Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.108
      1  1.108  pgoyette /*	$NetBSD: if_tap.c,v 1.108 2019/03/25 09:32:25 pgoyette Exp $	*/
      2    1.1      cube 
      3    1.1      cube /*
      4   1.55        ad  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5    1.1      cube  *  All rights reserved.
      6    1.1      cube  *
      7    1.1      cube  *  Redistribution and use in source and binary forms, with or without
      8    1.1      cube  *  modification, are permitted provided that the following conditions
      9    1.1      cube  *  are met:
     10    1.1      cube  *  1. Redistributions of source code must retain the above copyright
     11    1.1      cube  *     notice, this list of conditions and the following disclaimer.
     12    1.1      cube  *  2. Redistributions in binary form must reproduce the above copyright
     13    1.1      cube  *     notice, this list of conditions and the following disclaimer in the
     14    1.1      cube  *     documentation and/or other materials provided with the distribution.
     15    1.6     perry  *
     16    1.1      cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17    1.1      cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18    1.1      cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19    1.1      cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20    1.1      cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21    1.1      cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22    1.1      cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23    1.1      cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24    1.1      cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25    1.1      cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26    1.1      cube  *  POSSIBILITY OF SUCH DAMAGE.
     27    1.1      cube  */
     28    1.1      cube 
     29    1.1      cube /*
     30    1.1      cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31    1.1      cube  * device to the system, but can also be accessed by userland through a
     32    1.1      cube  * character device interface, which allows reading and injecting frames.
     33    1.1      cube  */
     34    1.1      cube 
     35    1.1      cube #include <sys/cdefs.h>
     36  1.108  pgoyette __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.108 2019/03/25 09:32:25 pgoyette Exp $");
     37    1.1      cube 
     38    1.2      cube #if defined(_KERNEL_OPT)
     39   1.63     pooka 
     40   1.54    plunky #include "opt_modular.h"
     41   1.54    plunky #include "opt_compat_netbsd.h"
     42    1.2      cube #endif
     43    1.1      cube 
     44    1.1      cube #include <sys/param.h>
     45   1.96     skrll #include <sys/atomic.h>
     46    1.1      cube #include <sys/conf.h>
     47   1.70      yamt #include <sys/cprng.h>
     48    1.1      cube #include <sys/device.h>
     49    1.1      cube #include <sys/file.h>
     50    1.1      cube #include <sys/filedesc.h>
     51   1.96     skrll #include <sys/intr.h>
     52   1.96     skrll #include <sys/kauth.h>
     53   1.96     skrll #include <sys/kernel.h>
     54   1.98     skrll #include <sys/kmem.h>
     55   1.96     skrll #include <sys/module.h>
     56   1.96     skrll #include <sys/mutex.h>
     57  1.102  jmcneill #include <sys/condvar.h>
     58    1.1      cube #include <sys/poll.h>
     59   1.54    plunky #include <sys/proc.h>
     60    1.1      cube #include <sys/select.h>
     61    1.1      cube #include <sys/sockio.h>
     62   1.96     skrll #include <sys/stat.h>
     63    1.1      cube #include <sys/sysctl.h>
     64   1.96     skrll #include <sys/systm.h>
     65    1.1      cube 
     66    1.1      cube #include <net/if.h>
     67    1.1      cube #include <net/if_dl.h>
     68    1.1      cube #include <net/if_ether.h>
     69    1.1      cube #include <net/if_media.h>
     70    1.1      cube #include <net/if_tap.h>
     71    1.1      cube #include <net/bpf.h>
     72    1.1      cube 
     73   1.29  christos #include <compat/sys/sockio.h>
     74   1.29  christos 
     75   1.82  christos #include "ioconf.h"
     76   1.82  christos 
     77    1.1      cube /*
     78    1.1      cube  * sysctl node management
     79    1.1      cube  *
     80    1.1      cube  * It's not really possible to use a SYSCTL_SETUP block with
     81   1.51        ad  * current module implementation, so it is easier to just define
     82    1.1      cube  * our own function.
     83    1.1      cube  *
     84    1.1      cube  * The handler function is a "helper" in Andrew Brown's sysctl
     85    1.1      cube  * framework terminology.  It is used as a gateway for sysctl
     86    1.1      cube  * requests over the nodes.
     87    1.1      cube  *
     88    1.1      cube  * tap_log allows the module to log creations of nodes and
     89    1.1      cube  * destroy them all at once using sysctl_teardown.
     90    1.1      cube  */
     91   1.91  christos static int	tap_node;
     92    1.1      cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     93   1.91  christos static void	sysctl_tap_setup(struct sysctllog **);
     94    1.1      cube 
     95    1.1      cube /*
     96   1.68       chs  * Since we're an Ethernet device, we need the 2 following
     97   1.68       chs  * components: a struct ethercom and a struct ifmedia
     98   1.68       chs  * since we don't attach a PHY to ourselves.
     99   1.68       chs  * We could emulate one, but there's no real point.
    100    1.1      cube  */
    101    1.1      cube 
    102    1.1      cube struct tap_softc {
    103   1.40      cube 	device_t	sc_dev;
    104    1.1      cube 	struct ifmedia	sc_im;
    105    1.1      cube 	struct ethercom	sc_ec;
    106    1.1      cube 	int		sc_flags;
    107    1.1      cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    108    1.1      cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    109    1.1      cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    110    1.1      cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
    111    1.1      cube 	struct selinfo	sc_rsel;
    112    1.1      cube 	pid_t		sc_pgid; /* For async. IO */
    113  1.102  jmcneill 	kmutex_t	sc_lock;
    114  1.102  jmcneill 	kcondvar_t	sc_cv;
    115   1.42        ad 	void		*sc_sih;
    116   1.56  christos 	struct timespec sc_atime;
    117   1.56  christos 	struct timespec sc_mtime;
    118   1.56  christos 	struct timespec sc_btime;
    119    1.1      cube };
    120    1.1      cube 
    121    1.1      cube /* autoconf(9) glue */
    122    1.1      cube 
    123   1.40      cube static int	tap_match(device_t, cfdata_t, void *);
    124   1.40      cube static void	tap_attach(device_t, device_t, void *);
    125   1.40      cube static int	tap_detach(device_t, int);
    126    1.1      cube 
    127   1.40      cube CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    128    1.1      cube     tap_match, tap_attach, tap_detach, NULL);
    129    1.1      cube extern struct cfdriver tap_cd;
    130    1.1      cube 
    131    1.1      cube /* Real device access routines */
    132    1.1      cube static int	tap_dev_close(struct tap_softc *);
    133    1.1      cube static int	tap_dev_read(int, struct uio *, int);
    134    1.1      cube static int	tap_dev_write(int, struct uio *, int);
    135   1.26  christos static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    136   1.11  christos static int	tap_dev_poll(int, int, struct lwp *);
    137    1.1      cube static int	tap_dev_kqfilter(int, struct knote *);
    138    1.1      cube 
    139    1.1      cube /* Fileops access routines */
    140   1.41        ad static int	tap_fops_close(file_t *);
    141   1.41        ad static int	tap_fops_read(file_t *, off_t *, struct uio *,
    142   1.17      elad     kauth_cred_t, int);
    143   1.41        ad static int	tap_fops_write(file_t *, off_t *, struct uio *,
    144   1.17      elad     kauth_cred_t, int);
    145   1.41        ad static int	tap_fops_ioctl(file_t *, u_long, void *);
    146   1.41        ad static int	tap_fops_poll(file_t *, int);
    147   1.56  christos static int	tap_fops_stat(file_t *, struct stat *);
    148   1.41        ad static int	tap_fops_kqfilter(file_t *, struct knote *);
    149    1.1      cube 
    150    1.1      cube static const struct fileops tap_fileops = {
    151  1.104  christos 	.fo_name = "tap",
    152   1.55        ad 	.fo_read = tap_fops_read,
    153   1.55        ad 	.fo_write = tap_fops_write,
    154   1.55        ad 	.fo_ioctl = tap_fops_ioctl,
    155   1.55        ad 	.fo_fcntl = fnullop_fcntl,
    156   1.55        ad 	.fo_poll = tap_fops_poll,
    157   1.56  christos 	.fo_stat = tap_fops_stat,
    158   1.55        ad 	.fo_close = tap_fops_close,
    159   1.55        ad 	.fo_kqfilter = tap_fops_kqfilter,
    160   1.62       dsl 	.fo_restart = fnullop_restart,
    161    1.1      cube };
    162    1.1      cube 
    163    1.1      cube /* Helper for cloning open() */
    164   1.11  christos static int	tap_dev_cloner(struct lwp *);
    165    1.1      cube 
    166    1.1      cube /* Character device routines */
    167   1.11  christos static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    168   1.11  christos static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    169    1.1      cube static int	tap_cdev_read(dev_t, struct uio *, int);
    170    1.1      cube static int	tap_cdev_write(dev_t, struct uio *, int);
    171   1.26  christos static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    172   1.11  christos static int	tap_cdev_poll(dev_t, int, struct lwp *);
    173    1.1      cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    174    1.1      cube 
    175    1.1      cube const struct cdevsw tap_cdevsw = {
    176   1.73  dholland 	.d_open = tap_cdev_open,
    177   1.73  dholland 	.d_close = tap_cdev_close,
    178   1.73  dholland 	.d_read = tap_cdev_read,
    179   1.73  dholland 	.d_write = tap_cdev_write,
    180   1.73  dholland 	.d_ioctl = tap_cdev_ioctl,
    181   1.73  dholland 	.d_stop = nostop,
    182   1.73  dholland 	.d_tty = notty,
    183   1.73  dholland 	.d_poll = tap_cdev_poll,
    184   1.73  dholland 	.d_mmap = nommap,
    185   1.73  dholland 	.d_kqfilter = tap_cdev_kqfilter,
    186   1.77  dholland 	.d_discard = nodiscard,
    187  1.102  jmcneill 	.d_flag = D_OTHER | D_MPSAFE
    188    1.1      cube };
    189    1.1      cube 
    190    1.1      cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    191    1.1      cube 
    192    1.1      cube /* kqueue-related routines */
    193    1.1      cube static void	tap_kqdetach(struct knote *);
    194    1.1      cube static int	tap_kqread(struct knote *, long);
    195    1.1      cube 
    196    1.1      cube /*
    197    1.1      cube  * Those are needed by the if_media interface.
    198    1.1      cube  */
    199    1.1      cube 
    200    1.1      cube static int	tap_mediachange(struct ifnet *);
    201    1.1      cube static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    202    1.1      cube 
    203    1.1      cube /*
    204    1.1      cube  * Those are needed by the ifnet interface, and would typically be
    205    1.1      cube  * there for any network interface driver.
    206    1.1      cube  * Some other routines are optional: watchdog and drain.
    207    1.1      cube  */
    208    1.1      cube 
    209    1.1      cube static void	tap_start(struct ifnet *);
    210    1.1      cube static void	tap_stop(struct ifnet *, int);
    211    1.1      cube static int	tap_init(struct ifnet *);
    212   1.26  christos static int	tap_ioctl(struct ifnet *, u_long, void *);
    213    1.1      cube 
    214   1.42        ad /* Internal functions */
    215    1.1      cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    216   1.42        ad static void	tap_softintr(void *);
    217    1.1      cube 
    218    1.1      cube /*
    219    1.1      cube  * tap is a clonable interface, although it is highly unrealistic for
    220    1.1      cube  * an Ethernet device.
    221    1.1      cube  *
    222    1.1      cube  * Here are the bits needed for a clonable interface.
    223    1.1      cube  */
    224    1.1      cube static int	tap_clone_create(struct if_clone *, int);
    225    1.1      cube static int	tap_clone_destroy(struct ifnet *);
    226    1.1      cube 
    227    1.1      cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    228    1.1      cube 					tap_clone_create,
    229    1.1      cube 					tap_clone_destroy);
    230    1.1      cube 
    231   1.97     skrll /* Helper functions shared by the two cloning code paths */
    232    1.1      cube static struct tap_softc *	tap_clone_creator(int);
    233   1.40      cube int	tap_clone_destroyer(device_t);
    234    1.1      cube 
    235   1.86  pgoyette static struct sysctllog *tap_sysctl_clog;
    236   1.87  pgoyette 
    237   1.91  christos #ifdef _MODULE
    238   1.87  pgoyette devmajor_t tap_bmajor = -1, tap_cmajor = -1;
    239   1.86  pgoyette #endif
    240   1.86  pgoyette 
    241   1.85  christos static u_int tap_count;
    242   1.85  christos 
    243    1.1      cube void
    244   1.23  christos tapattach(int n)
    245    1.1      cube {
    246    1.1      cube 
    247   1.85  christos 	/*
    248   1.85  christos 	 * Nothing to do here, initialization is handled by the
    249   1.85  christos 	 * module initialization code in tapinit() below).
    250   1.85  christos 	 */
    251   1.85  christos }
    252    1.1      cube 
    253   1.85  christos static void
    254   1.85  christos tapinit(void)
    255   1.85  christos {
    256   1.99     skrll 	int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    257   1.99     skrll 	if (error) {
    258   1.99     skrll 		aprint_error("%s: unable to register cfattach\n",
    259   1.99     skrll 		    tap_cd.cd_name);
    260   1.99     skrll 		(void)config_cfdriver_detach(&tap_cd);
    261   1.99     skrll 		return;
    262   1.99     skrll 	}
    263   1.95     skrll 
    264    1.1      cube 	if_clone_attach(&tap_cloners);
    265   1.91  christos 	sysctl_tap_setup(&tap_sysctl_clog);
    266   1.86  pgoyette #ifdef _MODULE
    267   1.89  pgoyette 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    268   1.86  pgoyette #endif
    269    1.1      cube }
    270    1.1      cube 
    271   1.85  christos static int
    272   1.85  christos tapdetach(void)
    273   1.85  christos {
    274   1.85  christos 	int error = 0;
    275   1.85  christos 
    276  1.108  pgoyette 	if_clone_detach(&tap_cloners);
    277  1.108  pgoyette #ifdef _MODULE
    278  1.108  pgoyette 	error = devsw_detach(NULL, &tap_cdevsw);
    279  1.108  pgoyette 	if (error != 0)
    280  1.108  pgoyette 		goto out2;
    281  1.108  pgoyette #endif
    282  1.108  pgoyette 
    283  1.108  pgoyette 	if (tap_count != 0) {
    284  1.108  pgoyette 		error = EBUSY;
    285  1.108  pgoyette 		goto out1;
    286  1.108  pgoyette 	}
    287  1.108  pgoyette 
    288  1.108  pgoyette 	error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
    289  1.108  pgoyette 	if (error != 0)
    290  1.108  pgoyette 		goto out1;
    291  1.108  pgoyette 
    292  1.108  pgoyette 	sysctl_teardown(&tap_sysctl_clog);
    293  1.108  pgoyette 
    294  1.108  pgoyette 	return 0;
    295   1.85  christos 
    296  1.108  pgoyette  out1:
    297   1.88  pgoyette #ifdef _MODULE
    298  1.108  pgoyette 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    299   1.91  christos #endif
    300  1.108  pgoyette  out2:
    301  1.108  pgoyette 	if_clone_attach(&tap_cloners);
    302   1.91  christos 
    303   1.85  christos 	return error;
    304   1.85  christos }
    305   1.85  christos 
    306    1.1      cube /* Pretty much useless for a pseudo-device */
    307    1.1      cube static int
    308   1.40      cube tap_match(device_t parent, cfdata_t cfdata, void *arg)
    309    1.1      cube {
    310   1.40      cube 
    311   1.95     skrll 	return 1;
    312    1.1      cube }
    313    1.1      cube 
    314    1.1      cube void
    315   1.40      cube tap_attach(device_t parent, device_t self, void *aux)
    316    1.1      cube {
    317   1.40      cube 	struct tap_softc *sc = device_private(self);
    318    1.1      cube 	struct ifnet *ifp;
    319   1.18    kardel 	const struct sysctlnode *node;
    320   1.54    plunky 	int error;
    321   1.38      matt 	uint8_t enaddr[ETHER_ADDR_LEN] =
    322    1.7      cube 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    323   1.14  christos 	char enaddrstr[3 * ETHER_ADDR_LEN];
    324    1.1      cube 
    325   1.40      cube 	sc->sc_dev = self;
    326   1.71      yamt 	sc->sc_sih = NULL;
    327   1.56  christos 	getnanotime(&sc->sc_btime);
    328   1.56  christos 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    329   1.80     ozaki 	sc->sc_flags = 0;
    330   1.80     ozaki 	selinit(&sc->sc_rsel);
    331   1.80     ozaki 
    332  1.102  jmcneill 	cv_init(&sc->sc_cv, "tapread");
    333  1.102  jmcneill 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
    334   1.40      cube 
    335   1.48      hans 	if (!pmf_device_register(self, NULL, NULL))
    336   1.48      hans 		aprint_error_dev(self, "couldn't establish power handler\n");
    337   1.48      hans 
    338    1.1      cube 	/*
    339    1.1      cube 	 * In order to obtain unique initial Ethernet address on a host,
    340   1.70      yamt 	 * do some randomisation.  It's not meant for anything but avoiding
    341   1.70      yamt 	 * hard-coding an address.
    342    1.1      cube 	 */
    343   1.70      yamt 	cprng_fast(&enaddr[3], 3);
    344    1.1      cube 
    345   1.40      cube 	aprint_verbose_dev(self, "Ethernet address %s\n",
    346   1.14  christos 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    347    1.1      cube 
    348    1.1      cube 	/*
    349    1.1      cube 	 * Why 1000baseT? Why not? You can add more.
    350    1.1      cube 	 *
    351    1.1      cube 	 * Note that there are 3 steps: init, one or several additions to
    352    1.1      cube 	 * list of supported media, and in the end, the selection of one
    353    1.1      cube 	 * of them.
    354    1.1      cube 	 */
    355    1.1      cube 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    356    1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    357    1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    358    1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    359    1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    360    1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    361    1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    362    1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    363    1.1      cube 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    364    1.1      cube 
    365    1.1      cube 	/*
    366    1.1      cube 	 * One should note that an interface must do multicast in order
    367    1.1      cube 	 * to support IPv6.
    368    1.1      cube 	 */
    369    1.1      cube 	ifp = &sc->sc_ec.ec_if;
    370   1.40      cube 	strcpy(ifp->if_xname, device_xname(self));
    371    1.1      cube 	ifp->if_softc	= sc;
    372    1.1      cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    373  1.105     ozaki 	ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
    374  1.105     ozaki #ifdef NET_MPSAFE
    375  1.105     ozaki 	ifp->if_extflags |= IFEF_MPSAFE;
    376  1.105     ozaki #endif
    377    1.1      cube 	ifp->if_ioctl	= tap_ioctl;
    378    1.1      cube 	ifp->if_start	= tap_start;
    379    1.1      cube 	ifp->if_stop	= tap_stop;
    380    1.1      cube 	ifp->if_init	= tap_init;
    381    1.1      cube 	IFQ_SET_READY(&ifp->if_snd);
    382    1.1      cube 
    383    1.1      cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    384    1.1      cube 
    385   1.81     ozaki 	/* Those steps are mandatory for an Ethernet driver. */
    386  1.100   msaitoh 	error = if_initialize(ifp);
    387  1.100   msaitoh 	if (error != 0) {
    388  1.100   msaitoh 		aprint_error_dev(self, "if_initialize failed(%d)\n", error);
    389  1.100   msaitoh 		ifmedia_removeall(&sc->sc_im);
    390  1.100   msaitoh 		pmf_device_deregister(self);
    391  1.102  jmcneill 		mutex_destroy(&sc->sc_lock);
    392  1.100   msaitoh 		seldestroy(&sc->sc_rsel);
    393  1.100   msaitoh 
    394  1.100   msaitoh 		return; /* Error */
    395  1.100   msaitoh 	}
    396  1.102  jmcneill 	ifp->if_percpuq = if_percpuq_create(ifp);
    397    1.1      cube 	ether_ifattach(ifp, enaddr);
    398   1.81     ozaki 	if_register(ifp);
    399    1.1      cube 
    400    1.1      cube 	/*
    401    1.1      cube 	 * Add a sysctl node for that interface.
    402    1.1      cube 	 *
    403    1.1      cube 	 * The pointer transmitted is not a string, but instead a pointer to
    404    1.1      cube 	 * the softc structure, which we can use to build the string value on
    405    1.1      cube 	 * the fly in the helper function of the node.  See the comments for
    406    1.1      cube 	 * tap_sysctl_handler for details.
    407   1.21      cube 	 *
    408   1.21      cube 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    409   1.21      cube 	 * component.  However, we can allocate a number ourselves, as we are
    410   1.21      cube 	 * the only consumer of the net.link.<iface> node.  In this case, the
    411   1.21      cube 	 * unit number is conveniently used to number the node.  CTL_CREATE
    412   1.21      cube 	 * would just work, too.
    413    1.1      cube 	 */
    414    1.1      cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    415    1.1      cube 	    &node, CTLFLAG_READWRITE,
    416   1.40      cube 	    CTLTYPE_STRING, device_xname(self), NULL,
    417   1.67       dsl 	    tap_sysctl_handler, 0, (void *)sc, 18,
    418   1.40      cube 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    419   1.15   thorpej 	    CTL_EOL)) != 0)
    420  1.100   msaitoh 		aprint_error_dev(self,
    421  1.100   msaitoh 		    "sysctl_createv returned %d, ignoring\n", error);
    422    1.1      cube }
    423    1.1      cube 
    424    1.1      cube /*
    425    1.1      cube  * When detaching, we do the inverse of what is done in the attach
    426    1.1      cube  * routine, in reversed order.
    427    1.1      cube  */
    428    1.1      cube static int
    429   1.40      cube tap_detach(device_t self, int flags)
    430    1.1      cube {
    431   1.40      cube 	struct tap_softc *sc = device_private(self);
    432    1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    433   1.54    plunky 	int error;
    434    1.1      cube 
    435    1.1      cube 	sc->sc_flags |= TAP_GOING;
    436    1.1      cube 	tap_stop(ifp, 1);
    437    1.1      cube 	if_down(ifp);
    438    1.1      cube 
    439   1.71      yamt 	if (sc->sc_sih != NULL) {
    440   1.71      yamt 		softint_disestablish(sc->sc_sih);
    441   1.71      yamt 		sc->sc_sih = NULL;
    442   1.71      yamt 	}
    443   1.42        ad 
    444    1.1      cube 	/*
    445    1.1      cube 	 * Destroying a single leaf is a very straightforward operation using
    446    1.1      cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    447    1.1      cube 	 * CTL_EOL.
    448    1.1      cube 	 */
    449    1.3      cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    450   1.40      cube 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    451   1.40      cube 		aprint_error_dev(self,
    452   1.40      cube 		    "sysctl_destroyv returned %d, ignoring\n", error);
    453    1.1      cube 	ether_ifdetach(ifp);
    454    1.1      cube 	if_detach(ifp);
    455  1.100   msaitoh 	ifmedia_removeall(&sc->sc_im);
    456   1.47     rmind 	seldestroy(&sc->sc_rsel);
    457  1.102  jmcneill 	mutex_destroy(&sc->sc_lock);
    458  1.102  jmcneill 	cv_destroy(&sc->sc_cv);
    459    1.1      cube 
    460   1.49      hans 	pmf_device_deregister(self);
    461   1.49      hans 
    462   1.95     skrll 	return 0;
    463    1.1      cube }
    464    1.1      cube 
    465    1.1      cube /*
    466    1.1      cube  * This function is called by the ifmedia layer to notify the driver
    467    1.1      cube  * that the user requested a media change.  A real driver would
    468    1.1      cube  * reconfigure the hardware.
    469    1.1      cube  */
    470    1.1      cube static int
    471   1.23  christos tap_mediachange(struct ifnet *ifp)
    472    1.1      cube {
    473   1.95     skrll 	return 0;
    474    1.1      cube }
    475    1.1      cube 
    476    1.1      cube /*
    477    1.1      cube  * Here the user asks for the currently used media.
    478    1.1      cube  */
    479    1.1      cube static void
    480    1.1      cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    481    1.1      cube {
    482    1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    483    1.1      cube 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    484    1.1      cube }
    485    1.1      cube 
    486    1.1      cube /*
    487    1.1      cube  * This is the function where we SEND packets.
    488    1.1      cube  *
    489    1.1      cube  * There is no 'receive' equivalent.  A typical driver will get
    490    1.1      cube  * interrupts from the hardware, and from there will inject new packets
    491    1.1      cube  * into the network stack.
    492    1.1      cube  *
    493    1.1      cube  * Once handled, a packet must be freed.  A real driver might not be able
    494    1.1      cube  * to fit all the pending packets into the hardware, and is allowed to
    495    1.1      cube  * return before having sent all the packets.  It should then use the
    496    1.1      cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    497    1.1      cube  *
    498    1.1      cube  * There are also other flags one should check, such as IFF_PAUSE.
    499    1.1      cube  *
    500    1.1      cube  * It is our duty to make packets available to BPF listeners.
    501    1.1      cube  *
    502    1.1      cube  * You should be aware that this function is called by the Ethernet layer
    503    1.1      cube  * at splnet().
    504    1.1      cube  *
    505    1.1      cube  * When the device is opened, we have to pass the packet(s) to the
    506    1.1      cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    507    1.1      cube  * the packets, and we send a signal to the processes waiting to read.
    508    1.1      cube  *
    509    1.1      cube  * wakeup(sc) is the counterpart to the tsleep call in
    510    1.1      cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    511    1.1      cube  * poll(2) (which includes select(2)) listeners.
    512    1.1      cube  */
    513    1.1      cube static void
    514    1.1      cube tap_start(struct ifnet *ifp)
    515    1.1      cube {
    516    1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    517    1.1      cube 	struct mbuf *m0;
    518    1.1      cube 
    519  1.102  jmcneill 	mutex_enter(&sc->sc_lock);
    520    1.1      cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    521    1.1      cube 		/* Simply drop packets */
    522    1.1      cube 		for(;;) {
    523    1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    524    1.1      cube 			if (m0 == NULL)
    525  1.102  jmcneill 				goto done;
    526    1.1      cube 
    527    1.1      cube 			ifp->if_opackets++;
    528  1.106   msaitoh 			bpf_mtap(ifp, m0, BPF_D_OUT);
    529    1.1      cube 
    530    1.1      cube 			m_freem(m0);
    531    1.1      cube 		}
    532    1.1      cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    533    1.1      cube 		ifp->if_flags |= IFF_OACTIVE;
    534  1.102  jmcneill 		cv_broadcast(&sc->sc_cv);
    535   1.39     rmind 		selnotify(&sc->sc_rsel, 0, 1);
    536    1.1      cube 		if (sc->sc_flags & TAP_ASYNCIO)
    537   1.42        ad 			softint_schedule(sc->sc_sih);
    538   1.42        ad 	}
    539  1.102  jmcneill done:
    540  1.102  jmcneill 	mutex_exit(&sc->sc_lock);
    541   1.42        ad }
    542   1.42        ad 
    543   1.42        ad static void
    544   1.42        ad tap_softintr(void *cookie)
    545   1.42        ad {
    546   1.42        ad 	struct tap_softc *sc;
    547   1.42        ad 	struct ifnet *ifp;
    548   1.42        ad 	int a, b;
    549   1.42        ad 
    550   1.42        ad 	sc = cookie;
    551   1.42        ad 
    552   1.42        ad 	if (sc->sc_flags & TAP_ASYNCIO) {
    553   1.42        ad 		ifp = &sc->sc_ec.ec_if;
    554   1.42        ad 		if (ifp->if_flags & IFF_RUNNING) {
    555   1.42        ad 			a = POLL_IN;
    556   1.42        ad 			b = POLLIN|POLLRDNORM;
    557   1.42        ad 		} else {
    558   1.42        ad 			a = POLL_HUP;
    559   1.42        ad 			b = 0;
    560   1.42        ad 		}
    561   1.42        ad 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    562    1.1      cube 	}
    563    1.1      cube }
    564    1.1      cube 
    565    1.1      cube /*
    566    1.1      cube  * A typical driver will only contain the following handlers for
    567    1.1      cube  * ioctl calls, except SIOCSIFPHYADDR.
    568    1.1      cube  * The latter is a hack I used to set the Ethernet address of the
    569    1.1      cube  * faked device.
    570    1.1      cube  *
    571    1.1      cube  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    572    1.1      cube  * called under splnet().
    573    1.1      cube  */
    574    1.1      cube static int
    575   1.26  christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    576    1.1      cube {
    577    1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    578    1.1      cube 	struct ifreq *ifr = (struct ifreq *)data;
    579    1.1      cube 	int s, error;
    580    1.1      cube 
    581    1.1      cube 	s = splnet();
    582    1.1      cube 
    583    1.1      cube 	switch (cmd) {
    584   1.29  christos #ifdef OSIOCSIFMEDIA
    585   1.29  christos 	case OSIOCSIFMEDIA:
    586   1.29  christos #endif
    587    1.1      cube 	case SIOCSIFMEDIA:
    588    1.1      cube 	case SIOCGIFMEDIA:
    589    1.1      cube 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    590    1.1      cube 		break;
    591    1.1      cube 	case SIOCSIFPHYADDR:
    592    1.1      cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    593    1.1      cube 		break;
    594    1.1      cube 	default:
    595    1.1      cube 		error = ether_ioctl(ifp, cmd, data);
    596    1.1      cube 		if (error == ENETRESET)
    597    1.1      cube 			error = 0;
    598    1.1      cube 		break;
    599    1.1      cube 	}
    600    1.1      cube 
    601    1.1      cube 	splx(s);
    602    1.1      cube 
    603   1.95     skrll 	return error;
    604    1.1      cube }
    605    1.1      cube 
    606    1.1      cube /*
    607   1.54    plunky  * Helper function to set Ethernet address.  This has been replaced by
    608   1.54    plunky  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    609    1.1      cube  */
    610    1.1      cube static int
    611   1.23  christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    612    1.1      cube {
    613   1.53    plunky 	const struct sockaddr *sa = &ifra->ifra_addr;
    614    1.1      cube 
    615   1.53    plunky 	if (sa->sa_family != AF_LINK)
    616   1.95     skrll 		return EINVAL;
    617    1.1      cube 
    618   1.53    plunky 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    619    1.1      cube 
    620   1.95     skrll 	return 0;
    621    1.1      cube }
    622    1.1      cube 
    623    1.1      cube /*
    624    1.1      cube  * _init() would typically be called when an interface goes up,
    625    1.1      cube  * meaning it should configure itself into the state in which it
    626    1.1      cube  * can send packets.
    627    1.1      cube  */
    628    1.1      cube static int
    629    1.1      cube tap_init(struct ifnet *ifp)
    630    1.1      cube {
    631    1.1      cube 	ifp->if_flags |= IFF_RUNNING;
    632    1.1      cube 
    633    1.1      cube 	tap_start(ifp);
    634    1.1      cube 
    635   1.95     skrll 	return 0;
    636    1.1      cube }
    637    1.1      cube 
    638    1.1      cube /*
    639    1.1      cube  * _stop() is called when an interface goes down.  It is our
    640    1.1      cube  * responsability to validate that state by clearing the
    641    1.1      cube  * IFF_RUNNING flag.
    642    1.1      cube  *
    643    1.1      cube  * We have to wake up all the sleeping processes to have the pending
    644    1.1      cube  * read requests cancelled.
    645    1.1      cube  */
    646    1.1      cube static void
    647   1.23  christos tap_stop(struct ifnet *ifp, int disable)
    648    1.1      cube {
    649    1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    650    1.1      cube 
    651  1.102  jmcneill 	mutex_enter(&sc->sc_lock);
    652    1.1      cube 	ifp->if_flags &= ~IFF_RUNNING;
    653  1.102  jmcneill 	cv_broadcast(&sc->sc_cv);
    654   1.39     rmind 	selnotify(&sc->sc_rsel, 0, 1);
    655    1.1      cube 	if (sc->sc_flags & TAP_ASYNCIO)
    656   1.42        ad 		softint_schedule(sc->sc_sih);
    657  1.102  jmcneill 	mutex_exit(&sc->sc_lock);
    658    1.1      cube }
    659    1.1      cube 
    660    1.1      cube /*
    661    1.1      cube  * The 'create' command of ifconfig can be used to create
    662    1.1      cube  * any numbered instance of a given device.  Thus we have to
    663    1.1      cube  * make sure we have enough room in cd_devs to create the
    664    1.1      cube  * user-specified instance.  config_attach_pseudo will do this
    665    1.1      cube  * for us.
    666    1.1      cube  */
    667    1.1      cube static int
    668   1.23  christos tap_clone_create(struct if_clone *ifc, int unit)
    669    1.1      cube {
    670    1.1      cube 	if (tap_clone_creator(unit) == NULL) {
    671    1.1      cube 		aprint_error("%s%d: unable to attach an instance\n",
    672   1.99     skrll 		    tap_cd.cd_name, unit);
    673   1.95     skrll 		return ENXIO;
    674    1.1      cube 	}
    675   1.85  christos 	atomic_inc_uint(&tap_count);
    676   1.95     skrll 	return 0;
    677    1.1      cube }
    678    1.1      cube 
    679    1.1      cube /*
    680    1.1      cube  * tap(4) can be cloned by two ways:
    681    1.1      cube  *   using 'ifconfig tap0 create', which will use the network
    682    1.1      cube  *     interface cloning API, and call tap_clone_create above.
    683    1.1      cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    684    1.1      cube  *     See below for an explanation on how this part work.
    685    1.1      cube  */
    686    1.1      cube static struct tap_softc *
    687    1.1      cube tap_clone_creator(int unit)
    688    1.1      cube {
    689   1.98     skrll 	cfdata_t cf;
    690    1.1      cube 
    691   1.98     skrll 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
    692    1.1      cube 	cf->cf_name = tap_cd.cd_name;
    693    1.1      cube 	cf->cf_atname = tap_ca.ca_name;
    694   1.27  drochner 	if (unit == -1) {
    695   1.27  drochner 		/* let autoconf find the first free one */
    696   1.27  drochner 		cf->cf_unit = 0;
    697   1.27  drochner 		cf->cf_fstate = FSTATE_STAR;
    698   1.27  drochner 	} else {
    699   1.27  drochner 		cf->cf_unit = unit;
    700   1.58    plunky 		cf->cf_fstate = FSTATE_NOTFOUND;
    701   1.27  drochner 	}
    702    1.1      cube 
    703   1.40      cube 	return device_private(config_attach_pseudo(cf));
    704    1.1      cube }
    705    1.1      cube 
    706    1.1      cube /*
    707    1.1      cube  * The clean design of if_clone and autoconf(9) makes that part
    708    1.1      cube  * really straightforward.  The second argument of config_detach
    709    1.1      cube  * means neither QUIET nor FORCED.
    710    1.1      cube  */
    711    1.1      cube static int
    712    1.1      cube tap_clone_destroy(struct ifnet *ifp)
    713    1.1      cube {
    714   1.45    dyoung 	struct tap_softc *sc = ifp->if_softc;
    715   1.85  christos 	int error = tap_clone_destroyer(sc->sc_dev);
    716   1.45    dyoung 
    717   1.85  christos 	if (error == 0)
    718   1.90       kre 		atomic_dec_uint(&tap_count);
    719   1.85  christos 	return error;
    720    1.1      cube }
    721    1.1      cube 
    722   1.12      cube int
    723   1.40      cube tap_clone_destroyer(device_t dev)
    724    1.1      cube {
    725   1.40      cube 	cfdata_t cf = device_cfdata(dev);
    726    1.1      cube 	int error;
    727    1.1      cube 
    728    1.1      cube 	if ((error = config_detach(dev, 0)) != 0)
    729   1.40      cube 		aprint_error_dev(dev, "unable to detach instance\n");
    730   1.98     skrll 	kmem_free(cf, sizeof(*cf));
    731    1.1      cube 
    732   1.95     skrll 	return error;
    733    1.1      cube }
    734    1.1      cube 
    735    1.1      cube /*
    736    1.1      cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    737    1.1      cube  * ways:
    738    1.1      cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    739    1.1      cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    740    1.1      cube  *     That interface is destroyed when the process that had it created exits.
    741    1.1      cube  *
    742    1.1      cube  * The first way is managed by the cdevsw structure, and you access interfaces
    743    1.1      cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    744    1.1      cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    745    1.1      cube  *
    746    1.1      cube  * The second way is the so-called "cloning" device.  It's a special minor
    747    1.1      cube  * number (chosen as the maximal number, to allow as much tap devices as
    748    1.1      cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    749    1.1      cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    750    1.1      cube  * tap_dev_cloner.
    751    1.1      cube  *
    752    1.1      cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    753    1.1      cube  * part of open() does nothing but noting that the interface is being used and
    754    1.1      cube  * hence ready to actually handle packets.
    755    1.1      cube  */
    756    1.1      cube 
    757    1.1      cube static int
    758   1.23  christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    759    1.1      cube {
    760    1.1      cube 	struct tap_softc *sc;
    761    1.1      cube 
    762    1.1      cube 	if (minor(dev) == TAP_CLONER)
    763   1.11  christos 		return tap_dev_cloner(l);
    764    1.1      cube 
    765   1.46    cegger 	sc = device_lookup_private(&tap_cd, minor(dev));
    766    1.1      cube 	if (sc == NULL)
    767   1.95     skrll 		return ENXIO;
    768    1.1      cube 
    769    1.1      cube 	/* The device can only be opened once */
    770    1.1      cube 	if (sc->sc_flags & TAP_INUSE)
    771   1.95     skrll 		return EBUSY;
    772    1.1      cube 	sc->sc_flags |= TAP_INUSE;
    773   1.95     skrll 	return 0;
    774    1.1      cube }
    775    1.1      cube 
    776    1.1      cube /*
    777    1.1      cube  * There are several kinds of cloning devices, and the most simple is the one
    778    1.1      cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    779    1.1      cube  * with its own fileops structure (which maps to the various read, write,
    780    1.1      cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    781    1.1      cube  * then actually creates the new tap devices.
    782    1.1      cube  *
    783    1.1      cube  * Once those two steps are successful, we can re-wire the existing file
    784    1.1      cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    785   1.78      matt  * structure as needed (notably f_devunit gets filled with the fifth parameter
    786    1.1      cube  * passed, the unit of the tap device which will allows us identifying the
    787    1.1      cube  * device later), and returns EMOVEFD.
    788    1.1      cube  *
    789    1.1      cube  * That magic value is interpreted by sys_open() which then replaces the
    790    1.1      cube  * current file descriptor by the new one (through a magic member of struct
    791   1.13     pooka  * lwp, l_dupfd).
    792    1.1      cube  *
    793    1.1      cube  * The tap device is flagged as being busy since it otherwise could be
    794    1.1      cube  * externally accessed through the corresponding device node with the cdevsw
    795    1.1      cube  * interface.
    796    1.1      cube  */
    797    1.1      cube 
    798    1.1      cube static int
    799   1.11  christos tap_dev_cloner(struct lwp *l)
    800    1.1      cube {
    801    1.1      cube 	struct tap_softc *sc;
    802   1.41        ad 	file_t *fp;
    803    1.1      cube 	int error, fd;
    804    1.1      cube 
    805   1.41        ad 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    806   1.95     skrll 		return error;
    807    1.1      cube 
    808   1.27  drochner 	if ((sc = tap_clone_creator(-1)) == NULL) {
    809   1.41        ad 		fd_abort(curproc, fp, fd);
    810   1.95     skrll 		return ENXIO;
    811    1.1      cube 	}
    812    1.1      cube 
    813    1.1      cube 	sc->sc_flags |= TAP_INUSE;
    814    1.1      cube 
    815   1.41        ad 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    816   1.40      cube 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    817    1.1      cube }
    818    1.1      cube 
    819    1.1      cube /*
    820    1.1      cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    821    1.1      cube  * really the same whether we are in cdevsw or fileops mode, the close()
    822    1.1      cube  * function is slightly different in the two cases.
    823    1.1      cube  *
    824    1.1      cube  * As for the other, the core of it is shared in tap_dev_close.  What
    825    1.1      cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    826    1.1      cube  * needs another thing:  the interface is destroyed when the processes that
    827    1.1      cube  * created it closes it.
    828    1.1      cube  */
    829    1.1      cube static int
    830   1.23  christos tap_cdev_close(dev_t dev, int flags, int fmt,
    831   1.23  christos     struct lwp *l)
    832    1.1      cube {
    833    1.1      cube 	struct tap_softc *sc =
    834   1.46    cegger 	    device_lookup_private(&tap_cd, minor(dev));
    835    1.1      cube 
    836    1.1      cube 	if (sc == NULL)
    837   1.95     skrll 		return ENXIO;
    838    1.1      cube 
    839    1.1      cube 	return tap_dev_close(sc);
    840    1.1      cube }
    841    1.1      cube 
    842    1.1      cube /*
    843    1.1      cube  * It might happen that the administrator used ifconfig to externally destroy
    844    1.1      cube  * the interface.  In that case, tap_fops_close will be called while
    845    1.1      cube  * tap_detach is already happening.  If we called it again from here, we
    846    1.1      cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    847    1.1      cube  */
    848    1.1      cube static int
    849   1.41        ad tap_fops_close(file_t *fp)
    850    1.1      cube {
    851   1.78      matt 	int unit = fp->f_devunit;
    852    1.1      cube 	struct tap_softc *sc;
    853    1.1      cube 	int error;
    854    1.1      cube 
    855   1.46    cegger 	sc = device_lookup_private(&tap_cd, unit);
    856    1.1      cube 	if (sc == NULL)
    857   1.95     skrll 		return ENXIO;
    858    1.1      cube 
    859    1.1      cube 	/* tap_dev_close currently always succeeds, but it might not
    860    1.1      cube 	 * always be the case. */
    861   1.44        ad 	KERNEL_LOCK(1, NULL);
    862   1.44        ad 	if ((error = tap_dev_close(sc)) != 0) {
    863   1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    864   1.95     skrll 		return error;
    865   1.44        ad 	}
    866    1.1      cube 
    867    1.1      cube 	/* Destroy the device now that it is no longer useful,
    868    1.1      cube 	 * unless it's already being destroyed. */
    869   1.44        ad 	if ((sc->sc_flags & TAP_GOING) != 0) {
    870   1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    871   1.95     skrll 		return 0;
    872   1.44        ad 	}
    873    1.1      cube 
    874   1.44        ad 	error = tap_clone_destroyer(sc->sc_dev);
    875   1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    876   1.44        ad 	return error;
    877    1.1      cube }
    878    1.1      cube 
    879    1.1      cube static int
    880    1.1      cube tap_dev_close(struct tap_softc *sc)
    881    1.1      cube {
    882    1.1      cube 	struct ifnet *ifp;
    883    1.1      cube 	int s;
    884    1.1      cube 
    885    1.1      cube 	s = splnet();
    886    1.1      cube 	/* Let tap_start handle packets again */
    887    1.1      cube 	ifp = &sc->sc_ec.ec_if;
    888    1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    889    1.1      cube 
    890    1.1      cube 	/* Purge output queue */
    891    1.1      cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    892    1.1      cube 		struct mbuf *m;
    893    1.1      cube 
    894    1.1      cube 		for (;;) {
    895    1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    896    1.1      cube 			if (m == NULL)
    897    1.1      cube 				break;
    898    1.1      cube 
    899    1.1      cube 			ifp->if_opackets++;
    900  1.106   msaitoh 			bpf_mtap(ifp, m, BPF_D_OUT);
    901   1.60    plunky 			m_freem(m);
    902    1.1      cube 		}
    903    1.1      cube 	}
    904    1.1      cube 	splx(s);
    905    1.1      cube 
    906   1.71      yamt 	if (sc->sc_sih != NULL) {
    907   1.71      yamt 		softint_disestablish(sc->sc_sih);
    908   1.71      yamt 		sc->sc_sih = NULL;
    909   1.71      yamt 	}
    910    1.1      cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    911    1.1      cube 
    912   1.95     skrll 	return 0;
    913    1.1      cube }
    914    1.1      cube 
    915    1.1      cube static int
    916    1.1      cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    917    1.1      cube {
    918    1.1      cube 	return tap_dev_read(minor(dev), uio, flags);
    919    1.1      cube }
    920    1.1      cube 
    921    1.1      cube static int
    922   1.41        ad tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    923   1.23  christos     kauth_cred_t cred, int flags)
    924    1.1      cube {
    925   1.44        ad 	int error;
    926   1.44        ad 
    927   1.44        ad 	KERNEL_LOCK(1, NULL);
    928   1.78      matt 	error = tap_dev_read(fp->f_devunit, uio, flags);
    929   1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    930   1.44        ad 	return error;
    931    1.1      cube }
    932    1.1      cube 
    933    1.1      cube static int
    934   1.23  christos tap_dev_read(int unit, struct uio *uio, int flags)
    935    1.1      cube {
    936   1.78      matt 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    937    1.1      cube 	struct ifnet *ifp;
    938    1.1      cube 	struct mbuf *m, *n;
    939  1.102  jmcneill 	int error = 0;
    940    1.1      cube 
    941    1.1      cube 	if (sc == NULL)
    942   1.95     skrll 		return ENXIO;
    943    1.1      cube 
    944   1.56  christos 	getnanotime(&sc->sc_atime);
    945   1.56  christos 
    946    1.1      cube 	ifp = &sc->sc_ec.ec_if;
    947    1.1      cube 	if ((ifp->if_flags & IFF_UP) == 0)
    948   1.95     skrll 		return EHOSTDOWN;
    949    1.1      cube 
    950    1.1      cube 	/*
    951    1.1      cube 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    952    1.1      cube 	 */
    953   1.34        ad 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    954  1.102  jmcneill 		if (!mutex_tryenter(&sc->sc_lock))
    955   1.95     skrll 			return EWOULDBLOCK;
    956   1.34        ad 	} else {
    957  1.102  jmcneill 		mutex_enter(&sc->sc_lock);
    958   1.34        ad 	}
    959    1.1      cube 
    960    1.1      cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    961    1.1      cube 		ifp->if_flags &= ~IFF_OACTIVE;
    962    1.1      cube 		if (sc->sc_flags & TAP_NBIO)
    963    1.1      cube 			error = EWOULDBLOCK;
    964    1.1      cube 		else
    965  1.102  jmcneill 			error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
    966   1.52     pooka 
    967  1.102  jmcneill 		if (error != 0) {
    968  1.102  jmcneill 			mutex_exit(&sc->sc_lock);
    969   1.95     skrll 			return error;
    970  1.102  jmcneill 		}
    971    1.1      cube 		/* The device might have been downed */
    972  1.102  jmcneill 		if ((ifp->if_flags & IFF_UP) == 0) {
    973  1.102  jmcneill 			mutex_exit(&sc->sc_lock);
    974   1.95     skrll 			return EHOSTDOWN;
    975   1.34        ad 		}
    976    1.1      cube 	}
    977    1.1      cube 
    978    1.1      cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    979  1.102  jmcneill 	mutex_exit(&sc->sc_lock);
    980  1.102  jmcneill 
    981    1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    982    1.1      cube 	if (m == NULL) {
    983    1.1      cube 		error = 0;
    984    1.1      cube 		goto out;
    985    1.1      cube 	}
    986    1.1      cube 
    987    1.1      cube 	ifp->if_opackets++;
    988  1.106   msaitoh 	bpf_mtap(ifp, m, BPF_D_OUT);
    989    1.1      cube 
    990    1.1      cube 	/*
    991    1.1      cube 	 * One read is one packet.
    992    1.1      cube 	 */
    993    1.1      cube 	do {
    994   1.26  christos 		error = uiomove(mtod(m, void *),
    995  1.107  riastrad 		    uimin(m->m_len, uio->uio_resid), uio);
    996   1.93  christos 		m = n = m_free(m);
    997    1.1      cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    998    1.1      cube 
    999    1.1      cube 	if (m != NULL)
   1000    1.1      cube 		m_freem(m);
   1001    1.1      cube 
   1002    1.1      cube out:
   1003   1.95     skrll 	return error;
   1004    1.1      cube }
   1005    1.1      cube 
   1006    1.1      cube static int
   1007   1.56  christos tap_fops_stat(file_t *fp, struct stat *st)
   1008   1.56  christos {
   1009   1.59  drochner 	int error = 0;
   1010   1.57  christos 	struct tap_softc *sc;
   1011   1.78      matt 	int unit = fp->f_devunit;
   1012   1.57  christos 
   1013   1.57  christos 	(void)memset(st, 0, sizeof(*st));
   1014   1.57  christos 
   1015   1.56  christos 	KERNEL_LOCK(1, NULL);
   1016   1.57  christos 	sc = device_lookup_private(&tap_cd, unit);
   1017   1.57  christos 	if (sc == NULL) {
   1018   1.57  christos 		error = ENXIO;
   1019   1.57  christos 		goto out;
   1020   1.57  christos 	}
   1021   1.56  christos 
   1022   1.56  christos 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
   1023   1.56  christos 	st->st_atimespec = sc->sc_atime;
   1024   1.56  christos 	st->st_mtimespec = sc->sc_mtime;
   1025   1.56  christos 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
   1026   1.57  christos 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1027   1.57  christos 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1028   1.57  christos out:
   1029   1.57  christos 	KERNEL_UNLOCK_ONE(NULL);
   1030   1.57  christos 	return error;
   1031   1.56  christos }
   1032   1.56  christos 
   1033   1.56  christos static int
   1034    1.1      cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1035    1.1      cube {
   1036    1.1      cube 	return tap_dev_write(minor(dev), uio, flags);
   1037    1.1      cube }
   1038    1.1      cube 
   1039    1.1      cube static int
   1040   1.41        ad tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1041   1.23  christos     kauth_cred_t cred, int flags)
   1042    1.1      cube {
   1043   1.44        ad 	int error;
   1044   1.44        ad 
   1045   1.44        ad 	KERNEL_LOCK(1, NULL);
   1046   1.78      matt 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1047   1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1048   1.44        ad 	return error;
   1049    1.1      cube }
   1050    1.1      cube 
   1051    1.1      cube static int
   1052   1.23  christos tap_dev_write(int unit, struct uio *uio, int flags)
   1053    1.1      cube {
   1054    1.1      cube 	struct tap_softc *sc =
   1055   1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1056    1.1      cube 	struct ifnet *ifp;
   1057    1.1      cube 	struct mbuf *m, **mp;
   1058    1.1      cube 	int error = 0;
   1059    1.1      cube 
   1060    1.1      cube 	if (sc == NULL)
   1061   1.95     skrll 		return ENXIO;
   1062    1.1      cube 
   1063   1.56  christos 	getnanotime(&sc->sc_mtime);
   1064    1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1065    1.1      cube 
   1066    1.1      cube 	/* One write, one packet, that's the rule */
   1067    1.1      cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1068    1.1      cube 	if (m == NULL) {
   1069    1.1      cube 		ifp->if_ierrors++;
   1070   1.95     skrll 		return ENOBUFS;
   1071    1.1      cube 	}
   1072    1.1      cube 	m->m_pkthdr.len = uio->uio_resid;
   1073    1.1      cube 
   1074    1.1      cube 	mp = &m;
   1075    1.1      cube 	while (error == 0 && uio->uio_resid > 0) {
   1076    1.1      cube 		if (*mp != m) {
   1077    1.1      cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1078    1.1      cube 			if (*mp == NULL) {
   1079    1.1      cube 				error = ENOBUFS;
   1080    1.1      cube 				break;
   1081    1.1      cube 			}
   1082    1.1      cube 		}
   1083  1.107  riastrad 		(*mp)->m_len = uimin(MHLEN, uio->uio_resid);
   1084   1.26  christos 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1085    1.1      cube 		mp = &(*mp)->m_next;
   1086    1.1      cube 	}
   1087    1.1      cube 	if (error) {
   1088    1.1      cube 		ifp->if_ierrors++;
   1089    1.1      cube 		m_freem(m);
   1090   1.95     skrll 		return error;
   1091    1.1      cube 	}
   1092    1.1      cube 
   1093   1.84     ozaki 	m_set_rcvif(m, ifp);
   1094    1.1      cube 
   1095  1.102  jmcneill 	if_percpuq_enqueue(ifp->if_percpuq, m);
   1096    1.1      cube 
   1097   1.95     skrll 	return 0;
   1098    1.1      cube }
   1099    1.1      cube 
   1100    1.1      cube static int
   1101   1.26  christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1102   1.11  christos     struct lwp *l)
   1103    1.1      cube {
   1104   1.11  christos 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1105    1.1      cube }
   1106    1.1      cube 
   1107    1.1      cube static int
   1108   1.41        ad tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1109    1.1      cube {
   1110   1.78      matt 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1111    1.1      cube }
   1112    1.1      cube 
   1113    1.1      cube static int
   1114   1.26  christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1115    1.1      cube {
   1116   1.66  christos 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1117    1.1      cube 
   1118    1.1      cube 	if (sc == NULL)
   1119   1.66  christos 		return ENXIO;
   1120    1.1      cube 
   1121    1.1      cube 	switch (cmd) {
   1122    1.1      cube 	case FIONREAD:
   1123    1.1      cube 		{
   1124    1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1125    1.1      cube 			struct mbuf *m;
   1126    1.1      cube 			int s;
   1127    1.1      cube 
   1128    1.1      cube 			s = splnet();
   1129    1.1      cube 			IFQ_POLL(&ifp->if_snd, m);
   1130    1.1      cube 
   1131    1.1      cube 			if (m == NULL)
   1132    1.1      cube 				*(int *)data = 0;
   1133    1.1      cube 			else
   1134    1.1      cube 				*(int *)data = m->m_pkthdr.len;
   1135    1.1      cube 			splx(s);
   1136   1.66  christos 			return 0;
   1137   1.95     skrll 		}
   1138    1.1      cube 	case TIOCSPGRP:
   1139    1.1      cube 	case FIOSETOWN:
   1140   1.66  christos 		return fsetown(&sc->sc_pgid, cmd, data);
   1141    1.1      cube 	case TIOCGPGRP:
   1142    1.1      cube 	case FIOGETOWN:
   1143   1.66  christos 		return fgetown(sc->sc_pgid, cmd, data);
   1144    1.1      cube 	case FIOASYNC:
   1145   1.71      yamt 		if (*(int *)data) {
   1146   1.71      yamt 			if (sc->sc_sih == NULL) {
   1147   1.71      yamt 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1148   1.71      yamt 				    tap_softintr, sc);
   1149   1.71      yamt 				if (sc->sc_sih == NULL)
   1150   1.71      yamt 					return EBUSY; /* XXX */
   1151   1.71      yamt 			}
   1152    1.1      cube 			sc->sc_flags |= TAP_ASYNCIO;
   1153   1.71      yamt 		} else {
   1154    1.1      cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1155   1.71      yamt 			if (sc->sc_sih != NULL) {
   1156   1.71      yamt 				softint_disestablish(sc->sc_sih);
   1157   1.71      yamt 				sc->sc_sih = NULL;
   1158   1.71      yamt 			}
   1159   1.71      yamt 		}
   1160   1.66  christos 		return 0;
   1161    1.1      cube 	case FIONBIO:
   1162    1.1      cube 		if (*(int *)data)
   1163    1.1      cube 			sc->sc_flags |= TAP_NBIO;
   1164    1.1      cube 		else
   1165    1.1      cube 			sc->sc_flags &= ~TAP_NBIO;
   1166   1.66  christos 		return 0;
   1167   1.29  christos #ifdef OTAPGIFNAME
   1168   1.29  christos 	case OTAPGIFNAME:
   1169   1.29  christos #endif
   1170    1.1      cube 	case TAPGIFNAME:
   1171    1.1      cube 		{
   1172    1.1      cube 			struct ifreq *ifr = (struct ifreq *)data;
   1173    1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1174    1.1      cube 
   1175    1.1      cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1176   1.66  christos 			return 0;
   1177   1.66  christos 		}
   1178    1.1      cube 	default:
   1179   1.66  christos 		return ENOTTY;
   1180    1.1      cube 	}
   1181    1.1      cube }
   1182    1.1      cube 
   1183    1.1      cube static int
   1184   1.11  christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1185    1.1      cube {
   1186   1.11  christos 	return tap_dev_poll(minor(dev), events, l);
   1187    1.1      cube }
   1188    1.1      cube 
   1189    1.1      cube static int
   1190   1.41        ad tap_fops_poll(file_t *fp, int events)
   1191    1.1      cube {
   1192   1.78      matt 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1193    1.1      cube }
   1194    1.1      cube 
   1195    1.1      cube static int
   1196   1.11  christos tap_dev_poll(int unit, int events, struct lwp *l)
   1197    1.1      cube {
   1198    1.1      cube 	struct tap_softc *sc =
   1199   1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1200    1.1      cube 	int revents = 0;
   1201    1.1      cube 
   1202    1.1      cube 	if (sc == NULL)
   1203   1.28  christos 		return POLLERR;
   1204    1.1      cube 
   1205    1.1      cube 	if (events & (POLLIN|POLLRDNORM)) {
   1206    1.1      cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1207    1.1      cube 		struct mbuf *m;
   1208    1.1      cube 		int s;
   1209    1.1      cube 
   1210    1.1      cube 		s = splnet();
   1211    1.1      cube 		IFQ_POLL(&ifp->if_snd, m);
   1212    1.1      cube 
   1213    1.1      cube 		if (m != NULL)
   1214    1.1      cube 			revents |= events & (POLLIN|POLLRDNORM);
   1215    1.1      cube 		else {
   1216  1.102  jmcneill 			mutex_spin_enter(&sc->sc_lock);
   1217   1.11  christos 			selrecord(l, &sc->sc_rsel);
   1218  1.102  jmcneill 			mutex_spin_exit(&sc->sc_lock);
   1219    1.1      cube 		}
   1220   1.76      cube 		splx(s);
   1221    1.1      cube 	}
   1222    1.1      cube 	revents |= events & (POLLOUT|POLLWRNORM);
   1223    1.1      cube 
   1224   1.95     skrll 	return revents;
   1225    1.1      cube }
   1226    1.1      cube 
   1227    1.1      cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1228    1.1      cube 	tap_kqread };
   1229    1.1      cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1230    1.1      cube 	filt_seltrue };
   1231    1.1      cube 
   1232    1.1      cube static int
   1233    1.1      cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1234    1.1      cube {
   1235    1.1      cube 	return tap_dev_kqfilter(minor(dev), kn);
   1236    1.1      cube }
   1237    1.1      cube 
   1238    1.1      cube static int
   1239   1.41        ad tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1240    1.1      cube {
   1241   1.78      matt 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1242    1.1      cube }
   1243    1.1      cube 
   1244    1.1      cube static int
   1245    1.1      cube tap_dev_kqfilter(int unit, struct knote *kn)
   1246    1.1      cube {
   1247    1.1      cube 	struct tap_softc *sc =
   1248   1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1249    1.1      cube 
   1250    1.1      cube 	if (sc == NULL)
   1251   1.95     skrll 		return ENXIO;
   1252    1.1      cube 
   1253   1.44        ad 	KERNEL_LOCK(1, NULL);
   1254    1.1      cube 	switch(kn->kn_filter) {
   1255    1.1      cube 	case EVFILT_READ:
   1256    1.1      cube 		kn->kn_fop = &tap_read_filterops;
   1257    1.1      cube 		break;
   1258    1.1      cube 	case EVFILT_WRITE:
   1259    1.1      cube 		kn->kn_fop = &tap_seltrue_filterops;
   1260    1.1      cube 		break;
   1261    1.1      cube 	default:
   1262   1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
   1263   1.95     skrll 		return EINVAL;
   1264    1.1      cube 	}
   1265    1.1      cube 
   1266    1.1      cube 	kn->kn_hook = sc;
   1267  1.102  jmcneill 	mutex_spin_enter(&sc->sc_lock);
   1268    1.1      cube 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1269  1.102  jmcneill 	mutex_spin_exit(&sc->sc_lock);
   1270   1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1271   1.95     skrll 	return 0;
   1272    1.1      cube }
   1273    1.1      cube 
   1274    1.1      cube static void
   1275    1.1      cube tap_kqdetach(struct knote *kn)
   1276    1.1      cube {
   1277    1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1278    1.1      cube 
   1279   1.44        ad 	KERNEL_LOCK(1, NULL);
   1280  1.102  jmcneill 	mutex_spin_enter(&sc->sc_lock);
   1281    1.1      cube 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1282  1.102  jmcneill 	mutex_spin_exit(&sc->sc_lock);
   1283   1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1284    1.1      cube }
   1285    1.1      cube 
   1286    1.1      cube static int
   1287   1.23  christos tap_kqread(struct knote *kn, long hint)
   1288    1.1      cube {
   1289    1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1290    1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1291    1.1      cube 	struct mbuf *m;
   1292   1.44        ad 	int s, rv;
   1293    1.1      cube 
   1294   1.44        ad 	KERNEL_LOCK(1, NULL);
   1295    1.1      cube 	s = splnet();
   1296    1.1      cube 	IFQ_POLL(&ifp->if_snd, m);
   1297    1.1      cube 
   1298    1.1      cube 	if (m == NULL)
   1299    1.1      cube 		kn->kn_data = 0;
   1300    1.1      cube 	else
   1301    1.1      cube 		kn->kn_data = m->m_pkthdr.len;
   1302    1.1      cube 	splx(s);
   1303   1.44        ad 	rv = (kn->kn_data != 0 ? 1 : 0);
   1304   1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1305   1.44        ad 	return rv;
   1306    1.1      cube }
   1307    1.1      cube 
   1308    1.1      cube /*
   1309    1.1      cube  * sysctl management routines
   1310    1.1      cube  * You can set the address of an interface through:
   1311    1.1      cube  * net.link.tap.tap<number>
   1312    1.1      cube  *
   1313    1.1      cube  * Note the consistent use of tap_log in order to use
   1314    1.1      cube  * sysctl_teardown at unload time.
   1315    1.1      cube  *
   1316    1.1      cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1317    1.1      cube  * blocks register a function in a special section of the kernel
   1318    1.1      cube  * (called a link set) which is used at init_sysctl() time to cycle
   1319    1.1      cube  * through all those functions to create the kernel's sysctl tree.
   1320    1.1      cube  *
   1321   1.51        ad  * It is not possible to use link sets in a module, so the
   1322    1.1      cube  * easiest is to simply call our own setup routine at load time.
   1323    1.1      cube  *
   1324    1.1      cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1325    1.1      cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1326    1.1      cube  * whole kernel sysctl tree is built, it is not possible to add any
   1327    1.1      cube  * permanent node.
   1328    1.1      cube  *
   1329    1.1      cube  * It should be noted that we're not saving the sysctlnode pointer
   1330    1.1      cube  * we are returned when creating the "tap" node.  That structure
   1331    1.1      cube  * cannot be trusted once out of the calling function, as it might
   1332    1.1      cube  * get reused.  So we just save the MIB number, and always give the
   1333    1.1      cube  * full path starting from the root for later calls to sysctl_createv
   1334    1.1      cube  * and sysctl_destroyv.
   1335    1.1      cube  */
   1336   1.91  christos static void
   1337   1.91  christos sysctl_tap_setup(struct sysctllog **clog)
   1338    1.1      cube {
   1339   1.10    atatat 	const struct sysctlnode *node;
   1340    1.1      cube 	int error = 0;
   1341    1.1      cube 
   1342    1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1343    1.1      cube 	    CTLFLAG_PERMANENT,
   1344    1.1      cube 	    CTLTYPE_NODE, "link", NULL,
   1345    1.1      cube 	    NULL, 0, NULL, 0,
   1346    1.3      cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1347    1.1      cube 		return;
   1348    1.1      cube 
   1349    1.1      cube 	/*
   1350    1.1      cube 	 * The first four parameters of sysctl_createv are for management.
   1351    1.1      cube 	 *
   1352    1.1      cube 	 * The four that follows, here starting with a '0' for the flags,
   1353    1.1      cube 	 * describe the node.
   1354    1.1      cube 	 *
   1355    1.1      cube 	 * The next series of four set its value, through various possible
   1356    1.1      cube 	 * means.
   1357    1.1      cube 	 *
   1358    1.1      cube 	 * Last but not least, the path to the node is described.  That path
   1359    1.1      cube 	 * is relative to the given root (third argument).  Here we're
   1360    1.1      cube 	 * starting from the root.
   1361    1.1      cube 	 */
   1362    1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1363    1.1      cube 	    CTLFLAG_PERMANENT,
   1364    1.1      cube 	    CTLTYPE_NODE, "tap", NULL,
   1365    1.1      cube 	    NULL, 0, NULL, 0,
   1366    1.3      cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1367    1.1      cube 		return;
   1368    1.1      cube 	tap_node = node->sysctl_num;
   1369    1.1      cube }
   1370    1.1      cube 
   1371    1.1      cube /*
   1372    1.1      cube  * The helper functions make Andrew Brown's interface really
   1373    1.1      cube  * shine.  It makes possible to create value on the fly whether
   1374    1.1      cube  * the sysctl value is read or written.
   1375    1.1      cube  *
   1376    1.1      cube  * As shown as an example in the man page, the first step is to
   1377    1.1      cube  * create a copy of the node to have sysctl_lookup work on it.
   1378    1.1      cube  *
   1379    1.1      cube  * Here, we have more work to do than just a copy, since we have
   1380    1.1      cube  * to create the string.  The first step is to collect the actual
   1381    1.1      cube  * value of the node, which is a convenient pointer to the softc
   1382    1.1      cube  * of the interface.  From there we create the string and use it
   1383    1.1      cube  * as the value, but only for the *copy* of the node.
   1384    1.1      cube  *
   1385    1.1      cube  * Then we let sysctl_lookup do the magic, which consists in
   1386    1.1      cube  * setting oldp and newp as required by the operation.  When the
   1387    1.1      cube  * value is read, that means that the string will be copied to
   1388    1.1      cube  * the user, and when it is written, the new value will be copied
   1389    1.1      cube  * over in the addr array.
   1390    1.1      cube  *
   1391    1.1      cube  * If newp is NULL, the user was reading the value, so we don't
   1392    1.1      cube  * have anything else to do.  If a new value was written, we
   1393    1.1      cube  * have to check it.
   1394    1.1      cube  *
   1395    1.1      cube  * If it is incorrect, we can return an error and leave 'node' as
   1396    1.1      cube  * it is:  since it is a copy of the actual node, the change will
   1397    1.1      cube  * be forgotten.
   1398    1.1      cube  *
   1399    1.1      cube  * Upon a correct input, we commit the change to the ifnet
   1400    1.1      cube  * structure of our interface.
   1401    1.1      cube  */
   1402    1.1      cube static int
   1403    1.1      cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1404    1.1      cube {
   1405    1.1      cube 	struct sysctlnode node;
   1406    1.1      cube 	struct tap_softc *sc;
   1407    1.1      cube 	struct ifnet *ifp;
   1408    1.1      cube 	int error;
   1409    1.1      cube 	size_t len;
   1410   1.14  christos 	char addr[3 * ETHER_ADDR_LEN];
   1411   1.32    dyoung 	uint8_t enaddr[ETHER_ADDR_LEN];
   1412    1.1      cube 
   1413    1.1      cube 	node = *rnode;
   1414    1.1      cube 	sc = node.sysctl_data;
   1415    1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1416   1.31    dyoung 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1417    1.1      cube 	node.sysctl_data = addr;
   1418    1.1      cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1419    1.1      cube 	if (error || newp == NULL)
   1420   1.95     skrll 		return error;
   1421    1.1      cube 
   1422    1.1      cube 	len = strlen(addr);
   1423    1.1      cube 	if (len < 11 || len > 17)
   1424   1.95     skrll 		return EINVAL;
   1425    1.1      cube 
   1426    1.1      cube 	/* Commit change */
   1427   1.65  christos 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1428   1.95     skrll 		return EINVAL;
   1429   1.50    dyoung 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1430   1.95     skrll 	return error;
   1431    1.1      cube }
   1432   1.85  christos 
   1433   1.85  christos /*
   1434   1.85  christos  * Module infrastructure
   1435   1.85  christos  */
   1436   1.85  christos #include "if_module.h"
   1437   1.85  christos 
   1438   1.85  christos IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
   1439