if_tap.c revision 1.101 1 1.101 ozaki /* $NetBSD: if_tap.c,v 1.101 2017/10/30 16:01:19 ozaki-r Exp $ */
2 1.1 cube
3 1.1 cube /*
4 1.55 ad * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 1.1 cube * All rights reserved.
6 1.1 cube *
7 1.1 cube * Redistribution and use in source and binary forms, with or without
8 1.1 cube * modification, are permitted provided that the following conditions
9 1.1 cube * are met:
10 1.1 cube * 1. Redistributions of source code must retain the above copyright
11 1.1 cube * notice, this list of conditions and the following disclaimer.
12 1.1 cube * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cube * notice, this list of conditions and the following disclaimer in the
14 1.1 cube * documentation and/or other materials provided with the distribution.
15 1.6 perry *
16 1.1 cube * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.1 cube * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.1 cube * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.1 cube * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.1 cube * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.1 cube * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.1 cube * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.1 cube * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.1 cube * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.1 cube * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.1 cube * POSSIBILITY OF SUCH DAMAGE.
27 1.1 cube */
28 1.1 cube
29 1.1 cube /*
30 1.1 cube * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 1.1 cube * device to the system, but can also be accessed by userland through a
32 1.1 cube * character device interface, which allows reading and injecting frames.
33 1.1 cube */
34 1.1 cube
35 1.1 cube #include <sys/cdefs.h>
36 1.101 ozaki __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.101 2017/10/30 16:01:19 ozaki-r Exp $");
37 1.1 cube
38 1.2 cube #if defined(_KERNEL_OPT)
39 1.63 pooka
40 1.54 plunky #include "opt_modular.h"
41 1.54 plunky #include "opt_compat_netbsd.h"
42 1.2 cube #endif
43 1.1 cube
44 1.1 cube #include <sys/param.h>
45 1.96 skrll #include <sys/atomic.h>
46 1.1 cube #include <sys/conf.h>
47 1.70 yamt #include <sys/cprng.h>
48 1.1 cube #include <sys/device.h>
49 1.1 cube #include <sys/file.h>
50 1.1 cube #include <sys/filedesc.h>
51 1.96 skrll #include <sys/intr.h>
52 1.96 skrll #include <sys/kauth.h>
53 1.96 skrll #include <sys/kernel.h>
54 1.98 skrll #include <sys/kmem.h>
55 1.96 skrll #include <sys/module.h>
56 1.96 skrll #include <sys/mutex.h>
57 1.1 cube #include <sys/poll.h>
58 1.54 plunky #include <sys/proc.h>
59 1.1 cube #include <sys/select.h>
60 1.1 cube #include <sys/sockio.h>
61 1.96 skrll #include <sys/stat.h>
62 1.1 cube #include <sys/sysctl.h>
63 1.96 skrll #include <sys/systm.h>
64 1.1 cube
65 1.1 cube #include <net/if.h>
66 1.1 cube #include <net/if_dl.h>
67 1.1 cube #include <net/if_ether.h>
68 1.1 cube #include <net/if_media.h>
69 1.1 cube #include <net/if_tap.h>
70 1.1 cube #include <net/bpf.h>
71 1.1 cube
72 1.29 christos #include <compat/sys/sockio.h>
73 1.29 christos
74 1.82 christos #include "ioconf.h"
75 1.82 christos
76 1.1 cube /*
77 1.1 cube * sysctl node management
78 1.1 cube *
79 1.1 cube * It's not really possible to use a SYSCTL_SETUP block with
80 1.51 ad * current module implementation, so it is easier to just define
81 1.1 cube * our own function.
82 1.1 cube *
83 1.1 cube * The handler function is a "helper" in Andrew Brown's sysctl
84 1.1 cube * framework terminology. It is used as a gateway for sysctl
85 1.1 cube * requests over the nodes.
86 1.1 cube *
87 1.1 cube * tap_log allows the module to log creations of nodes and
88 1.1 cube * destroy them all at once using sysctl_teardown.
89 1.1 cube */
90 1.91 christos static int tap_node;
91 1.1 cube static int tap_sysctl_handler(SYSCTLFN_PROTO);
92 1.91 christos static void sysctl_tap_setup(struct sysctllog **);
93 1.1 cube
94 1.1 cube /*
95 1.68 chs * Since we're an Ethernet device, we need the 2 following
96 1.68 chs * components: a struct ethercom and a struct ifmedia
97 1.68 chs * since we don't attach a PHY to ourselves.
98 1.68 chs * We could emulate one, but there's no real point.
99 1.1 cube */
100 1.1 cube
101 1.1 cube struct tap_softc {
102 1.40 cube device_t sc_dev;
103 1.1 cube struct ifmedia sc_im;
104 1.1 cube struct ethercom sc_ec;
105 1.1 cube int sc_flags;
106 1.1 cube #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
107 1.1 cube #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
108 1.1 cube #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
109 1.1 cube #define TAP_GOING 0x00000008 /* interface is being destroyed */
110 1.1 cube struct selinfo sc_rsel;
111 1.1 cube pid_t sc_pgid; /* For async. IO */
112 1.34 ad kmutex_t sc_rdlock;
113 1.74 skrll kmutex_t sc_kqlock;
114 1.42 ad void *sc_sih;
115 1.56 christos struct timespec sc_atime;
116 1.56 christos struct timespec sc_mtime;
117 1.56 christos struct timespec sc_btime;
118 1.1 cube };
119 1.1 cube
120 1.1 cube /* autoconf(9) glue */
121 1.1 cube
122 1.40 cube static int tap_match(device_t, cfdata_t, void *);
123 1.40 cube static void tap_attach(device_t, device_t, void *);
124 1.40 cube static int tap_detach(device_t, int);
125 1.1 cube
126 1.40 cube CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
127 1.1 cube tap_match, tap_attach, tap_detach, NULL);
128 1.1 cube extern struct cfdriver tap_cd;
129 1.1 cube
130 1.1 cube /* Real device access routines */
131 1.1 cube static int tap_dev_close(struct tap_softc *);
132 1.1 cube static int tap_dev_read(int, struct uio *, int);
133 1.1 cube static int tap_dev_write(int, struct uio *, int);
134 1.26 christos static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
135 1.11 christos static int tap_dev_poll(int, int, struct lwp *);
136 1.1 cube static int tap_dev_kqfilter(int, struct knote *);
137 1.1 cube
138 1.1 cube /* Fileops access routines */
139 1.41 ad static int tap_fops_close(file_t *);
140 1.41 ad static int tap_fops_read(file_t *, off_t *, struct uio *,
141 1.17 elad kauth_cred_t, int);
142 1.41 ad static int tap_fops_write(file_t *, off_t *, struct uio *,
143 1.17 elad kauth_cred_t, int);
144 1.41 ad static int tap_fops_ioctl(file_t *, u_long, void *);
145 1.41 ad static int tap_fops_poll(file_t *, int);
146 1.56 christos static int tap_fops_stat(file_t *, struct stat *);
147 1.41 ad static int tap_fops_kqfilter(file_t *, struct knote *);
148 1.1 cube
149 1.1 cube static const struct fileops tap_fileops = {
150 1.55 ad .fo_read = tap_fops_read,
151 1.55 ad .fo_write = tap_fops_write,
152 1.55 ad .fo_ioctl = tap_fops_ioctl,
153 1.55 ad .fo_fcntl = fnullop_fcntl,
154 1.55 ad .fo_poll = tap_fops_poll,
155 1.56 christos .fo_stat = tap_fops_stat,
156 1.55 ad .fo_close = tap_fops_close,
157 1.55 ad .fo_kqfilter = tap_fops_kqfilter,
158 1.62 dsl .fo_restart = fnullop_restart,
159 1.1 cube };
160 1.1 cube
161 1.1 cube /* Helper for cloning open() */
162 1.11 christos static int tap_dev_cloner(struct lwp *);
163 1.1 cube
164 1.1 cube /* Character device routines */
165 1.11 christos static int tap_cdev_open(dev_t, int, int, struct lwp *);
166 1.11 christos static int tap_cdev_close(dev_t, int, int, struct lwp *);
167 1.1 cube static int tap_cdev_read(dev_t, struct uio *, int);
168 1.1 cube static int tap_cdev_write(dev_t, struct uio *, int);
169 1.26 christos static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
170 1.11 christos static int tap_cdev_poll(dev_t, int, struct lwp *);
171 1.1 cube static int tap_cdev_kqfilter(dev_t, struct knote *);
172 1.1 cube
173 1.1 cube const struct cdevsw tap_cdevsw = {
174 1.73 dholland .d_open = tap_cdev_open,
175 1.73 dholland .d_close = tap_cdev_close,
176 1.73 dholland .d_read = tap_cdev_read,
177 1.73 dholland .d_write = tap_cdev_write,
178 1.73 dholland .d_ioctl = tap_cdev_ioctl,
179 1.73 dholland .d_stop = nostop,
180 1.73 dholland .d_tty = notty,
181 1.73 dholland .d_poll = tap_cdev_poll,
182 1.73 dholland .d_mmap = nommap,
183 1.73 dholland .d_kqfilter = tap_cdev_kqfilter,
184 1.77 dholland .d_discard = nodiscard,
185 1.73 dholland .d_flag = D_OTHER
186 1.1 cube };
187 1.1 cube
188 1.1 cube #define TAP_CLONER 0xfffff /* Maximal minor value */
189 1.1 cube
190 1.1 cube /* kqueue-related routines */
191 1.1 cube static void tap_kqdetach(struct knote *);
192 1.1 cube static int tap_kqread(struct knote *, long);
193 1.1 cube
194 1.1 cube /*
195 1.1 cube * Those are needed by the if_media interface.
196 1.1 cube */
197 1.1 cube
198 1.1 cube static int tap_mediachange(struct ifnet *);
199 1.1 cube static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
200 1.1 cube
201 1.1 cube /*
202 1.1 cube * Those are needed by the ifnet interface, and would typically be
203 1.1 cube * there for any network interface driver.
204 1.1 cube * Some other routines are optional: watchdog and drain.
205 1.1 cube */
206 1.1 cube
207 1.1 cube static void tap_start(struct ifnet *);
208 1.1 cube static void tap_stop(struct ifnet *, int);
209 1.1 cube static int tap_init(struct ifnet *);
210 1.26 christos static int tap_ioctl(struct ifnet *, u_long, void *);
211 1.1 cube
212 1.42 ad /* Internal functions */
213 1.1 cube static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
214 1.42 ad static void tap_softintr(void *);
215 1.1 cube
216 1.1 cube /*
217 1.1 cube * tap is a clonable interface, although it is highly unrealistic for
218 1.1 cube * an Ethernet device.
219 1.1 cube *
220 1.1 cube * Here are the bits needed for a clonable interface.
221 1.1 cube */
222 1.1 cube static int tap_clone_create(struct if_clone *, int);
223 1.1 cube static int tap_clone_destroy(struct ifnet *);
224 1.1 cube
225 1.1 cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
226 1.1 cube tap_clone_create,
227 1.1 cube tap_clone_destroy);
228 1.1 cube
229 1.97 skrll /* Helper functions shared by the two cloning code paths */
230 1.1 cube static struct tap_softc * tap_clone_creator(int);
231 1.40 cube int tap_clone_destroyer(device_t);
232 1.1 cube
233 1.86 pgoyette static struct sysctllog *tap_sysctl_clog;
234 1.87 pgoyette
235 1.91 christos #ifdef _MODULE
236 1.87 pgoyette devmajor_t tap_bmajor = -1, tap_cmajor = -1;
237 1.86 pgoyette #endif
238 1.86 pgoyette
239 1.85 christos static u_int tap_count;
240 1.85 christos
241 1.1 cube void
242 1.23 christos tapattach(int n)
243 1.1 cube {
244 1.1 cube
245 1.85 christos /*
246 1.85 christos * Nothing to do here, initialization is handled by the
247 1.85 christos * module initialization code in tapinit() below).
248 1.85 christos */
249 1.85 christos }
250 1.1 cube
251 1.85 christos static void
252 1.85 christos tapinit(void)
253 1.85 christos {
254 1.99 skrll int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
255 1.99 skrll if (error) {
256 1.99 skrll aprint_error("%s: unable to register cfattach\n",
257 1.99 skrll tap_cd.cd_name);
258 1.99 skrll (void)config_cfdriver_detach(&tap_cd);
259 1.99 skrll return;
260 1.99 skrll }
261 1.95 skrll
262 1.1 cube if_clone_attach(&tap_cloners);
263 1.91 christos sysctl_tap_setup(&tap_sysctl_clog);
264 1.86 pgoyette #ifdef _MODULE
265 1.89 pgoyette devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
266 1.86 pgoyette #endif
267 1.1 cube }
268 1.1 cube
269 1.85 christos static int
270 1.85 christos tapdetach(void)
271 1.85 christos {
272 1.85 christos int error = 0;
273 1.85 christos
274 1.85 christos if (tap_count != 0)
275 1.88 pgoyette return EBUSY;
276 1.85 christos
277 1.88 pgoyette #ifdef _MODULE
278 1.91 christos if (error == 0)
279 1.91 christos error = devsw_detach(NULL, &tap_cdevsw);
280 1.91 christos #endif
281 1.85 christos if (error == 0)
282 1.88 pgoyette sysctl_teardown(&tap_sysctl_clog);
283 1.87 pgoyette if (error == 0)
284 1.85 christos if_clone_detach(&tap_cloners);
285 1.85 christos
286 1.91 christos if (error == 0)
287 1.91 christos error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
288 1.91 christos
289 1.85 christos return error;
290 1.85 christos }
291 1.85 christos
292 1.1 cube /* Pretty much useless for a pseudo-device */
293 1.1 cube static int
294 1.40 cube tap_match(device_t parent, cfdata_t cfdata, void *arg)
295 1.1 cube {
296 1.40 cube
297 1.95 skrll return 1;
298 1.1 cube }
299 1.1 cube
300 1.1 cube void
301 1.40 cube tap_attach(device_t parent, device_t self, void *aux)
302 1.1 cube {
303 1.40 cube struct tap_softc *sc = device_private(self);
304 1.1 cube struct ifnet *ifp;
305 1.18 kardel const struct sysctlnode *node;
306 1.54 plunky int error;
307 1.38 matt uint8_t enaddr[ETHER_ADDR_LEN] =
308 1.7 cube { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
309 1.14 christos char enaddrstr[3 * ETHER_ADDR_LEN];
310 1.1 cube
311 1.40 cube sc->sc_dev = self;
312 1.71 yamt sc->sc_sih = NULL;
313 1.56 christos getnanotime(&sc->sc_btime);
314 1.56 christos sc->sc_atime = sc->sc_mtime = sc->sc_btime;
315 1.80 ozaki sc->sc_flags = 0;
316 1.80 ozaki selinit(&sc->sc_rsel);
317 1.80 ozaki
318 1.80 ozaki /*
319 1.80 ozaki * Initialize the two locks for the device.
320 1.80 ozaki *
321 1.80 ozaki * We need a lock here because even though the tap device can be
322 1.80 ozaki * opened only once, the file descriptor might be passed to another
323 1.80 ozaki * process, say a fork(2)ed child.
324 1.80 ozaki *
325 1.80 ozaki * The Giant saves us from most of the hassle, but since the read
326 1.80 ozaki * operation can sleep, we don't want two processes to wake up at
327 1.80 ozaki * the same moment and both try and dequeue a single packet.
328 1.80 ozaki *
329 1.80 ozaki * The queue for event listeners (used by kqueue(9), see below) has
330 1.80 ozaki * to be protected too, so use a spin lock.
331 1.80 ozaki */
332 1.80 ozaki mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
333 1.80 ozaki mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
334 1.40 cube
335 1.48 hans if (!pmf_device_register(self, NULL, NULL))
336 1.48 hans aprint_error_dev(self, "couldn't establish power handler\n");
337 1.48 hans
338 1.1 cube /*
339 1.1 cube * In order to obtain unique initial Ethernet address on a host,
340 1.70 yamt * do some randomisation. It's not meant for anything but avoiding
341 1.70 yamt * hard-coding an address.
342 1.1 cube */
343 1.70 yamt cprng_fast(&enaddr[3], 3);
344 1.1 cube
345 1.40 cube aprint_verbose_dev(self, "Ethernet address %s\n",
346 1.14 christos ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
347 1.1 cube
348 1.1 cube /*
349 1.1 cube * Why 1000baseT? Why not? You can add more.
350 1.1 cube *
351 1.1 cube * Note that there are 3 steps: init, one or several additions to
352 1.1 cube * list of supported media, and in the end, the selection of one
353 1.1 cube * of them.
354 1.1 cube */
355 1.1 cube ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
356 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
357 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
358 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
359 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
360 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
361 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
362 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
363 1.1 cube ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
364 1.1 cube
365 1.1 cube /*
366 1.1 cube * One should note that an interface must do multicast in order
367 1.1 cube * to support IPv6.
368 1.1 cube */
369 1.1 cube ifp = &sc->sc_ec.ec_if;
370 1.40 cube strcpy(ifp->if_xname, device_xname(self));
371 1.1 cube ifp->if_softc = sc;
372 1.1 cube ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
373 1.101 ozaki ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
374 1.1 cube ifp->if_ioctl = tap_ioctl;
375 1.1 cube ifp->if_start = tap_start;
376 1.1 cube ifp->if_stop = tap_stop;
377 1.1 cube ifp->if_init = tap_init;
378 1.1 cube IFQ_SET_READY(&ifp->if_snd);
379 1.1 cube
380 1.1 cube sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
381 1.1 cube
382 1.81 ozaki /* Those steps are mandatory for an Ethernet driver. */
383 1.100 msaitoh error = if_initialize(ifp);
384 1.100 msaitoh if (error != 0) {
385 1.100 msaitoh aprint_error_dev(self, "if_initialize failed(%d)\n", error);
386 1.100 msaitoh ifmedia_removeall(&sc->sc_im);
387 1.100 msaitoh pmf_device_deregister(self);
388 1.100 msaitoh mutex_destroy(&sc->sc_rdlock);
389 1.100 msaitoh mutex_destroy(&sc->sc_kqlock);
390 1.100 msaitoh seldestroy(&sc->sc_rsel);
391 1.100 msaitoh
392 1.100 msaitoh return; /* Error */
393 1.100 msaitoh }
394 1.1 cube ether_ifattach(ifp, enaddr);
395 1.81 ozaki if_register(ifp);
396 1.1 cube
397 1.1 cube /*
398 1.1 cube * Add a sysctl node for that interface.
399 1.1 cube *
400 1.1 cube * The pointer transmitted is not a string, but instead a pointer to
401 1.1 cube * the softc structure, which we can use to build the string value on
402 1.1 cube * the fly in the helper function of the node. See the comments for
403 1.1 cube * tap_sysctl_handler for details.
404 1.21 cube *
405 1.21 cube * Usually sysctl_createv is called with CTL_CREATE as the before-last
406 1.21 cube * component. However, we can allocate a number ourselves, as we are
407 1.21 cube * the only consumer of the net.link.<iface> node. In this case, the
408 1.21 cube * unit number is conveniently used to number the node. CTL_CREATE
409 1.21 cube * would just work, too.
410 1.1 cube */
411 1.1 cube if ((error = sysctl_createv(NULL, 0, NULL,
412 1.1 cube &node, CTLFLAG_READWRITE,
413 1.40 cube CTLTYPE_STRING, device_xname(self), NULL,
414 1.67 dsl tap_sysctl_handler, 0, (void *)sc, 18,
415 1.40 cube CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
416 1.15 thorpej CTL_EOL)) != 0)
417 1.100 msaitoh aprint_error_dev(self,
418 1.100 msaitoh "sysctl_createv returned %d, ignoring\n", error);
419 1.1 cube }
420 1.1 cube
421 1.1 cube /*
422 1.1 cube * When detaching, we do the inverse of what is done in the attach
423 1.1 cube * routine, in reversed order.
424 1.1 cube */
425 1.1 cube static int
426 1.40 cube tap_detach(device_t self, int flags)
427 1.1 cube {
428 1.40 cube struct tap_softc *sc = device_private(self);
429 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
430 1.54 plunky int error;
431 1.54 plunky int s;
432 1.1 cube
433 1.1 cube sc->sc_flags |= TAP_GOING;
434 1.1 cube s = splnet();
435 1.1 cube tap_stop(ifp, 1);
436 1.1 cube if_down(ifp);
437 1.1 cube splx(s);
438 1.1 cube
439 1.71 yamt if (sc->sc_sih != NULL) {
440 1.71 yamt softint_disestablish(sc->sc_sih);
441 1.71 yamt sc->sc_sih = NULL;
442 1.71 yamt }
443 1.42 ad
444 1.1 cube /*
445 1.1 cube * Destroying a single leaf is a very straightforward operation using
446 1.1 cube * sysctl_destroyv. One should be sure to always end the path with
447 1.1 cube * CTL_EOL.
448 1.1 cube */
449 1.3 cube if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
450 1.40 cube device_unit(sc->sc_dev), CTL_EOL)) != 0)
451 1.40 cube aprint_error_dev(self,
452 1.40 cube "sysctl_destroyv returned %d, ignoring\n", error);
453 1.1 cube ether_ifdetach(ifp);
454 1.1 cube if_detach(ifp);
455 1.100 msaitoh ifmedia_removeall(&sc->sc_im);
456 1.47 rmind seldestroy(&sc->sc_rsel);
457 1.34 ad mutex_destroy(&sc->sc_rdlock);
458 1.75 aymeric mutex_destroy(&sc->sc_kqlock);
459 1.1 cube
460 1.49 hans pmf_device_deregister(self);
461 1.49 hans
462 1.95 skrll return 0;
463 1.1 cube }
464 1.1 cube
465 1.1 cube /*
466 1.1 cube * This function is called by the ifmedia layer to notify the driver
467 1.1 cube * that the user requested a media change. A real driver would
468 1.1 cube * reconfigure the hardware.
469 1.1 cube */
470 1.1 cube static int
471 1.23 christos tap_mediachange(struct ifnet *ifp)
472 1.1 cube {
473 1.95 skrll return 0;
474 1.1 cube }
475 1.1 cube
476 1.1 cube /*
477 1.1 cube * Here the user asks for the currently used media.
478 1.1 cube */
479 1.1 cube static void
480 1.1 cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
481 1.1 cube {
482 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
483 1.1 cube imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
484 1.1 cube }
485 1.1 cube
486 1.1 cube /*
487 1.1 cube * This is the function where we SEND packets.
488 1.1 cube *
489 1.1 cube * There is no 'receive' equivalent. A typical driver will get
490 1.1 cube * interrupts from the hardware, and from there will inject new packets
491 1.1 cube * into the network stack.
492 1.1 cube *
493 1.1 cube * Once handled, a packet must be freed. A real driver might not be able
494 1.1 cube * to fit all the pending packets into the hardware, and is allowed to
495 1.1 cube * return before having sent all the packets. It should then use the
496 1.1 cube * if_flags flag IFF_OACTIVE to notify the upper layer.
497 1.1 cube *
498 1.1 cube * There are also other flags one should check, such as IFF_PAUSE.
499 1.1 cube *
500 1.1 cube * It is our duty to make packets available to BPF listeners.
501 1.1 cube *
502 1.1 cube * You should be aware that this function is called by the Ethernet layer
503 1.1 cube * at splnet().
504 1.1 cube *
505 1.1 cube * When the device is opened, we have to pass the packet(s) to the
506 1.1 cube * userland. For that we stay in OACTIVE mode while the userland gets
507 1.1 cube * the packets, and we send a signal to the processes waiting to read.
508 1.1 cube *
509 1.1 cube * wakeup(sc) is the counterpart to the tsleep call in
510 1.1 cube * tap_dev_read, while selnotify() is used for kevent(2) and
511 1.1 cube * poll(2) (which includes select(2)) listeners.
512 1.1 cube */
513 1.1 cube static void
514 1.1 cube tap_start(struct ifnet *ifp)
515 1.1 cube {
516 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
517 1.1 cube struct mbuf *m0;
518 1.1 cube
519 1.1 cube if ((sc->sc_flags & TAP_INUSE) == 0) {
520 1.1 cube /* Simply drop packets */
521 1.1 cube for(;;) {
522 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m0);
523 1.1 cube if (m0 == NULL)
524 1.1 cube return;
525 1.1 cube
526 1.1 cube ifp->if_opackets++;
527 1.64 joerg bpf_mtap(ifp, m0);
528 1.1 cube
529 1.1 cube m_freem(m0);
530 1.1 cube }
531 1.1 cube } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
532 1.1 cube ifp->if_flags |= IFF_OACTIVE;
533 1.1 cube wakeup(sc);
534 1.39 rmind selnotify(&sc->sc_rsel, 0, 1);
535 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
536 1.42 ad softint_schedule(sc->sc_sih);
537 1.42 ad }
538 1.42 ad }
539 1.42 ad
540 1.42 ad static void
541 1.42 ad tap_softintr(void *cookie)
542 1.42 ad {
543 1.42 ad struct tap_softc *sc;
544 1.42 ad struct ifnet *ifp;
545 1.42 ad int a, b;
546 1.42 ad
547 1.42 ad sc = cookie;
548 1.42 ad
549 1.42 ad if (sc->sc_flags & TAP_ASYNCIO) {
550 1.42 ad ifp = &sc->sc_ec.ec_if;
551 1.42 ad if (ifp->if_flags & IFF_RUNNING) {
552 1.42 ad a = POLL_IN;
553 1.42 ad b = POLLIN|POLLRDNORM;
554 1.42 ad } else {
555 1.42 ad a = POLL_HUP;
556 1.42 ad b = 0;
557 1.42 ad }
558 1.42 ad fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
559 1.1 cube }
560 1.1 cube }
561 1.1 cube
562 1.1 cube /*
563 1.1 cube * A typical driver will only contain the following handlers for
564 1.1 cube * ioctl calls, except SIOCSIFPHYADDR.
565 1.1 cube * The latter is a hack I used to set the Ethernet address of the
566 1.1 cube * faked device.
567 1.1 cube *
568 1.1 cube * Note that both ifmedia_ioctl() and ether_ioctl() have to be
569 1.1 cube * called under splnet().
570 1.1 cube */
571 1.1 cube static int
572 1.26 christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
573 1.1 cube {
574 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
575 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
576 1.1 cube int s, error;
577 1.1 cube
578 1.1 cube s = splnet();
579 1.1 cube
580 1.1 cube switch (cmd) {
581 1.29 christos #ifdef OSIOCSIFMEDIA
582 1.29 christos case OSIOCSIFMEDIA:
583 1.29 christos #endif
584 1.1 cube case SIOCSIFMEDIA:
585 1.1 cube case SIOCGIFMEDIA:
586 1.1 cube error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
587 1.1 cube break;
588 1.1 cube case SIOCSIFPHYADDR:
589 1.1 cube error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
590 1.1 cube break;
591 1.1 cube default:
592 1.1 cube error = ether_ioctl(ifp, cmd, data);
593 1.1 cube if (error == ENETRESET)
594 1.1 cube error = 0;
595 1.1 cube break;
596 1.1 cube }
597 1.1 cube
598 1.1 cube splx(s);
599 1.1 cube
600 1.95 skrll return error;
601 1.1 cube }
602 1.1 cube
603 1.1 cube /*
604 1.54 plunky * Helper function to set Ethernet address. This has been replaced by
605 1.54 plunky * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
606 1.1 cube */
607 1.1 cube static int
608 1.23 christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
609 1.1 cube {
610 1.53 plunky const struct sockaddr *sa = &ifra->ifra_addr;
611 1.1 cube
612 1.53 plunky if (sa->sa_family != AF_LINK)
613 1.95 skrll return EINVAL;
614 1.1 cube
615 1.53 plunky if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
616 1.1 cube
617 1.95 skrll return 0;
618 1.1 cube }
619 1.1 cube
620 1.1 cube /*
621 1.1 cube * _init() would typically be called when an interface goes up,
622 1.1 cube * meaning it should configure itself into the state in which it
623 1.1 cube * can send packets.
624 1.1 cube */
625 1.1 cube static int
626 1.1 cube tap_init(struct ifnet *ifp)
627 1.1 cube {
628 1.1 cube ifp->if_flags |= IFF_RUNNING;
629 1.1 cube
630 1.1 cube tap_start(ifp);
631 1.1 cube
632 1.95 skrll return 0;
633 1.1 cube }
634 1.1 cube
635 1.1 cube /*
636 1.1 cube * _stop() is called when an interface goes down. It is our
637 1.1 cube * responsability to validate that state by clearing the
638 1.1 cube * IFF_RUNNING flag.
639 1.1 cube *
640 1.1 cube * We have to wake up all the sleeping processes to have the pending
641 1.1 cube * read requests cancelled.
642 1.1 cube */
643 1.1 cube static void
644 1.23 christos tap_stop(struct ifnet *ifp, int disable)
645 1.1 cube {
646 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
647 1.1 cube
648 1.1 cube ifp->if_flags &= ~IFF_RUNNING;
649 1.1 cube wakeup(sc);
650 1.39 rmind selnotify(&sc->sc_rsel, 0, 1);
651 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
652 1.42 ad softint_schedule(sc->sc_sih);
653 1.1 cube }
654 1.1 cube
655 1.1 cube /*
656 1.1 cube * The 'create' command of ifconfig can be used to create
657 1.1 cube * any numbered instance of a given device. Thus we have to
658 1.1 cube * make sure we have enough room in cd_devs to create the
659 1.1 cube * user-specified instance. config_attach_pseudo will do this
660 1.1 cube * for us.
661 1.1 cube */
662 1.1 cube static int
663 1.23 christos tap_clone_create(struct if_clone *ifc, int unit)
664 1.1 cube {
665 1.1 cube if (tap_clone_creator(unit) == NULL) {
666 1.1 cube aprint_error("%s%d: unable to attach an instance\n",
667 1.99 skrll tap_cd.cd_name, unit);
668 1.95 skrll return ENXIO;
669 1.1 cube }
670 1.85 christos atomic_inc_uint(&tap_count);
671 1.95 skrll return 0;
672 1.1 cube }
673 1.1 cube
674 1.1 cube /*
675 1.1 cube * tap(4) can be cloned by two ways:
676 1.1 cube * using 'ifconfig tap0 create', which will use the network
677 1.1 cube * interface cloning API, and call tap_clone_create above.
678 1.1 cube * opening the cloning device node, whose minor number is TAP_CLONER.
679 1.1 cube * See below for an explanation on how this part work.
680 1.1 cube */
681 1.1 cube static struct tap_softc *
682 1.1 cube tap_clone_creator(int unit)
683 1.1 cube {
684 1.98 skrll cfdata_t cf;
685 1.1 cube
686 1.98 skrll cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
687 1.1 cube cf->cf_name = tap_cd.cd_name;
688 1.1 cube cf->cf_atname = tap_ca.ca_name;
689 1.27 drochner if (unit == -1) {
690 1.27 drochner /* let autoconf find the first free one */
691 1.27 drochner cf->cf_unit = 0;
692 1.27 drochner cf->cf_fstate = FSTATE_STAR;
693 1.27 drochner } else {
694 1.27 drochner cf->cf_unit = unit;
695 1.58 plunky cf->cf_fstate = FSTATE_NOTFOUND;
696 1.27 drochner }
697 1.1 cube
698 1.40 cube return device_private(config_attach_pseudo(cf));
699 1.1 cube }
700 1.1 cube
701 1.1 cube /*
702 1.1 cube * The clean design of if_clone and autoconf(9) makes that part
703 1.1 cube * really straightforward. The second argument of config_detach
704 1.1 cube * means neither QUIET nor FORCED.
705 1.1 cube */
706 1.1 cube static int
707 1.1 cube tap_clone_destroy(struct ifnet *ifp)
708 1.1 cube {
709 1.45 dyoung struct tap_softc *sc = ifp->if_softc;
710 1.85 christos int error = tap_clone_destroyer(sc->sc_dev);
711 1.45 dyoung
712 1.85 christos if (error == 0)
713 1.90 kre atomic_dec_uint(&tap_count);
714 1.85 christos return error;
715 1.1 cube }
716 1.1 cube
717 1.12 cube int
718 1.40 cube tap_clone_destroyer(device_t dev)
719 1.1 cube {
720 1.40 cube cfdata_t cf = device_cfdata(dev);
721 1.1 cube int error;
722 1.1 cube
723 1.1 cube if ((error = config_detach(dev, 0)) != 0)
724 1.40 cube aprint_error_dev(dev, "unable to detach instance\n");
725 1.98 skrll kmem_free(cf, sizeof(*cf));
726 1.1 cube
727 1.95 skrll return error;
728 1.1 cube }
729 1.1 cube
730 1.1 cube /*
731 1.1 cube * tap(4) is a bit of an hybrid device. It can be used in two different
732 1.1 cube * ways:
733 1.1 cube * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
734 1.1 cube * 2. open /dev/tap, get a new interface created and read/write off it.
735 1.1 cube * That interface is destroyed when the process that had it created exits.
736 1.1 cube *
737 1.1 cube * The first way is managed by the cdevsw structure, and you access interfaces
738 1.1 cube * through a (major, minor) mapping: tap4 is obtained by the minor number
739 1.1 cube * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
740 1.1 cube *
741 1.1 cube * The second way is the so-called "cloning" device. It's a special minor
742 1.1 cube * number (chosen as the maximal number, to allow as much tap devices as
743 1.1 cube * possible). The user first opens the cloner (e.g., /dev/tap), and that
744 1.1 cube * call ends in tap_cdev_open. The actual place where it is handled is
745 1.1 cube * tap_dev_cloner.
746 1.1 cube *
747 1.1 cube * An tap device cannot be opened more than once at a time, so the cdevsw
748 1.1 cube * part of open() does nothing but noting that the interface is being used and
749 1.1 cube * hence ready to actually handle packets.
750 1.1 cube */
751 1.1 cube
752 1.1 cube static int
753 1.23 christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
754 1.1 cube {
755 1.1 cube struct tap_softc *sc;
756 1.1 cube
757 1.1 cube if (minor(dev) == TAP_CLONER)
758 1.11 christos return tap_dev_cloner(l);
759 1.1 cube
760 1.46 cegger sc = device_lookup_private(&tap_cd, minor(dev));
761 1.1 cube if (sc == NULL)
762 1.95 skrll return ENXIO;
763 1.1 cube
764 1.1 cube /* The device can only be opened once */
765 1.1 cube if (sc->sc_flags & TAP_INUSE)
766 1.95 skrll return EBUSY;
767 1.1 cube sc->sc_flags |= TAP_INUSE;
768 1.95 skrll return 0;
769 1.1 cube }
770 1.1 cube
771 1.1 cube /*
772 1.1 cube * There are several kinds of cloning devices, and the most simple is the one
773 1.1 cube * tap(4) uses. What it does is change the file descriptor with a new one,
774 1.1 cube * with its own fileops structure (which maps to the various read, write,
775 1.1 cube * ioctl functions). It starts allocating a new file descriptor with falloc,
776 1.1 cube * then actually creates the new tap devices.
777 1.1 cube *
778 1.1 cube * Once those two steps are successful, we can re-wire the existing file
779 1.1 cube * descriptor to its new self. This is done with fdclone(): it fills the fp
780 1.78 matt * structure as needed (notably f_devunit gets filled with the fifth parameter
781 1.1 cube * passed, the unit of the tap device which will allows us identifying the
782 1.1 cube * device later), and returns EMOVEFD.
783 1.1 cube *
784 1.1 cube * That magic value is interpreted by sys_open() which then replaces the
785 1.1 cube * current file descriptor by the new one (through a magic member of struct
786 1.13 pooka * lwp, l_dupfd).
787 1.1 cube *
788 1.1 cube * The tap device is flagged as being busy since it otherwise could be
789 1.1 cube * externally accessed through the corresponding device node with the cdevsw
790 1.1 cube * interface.
791 1.1 cube */
792 1.1 cube
793 1.1 cube static int
794 1.11 christos tap_dev_cloner(struct lwp *l)
795 1.1 cube {
796 1.1 cube struct tap_softc *sc;
797 1.41 ad file_t *fp;
798 1.1 cube int error, fd;
799 1.1 cube
800 1.41 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
801 1.95 skrll return error;
802 1.1 cube
803 1.27 drochner if ((sc = tap_clone_creator(-1)) == NULL) {
804 1.41 ad fd_abort(curproc, fp, fd);
805 1.95 skrll return ENXIO;
806 1.1 cube }
807 1.1 cube
808 1.1 cube sc->sc_flags |= TAP_INUSE;
809 1.1 cube
810 1.41 ad return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
811 1.40 cube (void *)(intptr_t)device_unit(sc->sc_dev));
812 1.1 cube }
813 1.1 cube
814 1.1 cube /*
815 1.1 cube * While all other operations (read, write, ioctl, poll and kqfilter) are
816 1.1 cube * really the same whether we are in cdevsw or fileops mode, the close()
817 1.1 cube * function is slightly different in the two cases.
818 1.1 cube *
819 1.1 cube * As for the other, the core of it is shared in tap_dev_close. What
820 1.1 cube * it does is sufficient for the cdevsw interface, but the cloning interface
821 1.1 cube * needs another thing: the interface is destroyed when the processes that
822 1.1 cube * created it closes it.
823 1.1 cube */
824 1.1 cube static int
825 1.23 christos tap_cdev_close(dev_t dev, int flags, int fmt,
826 1.23 christos struct lwp *l)
827 1.1 cube {
828 1.1 cube struct tap_softc *sc =
829 1.46 cegger device_lookup_private(&tap_cd, minor(dev));
830 1.1 cube
831 1.1 cube if (sc == NULL)
832 1.95 skrll return ENXIO;
833 1.1 cube
834 1.1 cube return tap_dev_close(sc);
835 1.1 cube }
836 1.1 cube
837 1.1 cube /*
838 1.1 cube * It might happen that the administrator used ifconfig to externally destroy
839 1.1 cube * the interface. In that case, tap_fops_close will be called while
840 1.1 cube * tap_detach is already happening. If we called it again from here, we
841 1.1 cube * would dead lock. TAP_GOING ensures that this situation doesn't happen.
842 1.1 cube */
843 1.1 cube static int
844 1.41 ad tap_fops_close(file_t *fp)
845 1.1 cube {
846 1.78 matt int unit = fp->f_devunit;
847 1.1 cube struct tap_softc *sc;
848 1.1 cube int error;
849 1.1 cube
850 1.46 cegger sc = device_lookup_private(&tap_cd, unit);
851 1.1 cube if (sc == NULL)
852 1.95 skrll return ENXIO;
853 1.1 cube
854 1.1 cube /* tap_dev_close currently always succeeds, but it might not
855 1.1 cube * always be the case. */
856 1.44 ad KERNEL_LOCK(1, NULL);
857 1.44 ad if ((error = tap_dev_close(sc)) != 0) {
858 1.44 ad KERNEL_UNLOCK_ONE(NULL);
859 1.95 skrll return error;
860 1.44 ad }
861 1.1 cube
862 1.1 cube /* Destroy the device now that it is no longer useful,
863 1.1 cube * unless it's already being destroyed. */
864 1.44 ad if ((sc->sc_flags & TAP_GOING) != 0) {
865 1.44 ad KERNEL_UNLOCK_ONE(NULL);
866 1.95 skrll return 0;
867 1.44 ad }
868 1.1 cube
869 1.44 ad error = tap_clone_destroyer(sc->sc_dev);
870 1.44 ad KERNEL_UNLOCK_ONE(NULL);
871 1.44 ad return error;
872 1.1 cube }
873 1.1 cube
874 1.1 cube static int
875 1.1 cube tap_dev_close(struct tap_softc *sc)
876 1.1 cube {
877 1.1 cube struct ifnet *ifp;
878 1.1 cube int s;
879 1.1 cube
880 1.1 cube s = splnet();
881 1.1 cube /* Let tap_start handle packets again */
882 1.1 cube ifp = &sc->sc_ec.ec_if;
883 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
884 1.1 cube
885 1.1 cube /* Purge output queue */
886 1.1 cube if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
887 1.1 cube struct mbuf *m;
888 1.1 cube
889 1.1 cube for (;;) {
890 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
891 1.1 cube if (m == NULL)
892 1.1 cube break;
893 1.1 cube
894 1.1 cube ifp->if_opackets++;
895 1.64 joerg bpf_mtap(ifp, m);
896 1.60 plunky m_freem(m);
897 1.1 cube }
898 1.1 cube }
899 1.1 cube splx(s);
900 1.1 cube
901 1.71 yamt if (sc->sc_sih != NULL) {
902 1.71 yamt softint_disestablish(sc->sc_sih);
903 1.71 yamt sc->sc_sih = NULL;
904 1.71 yamt }
905 1.1 cube sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
906 1.1 cube
907 1.95 skrll return 0;
908 1.1 cube }
909 1.1 cube
910 1.1 cube static int
911 1.1 cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
912 1.1 cube {
913 1.1 cube return tap_dev_read(minor(dev), uio, flags);
914 1.1 cube }
915 1.1 cube
916 1.1 cube static int
917 1.41 ad tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
918 1.23 christos kauth_cred_t cred, int flags)
919 1.1 cube {
920 1.44 ad int error;
921 1.44 ad
922 1.44 ad KERNEL_LOCK(1, NULL);
923 1.78 matt error = tap_dev_read(fp->f_devunit, uio, flags);
924 1.44 ad KERNEL_UNLOCK_ONE(NULL);
925 1.44 ad return error;
926 1.1 cube }
927 1.1 cube
928 1.1 cube static int
929 1.23 christos tap_dev_read(int unit, struct uio *uio, int flags)
930 1.1 cube {
931 1.78 matt struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
932 1.1 cube struct ifnet *ifp;
933 1.1 cube struct mbuf *m, *n;
934 1.1 cube int error = 0, s;
935 1.1 cube
936 1.1 cube if (sc == NULL)
937 1.95 skrll return ENXIO;
938 1.1 cube
939 1.56 christos getnanotime(&sc->sc_atime);
940 1.56 christos
941 1.1 cube ifp = &sc->sc_ec.ec_if;
942 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
943 1.95 skrll return EHOSTDOWN;
944 1.1 cube
945 1.1 cube /*
946 1.1 cube * In the TAP_NBIO case, we have to make sure we won't be sleeping
947 1.1 cube */
948 1.34 ad if ((sc->sc_flags & TAP_NBIO) != 0) {
949 1.34 ad if (!mutex_tryenter(&sc->sc_rdlock))
950 1.95 skrll return EWOULDBLOCK;
951 1.34 ad } else {
952 1.34 ad mutex_enter(&sc->sc_rdlock);
953 1.34 ad }
954 1.1 cube
955 1.1 cube s = splnet();
956 1.1 cube if (IFQ_IS_EMPTY(&ifp->if_snd)) {
957 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
958 1.1 cube /*
959 1.1 cube * We must release the lock before sleeping, and re-acquire it
960 1.1 cube * after.
961 1.1 cube */
962 1.34 ad mutex_exit(&sc->sc_rdlock);
963 1.1 cube if (sc->sc_flags & TAP_NBIO)
964 1.1 cube error = EWOULDBLOCK;
965 1.1 cube else
966 1.1 cube error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
967 1.52 pooka splx(s);
968 1.52 pooka
969 1.1 cube if (error != 0)
970 1.95 skrll return error;
971 1.1 cube /* The device might have been downed */
972 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
973 1.95 skrll return EHOSTDOWN;
974 1.34 ad if ((sc->sc_flags & TAP_NBIO)) {
975 1.34 ad if (!mutex_tryenter(&sc->sc_rdlock))
976 1.95 skrll return EWOULDBLOCK;
977 1.34 ad } else {
978 1.34 ad mutex_enter(&sc->sc_rdlock);
979 1.34 ad }
980 1.1 cube s = splnet();
981 1.1 cube }
982 1.1 cube
983 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
984 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
985 1.1 cube splx(s);
986 1.1 cube if (m == NULL) {
987 1.1 cube error = 0;
988 1.1 cube goto out;
989 1.1 cube }
990 1.1 cube
991 1.1 cube ifp->if_opackets++;
992 1.64 joerg bpf_mtap(ifp, m);
993 1.1 cube
994 1.1 cube /*
995 1.1 cube * One read is one packet.
996 1.1 cube */
997 1.1 cube do {
998 1.26 christos error = uiomove(mtod(m, void *),
999 1.1 cube min(m->m_len, uio->uio_resid), uio);
1000 1.93 christos m = n = m_free(m);
1001 1.1 cube } while (m != NULL && uio->uio_resid > 0 && error == 0);
1002 1.1 cube
1003 1.1 cube if (m != NULL)
1004 1.1 cube m_freem(m);
1005 1.1 cube
1006 1.1 cube out:
1007 1.34 ad mutex_exit(&sc->sc_rdlock);
1008 1.95 skrll return error;
1009 1.1 cube }
1010 1.1 cube
1011 1.1 cube static int
1012 1.56 christos tap_fops_stat(file_t *fp, struct stat *st)
1013 1.56 christos {
1014 1.59 drochner int error = 0;
1015 1.57 christos struct tap_softc *sc;
1016 1.78 matt int unit = fp->f_devunit;
1017 1.57 christos
1018 1.57 christos (void)memset(st, 0, sizeof(*st));
1019 1.57 christos
1020 1.56 christos KERNEL_LOCK(1, NULL);
1021 1.57 christos sc = device_lookup_private(&tap_cd, unit);
1022 1.57 christos if (sc == NULL) {
1023 1.57 christos error = ENXIO;
1024 1.57 christos goto out;
1025 1.57 christos }
1026 1.56 christos
1027 1.56 christos st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
1028 1.56 christos st->st_atimespec = sc->sc_atime;
1029 1.56 christos st->st_mtimespec = sc->sc_mtime;
1030 1.56 christos st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
1031 1.57 christos st->st_uid = kauth_cred_geteuid(fp->f_cred);
1032 1.57 christos st->st_gid = kauth_cred_getegid(fp->f_cred);
1033 1.57 christos out:
1034 1.57 christos KERNEL_UNLOCK_ONE(NULL);
1035 1.57 christos return error;
1036 1.56 christos }
1037 1.56 christos
1038 1.56 christos static int
1039 1.1 cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1040 1.1 cube {
1041 1.1 cube return tap_dev_write(minor(dev), uio, flags);
1042 1.1 cube }
1043 1.1 cube
1044 1.1 cube static int
1045 1.41 ad tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1046 1.23 christos kauth_cred_t cred, int flags)
1047 1.1 cube {
1048 1.44 ad int error;
1049 1.44 ad
1050 1.44 ad KERNEL_LOCK(1, NULL);
1051 1.78 matt error = tap_dev_write(fp->f_devunit, uio, flags);
1052 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1053 1.44 ad return error;
1054 1.1 cube }
1055 1.1 cube
1056 1.1 cube static int
1057 1.23 christos tap_dev_write(int unit, struct uio *uio, int flags)
1058 1.1 cube {
1059 1.1 cube struct tap_softc *sc =
1060 1.46 cegger device_lookup_private(&tap_cd, unit);
1061 1.1 cube struct ifnet *ifp;
1062 1.1 cube struct mbuf *m, **mp;
1063 1.1 cube int error = 0;
1064 1.9 bouyer int s;
1065 1.1 cube
1066 1.1 cube if (sc == NULL)
1067 1.95 skrll return ENXIO;
1068 1.1 cube
1069 1.56 christos getnanotime(&sc->sc_mtime);
1070 1.1 cube ifp = &sc->sc_ec.ec_if;
1071 1.1 cube
1072 1.1 cube /* One write, one packet, that's the rule */
1073 1.1 cube MGETHDR(m, M_DONTWAIT, MT_DATA);
1074 1.1 cube if (m == NULL) {
1075 1.1 cube ifp->if_ierrors++;
1076 1.95 skrll return ENOBUFS;
1077 1.1 cube }
1078 1.1 cube m->m_pkthdr.len = uio->uio_resid;
1079 1.1 cube
1080 1.1 cube mp = &m;
1081 1.1 cube while (error == 0 && uio->uio_resid > 0) {
1082 1.1 cube if (*mp != m) {
1083 1.1 cube MGET(*mp, M_DONTWAIT, MT_DATA);
1084 1.1 cube if (*mp == NULL) {
1085 1.1 cube error = ENOBUFS;
1086 1.1 cube break;
1087 1.1 cube }
1088 1.1 cube }
1089 1.1 cube (*mp)->m_len = min(MHLEN, uio->uio_resid);
1090 1.26 christos error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1091 1.1 cube mp = &(*mp)->m_next;
1092 1.1 cube }
1093 1.1 cube if (error) {
1094 1.1 cube ifp->if_ierrors++;
1095 1.1 cube m_freem(m);
1096 1.95 skrll return error;
1097 1.1 cube }
1098 1.1 cube
1099 1.84 ozaki m_set_rcvif(m, ifp);
1100 1.1 cube
1101 1.69 yamt s = splnet();
1102 1.83 ozaki if_input(ifp, m);
1103 1.9 bouyer splx(s);
1104 1.1 cube
1105 1.95 skrll return 0;
1106 1.1 cube }
1107 1.1 cube
1108 1.1 cube static int
1109 1.26 christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1110 1.11 christos struct lwp *l)
1111 1.1 cube {
1112 1.11 christos return tap_dev_ioctl(minor(dev), cmd, data, l);
1113 1.1 cube }
1114 1.1 cube
1115 1.1 cube static int
1116 1.41 ad tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1117 1.1 cube {
1118 1.78 matt return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1119 1.1 cube }
1120 1.1 cube
1121 1.1 cube static int
1122 1.26 christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1123 1.1 cube {
1124 1.66 christos struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1125 1.1 cube
1126 1.1 cube if (sc == NULL)
1127 1.66 christos return ENXIO;
1128 1.1 cube
1129 1.1 cube switch (cmd) {
1130 1.1 cube case FIONREAD:
1131 1.1 cube {
1132 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1133 1.1 cube struct mbuf *m;
1134 1.1 cube int s;
1135 1.1 cube
1136 1.1 cube s = splnet();
1137 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1138 1.1 cube
1139 1.1 cube if (m == NULL)
1140 1.1 cube *(int *)data = 0;
1141 1.1 cube else
1142 1.1 cube *(int *)data = m->m_pkthdr.len;
1143 1.1 cube splx(s);
1144 1.66 christos return 0;
1145 1.95 skrll }
1146 1.1 cube case TIOCSPGRP:
1147 1.1 cube case FIOSETOWN:
1148 1.66 christos return fsetown(&sc->sc_pgid, cmd, data);
1149 1.1 cube case TIOCGPGRP:
1150 1.1 cube case FIOGETOWN:
1151 1.66 christos return fgetown(sc->sc_pgid, cmd, data);
1152 1.1 cube case FIOASYNC:
1153 1.71 yamt if (*(int *)data) {
1154 1.71 yamt if (sc->sc_sih == NULL) {
1155 1.71 yamt sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1156 1.71 yamt tap_softintr, sc);
1157 1.71 yamt if (sc->sc_sih == NULL)
1158 1.71 yamt return EBUSY; /* XXX */
1159 1.71 yamt }
1160 1.1 cube sc->sc_flags |= TAP_ASYNCIO;
1161 1.71 yamt } else {
1162 1.1 cube sc->sc_flags &= ~TAP_ASYNCIO;
1163 1.71 yamt if (sc->sc_sih != NULL) {
1164 1.71 yamt softint_disestablish(sc->sc_sih);
1165 1.71 yamt sc->sc_sih = NULL;
1166 1.71 yamt }
1167 1.71 yamt }
1168 1.66 christos return 0;
1169 1.1 cube case FIONBIO:
1170 1.1 cube if (*(int *)data)
1171 1.1 cube sc->sc_flags |= TAP_NBIO;
1172 1.1 cube else
1173 1.1 cube sc->sc_flags &= ~TAP_NBIO;
1174 1.66 christos return 0;
1175 1.29 christos #ifdef OTAPGIFNAME
1176 1.29 christos case OTAPGIFNAME:
1177 1.29 christos #endif
1178 1.1 cube case TAPGIFNAME:
1179 1.1 cube {
1180 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
1181 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1182 1.1 cube
1183 1.1 cube strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1184 1.66 christos return 0;
1185 1.66 christos }
1186 1.1 cube default:
1187 1.66 christos return ENOTTY;
1188 1.1 cube }
1189 1.1 cube }
1190 1.1 cube
1191 1.1 cube static int
1192 1.11 christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1193 1.1 cube {
1194 1.11 christos return tap_dev_poll(minor(dev), events, l);
1195 1.1 cube }
1196 1.1 cube
1197 1.1 cube static int
1198 1.41 ad tap_fops_poll(file_t *fp, int events)
1199 1.1 cube {
1200 1.78 matt return tap_dev_poll(fp->f_devunit, events, curlwp);
1201 1.1 cube }
1202 1.1 cube
1203 1.1 cube static int
1204 1.11 christos tap_dev_poll(int unit, int events, struct lwp *l)
1205 1.1 cube {
1206 1.1 cube struct tap_softc *sc =
1207 1.46 cegger device_lookup_private(&tap_cd, unit);
1208 1.1 cube int revents = 0;
1209 1.1 cube
1210 1.1 cube if (sc == NULL)
1211 1.28 christos return POLLERR;
1212 1.1 cube
1213 1.1 cube if (events & (POLLIN|POLLRDNORM)) {
1214 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1215 1.1 cube struct mbuf *m;
1216 1.1 cube int s;
1217 1.1 cube
1218 1.1 cube s = splnet();
1219 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1220 1.1 cube
1221 1.1 cube if (m != NULL)
1222 1.1 cube revents |= events & (POLLIN|POLLRDNORM);
1223 1.1 cube else {
1224 1.74 skrll mutex_spin_enter(&sc->sc_kqlock);
1225 1.11 christos selrecord(l, &sc->sc_rsel);
1226 1.74 skrll mutex_spin_exit(&sc->sc_kqlock);
1227 1.1 cube }
1228 1.76 cube splx(s);
1229 1.1 cube }
1230 1.1 cube revents |= events & (POLLOUT|POLLWRNORM);
1231 1.1 cube
1232 1.95 skrll return revents;
1233 1.1 cube }
1234 1.1 cube
1235 1.1 cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1236 1.1 cube tap_kqread };
1237 1.1 cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1238 1.1 cube filt_seltrue };
1239 1.1 cube
1240 1.1 cube static int
1241 1.1 cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1242 1.1 cube {
1243 1.1 cube return tap_dev_kqfilter(minor(dev), kn);
1244 1.1 cube }
1245 1.1 cube
1246 1.1 cube static int
1247 1.41 ad tap_fops_kqfilter(file_t *fp, struct knote *kn)
1248 1.1 cube {
1249 1.78 matt return tap_dev_kqfilter(fp->f_devunit, kn);
1250 1.1 cube }
1251 1.1 cube
1252 1.1 cube static int
1253 1.1 cube tap_dev_kqfilter(int unit, struct knote *kn)
1254 1.1 cube {
1255 1.1 cube struct tap_softc *sc =
1256 1.46 cegger device_lookup_private(&tap_cd, unit);
1257 1.1 cube
1258 1.1 cube if (sc == NULL)
1259 1.95 skrll return ENXIO;
1260 1.1 cube
1261 1.44 ad KERNEL_LOCK(1, NULL);
1262 1.1 cube switch(kn->kn_filter) {
1263 1.1 cube case EVFILT_READ:
1264 1.1 cube kn->kn_fop = &tap_read_filterops;
1265 1.1 cube break;
1266 1.1 cube case EVFILT_WRITE:
1267 1.1 cube kn->kn_fop = &tap_seltrue_filterops;
1268 1.1 cube break;
1269 1.1 cube default:
1270 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1271 1.95 skrll return EINVAL;
1272 1.1 cube }
1273 1.1 cube
1274 1.1 cube kn->kn_hook = sc;
1275 1.74 skrll mutex_spin_enter(&sc->sc_kqlock);
1276 1.1 cube SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1277 1.74 skrll mutex_spin_exit(&sc->sc_kqlock);
1278 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1279 1.95 skrll return 0;
1280 1.1 cube }
1281 1.1 cube
1282 1.1 cube static void
1283 1.1 cube tap_kqdetach(struct knote *kn)
1284 1.1 cube {
1285 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1286 1.1 cube
1287 1.44 ad KERNEL_LOCK(1, NULL);
1288 1.74 skrll mutex_spin_enter(&sc->sc_kqlock);
1289 1.1 cube SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1290 1.74 skrll mutex_spin_exit(&sc->sc_kqlock);
1291 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1292 1.1 cube }
1293 1.1 cube
1294 1.1 cube static int
1295 1.23 christos tap_kqread(struct knote *kn, long hint)
1296 1.1 cube {
1297 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1298 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1299 1.1 cube struct mbuf *m;
1300 1.44 ad int s, rv;
1301 1.1 cube
1302 1.44 ad KERNEL_LOCK(1, NULL);
1303 1.1 cube s = splnet();
1304 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1305 1.1 cube
1306 1.1 cube if (m == NULL)
1307 1.1 cube kn->kn_data = 0;
1308 1.1 cube else
1309 1.1 cube kn->kn_data = m->m_pkthdr.len;
1310 1.1 cube splx(s);
1311 1.44 ad rv = (kn->kn_data != 0 ? 1 : 0);
1312 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1313 1.44 ad return rv;
1314 1.1 cube }
1315 1.1 cube
1316 1.1 cube /*
1317 1.1 cube * sysctl management routines
1318 1.1 cube * You can set the address of an interface through:
1319 1.1 cube * net.link.tap.tap<number>
1320 1.1 cube *
1321 1.1 cube * Note the consistent use of tap_log in order to use
1322 1.1 cube * sysctl_teardown at unload time.
1323 1.1 cube *
1324 1.1 cube * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1325 1.1 cube * blocks register a function in a special section of the kernel
1326 1.1 cube * (called a link set) which is used at init_sysctl() time to cycle
1327 1.1 cube * through all those functions to create the kernel's sysctl tree.
1328 1.1 cube *
1329 1.51 ad * It is not possible to use link sets in a module, so the
1330 1.1 cube * easiest is to simply call our own setup routine at load time.
1331 1.1 cube *
1332 1.1 cube * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1333 1.1 cube * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1334 1.1 cube * whole kernel sysctl tree is built, it is not possible to add any
1335 1.1 cube * permanent node.
1336 1.1 cube *
1337 1.1 cube * It should be noted that we're not saving the sysctlnode pointer
1338 1.1 cube * we are returned when creating the "tap" node. That structure
1339 1.1 cube * cannot be trusted once out of the calling function, as it might
1340 1.1 cube * get reused. So we just save the MIB number, and always give the
1341 1.1 cube * full path starting from the root for later calls to sysctl_createv
1342 1.1 cube * and sysctl_destroyv.
1343 1.1 cube */
1344 1.91 christos static void
1345 1.91 christos sysctl_tap_setup(struct sysctllog **clog)
1346 1.1 cube {
1347 1.10 atatat const struct sysctlnode *node;
1348 1.1 cube int error = 0;
1349 1.1 cube
1350 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL,
1351 1.1 cube CTLFLAG_PERMANENT,
1352 1.1 cube CTLTYPE_NODE, "link", NULL,
1353 1.1 cube NULL, 0, NULL, 0,
1354 1.3 cube CTL_NET, AF_LINK, CTL_EOL)) != 0)
1355 1.1 cube return;
1356 1.1 cube
1357 1.1 cube /*
1358 1.1 cube * The first four parameters of sysctl_createv are for management.
1359 1.1 cube *
1360 1.1 cube * The four that follows, here starting with a '0' for the flags,
1361 1.1 cube * describe the node.
1362 1.1 cube *
1363 1.1 cube * The next series of four set its value, through various possible
1364 1.1 cube * means.
1365 1.1 cube *
1366 1.1 cube * Last but not least, the path to the node is described. That path
1367 1.1 cube * is relative to the given root (third argument). Here we're
1368 1.1 cube * starting from the root.
1369 1.1 cube */
1370 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, &node,
1371 1.1 cube CTLFLAG_PERMANENT,
1372 1.1 cube CTLTYPE_NODE, "tap", NULL,
1373 1.1 cube NULL, 0, NULL, 0,
1374 1.3 cube CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1375 1.1 cube return;
1376 1.1 cube tap_node = node->sysctl_num;
1377 1.1 cube }
1378 1.1 cube
1379 1.1 cube /*
1380 1.1 cube * The helper functions make Andrew Brown's interface really
1381 1.1 cube * shine. It makes possible to create value on the fly whether
1382 1.1 cube * the sysctl value is read or written.
1383 1.1 cube *
1384 1.1 cube * As shown as an example in the man page, the first step is to
1385 1.1 cube * create a copy of the node to have sysctl_lookup work on it.
1386 1.1 cube *
1387 1.1 cube * Here, we have more work to do than just a copy, since we have
1388 1.1 cube * to create the string. The first step is to collect the actual
1389 1.1 cube * value of the node, which is a convenient pointer to the softc
1390 1.1 cube * of the interface. From there we create the string and use it
1391 1.1 cube * as the value, but only for the *copy* of the node.
1392 1.1 cube *
1393 1.1 cube * Then we let sysctl_lookup do the magic, which consists in
1394 1.1 cube * setting oldp and newp as required by the operation. When the
1395 1.1 cube * value is read, that means that the string will be copied to
1396 1.1 cube * the user, and when it is written, the new value will be copied
1397 1.1 cube * over in the addr array.
1398 1.1 cube *
1399 1.1 cube * If newp is NULL, the user was reading the value, so we don't
1400 1.1 cube * have anything else to do. If a new value was written, we
1401 1.1 cube * have to check it.
1402 1.1 cube *
1403 1.1 cube * If it is incorrect, we can return an error and leave 'node' as
1404 1.1 cube * it is: since it is a copy of the actual node, the change will
1405 1.1 cube * be forgotten.
1406 1.1 cube *
1407 1.1 cube * Upon a correct input, we commit the change to the ifnet
1408 1.1 cube * structure of our interface.
1409 1.1 cube */
1410 1.1 cube static int
1411 1.1 cube tap_sysctl_handler(SYSCTLFN_ARGS)
1412 1.1 cube {
1413 1.1 cube struct sysctlnode node;
1414 1.1 cube struct tap_softc *sc;
1415 1.1 cube struct ifnet *ifp;
1416 1.1 cube int error;
1417 1.1 cube size_t len;
1418 1.14 christos char addr[3 * ETHER_ADDR_LEN];
1419 1.32 dyoung uint8_t enaddr[ETHER_ADDR_LEN];
1420 1.1 cube
1421 1.1 cube node = *rnode;
1422 1.1 cube sc = node.sysctl_data;
1423 1.1 cube ifp = &sc->sc_ec.ec_if;
1424 1.31 dyoung (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1425 1.1 cube node.sysctl_data = addr;
1426 1.1 cube error = sysctl_lookup(SYSCTLFN_CALL(&node));
1427 1.1 cube if (error || newp == NULL)
1428 1.95 skrll return error;
1429 1.1 cube
1430 1.1 cube len = strlen(addr);
1431 1.1 cube if (len < 11 || len > 17)
1432 1.95 skrll return EINVAL;
1433 1.1 cube
1434 1.1 cube /* Commit change */
1435 1.65 christos if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1436 1.95 skrll return EINVAL;
1437 1.50 dyoung if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1438 1.95 skrll return error;
1439 1.1 cube }
1440 1.85 christos
1441 1.85 christos /*
1442 1.85 christos * Module infrastructure
1443 1.85 christos */
1444 1.85 christos #include "if_module.h"
1445 1.85 christos
1446 1.85 christos IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
1447