ifnet *ifp;
   1269       1.1    cube 	int error;
   1270       1.1    cube 	size_t len;
   1271  1.10.2.1    yamt 	char addr[3 * ETHER_ADDR_LEN];
   1272  1.10.2.3    yamt 	uint8_t enaddr[ETHER_ADDR_LEN];
   1273       1.1    cube 
   1274       1.1    cube 	node = *rnode;
   1275       1.1    cube 	sc = node.sysctl_data;
   1276       1.1    cube 	ifp = &sc->sc_ec.ec_if;
   1277  1.10.2.3    yamt 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1278       1.1    cube 	node.sysctl_data = addr;
   1279       1.1    cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1280       1.1    cube 	if (error || newp == NULL)
   1281       1.1    cube 		return (error);
   1282       1.1    cube 
   1283       1.1    cube 	len = strlen(addr);
   1284       1.1    cube 	if (len < 11 || len > 17)
   1285       1.1    cube 		return (EINVAL);
   1286       1.1    cube 
   1287       1.1    cube 	/* Commit change */
   1288  1.10.2.3    yamt 	if (ether_nonstatic_aton(enaddr, addr) != 0 ||
   1289  1.10.2.3    yamt 	    sockaddr_dl_setaddr(ifp->if_sadl, ifp->if_sadl->sdl_len, enaddr,
   1290  1.10.2.3    yamt 	                        ETHER_ADDR_LEN) == NULL)
   1291       1.1    cube 		return (EINVAL);
   1292       1.1    cube 	return (error);
   1293       1.1    cube }
   1294