Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.120.2.1
      1  1.120.2.1   thorpej /*	$NetBSD: if_tap.c,v 1.120.2.1 2021/01/03 16:35:04 thorpej Exp $	*/
      2        1.1      cube 
      3        1.1      cube /*
      4       1.55        ad  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5        1.1      cube  *  All rights reserved.
      6        1.1      cube  *
      7        1.1      cube  *  Redistribution and use in source and binary forms, with or without
      8        1.1      cube  *  modification, are permitted provided that the following conditions
      9        1.1      cube  *  are met:
     10        1.1      cube  *  1. Redistributions of source code must retain the above copyright
     11        1.1      cube  *     notice, this list of conditions and the following disclaimer.
     12        1.1      cube  *  2. Redistributions in binary form must reproduce the above copyright
     13        1.1      cube  *     notice, this list of conditions and the following disclaimer in the
     14        1.1      cube  *     documentation and/or other materials provided with the distribution.
     15        1.6     perry  *
     16        1.1      cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17        1.1      cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18        1.1      cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19        1.1      cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20        1.1      cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21        1.1      cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22        1.1      cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23        1.1      cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24        1.1      cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25        1.1      cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26        1.1      cube  *  POSSIBILITY OF SUCH DAMAGE.
     27        1.1      cube  */
     28        1.1      cube 
     29        1.1      cube /*
     30        1.1      cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31        1.1      cube  * device to the system, but can also be accessed by userland through a
     32        1.1      cube  * character device interface, which allows reading and injecting frames.
     33        1.1      cube  */
     34        1.1      cube 
     35        1.1      cube #include <sys/cdefs.h>
     36  1.120.2.1   thorpej __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.120.2.1 2021/01/03 16:35:04 thorpej Exp $");
     37        1.1      cube 
     38        1.2      cube #if defined(_KERNEL_OPT)
     39       1.63     pooka 
     40       1.54    plunky #include "opt_modular.h"
     41        1.2      cube #endif
     42        1.1      cube 
     43        1.1      cube #include <sys/param.h>
     44       1.96     skrll #include <sys/atomic.h>
     45        1.1      cube #include <sys/conf.h>
     46       1.70      yamt #include <sys/cprng.h>
     47        1.1      cube #include <sys/device.h>
     48        1.1      cube #include <sys/file.h>
     49        1.1      cube #include <sys/filedesc.h>
     50       1.96     skrll #include <sys/intr.h>
     51       1.96     skrll #include <sys/kauth.h>
     52       1.96     skrll #include <sys/kernel.h>
     53       1.98     skrll #include <sys/kmem.h>
     54       1.96     skrll #include <sys/module.h>
     55       1.96     skrll #include <sys/mutex.h>
     56      1.102  jmcneill #include <sys/condvar.h>
     57        1.1      cube #include <sys/poll.h>
     58       1.54    plunky #include <sys/proc.h>
     59        1.1      cube #include <sys/select.h>
     60        1.1      cube #include <sys/sockio.h>
     61       1.96     skrll #include <sys/stat.h>
     62        1.1      cube #include <sys/sysctl.h>
     63       1.96     skrll #include <sys/systm.h>
     64        1.1      cube 
     65        1.1      cube #include <net/if.h>
     66        1.1      cube #include <net/if_dl.h>
     67        1.1      cube #include <net/if_ether.h>
     68        1.1      cube #include <net/if_tap.h>
     69        1.1      cube #include <net/bpf.h>
     70        1.1      cube 
     71       1.82  christos #include "ioconf.h"
     72       1.82  christos 
     73        1.1      cube /*
     74        1.1      cube  * sysctl node management
     75        1.1      cube  *
     76        1.1      cube  * It's not really possible to use a SYSCTL_SETUP block with
     77       1.51        ad  * current module implementation, so it is easier to just define
     78        1.1      cube  * our own function.
     79        1.1      cube  *
     80        1.1      cube  * The handler function is a "helper" in Andrew Brown's sysctl
     81        1.1      cube  * framework terminology.  It is used as a gateway for sysctl
     82        1.1      cube  * requests over the nodes.
     83        1.1      cube  *
     84        1.1      cube  * tap_log allows the module to log creations of nodes and
     85        1.1      cube  * destroy them all at once using sysctl_teardown.
     86        1.1      cube  */
     87       1.91  christos static int	tap_node;
     88        1.1      cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     89       1.91  christos static void	sysctl_tap_setup(struct sysctllog **);
     90        1.1      cube 
     91        1.1      cube struct tap_softc {
     92       1.40      cube 	device_t	sc_dev;
     93        1.1      cube 	struct ethercom	sc_ec;
     94        1.1      cube 	int		sc_flags;
     95        1.1      cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
     96        1.1      cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
     97        1.1      cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
     98        1.1      cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
     99        1.1      cube 	struct selinfo	sc_rsel;
    100        1.1      cube 	pid_t		sc_pgid; /* For async. IO */
    101      1.102  jmcneill 	kmutex_t	sc_lock;
    102      1.102  jmcneill 	kcondvar_t	sc_cv;
    103       1.42        ad 	void		*sc_sih;
    104       1.56  christos 	struct timespec sc_atime;
    105       1.56  christos 	struct timespec sc_mtime;
    106       1.56  christos 	struct timespec sc_btime;
    107        1.1      cube };
    108        1.1      cube 
    109        1.1      cube /* autoconf(9) glue */
    110        1.1      cube 
    111       1.40      cube static int	tap_match(device_t, cfdata_t, void *);
    112       1.40      cube static void	tap_attach(device_t, device_t, void *);
    113       1.40      cube static int	tap_detach(device_t, int);
    114        1.1      cube 
    115       1.40      cube CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    116        1.1      cube     tap_match, tap_attach, tap_detach, NULL);
    117        1.1      cube extern struct cfdriver tap_cd;
    118        1.1      cube 
    119        1.1      cube /* Real device access routines */
    120        1.1      cube static int	tap_dev_close(struct tap_softc *);
    121        1.1      cube static int	tap_dev_read(int, struct uio *, int);
    122        1.1      cube static int	tap_dev_write(int, struct uio *, int);
    123       1.26  christos static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    124       1.11  christos static int	tap_dev_poll(int, int, struct lwp *);
    125        1.1      cube static int	tap_dev_kqfilter(int, struct knote *);
    126        1.1      cube 
    127        1.1      cube /* Fileops access routines */
    128       1.41        ad static int	tap_fops_close(file_t *);
    129       1.41        ad static int	tap_fops_read(file_t *, off_t *, struct uio *,
    130       1.17      elad     kauth_cred_t, int);
    131       1.41        ad static int	tap_fops_write(file_t *, off_t *, struct uio *,
    132       1.17      elad     kauth_cred_t, int);
    133       1.41        ad static int	tap_fops_ioctl(file_t *, u_long, void *);
    134       1.41        ad static int	tap_fops_poll(file_t *, int);
    135       1.56  christos static int	tap_fops_stat(file_t *, struct stat *);
    136       1.41        ad static int	tap_fops_kqfilter(file_t *, struct knote *);
    137        1.1      cube 
    138        1.1      cube static const struct fileops tap_fileops = {
    139      1.104  christos 	.fo_name = "tap",
    140       1.55        ad 	.fo_read = tap_fops_read,
    141       1.55        ad 	.fo_write = tap_fops_write,
    142       1.55        ad 	.fo_ioctl = tap_fops_ioctl,
    143       1.55        ad 	.fo_fcntl = fnullop_fcntl,
    144       1.55        ad 	.fo_poll = tap_fops_poll,
    145       1.56  christos 	.fo_stat = tap_fops_stat,
    146       1.55        ad 	.fo_close = tap_fops_close,
    147       1.55        ad 	.fo_kqfilter = tap_fops_kqfilter,
    148       1.62       dsl 	.fo_restart = fnullop_restart,
    149        1.1      cube };
    150        1.1      cube 
    151        1.1      cube /* Helper for cloning open() */
    152       1.11  christos static int	tap_dev_cloner(struct lwp *);
    153        1.1      cube 
    154        1.1      cube /* Character device routines */
    155       1.11  christos static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    156       1.11  christos static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    157        1.1      cube static int	tap_cdev_read(dev_t, struct uio *, int);
    158        1.1      cube static int	tap_cdev_write(dev_t, struct uio *, int);
    159       1.26  christos static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    160       1.11  christos static int	tap_cdev_poll(dev_t, int, struct lwp *);
    161        1.1      cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    162        1.1      cube 
    163        1.1      cube const struct cdevsw tap_cdevsw = {
    164       1.73  dholland 	.d_open = tap_cdev_open,
    165       1.73  dholland 	.d_close = tap_cdev_close,
    166       1.73  dholland 	.d_read = tap_cdev_read,
    167       1.73  dholland 	.d_write = tap_cdev_write,
    168       1.73  dholland 	.d_ioctl = tap_cdev_ioctl,
    169       1.73  dholland 	.d_stop = nostop,
    170       1.73  dholland 	.d_tty = notty,
    171       1.73  dholland 	.d_poll = tap_cdev_poll,
    172       1.73  dholland 	.d_mmap = nommap,
    173       1.73  dholland 	.d_kqfilter = tap_cdev_kqfilter,
    174       1.77  dholland 	.d_discard = nodiscard,
    175      1.102  jmcneill 	.d_flag = D_OTHER | D_MPSAFE
    176        1.1      cube };
    177        1.1      cube 
    178        1.1      cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    179        1.1      cube 
    180        1.1      cube /* kqueue-related routines */
    181        1.1      cube static void	tap_kqdetach(struct knote *);
    182        1.1      cube static int	tap_kqread(struct knote *, long);
    183        1.1      cube 
    184        1.1      cube /*
    185        1.1      cube  * Those are needed by the ifnet interface, and would typically be
    186        1.1      cube  * there for any network interface driver.
    187        1.1      cube  * Some other routines are optional: watchdog and drain.
    188        1.1      cube  */
    189        1.1      cube static void	tap_start(struct ifnet *);
    190        1.1      cube static void	tap_stop(struct ifnet *, int);
    191        1.1      cube static int	tap_init(struct ifnet *);
    192       1.26  christos static int	tap_ioctl(struct ifnet *, u_long, void *);
    193        1.1      cube 
    194       1.42        ad /* Internal functions */
    195        1.1      cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    196       1.42        ad static void	tap_softintr(void *);
    197        1.1      cube 
    198        1.1      cube /*
    199        1.1      cube  * tap is a clonable interface, although it is highly unrealistic for
    200        1.1      cube  * an Ethernet device.
    201        1.1      cube  *
    202        1.1      cube  * Here are the bits needed for a clonable interface.
    203        1.1      cube  */
    204        1.1      cube static int	tap_clone_create(struct if_clone *, int);
    205        1.1      cube static int	tap_clone_destroy(struct ifnet *);
    206        1.1      cube 
    207        1.1      cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    208        1.1      cube 					tap_clone_create,
    209        1.1      cube 					tap_clone_destroy);
    210        1.1      cube 
    211       1.97     skrll /* Helper functions shared by the two cloning code paths */
    212        1.1      cube static struct tap_softc *	tap_clone_creator(int);
    213       1.40      cube int	tap_clone_destroyer(device_t);
    214        1.1      cube 
    215       1.86  pgoyette static struct sysctllog *tap_sysctl_clog;
    216       1.87  pgoyette 
    217       1.91  christos #ifdef _MODULE
    218       1.87  pgoyette devmajor_t tap_bmajor = -1, tap_cmajor = -1;
    219       1.86  pgoyette #endif
    220       1.86  pgoyette 
    221       1.85  christos static u_int tap_count;
    222       1.85  christos 
    223        1.1      cube void
    224       1.23  christos tapattach(int n)
    225        1.1      cube {
    226        1.1      cube 
    227       1.85  christos 	/*
    228       1.85  christos 	 * Nothing to do here, initialization is handled by the
    229       1.85  christos 	 * module initialization code in tapinit() below).
    230       1.85  christos 	 */
    231       1.85  christos }
    232        1.1      cube 
    233       1.85  christos static void
    234       1.85  christos tapinit(void)
    235       1.85  christos {
    236       1.99     skrll 	int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    237      1.112   msaitoh 
    238       1.99     skrll 	if (error) {
    239       1.99     skrll 		aprint_error("%s: unable to register cfattach\n",
    240       1.99     skrll 		    tap_cd.cd_name);
    241       1.99     skrll 		(void)config_cfdriver_detach(&tap_cd);
    242       1.99     skrll 		return;
    243       1.99     skrll 	}
    244       1.95     skrll 
    245        1.1      cube 	if_clone_attach(&tap_cloners);
    246       1.91  christos 	sysctl_tap_setup(&tap_sysctl_clog);
    247       1.86  pgoyette #ifdef _MODULE
    248       1.89  pgoyette 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    249       1.86  pgoyette #endif
    250        1.1      cube }
    251        1.1      cube 
    252       1.85  christos static int
    253       1.85  christos tapdetach(void)
    254       1.85  christos {
    255       1.85  christos 	int error = 0;
    256       1.85  christos 
    257      1.108  pgoyette 	if_clone_detach(&tap_cloners);
    258      1.108  pgoyette #ifdef _MODULE
    259      1.108  pgoyette 	error = devsw_detach(NULL, &tap_cdevsw);
    260      1.108  pgoyette 	if (error != 0)
    261      1.108  pgoyette 		goto out2;
    262      1.108  pgoyette #endif
    263      1.108  pgoyette 
    264      1.108  pgoyette 	if (tap_count != 0) {
    265      1.108  pgoyette 		error = EBUSY;
    266      1.108  pgoyette 		goto out1;
    267      1.108  pgoyette 	}
    268      1.108  pgoyette 
    269      1.108  pgoyette 	error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
    270      1.108  pgoyette 	if (error != 0)
    271      1.108  pgoyette 		goto out1;
    272      1.108  pgoyette 
    273      1.108  pgoyette 	sysctl_teardown(&tap_sysctl_clog);
    274      1.108  pgoyette 
    275      1.108  pgoyette 	return 0;
    276       1.85  christos 
    277      1.108  pgoyette  out1:
    278       1.88  pgoyette #ifdef _MODULE
    279      1.108  pgoyette 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    280      1.109  pgoyette  out2:
    281       1.91  christos #endif
    282      1.108  pgoyette 	if_clone_attach(&tap_cloners);
    283       1.91  christos 
    284       1.85  christos 	return error;
    285       1.85  christos }
    286       1.85  christos 
    287        1.1      cube /* Pretty much useless for a pseudo-device */
    288        1.1      cube static int
    289       1.40      cube tap_match(device_t parent, cfdata_t cfdata, void *arg)
    290        1.1      cube {
    291       1.40      cube 
    292       1.95     skrll 	return 1;
    293        1.1      cube }
    294        1.1      cube 
    295        1.1      cube void
    296       1.40      cube tap_attach(device_t parent, device_t self, void *aux)
    297        1.1      cube {
    298       1.40      cube 	struct tap_softc *sc = device_private(self);
    299        1.1      cube 	struct ifnet *ifp;
    300       1.18    kardel 	const struct sysctlnode *node;
    301       1.54    plunky 	int error;
    302       1.38      matt 	uint8_t enaddr[ETHER_ADDR_LEN] =
    303        1.7      cube 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    304       1.14  christos 	char enaddrstr[3 * ETHER_ADDR_LEN];
    305        1.1      cube 
    306       1.40      cube 	sc->sc_dev = self;
    307       1.71      yamt 	sc->sc_sih = NULL;
    308       1.56  christos 	getnanotime(&sc->sc_btime);
    309       1.56  christos 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    310       1.80     ozaki 	sc->sc_flags = 0;
    311       1.80     ozaki 	selinit(&sc->sc_rsel);
    312       1.80     ozaki 
    313      1.102  jmcneill 	cv_init(&sc->sc_cv, "tapread");
    314      1.102  jmcneill 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
    315       1.40      cube 
    316       1.48      hans 	if (!pmf_device_register(self, NULL, NULL))
    317       1.48      hans 		aprint_error_dev(self, "couldn't establish power handler\n");
    318       1.48      hans 
    319        1.1      cube 	/*
    320        1.1      cube 	 * In order to obtain unique initial Ethernet address on a host,
    321       1.70      yamt 	 * do some randomisation.  It's not meant for anything but avoiding
    322       1.70      yamt 	 * hard-coding an address.
    323        1.1      cube 	 */
    324       1.70      yamt 	cprng_fast(&enaddr[3], 3);
    325        1.1      cube 
    326       1.40      cube 	aprint_verbose_dev(self, "Ethernet address %s\n",
    327       1.14  christos 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    328        1.1      cube 
    329        1.1      cube 	/*
    330        1.1      cube 	 * One should note that an interface must do multicast in order
    331        1.1      cube 	 * to support IPv6.
    332        1.1      cube 	 */
    333        1.1      cube 	ifp = &sc->sc_ec.ec_if;
    334       1.40      cube 	strcpy(ifp->if_xname, device_xname(self));
    335        1.1      cube 	ifp->if_softc	= sc;
    336        1.1      cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    337      1.105     ozaki #ifdef NET_MPSAFE
    338      1.119       roy 	ifp->if_extflags = IFEF_MPSAFE;
    339      1.105     ozaki #endif
    340        1.1      cube 	ifp->if_ioctl	= tap_ioctl;
    341        1.1      cube 	ifp->if_start	= tap_start;
    342        1.1      cube 	ifp->if_stop	= tap_stop;
    343        1.1      cube 	ifp->if_init	= tap_init;
    344        1.1      cube 	IFQ_SET_READY(&ifp->if_snd);
    345        1.1      cube 
    346        1.1      cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    347        1.1      cube 
    348       1.81     ozaki 	/* Those steps are mandatory for an Ethernet driver. */
    349      1.100   msaitoh 	error = if_initialize(ifp);
    350      1.100   msaitoh 	if (error != 0) {
    351      1.100   msaitoh 		aprint_error_dev(self, "if_initialize failed(%d)\n", error);
    352      1.100   msaitoh 		pmf_device_deregister(self);
    353      1.102  jmcneill 		mutex_destroy(&sc->sc_lock);
    354      1.100   msaitoh 		seldestroy(&sc->sc_rsel);
    355      1.100   msaitoh 
    356      1.100   msaitoh 		return; /* Error */
    357      1.100   msaitoh 	}
    358      1.102  jmcneill 	ifp->if_percpuq = if_percpuq_create(ifp);
    359        1.1      cube 	ether_ifattach(ifp, enaddr);
    360      1.119       roy 	/* Opening the device will bring the link state up. */
    361      1.119       roy 	ifp->if_link_state = LINK_STATE_DOWN;
    362       1.81     ozaki 	if_register(ifp);
    363        1.1      cube 
    364        1.1      cube 	/*
    365        1.1      cube 	 * Add a sysctl node for that interface.
    366        1.1      cube 	 *
    367        1.1      cube 	 * The pointer transmitted is not a string, but instead a pointer to
    368        1.1      cube 	 * the softc structure, which we can use to build the string value on
    369        1.1      cube 	 * the fly in the helper function of the node.  See the comments for
    370        1.1      cube 	 * tap_sysctl_handler for details.
    371       1.21      cube 	 *
    372       1.21      cube 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    373       1.21      cube 	 * component.  However, we can allocate a number ourselves, as we are
    374       1.21      cube 	 * the only consumer of the net.link.<iface> node.  In this case, the
    375       1.21      cube 	 * unit number is conveniently used to number the node.  CTL_CREATE
    376       1.21      cube 	 * would just work, too.
    377        1.1      cube 	 */
    378        1.1      cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    379        1.1      cube 	    &node, CTLFLAG_READWRITE,
    380       1.40      cube 	    CTLTYPE_STRING, device_xname(self), NULL,
    381       1.67       dsl 	    tap_sysctl_handler, 0, (void *)sc, 18,
    382       1.40      cube 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    383       1.15   thorpej 	    CTL_EOL)) != 0)
    384      1.100   msaitoh 		aprint_error_dev(self,
    385      1.100   msaitoh 		    "sysctl_createv returned %d, ignoring\n", error);
    386        1.1      cube }
    387        1.1      cube 
    388        1.1      cube /*
    389        1.1      cube  * When detaching, we do the inverse of what is done in the attach
    390        1.1      cube  * routine, in reversed order.
    391        1.1      cube  */
    392        1.1      cube static int
    393       1.40      cube tap_detach(device_t self, int flags)
    394        1.1      cube {
    395       1.40      cube 	struct tap_softc *sc = device_private(self);
    396        1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    397       1.54    plunky 	int error;
    398        1.1      cube 
    399        1.1      cube 	sc->sc_flags |= TAP_GOING;
    400        1.1      cube 	tap_stop(ifp, 1);
    401        1.1      cube 	if_down(ifp);
    402        1.1      cube 
    403       1.71      yamt 	if (sc->sc_sih != NULL) {
    404       1.71      yamt 		softint_disestablish(sc->sc_sih);
    405       1.71      yamt 		sc->sc_sih = NULL;
    406       1.71      yamt 	}
    407       1.42        ad 
    408        1.1      cube 	/*
    409        1.1      cube 	 * Destroying a single leaf is a very straightforward operation using
    410        1.1      cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    411        1.1      cube 	 * CTL_EOL.
    412        1.1      cube 	 */
    413        1.3      cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    414       1.40      cube 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    415       1.40      cube 		aprint_error_dev(self,
    416       1.40      cube 		    "sysctl_destroyv returned %d, ignoring\n", error);
    417        1.1      cube 	ether_ifdetach(ifp);
    418        1.1      cube 	if_detach(ifp);
    419       1.47     rmind 	seldestroy(&sc->sc_rsel);
    420      1.102  jmcneill 	mutex_destroy(&sc->sc_lock);
    421      1.102  jmcneill 	cv_destroy(&sc->sc_cv);
    422        1.1      cube 
    423       1.49      hans 	pmf_device_deregister(self);
    424       1.49      hans 
    425       1.95     skrll 	return 0;
    426        1.1      cube }
    427        1.1      cube 
    428        1.1      cube /*
    429        1.1      cube  * This is the function where we SEND packets.
    430        1.1      cube  *
    431        1.1      cube  * There is no 'receive' equivalent.  A typical driver will get
    432        1.1      cube  * interrupts from the hardware, and from there will inject new packets
    433        1.1      cube  * into the network stack.
    434        1.1      cube  *
    435        1.1      cube  * Once handled, a packet must be freed.  A real driver might not be able
    436        1.1      cube  * to fit all the pending packets into the hardware, and is allowed to
    437        1.1      cube  * return before having sent all the packets.  It should then use the
    438        1.1      cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    439        1.1      cube  *
    440        1.1      cube  * There are also other flags one should check, such as IFF_PAUSE.
    441        1.1      cube  *
    442        1.1      cube  * It is our duty to make packets available to BPF listeners.
    443        1.1      cube  *
    444        1.1      cube  * You should be aware that this function is called by the Ethernet layer
    445        1.1      cube  * at splnet().
    446        1.1      cube  *
    447        1.1      cube  * When the device is opened, we have to pass the packet(s) to the
    448        1.1      cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    449        1.1      cube  * the packets, and we send a signal to the processes waiting to read.
    450        1.1      cube  *
    451        1.1      cube  * wakeup(sc) is the counterpart to the tsleep call in
    452        1.1      cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    453        1.1      cube  * poll(2) (which includes select(2)) listeners.
    454        1.1      cube  */
    455        1.1      cube static void
    456        1.1      cube tap_start(struct ifnet *ifp)
    457        1.1      cube {
    458        1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    459        1.1      cube 	struct mbuf *m0;
    460        1.1      cube 
    461      1.102  jmcneill 	mutex_enter(&sc->sc_lock);
    462        1.1      cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    463        1.1      cube 		/* Simply drop packets */
    464      1.112   msaitoh 		for (;;) {
    465        1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    466        1.1      cube 			if (m0 == NULL)
    467      1.102  jmcneill 				goto done;
    468        1.1      cube 
    469      1.116   thorpej 			if_statadd2(ifp, if_opackets, 1, if_obytes, m0->m_len);
    470      1.106   msaitoh 			bpf_mtap(ifp, m0, BPF_D_OUT);
    471        1.1      cube 
    472        1.1      cube 			m_freem(m0);
    473        1.1      cube 		}
    474        1.1      cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    475        1.1      cube 		ifp->if_flags |= IFF_OACTIVE;
    476      1.102  jmcneill 		cv_broadcast(&sc->sc_cv);
    477       1.39     rmind 		selnotify(&sc->sc_rsel, 0, 1);
    478      1.114  knakahar 		if (sc->sc_flags & TAP_ASYNCIO) {
    479      1.114  knakahar 			kpreempt_disable();
    480       1.42        ad 			softint_schedule(sc->sc_sih);
    481      1.114  knakahar 			kpreempt_enable();
    482      1.114  knakahar 		}
    483       1.42        ad 	}
    484      1.102  jmcneill done:
    485      1.102  jmcneill 	mutex_exit(&sc->sc_lock);
    486       1.42        ad }
    487       1.42        ad 
    488       1.42        ad static void
    489       1.42        ad tap_softintr(void *cookie)
    490       1.42        ad {
    491       1.42        ad 	struct tap_softc *sc;
    492       1.42        ad 	struct ifnet *ifp;
    493       1.42        ad 	int a, b;
    494       1.42        ad 
    495       1.42        ad 	sc = cookie;
    496       1.42        ad 
    497       1.42        ad 	if (sc->sc_flags & TAP_ASYNCIO) {
    498       1.42        ad 		ifp = &sc->sc_ec.ec_if;
    499       1.42        ad 		if (ifp->if_flags & IFF_RUNNING) {
    500       1.42        ad 			a = POLL_IN;
    501      1.112   msaitoh 			b = POLLIN | POLLRDNORM;
    502       1.42        ad 		} else {
    503       1.42        ad 			a = POLL_HUP;
    504       1.42        ad 			b = 0;
    505       1.42        ad 		}
    506       1.42        ad 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    507        1.1      cube 	}
    508        1.1      cube }
    509        1.1      cube 
    510        1.1      cube /*
    511        1.1      cube  * A typical driver will only contain the following handlers for
    512        1.1      cube  * ioctl calls, except SIOCSIFPHYADDR.
    513        1.1      cube  * The latter is a hack I used to set the Ethernet address of the
    514        1.1      cube  * faked device.
    515        1.1      cube  *
    516      1.118       roy  * Note that ether_ioctl() has to be called under splnet().
    517        1.1      cube  */
    518        1.1      cube static int
    519       1.26  christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    520        1.1      cube {
    521        1.1      cube 	int s, error;
    522        1.1      cube 
    523        1.1      cube 	s = splnet();
    524        1.1      cube 
    525        1.1      cube 	switch (cmd) {
    526        1.1      cube 	case SIOCSIFPHYADDR:
    527        1.1      cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    528        1.1      cube 		break;
    529        1.1      cube 	default:
    530        1.1      cube 		error = ether_ioctl(ifp, cmd, data);
    531        1.1      cube 		if (error == ENETRESET)
    532        1.1      cube 			error = 0;
    533        1.1      cube 		break;
    534        1.1      cube 	}
    535        1.1      cube 
    536        1.1      cube 	splx(s);
    537        1.1      cube 
    538       1.95     skrll 	return error;
    539        1.1      cube }
    540        1.1      cube 
    541        1.1      cube /*
    542       1.54    plunky  * Helper function to set Ethernet address.  This has been replaced by
    543       1.54    plunky  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    544        1.1      cube  */
    545        1.1      cube static int
    546       1.23  christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    547        1.1      cube {
    548       1.53    plunky 	const struct sockaddr *sa = &ifra->ifra_addr;
    549        1.1      cube 
    550       1.53    plunky 	if (sa->sa_family != AF_LINK)
    551       1.95     skrll 		return EINVAL;
    552        1.1      cube 
    553       1.53    plunky 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    554        1.1      cube 
    555       1.95     skrll 	return 0;
    556        1.1      cube }
    557        1.1      cube 
    558        1.1      cube /*
    559        1.1      cube  * _init() would typically be called when an interface goes up,
    560        1.1      cube  * meaning it should configure itself into the state in which it
    561        1.1      cube  * can send packets.
    562        1.1      cube  */
    563        1.1      cube static int
    564        1.1      cube tap_init(struct ifnet *ifp)
    565        1.1      cube {
    566        1.1      cube 	ifp->if_flags |= IFF_RUNNING;
    567        1.1      cube 
    568        1.1      cube 	tap_start(ifp);
    569        1.1      cube 
    570       1.95     skrll 	return 0;
    571        1.1      cube }
    572        1.1      cube 
    573        1.1      cube /*
    574        1.1      cube  * _stop() is called when an interface goes down.  It is our
    575        1.1      cube  * responsability to validate that state by clearing the
    576        1.1      cube  * IFF_RUNNING flag.
    577        1.1      cube  *
    578        1.1      cube  * We have to wake up all the sleeping processes to have the pending
    579        1.1      cube  * read requests cancelled.
    580        1.1      cube  */
    581        1.1      cube static void
    582       1.23  christos tap_stop(struct ifnet *ifp, int disable)
    583        1.1      cube {
    584        1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    585        1.1      cube 
    586      1.102  jmcneill 	mutex_enter(&sc->sc_lock);
    587        1.1      cube 	ifp->if_flags &= ~IFF_RUNNING;
    588      1.102  jmcneill 	cv_broadcast(&sc->sc_cv);
    589       1.39     rmind 	selnotify(&sc->sc_rsel, 0, 1);
    590      1.114  knakahar 	if (sc->sc_flags & TAP_ASYNCIO) {
    591      1.114  knakahar 		kpreempt_disable();
    592       1.42        ad 		softint_schedule(sc->sc_sih);
    593      1.114  knakahar 		kpreempt_enable();
    594      1.114  knakahar 	}
    595      1.102  jmcneill 	mutex_exit(&sc->sc_lock);
    596        1.1      cube }
    597        1.1      cube 
    598        1.1      cube /*
    599        1.1      cube  * The 'create' command of ifconfig can be used to create
    600        1.1      cube  * any numbered instance of a given device.  Thus we have to
    601        1.1      cube  * make sure we have enough room in cd_devs to create the
    602        1.1      cube  * user-specified instance.  config_attach_pseudo will do this
    603        1.1      cube  * for us.
    604        1.1      cube  */
    605        1.1      cube static int
    606       1.23  christos tap_clone_create(struct if_clone *ifc, int unit)
    607        1.1      cube {
    608      1.112   msaitoh 
    609        1.1      cube 	if (tap_clone_creator(unit) == NULL) {
    610        1.1      cube 		aprint_error("%s%d: unable to attach an instance\n",
    611       1.99     skrll 		    tap_cd.cd_name, unit);
    612       1.95     skrll 		return ENXIO;
    613        1.1      cube 	}
    614       1.85  christos 	atomic_inc_uint(&tap_count);
    615       1.95     skrll 	return 0;
    616        1.1      cube }
    617        1.1      cube 
    618        1.1      cube /*
    619        1.1      cube  * tap(4) can be cloned by two ways:
    620        1.1      cube  *   using 'ifconfig tap0 create', which will use the network
    621        1.1      cube  *     interface cloning API, and call tap_clone_create above.
    622        1.1      cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    623        1.1      cube  *     See below for an explanation on how this part work.
    624        1.1      cube  */
    625        1.1      cube static struct tap_softc *
    626        1.1      cube tap_clone_creator(int unit)
    627        1.1      cube {
    628       1.98     skrll 	cfdata_t cf;
    629        1.1      cube 
    630       1.98     skrll 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
    631        1.1      cube 	cf->cf_name = tap_cd.cd_name;
    632        1.1      cube 	cf->cf_atname = tap_ca.ca_name;
    633       1.27  drochner 	if (unit == -1) {
    634       1.27  drochner 		/* let autoconf find the first free one */
    635       1.27  drochner 		cf->cf_unit = 0;
    636       1.27  drochner 		cf->cf_fstate = FSTATE_STAR;
    637       1.27  drochner 	} else {
    638       1.27  drochner 		cf->cf_unit = unit;
    639       1.58    plunky 		cf->cf_fstate = FSTATE_NOTFOUND;
    640       1.27  drochner 	}
    641        1.1      cube 
    642       1.40      cube 	return device_private(config_attach_pseudo(cf));
    643        1.1      cube }
    644        1.1      cube 
    645        1.1      cube /*
    646        1.1      cube  * The clean design of if_clone and autoconf(9) makes that part
    647        1.1      cube  * really straightforward.  The second argument of config_detach
    648        1.1      cube  * means neither QUIET nor FORCED.
    649        1.1      cube  */
    650        1.1      cube static int
    651        1.1      cube tap_clone_destroy(struct ifnet *ifp)
    652        1.1      cube {
    653       1.45    dyoung 	struct tap_softc *sc = ifp->if_softc;
    654       1.85  christos 	int error = tap_clone_destroyer(sc->sc_dev);
    655       1.45    dyoung 
    656       1.85  christos 	if (error == 0)
    657       1.90       kre 		atomic_dec_uint(&tap_count);
    658       1.85  christos 	return error;
    659        1.1      cube }
    660        1.1      cube 
    661       1.12      cube int
    662       1.40      cube tap_clone_destroyer(device_t dev)
    663        1.1      cube {
    664       1.40      cube 	cfdata_t cf = device_cfdata(dev);
    665        1.1      cube 	int error;
    666        1.1      cube 
    667        1.1      cube 	if ((error = config_detach(dev, 0)) != 0)
    668       1.40      cube 		aprint_error_dev(dev, "unable to detach instance\n");
    669       1.98     skrll 	kmem_free(cf, sizeof(*cf));
    670        1.1      cube 
    671       1.95     skrll 	return error;
    672        1.1      cube }
    673        1.1      cube 
    674        1.1      cube /*
    675        1.1      cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    676        1.1      cube  * ways:
    677        1.1      cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    678        1.1      cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    679        1.1      cube  *     That interface is destroyed when the process that had it created exits.
    680        1.1      cube  *
    681        1.1      cube  * The first way is managed by the cdevsw structure, and you access interfaces
    682        1.1      cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    683        1.1      cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    684        1.1      cube  *
    685        1.1      cube  * The second way is the so-called "cloning" device.  It's a special minor
    686        1.1      cube  * number (chosen as the maximal number, to allow as much tap devices as
    687        1.1      cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    688        1.1      cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    689        1.1      cube  * tap_dev_cloner.
    690        1.1      cube  *
    691        1.1      cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    692        1.1      cube  * part of open() does nothing but noting that the interface is being used and
    693        1.1      cube  * hence ready to actually handle packets.
    694        1.1      cube  */
    695        1.1      cube 
    696        1.1      cube static int
    697       1.23  christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    698        1.1      cube {
    699        1.1      cube 	struct tap_softc *sc;
    700        1.1      cube 
    701        1.1      cube 	if (minor(dev) == TAP_CLONER)
    702       1.11  christos 		return tap_dev_cloner(l);
    703        1.1      cube 
    704       1.46    cegger 	sc = device_lookup_private(&tap_cd, minor(dev));
    705        1.1      cube 	if (sc == NULL)
    706       1.95     skrll 		return ENXIO;
    707        1.1      cube 
    708        1.1      cube 	/* The device can only be opened once */
    709        1.1      cube 	if (sc->sc_flags & TAP_INUSE)
    710       1.95     skrll 		return EBUSY;
    711        1.1      cube 	sc->sc_flags |= TAP_INUSE;
    712      1.119       roy 	if_link_state_change(&sc->sc_ec.ec_if, LINK_STATE_UP);
    713      1.119       roy 
    714       1.95     skrll 	return 0;
    715        1.1      cube }
    716        1.1      cube 
    717        1.1      cube /*
    718        1.1      cube  * There are several kinds of cloning devices, and the most simple is the one
    719        1.1      cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    720        1.1      cube  * with its own fileops structure (which maps to the various read, write,
    721        1.1      cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    722        1.1      cube  * then actually creates the new tap devices.
    723        1.1      cube  *
    724        1.1      cube  * Once those two steps are successful, we can re-wire the existing file
    725        1.1      cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    726       1.78      matt  * structure as needed (notably f_devunit gets filled with the fifth parameter
    727        1.1      cube  * passed, the unit of the tap device which will allows us identifying the
    728        1.1      cube  * device later), and returns EMOVEFD.
    729        1.1      cube  *
    730        1.1      cube  * That magic value is interpreted by sys_open() which then replaces the
    731        1.1      cube  * current file descriptor by the new one (through a magic member of struct
    732       1.13     pooka  * lwp, l_dupfd).
    733        1.1      cube  *
    734        1.1      cube  * The tap device is flagged as being busy since it otherwise could be
    735        1.1      cube  * externally accessed through the corresponding device node with the cdevsw
    736        1.1      cube  * interface.
    737        1.1      cube  */
    738        1.1      cube 
    739        1.1      cube static int
    740       1.11  christos tap_dev_cloner(struct lwp *l)
    741        1.1      cube {
    742        1.1      cube 	struct tap_softc *sc;
    743       1.41        ad 	file_t *fp;
    744        1.1      cube 	int error, fd;
    745        1.1      cube 
    746       1.41        ad 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    747       1.95     skrll 		return error;
    748        1.1      cube 
    749       1.27  drochner 	if ((sc = tap_clone_creator(-1)) == NULL) {
    750       1.41        ad 		fd_abort(curproc, fp, fd);
    751       1.95     skrll 		return ENXIO;
    752        1.1      cube 	}
    753        1.1      cube 
    754        1.1      cube 	sc->sc_flags |= TAP_INUSE;
    755        1.1      cube 
    756      1.112   msaitoh 	return fd_clone(fp, fd, FREAD | FWRITE, &tap_fileops,
    757       1.40      cube 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    758        1.1      cube }
    759        1.1      cube 
    760        1.1      cube /*
    761        1.1      cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    762        1.1      cube  * really the same whether we are in cdevsw or fileops mode, the close()
    763        1.1      cube  * function is slightly different in the two cases.
    764        1.1      cube  *
    765        1.1      cube  * As for the other, the core of it is shared in tap_dev_close.  What
    766        1.1      cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    767        1.1      cube  * needs another thing:  the interface is destroyed when the processes that
    768        1.1      cube  * created it closes it.
    769        1.1      cube  */
    770        1.1      cube static int
    771      1.112   msaitoh tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
    772        1.1      cube {
    773      1.112   msaitoh 	struct tap_softc *sc = device_lookup_private(&tap_cd, minor(dev));
    774        1.1      cube 
    775        1.1      cube 	if (sc == NULL)
    776       1.95     skrll 		return ENXIO;
    777        1.1      cube 
    778        1.1      cube 	return tap_dev_close(sc);
    779        1.1      cube }
    780        1.1      cube 
    781        1.1      cube /*
    782        1.1      cube  * It might happen that the administrator used ifconfig to externally destroy
    783        1.1      cube  * the interface.  In that case, tap_fops_close will be called while
    784        1.1      cube  * tap_detach is already happening.  If we called it again from here, we
    785        1.1      cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    786        1.1      cube  */
    787        1.1      cube static int
    788       1.41        ad tap_fops_close(file_t *fp)
    789        1.1      cube {
    790      1.112   msaitoh 	struct tap_softc *sc;
    791       1.78      matt 	int unit = fp->f_devunit;
    792        1.1      cube 	int error;
    793        1.1      cube 
    794       1.46    cegger 	sc = device_lookup_private(&tap_cd, unit);
    795        1.1      cube 	if (sc == NULL)
    796       1.95     skrll 		return ENXIO;
    797        1.1      cube 
    798        1.1      cube 	/* tap_dev_close currently always succeeds, but it might not
    799        1.1      cube 	 * always be the case. */
    800       1.44        ad 	KERNEL_LOCK(1, NULL);
    801       1.44        ad 	if ((error = tap_dev_close(sc)) != 0) {
    802       1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    803       1.95     skrll 		return error;
    804       1.44        ad 	}
    805        1.1      cube 
    806        1.1      cube 	/* Destroy the device now that it is no longer useful,
    807        1.1      cube 	 * unless it's already being destroyed. */
    808       1.44        ad 	if ((sc->sc_flags & TAP_GOING) != 0) {
    809       1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    810       1.95     skrll 		return 0;
    811       1.44        ad 	}
    812        1.1      cube 
    813       1.44        ad 	error = tap_clone_destroyer(sc->sc_dev);
    814       1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    815       1.44        ad 	return error;
    816        1.1      cube }
    817        1.1      cube 
    818        1.1      cube static int
    819        1.1      cube tap_dev_close(struct tap_softc *sc)
    820        1.1      cube {
    821        1.1      cube 	struct ifnet *ifp;
    822        1.1      cube 	int s;
    823        1.1      cube 
    824        1.1      cube 	s = splnet();
    825        1.1      cube 	/* Let tap_start handle packets again */
    826        1.1      cube 	ifp = &sc->sc_ec.ec_if;
    827        1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    828        1.1      cube 
    829        1.1      cube 	/* Purge output queue */
    830        1.1      cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    831        1.1      cube 		struct mbuf *m;
    832        1.1      cube 
    833        1.1      cube 		for (;;) {
    834        1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    835        1.1      cube 			if (m == NULL)
    836        1.1      cube 				break;
    837        1.1      cube 
    838      1.116   thorpej 			if_statadd2(ifp, if_opackets, 1, if_obytes, m->m_len);
    839      1.106   msaitoh 			bpf_mtap(ifp, m, BPF_D_OUT);
    840       1.60    plunky 			m_freem(m);
    841        1.1      cube 		}
    842        1.1      cube 	}
    843        1.1      cube 	splx(s);
    844        1.1      cube 
    845       1.71      yamt 	if (sc->sc_sih != NULL) {
    846       1.71      yamt 		softint_disestablish(sc->sc_sih);
    847       1.71      yamt 		sc->sc_sih = NULL;
    848       1.71      yamt 	}
    849        1.1      cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    850      1.119       roy 	if_link_state_change(ifp, LINK_STATE_DOWN);
    851        1.1      cube 
    852       1.95     skrll 	return 0;
    853        1.1      cube }
    854        1.1      cube 
    855        1.1      cube static int
    856        1.1      cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    857        1.1      cube {
    858      1.112   msaitoh 
    859        1.1      cube 	return tap_dev_read(minor(dev), uio, flags);
    860        1.1      cube }
    861        1.1      cube 
    862        1.1      cube static int
    863       1.41        ad tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    864       1.23  christos     kauth_cred_t cred, int flags)
    865        1.1      cube {
    866       1.44        ad 	int error;
    867       1.44        ad 
    868       1.44        ad 	KERNEL_LOCK(1, NULL);
    869       1.78      matt 	error = tap_dev_read(fp->f_devunit, uio, flags);
    870       1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    871       1.44        ad 	return error;
    872        1.1      cube }
    873        1.1      cube 
    874        1.1      cube static int
    875       1.23  christos tap_dev_read(int unit, struct uio *uio, int flags)
    876        1.1      cube {
    877       1.78      matt 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    878        1.1      cube 	struct ifnet *ifp;
    879        1.1      cube 	struct mbuf *m, *n;
    880      1.102  jmcneill 	int error = 0;
    881        1.1      cube 
    882        1.1      cube 	if (sc == NULL)
    883       1.95     skrll 		return ENXIO;
    884        1.1      cube 
    885       1.56  christos 	getnanotime(&sc->sc_atime);
    886       1.56  christos 
    887        1.1      cube 	ifp = &sc->sc_ec.ec_if;
    888        1.1      cube 	if ((ifp->if_flags & IFF_UP) == 0)
    889       1.95     skrll 		return EHOSTDOWN;
    890        1.1      cube 
    891      1.112   msaitoh 	/* In the TAP_NBIO case, we have to make sure we won't be sleeping */
    892       1.34        ad 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    893      1.102  jmcneill 		if (!mutex_tryenter(&sc->sc_lock))
    894       1.95     skrll 			return EWOULDBLOCK;
    895      1.112   msaitoh 	} else
    896      1.102  jmcneill 		mutex_enter(&sc->sc_lock);
    897        1.1      cube 
    898        1.1      cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    899        1.1      cube 		ifp->if_flags &= ~IFF_OACTIVE;
    900        1.1      cube 		if (sc->sc_flags & TAP_NBIO)
    901        1.1      cube 			error = EWOULDBLOCK;
    902        1.1      cube 		else
    903      1.102  jmcneill 			error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
    904       1.52     pooka 
    905      1.102  jmcneill 		if (error != 0) {
    906      1.102  jmcneill 			mutex_exit(&sc->sc_lock);
    907       1.95     skrll 			return error;
    908      1.102  jmcneill 		}
    909        1.1      cube 		/* The device might have been downed */
    910      1.102  jmcneill 		if ((ifp->if_flags & IFF_UP) == 0) {
    911      1.102  jmcneill 			mutex_exit(&sc->sc_lock);
    912       1.95     skrll 			return EHOSTDOWN;
    913       1.34        ad 		}
    914        1.1      cube 	}
    915        1.1      cube 
    916        1.1      cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    917      1.102  jmcneill 	mutex_exit(&sc->sc_lock);
    918      1.102  jmcneill 
    919        1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    920        1.1      cube 	if (m == NULL) {
    921        1.1      cube 		error = 0;
    922        1.1      cube 		goto out;
    923        1.1      cube 	}
    924        1.1      cube 
    925      1.116   thorpej 	if_statadd2(ifp, if_opackets, 1,
    926      1.116   thorpej 	    if_obytes, m->m_len);		/* XXX only first in chain */
    927      1.106   msaitoh 	bpf_mtap(ifp, m, BPF_D_OUT);
    928      1.115  christos 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT)) != 0)
    929      1.115  christos 		goto out;
    930      1.115  christos 	if (m == NULL)
    931      1.115  christos 		goto out;
    932        1.1      cube 
    933        1.1      cube 	/*
    934        1.1      cube 	 * One read is one packet.
    935        1.1      cube 	 */
    936        1.1      cube 	do {
    937       1.26  christos 		error = uiomove(mtod(m, void *),
    938      1.107  riastrad 		    uimin(m->m_len, uio->uio_resid), uio);
    939       1.93  christos 		m = n = m_free(m);
    940        1.1      cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    941        1.1      cube 
    942        1.1      cube 	if (m != NULL)
    943        1.1      cube 		m_freem(m);
    944        1.1      cube 
    945        1.1      cube out:
    946       1.95     skrll 	return error;
    947        1.1      cube }
    948        1.1      cube 
    949        1.1      cube static int
    950       1.56  christos tap_fops_stat(file_t *fp, struct stat *st)
    951       1.56  christos {
    952       1.59  drochner 	int error = 0;
    953       1.57  christos 	struct tap_softc *sc;
    954       1.78      matt 	int unit = fp->f_devunit;
    955       1.57  christos 
    956       1.57  christos 	(void)memset(st, 0, sizeof(*st));
    957       1.57  christos 
    958       1.56  christos 	KERNEL_LOCK(1, NULL);
    959       1.57  christos 	sc = device_lookup_private(&tap_cd, unit);
    960       1.57  christos 	if (sc == NULL) {
    961       1.57  christos 		error = ENXIO;
    962       1.57  christos 		goto out;
    963       1.57  christos 	}
    964       1.56  christos 
    965       1.56  christos 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    966       1.56  christos 	st->st_atimespec = sc->sc_atime;
    967       1.56  christos 	st->st_mtimespec = sc->sc_mtime;
    968       1.56  christos 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    969       1.57  christos 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    970       1.57  christos 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    971       1.57  christos out:
    972       1.57  christos 	KERNEL_UNLOCK_ONE(NULL);
    973       1.57  christos 	return error;
    974       1.56  christos }
    975       1.56  christos 
    976       1.56  christos static int
    977        1.1      cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    978        1.1      cube {
    979      1.112   msaitoh 
    980        1.1      cube 	return tap_dev_write(minor(dev), uio, flags);
    981        1.1      cube }
    982        1.1      cube 
    983        1.1      cube static int
    984       1.41        ad tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
    985       1.23  christos     kauth_cred_t cred, int flags)
    986        1.1      cube {
    987       1.44        ad 	int error;
    988       1.44        ad 
    989       1.44        ad 	KERNEL_LOCK(1, NULL);
    990       1.78      matt 	error = tap_dev_write(fp->f_devunit, uio, flags);
    991       1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    992       1.44        ad 	return error;
    993        1.1      cube }
    994        1.1      cube 
    995        1.1      cube static int
    996       1.23  christos tap_dev_write(int unit, struct uio *uio, int flags)
    997        1.1      cube {
    998        1.1      cube 	struct tap_softc *sc =
    999       1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1000        1.1      cube 	struct ifnet *ifp;
   1001        1.1      cube 	struct mbuf *m, **mp;
   1002      1.115  christos 	size_t len = 0;
   1003        1.1      cube 	int error = 0;
   1004        1.1      cube 
   1005        1.1      cube 	if (sc == NULL)
   1006       1.95     skrll 		return ENXIO;
   1007        1.1      cube 
   1008       1.56  christos 	getnanotime(&sc->sc_mtime);
   1009        1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1010        1.1      cube 
   1011        1.1      cube 	/* One write, one packet, that's the rule */
   1012        1.1      cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1013        1.1      cube 	if (m == NULL) {
   1014      1.116   thorpej 		if_statinc(ifp, if_ierrors);
   1015       1.95     skrll 		return ENOBUFS;
   1016        1.1      cube 	}
   1017        1.1      cube 	m->m_pkthdr.len = uio->uio_resid;
   1018        1.1      cube 
   1019        1.1      cube 	mp = &m;
   1020        1.1      cube 	while (error == 0 && uio->uio_resid > 0) {
   1021        1.1      cube 		if (*mp != m) {
   1022        1.1      cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1023        1.1      cube 			if (*mp == NULL) {
   1024        1.1      cube 				error = ENOBUFS;
   1025        1.1      cube 				break;
   1026        1.1      cube 			}
   1027        1.1      cube 		}
   1028      1.107  riastrad 		(*mp)->m_len = uimin(MHLEN, uio->uio_resid);
   1029      1.115  christos 		len += (*mp)->m_len;
   1030       1.26  christos 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1031        1.1      cube 		mp = &(*mp)->m_next;
   1032        1.1      cube 	}
   1033        1.1      cube 	if (error) {
   1034      1.116   thorpej 		if_statinc(ifp, if_ierrors);
   1035        1.1      cube 		m_freem(m);
   1036       1.95     skrll 		return error;
   1037        1.1      cube 	}
   1038        1.1      cube 
   1039       1.84     ozaki 	m_set_rcvif(m, ifp);
   1040        1.1      cube 
   1041      1.116   thorpej 	if_statadd2(ifp, if_ipackets, 1, if_ibytes, len);
   1042      1.115  christos 	bpf_mtap(ifp, m, BPF_D_IN);
   1043      1.115  christos 	if ((error = pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN)) != 0)
   1044      1.115  christos 		return error;
   1045      1.115  christos 	if (m == NULL)
   1046      1.115  christos 		return 0;
   1047      1.115  christos 
   1048      1.102  jmcneill 	if_percpuq_enqueue(ifp->if_percpuq, m);
   1049        1.1      cube 
   1050       1.95     skrll 	return 0;
   1051        1.1      cube }
   1052        1.1      cube 
   1053        1.1      cube static int
   1054      1.112   msaitoh tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
   1055        1.1      cube {
   1056      1.112   msaitoh 
   1057       1.11  christos 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1058        1.1      cube }
   1059        1.1      cube 
   1060        1.1      cube static int
   1061       1.41        ad tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1062        1.1      cube {
   1063      1.112   msaitoh 
   1064       1.78      matt 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1065        1.1      cube }
   1066        1.1      cube 
   1067        1.1      cube static int
   1068       1.26  christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1069        1.1      cube {
   1070       1.66  christos 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1071        1.1      cube 
   1072        1.1      cube 	if (sc == NULL)
   1073       1.66  christos 		return ENXIO;
   1074        1.1      cube 
   1075        1.1      cube 	switch (cmd) {
   1076        1.1      cube 	case FIONREAD:
   1077        1.1      cube 		{
   1078        1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1079        1.1      cube 			struct mbuf *m;
   1080        1.1      cube 			int s;
   1081        1.1      cube 
   1082        1.1      cube 			s = splnet();
   1083        1.1      cube 			IFQ_POLL(&ifp->if_snd, m);
   1084        1.1      cube 
   1085        1.1      cube 			if (m == NULL)
   1086        1.1      cube 				*(int *)data = 0;
   1087        1.1      cube 			else
   1088        1.1      cube 				*(int *)data = m->m_pkthdr.len;
   1089        1.1      cube 			splx(s);
   1090       1.66  christos 			return 0;
   1091       1.95     skrll 		}
   1092        1.1      cube 	case TIOCSPGRP:
   1093        1.1      cube 	case FIOSETOWN:
   1094       1.66  christos 		return fsetown(&sc->sc_pgid, cmd, data);
   1095        1.1      cube 	case TIOCGPGRP:
   1096        1.1      cube 	case FIOGETOWN:
   1097       1.66  christos 		return fgetown(sc->sc_pgid, cmd, data);
   1098        1.1      cube 	case FIOASYNC:
   1099       1.71      yamt 		if (*(int *)data) {
   1100       1.71      yamt 			if (sc->sc_sih == NULL) {
   1101       1.71      yamt 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1102       1.71      yamt 				    tap_softintr, sc);
   1103       1.71      yamt 				if (sc->sc_sih == NULL)
   1104       1.71      yamt 					return EBUSY; /* XXX */
   1105       1.71      yamt 			}
   1106        1.1      cube 			sc->sc_flags |= TAP_ASYNCIO;
   1107       1.71      yamt 		} else {
   1108        1.1      cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1109       1.71      yamt 			if (sc->sc_sih != NULL) {
   1110       1.71      yamt 				softint_disestablish(sc->sc_sih);
   1111       1.71      yamt 				sc->sc_sih = NULL;
   1112       1.71      yamt 			}
   1113       1.71      yamt 		}
   1114       1.66  christos 		return 0;
   1115        1.1      cube 	case FIONBIO:
   1116        1.1      cube 		if (*(int *)data)
   1117        1.1      cube 			sc->sc_flags |= TAP_NBIO;
   1118        1.1      cube 		else
   1119        1.1      cube 			sc->sc_flags &= ~TAP_NBIO;
   1120       1.66  christos 		return 0;
   1121        1.1      cube 	case TAPGIFNAME:
   1122        1.1      cube 		{
   1123        1.1      cube 			struct ifreq *ifr = (struct ifreq *)data;
   1124        1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1125        1.1      cube 
   1126        1.1      cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1127       1.66  christos 			return 0;
   1128       1.66  christos 		}
   1129        1.1      cube 	default:
   1130       1.66  christos 		return ENOTTY;
   1131        1.1      cube 	}
   1132        1.1      cube }
   1133        1.1      cube 
   1134        1.1      cube static int
   1135       1.11  christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1136        1.1      cube {
   1137      1.112   msaitoh 
   1138       1.11  christos 	return tap_dev_poll(minor(dev), events, l);
   1139        1.1      cube }
   1140        1.1      cube 
   1141        1.1      cube static int
   1142       1.41        ad tap_fops_poll(file_t *fp, int events)
   1143        1.1      cube {
   1144      1.112   msaitoh 
   1145       1.78      matt 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1146        1.1      cube }
   1147        1.1      cube 
   1148        1.1      cube static int
   1149       1.11  christos tap_dev_poll(int unit, int events, struct lwp *l)
   1150        1.1      cube {
   1151      1.112   msaitoh 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1152        1.1      cube 	int revents = 0;
   1153        1.1      cube 
   1154        1.1      cube 	if (sc == NULL)
   1155       1.28  christos 		return POLLERR;
   1156        1.1      cube 
   1157      1.112   msaitoh 	if (events & (POLLIN | POLLRDNORM)) {
   1158        1.1      cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1159        1.1      cube 		struct mbuf *m;
   1160        1.1      cube 		int s;
   1161        1.1      cube 
   1162        1.1      cube 		s = splnet();
   1163        1.1      cube 		IFQ_POLL(&ifp->if_snd, m);
   1164        1.1      cube 
   1165        1.1      cube 		if (m != NULL)
   1166      1.112   msaitoh 			revents |= events & (POLLIN | POLLRDNORM);
   1167        1.1      cube 		else {
   1168      1.102  jmcneill 			mutex_spin_enter(&sc->sc_lock);
   1169       1.11  christos 			selrecord(l, &sc->sc_rsel);
   1170      1.102  jmcneill 			mutex_spin_exit(&sc->sc_lock);
   1171        1.1      cube 		}
   1172       1.76      cube 		splx(s);
   1173        1.1      cube 	}
   1174      1.112   msaitoh 	revents |= events & (POLLOUT | POLLWRNORM);
   1175        1.1      cube 
   1176       1.95     skrll 	return revents;
   1177        1.1      cube }
   1178        1.1      cube 
   1179      1.120  christos static struct filterops tap_read_filterops = {
   1180      1.120  christos 	.f_isfd = 1,
   1181      1.120  christos 	.f_attach = NULL,
   1182      1.120  christos 	.f_detach = tap_kqdetach,
   1183      1.120  christos 	.f_event = tap_kqread,
   1184      1.120  christos };
   1185      1.120  christos 
   1186      1.120  christos static struct filterops tap_seltrue_filterops = {
   1187      1.120  christos 	.f_isfd = 1,
   1188      1.120  christos 	.f_attach = NULL,
   1189      1.120  christos 	.f_detach = tap_kqdetach,
   1190      1.120  christos 	.f_event = filt_seltrue,
   1191      1.120  christos };
   1192        1.1      cube 
   1193        1.1      cube static int
   1194        1.1      cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1195        1.1      cube {
   1196      1.112   msaitoh 
   1197        1.1      cube 	return tap_dev_kqfilter(minor(dev), kn);
   1198        1.1      cube }
   1199        1.1      cube 
   1200        1.1      cube static int
   1201       1.41        ad tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1202        1.1      cube {
   1203      1.112   msaitoh 
   1204       1.78      matt 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1205        1.1      cube }
   1206        1.1      cube 
   1207        1.1      cube static int
   1208        1.1      cube tap_dev_kqfilter(int unit, struct knote *kn)
   1209        1.1      cube {
   1210      1.112   msaitoh 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1211        1.1      cube 
   1212        1.1      cube 	if (sc == NULL)
   1213       1.95     skrll 		return ENXIO;
   1214        1.1      cube 
   1215       1.44        ad 	KERNEL_LOCK(1, NULL);
   1216        1.1      cube 	switch(kn->kn_filter) {
   1217        1.1      cube 	case EVFILT_READ:
   1218        1.1      cube 		kn->kn_fop = &tap_read_filterops;
   1219        1.1      cube 		break;
   1220        1.1      cube 	case EVFILT_WRITE:
   1221        1.1      cube 		kn->kn_fop = &tap_seltrue_filterops;
   1222        1.1      cube 		break;
   1223        1.1      cube 	default:
   1224       1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
   1225       1.95     skrll 		return EINVAL;
   1226        1.1      cube 	}
   1227        1.1      cube 
   1228        1.1      cube 	kn->kn_hook = sc;
   1229      1.102  jmcneill 	mutex_spin_enter(&sc->sc_lock);
   1230  1.120.2.1   thorpej 	selrecord_knote(&sc->sc_rsel, kn);
   1231      1.102  jmcneill 	mutex_spin_exit(&sc->sc_lock);
   1232       1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1233       1.95     skrll 	return 0;
   1234        1.1      cube }
   1235        1.1      cube 
   1236        1.1      cube static void
   1237        1.1      cube tap_kqdetach(struct knote *kn)
   1238        1.1      cube {
   1239        1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1240        1.1      cube 
   1241       1.44        ad 	KERNEL_LOCK(1, NULL);
   1242      1.102  jmcneill 	mutex_spin_enter(&sc->sc_lock);
   1243  1.120.2.1   thorpej 	selremove_knote(&sc->sc_rsel, kn);
   1244      1.102  jmcneill 	mutex_spin_exit(&sc->sc_lock);
   1245       1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1246        1.1      cube }
   1247        1.1      cube 
   1248        1.1      cube static int
   1249       1.23  christos tap_kqread(struct knote *kn, long hint)
   1250        1.1      cube {
   1251        1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1252        1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1253        1.1      cube 	struct mbuf *m;
   1254       1.44        ad 	int s, rv;
   1255        1.1      cube 
   1256       1.44        ad 	KERNEL_LOCK(1, NULL);
   1257        1.1      cube 	s = splnet();
   1258        1.1      cube 	IFQ_POLL(&ifp->if_snd, m);
   1259        1.1      cube 
   1260        1.1      cube 	if (m == NULL)
   1261        1.1      cube 		kn->kn_data = 0;
   1262        1.1      cube 	else
   1263        1.1      cube 		kn->kn_data = m->m_pkthdr.len;
   1264        1.1      cube 	splx(s);
   1265       1.44        ad 	rv = (kn->kn_data != 0 ? 1 : 0);
   1266       1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1267       1.44        ad 	return rv;
   1268        1.1      cube }
   1269        1.1      cube 
   1270        1.1      cube /*
   1271        1.1      cube  * sysctl management routines
   1272        1.1      cube  * You can set the address of an interface through:
   1273        1.1      cube  * net.link.tap.tap<number>
   1274        1.1      cube  *
   1275        1.1      cube  * Note the consistent use of tap_log in order to use
   1276        1.1      cube  * sysctl_teardown at unload time.
   1277        1.1      cube  *
   1278        1.1      cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1279        1.1      cube  * blocks register a function in a special section of the kernel
   1280        1.1      cube  * (called a link set) which is used at init_sysctl() time to cycle
   1281        1.1      cube  * through all those functions to create the kernel's sysctl tree.
   1282        1.1      cube  *
   1283       1.51        ad  * It is not possible to use link sets in a module, so the
   1284        1.1      cube  * easiest is to simply call our own setup routine at load time.
   1285        1.1      cube  *
   1286        1.1      cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1287        1.1      cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1288        1.1      cube  * whole kernel sysctl tree is built, it is not possible to add any
   1289        1.1      cube  * permanent node.
   1290        1.1      cube  *
   1291        1.1      cube  * It should be noted that we're not saving the sysctlnode pointer
   1292        1.1      cube  * we are returned when creating the "tap" node.  That structure
   1293        1.1      cube  * cannot be trusted once out of the calling function, as it might
   1294        1.1      cube  * get reused.  So we just save the MIB number, and always give the
   1295        1.1      cube  * full path starting from the root for later calls to sysctl_createv
   1296        1.1      cube  * and sysctl_destroyv.
   1297        1.1      cube  */
   1298       1.91  christos static void
   1299       1.91  christos sysctl_tap_setup(struct sysctllog **clog)
   1300        1.1      cube {
   1301       1.10    atatat 	const struct sysctlnode *node;
   1302        1.1      cube 	int error = 0;
   1303        1.1      cube 
   1304        1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1305        1.1      cube 	    CTLFLAG_PERMANENT,
   1306        1.1      cube 	    CTLTYPE_NODE, "link", NULL,
   1307        1.1      cube 	    NULL, 0, NULL, 0,
   1308        1.3      cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1309        1.1      cube 		return;
   1310        1.1      cube 
   1311        1.1      cube 	/*
   1312        1.1      cube 	 * The first four parameters of sysctl_createv are for management.
   1313        1.1      cube 	 *
   1314        1.1      cube 	 * The four that follows, here starting with a '0' for the flags,
   1315        1.1      cube 	 * describe the node.
   1316        1.1      cube 	 *
   1317        1.1      cube 	 * The next series of four set its value, through various possible
   1318        1.1      cube 	 * means.
   1319        1.1      cube 	 *
   1320        1.1      cube 	 * Last but not least, the path to the node is described.  That path
   1321        1.1      cube 	 * is relative to the given root (third argument).  Here we're
   1322        1.1      cube 	 * starting from the root.
   1323        1.1      cube 	 */
   1324        1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1325        1.1      cube 	    CTLFLAG_PERMANENT,
   1326        1.1      cube 	    CTLTYPE_NODE, "tap", NULL,
   1327        1.1      cube 	    NULL, 0, NULL, 0,
   1328        1.3      cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1329        1.1      cube 		return;
   1330        1.1      cube 	tap_node = node->sysctl_num;
   1331        1.1      cube }
   1332        1.1      cube 
   1333        1.1      cube /*
   1334        1.1      cube  * The helper functions make Andrew Brown's interface really
   1335        1.1      cube  * shine.  It makes possible to create value on the fly whether
   1336        1.1      cube  * the sysctl value is read or written.
   1337        1.1      cube  *
   1338        1.1      cube  * As shown as an example in the man page, the first step is to
   1339        1.1      cube  * create a copy of the node to have sysctl_lookup work on it.
   1340        1.1      cube  *
   1341        1.1      cube  * Here, we have more work to do than just a copy, since we have
   1342        1.1      cube  * to create the string.  The first step is to collect the actual
   1343        1.1      cube  * value of the node, which is a convenient pointer to the softc
   1344        1.1      cube  * of the interface.  From there we create the string and use it
   1345        1.1      cube  * as the value, but only for the *copy* of the node.
   1346        1.1      cube  *
   1347        1.1      cube  * Then we let sysctl_lookup do the magic, which consists in
   1348        1.1      cube  * setting oldp and newp as required by the operation.  When the
   1349        1.1      cube  * value is read, that means that the string will be copied to
   1350        1.1      cube  * the user, and when it is written, the new value will be copied
   1351        1.1      cube  * over in the addr array.
   1352        1.1      cube  *
   1353        1.1      cube  * If newp is NULL, the user was reading the value, so we don't
   1354        1.1      cube  * have anything else to do.  If a new value was written, we
   1355        1.1      cube  * have to check it.
   1356        1.1      cube  *
   1357        1.1      cube  * If it is incorrect, we can return an error and leave 'node' as
   1358        1.1      cube  * it is:  since it is a copy of the actual node, the change will
   1359        1.1      cube  * be forgotten.
   1360        1.1      cube  *
   1361        1.1      cube  * Upon a correct input, we commit the change to the ifnet
   1362        1.1      cube  * structure of our interface.
   1363        1.1      cube  */
   1364        1.1      cube static int
   1365        1.1      cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1366        1.1      cube {
   1367        1.1      cube 	struct sysctlnode node;
   1368        1.1      cube 	struct tap_softc *sc;
   1369        1.1      cube 	struct ifnet *ifp;
   1370        1.1      cube 	int error;
   1371        1.1      cube 	size_t len;
   1372       1.14  christos 	char addr[3 * ETHER_ADDR_LEN];
   1373       1.32    dyoung 	uint8_t enaddr[ETHER_ADDR_LEN];
   1374        1.1      cube 
   1375        1.1      cube 	node = *rnode;
   1376        1.1      cube 	sc = node.sysctl_data;
   1377        1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1378       1.31    dyoung 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1379        1.1      cube 	node.sysctl_data = addr;
   1380        1.1      cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1381        1.1      cube 	if (error || newp == NULL)
   1382       1.95     skrll 		return error;
   1383        1.1      cube 
   1384        1.1      cube 	len = strlen(addr);
   1385        1.1      cube 	if (len < 11 || len > 17)
   1386       1.95     skrll 		return EINVAL;
   1387        1.1      cube 
   1388        1.1      cube 	/* Commit change */
   1389       1.65  christos 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1390       1.95     skrll 		return EINVAL;
   1391       1.50    dyoung 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1392       1.95     skrll 	return error;
   1393        1.1      cube }
   1394       1.85  christos 
   1395       1.85  christos /*
   1396       1.85  christos  * Module infrastructure
   1397       1.85  christos  */
   1398       1.85  christos #include "if_module.h"
   1399       1.85  christos 
   1400      1.111  pgoyette IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL)
   1401