Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.13.2.1
      1  1.13.2.1      yamt /*	$NetBSD: if_tap.c,v 1.13.2.1 2006/04/01 12:07:43 yamt Exp $	*/
      2       1.1      cube 
      3       1.1      cube /*
      4       1.1      cube  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5       1.1      cube  *  All rights reserved.
      6       1.1      cube  *
      7       1.1      cube  *  This code is derived from software contributed to the NetBSD Foundation
      8       1.1      cube  *   by Quentin Garnier.
      9       1.6     perry  *
     10       1.1      cube  *  Redistribution and use in source and binary forms, with or without
     11       1.1      cube  *  modification, are permitted provided that the following conditions
     12       1.1      cube  *  are met:
     13       1.1      cube  *  1. Redistributions of source code must retain the above copyright
     14       1.1      cube  *     notice, this list of conditions and the following disclaimer.
     15       1.1      cube  *  2. Redistributions in binary form must reproduce the above copyright
     16       1.1      cube  *     notice, this list of conditions and the following disclaimer in the
     17       1.1      cube  *     documentation and/or other materials provided with the distribution.
     18       1.1      cube  *  3. All advertising materials mentioning features or use of this software
     19       1.1      cube  *     must display the following acknowledgement:
     20       1.1      cube  *         This product includes software developed by the NetBSD
     21       1.1      cube  *         Foundation, Inc. and its contributors.
     22       1.1      cube  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23       1.1      cube  *     contributors may be used to endorse or promote products derived
     24       1.1      cube  *     from this software without specific prior written permission.
     25       1.6     perry  *
     26       1.1      cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27       1.1      cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28       1.1      cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29       1.1      cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30       1.1      cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31       1.1      cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32       1.1      cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33       1.1      cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34       1.1      cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35       1.1      cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36       1.1      cube  *  POSSIBILITY OF SUCH DAMAGE.
     37       1.1      cube  */
     38       1.1      cube 
     39       1.1      cube /*
     40       1.1      cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41       1.1      cube  * device to the system, but can also be accessed by userland through a
     42       1.1      cube  * character device interface, which allows reading and injecting frames.
     43       1.1      cube  */
     44       1.1      cube 
     45       1.1      cube #include <sys/cdefs.h>
     46  1.13.2.1      yamt __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.13.2.1 2006/04/01 12:07:43 yamt Exp $");
     47       1.1      cube 
     48       1.2      cube #if defined(_KERNEL_OPT)
     49       1.1      cube #include "bpfilter.h"
     50       1.2      cube #endif
     51       1.1      cube 
     52       1.1      cube #include <sys/param.h>
     53       1.1      cube #include <sys/systm.h>
     54       1.1      cube #include <sys/kernel.h>
     55       1.1      cube #include <sys/malloc.h>
     56       1.1      cube #include <sys/conf.h>
     57       1.1      cube #include <sys/device.h>
     58       1.1      cube #include <sys/file.h>
     59       1.1      cube #include <sys/filedesc.h>
     60       1.1      cube #include <sys/ksyms.h>
     61       1.1      cube #include <sys/poll.h>
     62       1.1      cube #include <sys/select.h>
     63       1.1      cube #include <sys/sockio.h>
     64       1.1      cube #include <sys/sysctl.h>
     65       1.1      cube 
     66       1.1      cube #include <net/if.h>
     67       1.1      cube #include <net/if_dl.h>
     68       1.1      cube #include <net/if_ether.h>
     69       1.1      cube #include <net/if_media.h>
     70       1.1      cube #include <net/if_tap.h>
     71       1.1      cube #if NBPFILTER > 0
     72       1.1      cube #include <net/bpf.h>
     73       1.1      cube #endif
     74       1.1      cube 
     75       1.1      cube /*
     76       1.1      cube  * sysctl node management
     77       1.1      cube  *
     78       1.1      cube  * It's not really possible to use a SYSCTL_SETUP block with
     79       1.1      cube  * current LKM implementation, so it is easier to just define
     80       1.1      cube  * our own function.
     81       1.1      cube  *
     82       1.1      cube  * The handler function is a "helper" in Andrew Brown's sysctl
     83       1.1      cube  * framework terminology.  It is used as a gateway for sysctl
     84       1.1      cube  * requests over the nodes.
     85       1.1      cube  *
     86       1.1      cube  * tap_log allows the module to log creations of nodes and
     87       1.1      cube  * destroy them all at once using sysctl_teardown.
     88       1.1      cube  */
     89       1.1      cube static int tap_node;
     90       1.1      cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     91       1.2      cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     92       1.1      cube 
     93       1.1      cube /*
     94       1.1      cube  * Since we're an Ethernet device, we need the 3 following
     95       1.1      cube  * components: a leading struct device, a struct ethercom,
     96       1.1      cube  * and also a struct ifmedia since we don't attach a PHY to
     97       1.1      cube  * ourselves. We could emulate one, but there's no real
     98       1.1      cube  * point.
     99       1.1      cube  */
    100       1.1      cube 
    101       1.1      cube struct tap_softc {
    102       1.1      cube 	struct device	sc_dev;
    103       1.1      cube 	struct ifmedia	sc_im;
    104       1.1      cube 	struct ethercom	sc_ec;
    105       1.1      cube 	int		sc_flags;
    106       1.1      cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    107       1.1      cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    108       1.1      cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    109       1.1      cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
    110       1.1      cube 	struct selinfo	sc_rsel;
    111       1.1      cube 	pid_t		sc_pgid; /* For async. IO */
    112       1.1      cube 	struct lock	sc_rdlock;
    113       1.1      cube 	struct simplelock	sc_kqlock;
    114       1.1      cube };
    115       1.1      cube 
    116       1.1      cube /* autoconf(9) glue */
    117       1.1      cube 
    118       1.1      cube void	tapattach(int);
    119       1.1      cube 
    120       1.1      cube static int	tap_match(struct device *, struct cfdata *, void *);
    121       1.1      cube static void	tap_attach(struct device *, struct device *, void *);
    122       1.1      cube static int	tap_detach(struct device*, int);
    123       1.1      cube 
    124       1.1      cube /* Ethernet address helper functions */
    125       1.1      cube 
    126       1.1      cube static int	tap_ether_aton(u_char *, char *);
    127       1.1      cube 
    128       1.1      cube CFATTACH_DECL(tap, sizeof(struct tap_softc),
    129       1.1      cube     tap_match, tap_attach, tap_detach, NULL);
    130       1.1      cube extern struct cfdriver tap_cd;
    131       1.1      cube 
    132       1.1      cube /* Real device access routines */
    133       1.1      cube static int	tap_dev_close(struct tap_softc *);
    134       1.1      cube static int	tap_dev_read(int, struct uio *, int);
    135       1.1      cube static int	tap_dev_write(int, struct uio *, int);
    136      1.11  christos static int	tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
    137      1.11  christos static int	tap_dev_poll(int, int, struct lwp *);
    138       1.1      cube static int	tap_dev_kqfilter(int, struct knote *);
    139       1.1      cube 
    140       1.1      cube /* Fileops access routines */
    141      1.11  christos static int	tap_fops_close(struct file *, struct lwp *);
    142       1.1      cube static int	tap_fops_read(struct file *, off_t *, struct uio *,
    143       1.1      cube     struct ucred *, int);
    144       1.1      cube static int	tap_fops_write(struct file *, off_t *, struct uio *,
    145       1.1      cube     struct ucred *, int);
    146       1.1      cube static int	tap_fops_ioctl(struct file *, u_long, void *,
    147      1.11  christos     struct lwp *);
    148      1.11  christos static int	tap_fops_poll(struct file *, int, struct lwp *);
    149       1.1      cube static int	tap_fops_kqfilter(struct file *, struct knote *);
    150       1.1      cube 
    151       1.1      cube static const struct fileops tap_fileops = {
    152       1.1      cube 	tap_fops_read,
    153       1.1      cube 	tap_fops_write,
    154       1.1      cube 	tap_fops_ioctl,
    155       1.1      cube 	fnullop_fcntl,
    156       1.1      cube 	tap_fops_poll,
    157       1.1      cube 	fbadop_stat,
    158       1.1      cube 	tap_fops_close,
    159       1.1      cube 	tap_fops_kqfilter,
    160       1.1      cube };
    161       1.1      cube 
    162       1.1      cube /* Helper for cloning open() */
    163      1.11  christos static int	tap_dev_cloner(struct lwp *);
    164       1.1      cube 
    165       1.1      cube /* Character device routines */
    166      1.11  christos static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    167      1.11  christos static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    168       1.1      cube static int	tap_cdev_read(dev_t, struct uio *, int);
    169       1.1      cube static int	tap_cdev_write(dev_t, struct uio *, int);
    170      1.11  christos static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
    171      1.11  christos static int	tap_cdev_poll(dev_t, int, struct lwp *);
    172       1.1      cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    173       1.1      cube 
    174       1.1      cube const struct cdevsw tap_cdevsw = {
    175       1.1      cube 	tap_cdev_open, tap_cdev_close,
    176       1.1      cube 	tap_cdev_read, tap_cdev_write,
    177       1.1      cube 	tap_cdev_ioctl, nostop, notty,
    178       1.1      cube 	tap_cdev_poll, nommap,
    179       1.1      cube 	tap_cdev_kqfilter,
    180       1.1      cube };
    181       1.1      cube 
    182       1.1      cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    183       1.1      cube 
    184       1.1      cube /* kqueue-related routines */
    185       1.1      cube static void	tap_kqdetach(struct knote *);
    186       1.1      cube static int	tap_kqread(struct knote *, long);
    187       1.1      cube 
    188       1.1      cube /*
    189       1.1      cube  * Those are needed by the if_media interface.
    190       1.1      cube  */
    191       1.1      cube 
    192       1.1      cube static int	tap_mediachange(struct ifnet *);
    193       1.1      cube static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    194       1.1      cube 
    195       1.1      cube /*
    196       1.1      cube  * Those are needed by the ifnet interface, and would typically be
    197       1.1      cube  * there for any network interface driver.
    198       1.1      cube  * Some other routines are optional: watchdog and drain.
    199       1.1      cube  */
    200       1.1      cube 
    201       1.1      cube static void	tap_start(struct ifnet *);
    202       1.1      cube static void	tap_stop(struct ifnet *, int);
    203       1.1      cube static int	tap_init(struct ifnet *);
    204       1.1      cube static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
    205       1.1      cube 
    206       1.1      cube /* This is an internal function to keep tap_ioctl readable */
    207       1.1      cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    208       1.1      cube 
    209       1.1      cube /*
    210       1.1      cube  * tap is a clonable interface, although it is highly unrealistic for
    211       1.1      cube  * an Ethernet device.
    212       1.1      cube  *
    213       1.1      cube  * Here are the bits needed for a clonable interface.
    214       1.1      cube  */
    215       1.1      cube static int	tap_clone_create(struct if_clone *, int);
    216       1.1      cube static int	tap_clone_destroy(struct ifnet *);
    217       1.1      cube 
    218       1.1      cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    219       1.1      cube 					tap_clone_create,
    220       1.1      cube 					tap_clone_destroy);
    221       1.1      cube 
    222       1.1      cube /* Helper functionis shared by the two cloning code paths */
    223       1.1      cube static struct tap_softc *	tap_clone_creator(int);
    224      1.12      cube int	tap_clone_destroyer(struct device *);
    225       1.1      cube 
    226       1.1      cube void
    227       1.1      cube tapattach(int n)
    228       1.1      cube {
    229       1.1      cube 	int error;
    230       1.1      cube 
    231       1.1      cube 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    232       1.1      cube 	if (error) {
    233       1.1      cube 		aprint_error("%s: unable to register cfattach\n",
    234       1.1      cube 		    tap_cd.cd_name);
    235       1.1      cube 		(void)config_cfdriver_detach(&tap_cd);
    236       1.1      cube 		return;
    237       1.1      cube 	}
    238       1.1      cube 
    239       1.1      cube 	if_clone_attach(&tap_cloners);
    240       1.1      cube }
    241       1.1      cube 
    242       1.1      cube /* Pretty much useless for a pseudo-device */
    243       1.1      cube static int
    244       1.1      cube tap_match(struct device *self, struct cfdata *cfdata, void *arg)
    245       1.1      cube {
    246       1.1      cube 	return (1);
    247       1.1      cube }
    248       1.1      cube 
    249       1.1      cube void
    250       1.1      cube tap_attach(struct device *parent, struct device *self, void *aux)
    251       1.1      cube {
    252       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)self;
    253       1.1      cube 	struct ifnet *ifp;
    254       1.1      cube 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    255       1.7      cube 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    256  1.13.2.1      yamt 	char enaddrstr[3 * ETHER_ADDR_LEN];
    257       1.1      cube 	uint32_t ui;
    258       1.1      cube 	int error;
    259      1.10    atatat 	const struct sysctlnode *node;
    260       1.1      cube 
    261       1.1      cube 	aprint_normal("%s: faking Ethernet device\n",
    262       1.1      cube 	    self->dv_xname);
    263       1.1      cube 
    264       1.1      cube 	/*
    265       1.1      cube 	 * In order to obtain unique initial Ethernet address on a host,
    266       1.1      cube 	 * do some randomisation using mono_time.  It's not meant for anything
    267       1.1      cube 	 * but avoiding hard-coding an address.
    268       1.1      cube 	 */
    269       1.1      cube 	ui = (mono_time.tv_sec ^ mono_time.tv_usec) & 0xffffff;
    270       1.1      cube 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    271       1.1      cube 
    272       1.1      cube 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    273  1.13.2.1      yamt 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    274       1.1      cube 
    275       1.1      cube 	/*
    276       1.1      cube 	 * Why 1000baseT? Why not? You can add more.
    277       1.1      cube 	 *
    278       1.1      cube 	 * Note that there are 3 steps: init, one or several additions to
    279       1.1      cube 	 * list of supported media, and in the end, the selection of one
    280       1.1      cube 	 * of them.
    281       1.1      cube 	 */
    282       1.1      cube 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    283       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    284       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    285       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    286       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    287       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    288       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    289       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    290       1.1      cube 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    291       1.1      cube 
    292       1.1      cube 	/*
    293       1.1      cube 	 * One should note that an interface must do multicast in order
    294       1.1      cube 	 * to support IPv6.
    295       1.1      cube 	 */
    296       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    297       1.1      cube 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    298       1.1      cube 	ifp->if_softc	= sc;
    299       1.1      cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    300       1.1      cube 	ifp->if_ioctl	= tap_ioctl;
    301       1.1      cube 	ifp->if_start	= tap_start;
    302       1.1      cube 	ifp->if_stop	= tap_stop;
    303       1.1      cube 	ifp->if_init	= tap_init;
    304       1.1      cube 	IFQ_SET_READY(&ifp->if_snd);
    305       1.1      cube 
    306       1.1      cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    307       1.1      cube 
    308       1.1      cube 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    309       1.1      cube 	 * being common to all network interface drivers. */
    310       1.1      cube 	if_attach(ifp);
    311       1.1      cube 	ether_ifattach(ifp, enaddr);
    312       1.1      cube 
    313       1.1      cube 	sc->sc_flags = 0;
    314       1.1      cube 
    315       1.1      cube 	/*
    316       1.1      cube 	 * Add a sysctl node for that interface.
    317       1.1      cube 	 *
    318       1.1      cube 	 * The pointer transmitted is not a string, but instead a pointer to
    319       1.1      cube 	 * the softc structure, which we can use to build the string value on
    320       1.1      cube 	 * the fly in the helper function of the node.  See the comments for
    321       1.1      cube 	 * tap_sysctl_handler for details.
    322       1.1      cube 	 */
    323       1.1      cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    324       1.1      cube 	    &node, CTLFLAG_READWRITE,
    325       1.1      cube 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    326       1.1      cube 	    tap_sysctl_handler, 0, sc, 18,
    327  1.13.2.1      yamt 	    CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
    328  1.13.2.1      yamt 	    CTL_EOL)) != 0)
    329       1.1      cube 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    330       1.1      cube 		    sc->sc_dev.dv_xname, error);
    331       1.1      cube 
    332       1.1      cube 	/*
    333       1.1      cube 	 * Initialize the two locks for the device.
    334       1.1      cube 	 *
    335       1.1      cube 	 * We need a lock here because even though the tap device can be
    336       1.1      cube 	 * opened only once, the file descriptor might be passed to another
    337       1.1      cube 	 * process, say a fork(2)ed child.
    338       1.1      cube 	 *
    339       1.1      cube 	 * The Giant saves us from most of the hassle, but since the read
    340       1.1      cube 	 * operation can sleep, we don't want two processes to wake up at
    341       1.1      cube 	 * the same moment and both try and dequeue a single packet.
    342       1.1      cube 	 *
    343       1.1      cube 	 * The queue for event listeners (used by kqueue(9), see below) has
    344       1.1      cube 	 * to be protected, too, but we don't need the same level of
    345       1.1      cube 	 * complexity for that lock, so a simple spinning lock is fine.
    346       1.1      cube 	 */
    347       1.1      cube 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    348       1.1      cube 	simple_lock_init(&sc->sc_kqlock);
    349       1.1      cube }
    350       1.1      cube 
    351       1.1      cube /*
    352       1.1      cube  * When detaching, we do the inverse of what is done in the attach
    353       1.1      cube  * routine, in reversed order.
    354       1.1      cube  */
    355       1.1      cube static int
    356       1.1      cube tap_detach(struct device* self, int flags)
    357       1.1      cube {
    358       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)self;
    359       1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    360       1.1      cube 	int error, s;
    361       1.1      cube 
    362       1.1      cube 	/*
    363       1.1      cube 	 * Some processes might be sleeping on "tap", so we have to make
    364       1.1      cube 	 * them release their hold on the device.
    365       1.1      cube 	 *
    366       1.1      cube 	 * The LK_DRAIN operation will wait for every locked process to
    367       1.1      cube 	 * release their hold.
    368       1.1      cube 	 */
    369       1.1      cube 	sc->sc_flags |= TAP_GOING;
    370       1.1      cube 	s = splnet();
    371       1.1      cube 	tap_stop(ifp, 1);
    372       1.1      cube 	if_down(ifp);
    373       1.1      cube 	splx(s);
    374       1.1      cube 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    375       1.1      cube 
    376       1.1      cube 	/*
    377       1.1      cube 	 * Destroying a single leaf is a very straightforward operation using
    378       1.1      cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    379       1.1      cube 	 * CTL_EOL.
    380       1.1      cube 	 */
    381       1.3      cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    382  1.13.2.1      yamt 	    device_unit(&sc->sc_dev), CTL_EOL)) != 0)
    383       1.1      cube 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    384       1.1      cube 		    sc->sc_dev.dv_xname, error);
    385       1.1      cube 	ether_ifdetach(ifp);
    386       1.1      cube 	if_detach(ifp);
    387       1.1      cube 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    388       1.1      cube 
    389       1.1      cube 	return (0);
    390       1.1      cube }
    391       1.1      cube 
    392       1.1      cube /*
    393       1.1      cube  * This function is called by the ifmedia layer to notify the driver
    394       1.1      cube  * that the user requested a media change.  A real driver would
    395       1.1      cube  * reconfigure the hardware.
    396       1.1      cube  */
    397       1.1      cube static int
    398       1.1      cube tap_mediachange(struct ifnet *ifp)
    399       1.1      cube {
    400       1.1      cube 	return (0);
    401       1.1      cube }
    402       1.1      cube 
    403       1.1      cube /*
    404       1.1      cube  * Here the user asks for the currently used media.
    405       1.1      cube  */
    406       1.1      cube static void
    407       1.1      cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    408       1.1      cube {
    409       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    410       1.1      cube 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    411       1.1      cube }
    412       1.1      cube 
    413       1.1      cube /*
    414       1.1      cube  * This is the function where we SEND packets.
    415       1.1      cube  *
    416       1.1      cube  * There is no 'receive' equivalent.  A typical driver will get
    417       1.1      cube  * interrupts from the hardware, and from there will inject new packets
    418       1.1      cube  * into the network stack.
    419       1.1      cube  *
    420       1.1      cube  * Once handled, a packet must be freed.  A real driver might not be able
    421       1.1      cube  * to fit all the pending packets into the hardware, and is allowed to
    422       1.1      cube  * return before having sent all the packets.  It should then use the
    423       1.1      cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    424       1.1      cube  *
    425       1.1      cube  * There are also other flags one should check, such as IFF_PAUSE.
    426       1.1      cube  *
    427       1.1      cube  * It is our duty to make packets available to BPF listeners.
    428       1.1      cube  *
    429       1.1      cube  * You should be aware that this function is called by the Ethernet layer
    430       1.1      cube  * at splnet().
    431       1.1      cube  *
    432       1.1      cube  * When the device is opened, we have to pass the packet(s) to the
    433       1.1      cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    434       1.1      cube  * the packets, and we send a signal to the processes waiting to read.
    435       1.1      cube  *
    436       1.1      cube  * wakeup(sc) is the counterpart to the tsleep call in
    437       1.1      cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    438       1.1      cube  * poll(2) (which includes select(2)) listeners.
    439       1.1      cube  */
    440       1.1      cube static void
    441       1.1      cube tap_start(struct ifnet *ifp)
    442       1.1      cube {
    443       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    444       1.1      cube 	struct mbuf *m0;
    445       1.1      cube 
    446       1.1      cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    447       1.1      cube 		/* Simply drop packets */
    448       1.1      cube 		for(;;) {
    449       1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    450       1.1      cube 			if (m0 == NULL)
    451       1.1      cube 				return;
    452       1.1      cube 
    453       1.1      cube 			ifp->if_opackets++;
    454       1.1      cube #if NBPFILTER > 0
    455       1.1      cube 			if (ifp->if_bpf)
    456       1.1      cube 				bpf_mtap(ifp->if_bpf, m0);
    457       1.1      cube #endif
    458       1.1      cube 
    459       1.1      cube 			m_freem(m0);
    460       1.1      cube 		}
    461       1.1      cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    462       1.1      cube 		ifp->if_flags |= IFF_OACTIVE;
    463       1.1      cube 		wakeup(sc);
    464       1.1      cube 		selnotify(&sc->sc_rsel, 1);
    465       1.1      cube 		if (sc->sc_flags & TAP_ASYNCIO)
    466       1.1      cube 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    467       1.1      cube 			    POLLIN|POLLRDNORM, NULL);
    468       1.1      cube 	}
    469       1.1      cube }
    470       1.1      cube 
    471       1.1      cube /*
    472       1.1      cube  * A typical driver will only contain the following handlers for
    473       1.1      cube  * ioctl calls, except SIOCSIFPHYADDR.
    474       1.1      cube  * The latter is a hack I used to set the Ethernet address of the
    475       1.1      cube  * faked device.
    476       1.1      cube  *
    477       1.1      cube  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    478       1.1      cube  * called under splnet().
    479       1.1      cube  */
    480       1.1      cube static int
    481       1.1      cube tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    482       1.1      cube {
    483       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    484       1.1      cube 	struct ifreq *ifr = (struct ifreq *)data;
    485       1.1      cube 	int s, error;
    486       1.1      cube 
    487       1.1      cube 	s = splnet();
    488       1.1      cube 
    489       1.1      cube 	switch (cmd) {
    490       1.1      cube 	case SIOCSIFMEDIA:
    491       1.1      cube 	case SIOCGIFMEDIA:
    492       1.1      cube 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    493       1.1      cube 		break;
    494       1.1      cube 	case SIOCSIFPHYADDR:
    495       1.1      cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    496       1.1      cube 		break;
    497       1.1      cube 	default:
    498       1.1      cube 		error = ether_ioctl(ifp, cmd, data);
    499       1.1      cube 		if (error == ENETRESET)
    500       1.1      cube 			error = 0;
    501       1.1      cube 		break;
    502       1.1      cube 	}
    503       1.1      cube 
    504       1.1      cube 	splx(s);
    505       1.1      cube 
    506       1.1      cube 	return (error);
    507       1.1      cube }
    508       1.1      cube 
    509       1.1      cube /*
    510       1.1      cube  * Helper function to set Ethernet address.  This shouldn't be done there,
    511       1.1      cube  * and should actually be available to all Ethernet drivers, real or not.
    512       1.1      cube  */
    513       1.1      cube static int
    514       1.1      cube tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    515       1.1      cube {
    516       1.1      cube 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    517       1.1      cube 
    518       1.1      cube 	if (sa->sa_family != AF_LINK)
    519       1.1      cube 		return (EINVAL);
    520       1.1      cube 
    521       1.1      cube 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    522       1.1      cube 
    523       1.1      cube 	return (0);
    524       1.1      cube }
    525       1.1      cube 
    526       1.1      cube /*
    527       1.1      cube  * _init() would typically be called when an interface goes up,
    528       1.1      cube  * meaning it should configure itself into the state in which it
    529       1.1      cube  * can send packets.
    530       1.1      cube  */
    531       1.1      cube static int
    532       1.1      cube tap_init(struct ifnet *ifp)
    533       1.1      cube {
    534       1.1      cube 	ifp->if_flags |= IFF_RUNNING;
    535       1.1      cube 
    536       1.1      cube 	tap_start(ifp);
    537       1.1      cube 
    538       1.1      cube 	return (0);
    539       1.1      cube }
    540       1.1      cube 
    541       1.1      cube /*
    542       1.1      cube  * _stop() is called when an interface goes down.  It is our
    543       1.1      cube  * responsability to validate that state by clearing the
    544       1.1      cube  * IFF_RUNNING flag.
    545       1.1      cube  *
    546       1.1      cube  * We have to wake up all the sleeping processes to have the pending
    547       1.1      cube  * read requests cancelled.
    548       1.1      cube  */
    549       1.1      cube static void
    550       1.1      cube tap_stop(struct ifnet *ifp, int disable)
    551       1.1      cube {
    552       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    553       1.1      cube 
    554       1.1      cube 	ifp->if_flags &= ~IFF_RUNNING;
    555       1.1      cube 	wakeup(sc);
    556       1.1      cube 	selnotify(&sc->sc_rsel, 1);
    557       1.1      cube 	if (sc->sc_flags & TAP_ASYNCIO)
    558       1.1      cube 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    559       1.1      cube }
    560       1.1      cube 
    561       1.1      cube /*
    562       1.1      cube  * The 'create' command of ifconfig can be used to create
    563       1.1      cube  * any numbered instance of a given device.  Thus we have to
    564       1.1      cube  * make sure we have enough room in cd_devs to create the
    565       1.1      cube  * user-specified instance.  config_attach_pseudo will do this
    566       1.1      cube  * for us.
    567       1.1      cube  */
    568       1.1      cube static int
    569       1.1      cube tap_clone_create(struct if_clone *ifc, int unit)
    570       1.1      cube {
    571       1.1      cube 	if (tap_clone_creator(unit) == NULL) {
    572       1.1      cube 		aprint_error("%s%d: unable to attach an instance\n",
    573       1.1      cube                     tap_cd.cd_name, unit);
    574       1.1      cube 		return (ENXIO);
    575       1.1      cube 	}
    576       1.1      cube 
    577       1.1      cube 	return (0);
    578       1.1      cube }
    579       1.1      cube 
    580       1.1      cube /*
    581       1.1      cube  * tap(4) can be cloned by two ways:
    582       1.1      cube  *   using 'ifconfig tap0 create', which will use the network
    583       1.1      cube  *     interface cloning API, and call tap_clone_create above.
    584       1.1      cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    585       1.1      cube  *     See below for an explanation on how this part work.
    586       1.1      cube  *
    587       1.1      cube  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
    588       1.1      cube  * autoconf(9) choose a unit number for us.  This is what happens when
    589       1.1      cube  * the cloner is openend, while the ifcloner interface creates a device
    590       1.1      cube  * with a specific unit number.
    591       1.1      cube  */
    592       1.1      cube static struct tap_softc *
    593       1.1      cube tap_clone_creator(int unit)
    594       1.1      cube {
    595       1.1      cube 	struct cfdata *cf;
    596       1.1      cube 
    597       1.1      cube 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    598       1.1      cube 	cf->cf_name = tap_cd.cd_name;
    599       1.1      cube 	cf->cf_atname = tap_ca.ca_name;
    600       1.1      cube 	cf->cf_unit = unit;
    601       1.1      cube 	cf->cf_fstate = FSTATE_STAR;
    602       1.1      cube 
    603       1.1      cube 	return (struct tap_softc *)config_attach_pseudo(cf);
    604       1.1      cube }
    605       1.1      cube 
    606       1.1      cube /*
    607       1.1      cube  * The clean design of if_clone and autoconf(9) makes that part
    608       1.1      cube  * really straightforward.  The second argument of config_detach
    609       1.1      cube  * means neither QUIET nor FORCED.
    610       1.1      cube  */
    611       1.1      cube static int
    612       1.1      cube tap_clone_destroy(struct ifnet *ifp)
    613       1.1      cube {
    614       1.1      cube 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    615       1.1      cube }
    616       1.1      cube 
    617      1.12      cube int
    618       1.1      cube tap_clone_destroyer(struct device *dev)
    619       1.1      cube {
    620  1.13.2.1      yamt 	struct cfdata *cf = device_cfdata(dev);
    621       1.1      cube 	int error;
    622       1.1      cube 
    623       1.1      cube 	if ((error = config_detach(dev, 0)) != 0)
    624       1.1      cube 		aprint_error("%s: unable to detach instance\n",
    625       1.1      cube 		    dev->dv_xname);
    626       1.1      cube 	free(cf, M_DEVBUF);
    627       1.1      cube 
    628       1.1      cube 	return (error);
    629       1.1      cube }
    630       1.1      cube 
    631       1.1      cube /*
    632       1.1      cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    633       1.1      cube  * ways:
    634       1.1      cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    635       1.1      cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    636       1.1      cube  *     That interface is destroyed when the process that had it created exits.
    637       1.1      cube  *
    638       1.1      cube  * The first way is managed by the cdevsw structure, and you access interfaces
    639       1.1      cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    640       1.1      cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    641       1.1      cube  *
    642       1.1      cube  * The second way is the so-called "cloning" device.  It's a special minor
    643       1.1      cube  * number (chosen as the maximal number, to allow as much tap devices as
    644       1.1      cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    645       1.1      cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    646       1.1      cube  * tap_dev_cloner.
    647       1.1      cube  *
    648       1.1      cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    649       1.1      cube  * part of open() does nothing but noting that the interface is being used and
    650       1.1      cube  * hence ready to actually handle packets.
    651       1.1      cube  */
    652       1.1      cube 
    653       1.1      cube static int
    654      1.11  christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    655       1.1      cube {
    656       1.1      cube 	struct tap_softc *sc;
    657       1.1      cube 
    658       1.1      cube 	if (minor(dev) == TAP_CLONER)
    659      1.11  christos 		return tap_dev_cloner(l);
    660       1.1      cube 
    661       1.1      cube 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    662       1.1      cube 	if (sc == NULL)
    663       1.1      cube 		return (ENXIO);
    664       1.1      cube 
    665       1.1      cube 	/* The device can only be opened once */
    666       1.1      cube 	if (sc->sc_flags & TAP_INUSE)
    667       1.1      cube 		return (EBUSY);
    668       1.1      cube 	sc->sc_flags |= TAP_INUSE;
    669       1.1      cube 	return (0);
    670       1.1      cube }
    671       1.1      cube 
    672       1.1      cube /*
    673       1.1      cube  * There are several kinds of cloning devices, and the most simple is the one
    674       1.1      cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    675       1.1      cube  * with its own fileops structure (which maps to the various read, write,
    676       1.1      cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    677       1.1      cube  * then actually creates the new tap devices.
    678       1.1      cube  *
    679       1.1      cube  * Once those two steps are successful, we can re-wire the existing file
    680       1.1      cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    681       1.1      cube  * structure as needed (notably f_data gets filled with the fifth parameter
    682       1.1      cube  * passed, the unit of the tap device which will allows us identifying the
    683       1.1      cube  * device later), and returns EMOVEFD.
    684       1.1      cube  *
    685       1.1      cube  * That magic value is interpreted by sys_open() which then replaces the
    686       1.1      cube  * current file descriptor by the new one (through a magic member of struct
    687      1.13     pooka  * lwp, l_dupfd).
    688       1.1      cube  *
    689       1.1      cube  * The tap device is flagged as being busy since it otherwise could be
    690       1.1      cube  * externally accessed through the corresponding device node with the cdevsw
    691       1.1      cube  * interface.
    692       1.1      cube  */
    693       1.1      cube 
    694       1.1      cube static int
    695      1.11  christos tap_dev_cloner(struct lwp *l)
    696       1.1      cube {
    697       1.1      cube 	struct tap_softc *sc;
    698       1.1      cube 	struct file *fp;
    699       1.1      cube 	int error, fd;
    700       1.1      cube 
    701      1.11  christos 	if ((error = falloc(l->l_proc, &fp, &fd)) != 0)
    702       1.1      cube 		return (error);
    703       1.1      cube 
    704       1.1      cube 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
    705      1.11  christos 		FILE_UNUSE(fp, l);
    706       1.1      cube 		ffree(fp);
    707       1.1      cube 		return (ENXIO);
    708       1.1      cube 	}
    709       1.1      cube 
    710       1.1      cube 	sc->sc_flags |= TAP_INUSE;
    711       1.1      cube 
    712      1.11  christos 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
    713  1.13.2.1      yamt 	    (void *)(intptr_t)device_unit(&sc->sc_dev));
    714       1.1      cube }
    715       1.1      cube 
    716       1.1      cube /*
    717       1.1      cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    718       1.1      cube  * really the same whether we are in cdevsw or fileops mode, the close()
    719       1.1      cube  * function is slightly different in the two cases.
    720       1.1      cube  *
    721       1.1      cube  * As for the other, the core of it is shared in tap_dev_close.  What
    722       1.1      cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    723       1.1      cube  * needs another thing:  the interface is destroyed when the processes that
    724       1.1      cube  * created it closes it.
    725       1.1      cube  */
    726       1.1      cube static int
    727      1.11  christos tap_cdev_close(dev_t dev, int flags, int fmt, struct lwp *l)
    728       1.1      cube {
    729       1.1      cube 	struct tap_softc *sc =
    730       1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    731       1.1      cube 
    732       1.1      cube 	if (sc == NULL)
    733       1.1      cube 		return (ENXIO);
    734       1.1      cube 
    735       1.1      cube 	return tap_dev_close(sc);
    736       1.1      cube }
    737       1.1      cube 
    738       1.1      cube /*
    739       1.1      cube  * It might happen that the administrator used ifconfig to externally destroy
    740       1.1      cube  * the interface.  In that case, tap_fops_close will be called while
    741       1.1      cube  * tap_detach is already happening.  If we called it again from here, we
    742       1.1      cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    743       1.1      cube  */
    744       1.1      cube static int
    745      1.11  christos tap_fops_close(struct file *fp, struct lwp *l)
    746       1.1      cube {
    747       1.1      cube 	int unit = (intptr_t)fp->f_data;
    748       1.1      cube 	struct tap_softc *sc;
    749       1.1      cube 	int error;
    750       1.1      cube 
    751       1.1      cube 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    752       1.1      cube 	if (sc == NULL)
    753       1.1      cube 		return (ENXIO);
    754       1.1      cube 
    755       1.1      cube 	/* tap_dev_close currently always succeeds, but it might not
    756       1.1      cube 	 * always be the case. */
    757       1.1      cube 	if ((error = tap_dev_close(sc)) != 0)
    758       1.1      cube 		return (error);
    759       1.1      cube 
    760       1.1      cube 	/* Destroy the device now that it is no longer useful,
    761       1.1      cube 	 * unless it's already being destroyed. */
    762       1.1      cube 	if ((sc->sc_flags & TAP_GOING) != 0)
    763       1.1      cube 		return (0);
    764       1.1      cube 
    765       1.1      cube 	return tap_clone_destroyer((struct device *)sc);
    766       1.1      cube }
    767       1.1      cube 
    768       1.1      cube static int
    769       1.1      cube tap_dev_close(struct tap_softc *sc)
    770       1.1      cube {
    771       1.1      cube 	struct ifnet *ifp;
    772       1.1      cube 	int s;
    773       1.1      cube 
    774       1.1      cube 	s = splnet();
    775       1.1      cube 	/* Let tap_start handle packets again */
    776       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    777       1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    778       1.1      cube 
    779       1.1      cube 	/* Purge output queue */
    780       1.1      cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    781       1.1      cube 		struct mbuf *m;
    782       1.1      cube 
    783       1.1      cube 		for (;;) {
    784       1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    785       1.1      cube 			if (m == NULL)
    786       1.1      cube 				break;
    787       1.1      cube 
    788       1.1      cube 			ifp->if_opackets++;
    789       1.1      cube #if NBPFILTER > 0
    790       1.1      cube 			if (ifp->if_bpf)
    791       1.1      cube 				bpf_mtap(ifp->if_bpf, m);
    792       1.1      cube #endif
    793       1.1      cube 		}
    794       1.1      cube 	}
    795       1.1      cube 	splx(s);
    796       1.1      cube 
    797       1.1      cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    798       1.1      cube 
    799       1.1      cube 	return (0);
    800       1.1      cube }
    801       1.1      cube 
    802       1.1      cube static int
    803       1.1      cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    804       1.1      cube {
    805       1.1      cube 	return tap_dev_read(minor(dev), uio, flags);
    806       1.1      cube }
    807       1.1      cube 
    808       1.1      cube static int
    809       1.1      cube tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    810       1.1      cube     struct ucred *cred, int flags)
    811       1.1      cube {
    812       1.1      cube 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    813       1.1      cube }
    814       1.1      cube 
    815       1.1      cube static int
    816       1.1      cube tap_dev_read(int unit, struct uio *uio, int flags)
    817       1.1      cube {
    818       1.1      cube 	struct tap_softc *sc =
    819       1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    820       1.1      cube 	struct ifnet *ifp;
    821       1.1      cube 	struct mbuf *m, *n;
    822       1.1      cube 	int error = 0, s;
    823       1.1      cube 
    824       1.1      cube 	if (sc == NULL)
    825       1.1      cube 		return (ENXIO);
    826       1.1      cube 
    827       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    828       1.1      cube 	if ((ifp->if_flags & IFF_UP) == 0)
    829       1.1      cube 		return (EHOSTDOWN);
    830       1.1      cube 
    831       1.1      cube 	/*
    832       1.1      cube 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    833       1.1      cube 	 */
    834       1.1      cube 	if ((sc->sc_flags & TAP_NBIO) &&
    835       1.1      cube 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    836       1.1      cube 		return (EWOULDBLOCK);
    837       1.1      cube 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    838       1.1      cube 	if (error != 0)
    839       1.1      cube 		return (error);
    840       1.1      cube 
    841       1.1      cube 	s = splnet();
    842       1.1      cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    843       1.1      cube 		ifp->if_flags &= ~IFF_OACTIVE;
    844       1.1      cube 		splx(s);
    845       1.1      cube 		/*
    846       1.1      cube 		 * We must release the lock before sleeping, and re-acquire it
    847       1.1      cube 		 * after.
    848       1.1      cube 		 */
    849       1.1      cube 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    850       1.1      cube 		if (sc->sc_flags & TAP_NBIO)
    851       1.1      cube 			error = EWOULDBLOCK;
    852       1.1      cube 		else
    853       1.1      cube 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    854       1.1      cube 
    855       1.1      cube 		if (error != 0)
    856       1.1      cube 			return (error);
    857       1.1      cube 		/* The device might have been downed */
    858       1.1      cube 		if ((ifp->if_flags & IFF_UP) == 0)
    859       1.1      cube 			return (EHOSTDOWN);
    860       1.1      cube 		if ((sc->sc_flags & TAP_NBIO) &&
    861       1.1      cube 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    862       1.1      cube 			return (EWOULDBLOCK);
    863       1.1      cube 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    864       1.1      cube 		if (error != 0)
    865       1.1      cube 			return (error);
    866       1.1      cube 		s = splnet();
    867       1.1      cube 	}
    868       1.1      cube 
    869       1.1      cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    870       1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    871       1.1      cube 	splx(s);
    872       1.1      cube 	if (m == NULL) {
    873       1.1      cube 		error = 0;
    874       1.1      cube 		goto out;
    875       1.1      cube 	}
    876       1.1      cube 
    877       1.1      cube 	ifp->if_opackets++;
    878       1.1      cube #if NBPFILTER > 0
    879       1.1      cube 	if (ifp->if_bpf)
    880       1.1      cube 		bpf_mtap(ifp->if_bpf, m);
    881       1.1      cube #endif
    882       1.1      cube 
    883       1.1      cube 	/*
    884       1.1      cube 	 * One read is one packet.
    885       1.1      cube 	 */
    886       1.1      cube 	do {
    887       1.1      cube 		error = uiomove(mtod(m, caddr_t),
    888       1.1      cube 		    min(m->m_len, uio->uio_resid), uio);
    889       1.1      cube 		MFREE(m, n);
    890       1.1      cube 		m = n;
    891       1.1      cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    892       1.1      cube 
    893       1.1      cube 	if (m != NULL)
    894       1.1      cube 		m_freem(m);
    895       1.1      cube 
    896       1.1      cube out:
    897       1.1      cube 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    898       1.1      cube 	return (error);
    899       1.1      cube }
    900       1.1      cube 
    901       1.1      cube static int
    902       1.1      cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    903       1.1      cube {
    904       1.1      cube 	return tap_dev_write(minor(dev), uio, flags);
    905       1.1      cube }
    906       1.1      cube 
    907       1.1      cube static int
    908       1.1      cube tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    909       1.1      cube     struct ucred *cred, int flags)
    910       1.1      cube {
    911       1.1      cube 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    912       1.1      cube }
    913       1.1      cube 
    914       1.1      cube static int
    915       1.1      cube tap_dev_write(int unit, struct uio *uio, int flags)
    916       1.1      cube {
    917       1.1      cube 	struct tap_softc *sc =
    918       1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    919       1.1      cube 	struct ifnet *ifp;
    920       1.1      cube 	struct mbuf *m, **mp;
    921       1.1      cube 	int error = 0;
    922       1.9    bouyer 	int s;
    923       1.1      cube 
    924       1.1      cube 	if (sc == NULL)
    925       1.1      cube 		return (ENXIO);
    926       1.1      cube 
    927       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    928       1.1      cube 
    929       1.1      cube 	/* One write, one packet, that's the rule */
    930       1.1      cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    931       1.1      cube 	if (m == NULL) {
    932       1.1      cube 		ifp->if_ierrors++;
    933       1.1      cube 		return (ENOBUFS);
    934       1.1      cube 	}
    935       1.1      cube 	m->m_pkthdr.len = uio->uio_resid;
    936       1.1      cube 
    937       1.1      cube 	mp = &m;
    938       1.1      cube 	while (error == 0 && uio->uio_resid > 0) {
    939       1.1      cube 		if (*mp != m) {
    940       1.1      cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
    941       1.1      cube 			if (*mp == NULL) {
    942       1.1      cube 				error = ENOBUFS;
    943       1.1      cube 				break;
    944       1.1      cube 			}
    945       1.1      cube 		}
    946       1.1      cube 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    947       1.1      cube 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
    948       1.1      cube 		mp = &(*mp)->m_next;
    949       1.1      cube 	}
    950       1.1      cube 	if (error) {
    951       1.1      cube 		ifp->if_ierrors++;
    952       1.1      cube 		m_freem(m);
    953       1.1      cube 		return (error);
    954       1.1      cube 	}
    955       1.1      cube 
    956       1.1      cube 	ifp->if_ipackets++;
    957       1.1      cube 	m->m_pkthdr.rcvif = ifp;
    958       1.1      cube 
    959       1.1      cube #if NBPFILTER > 0
    960       1.1      cube 	if (ifp->if_bpf)
    961       1.1      cube 		bpf_mtap(ifp->if_bpf, m);
    962       1.1      cube #endif
    963       1.9    bouyer 	s =splnet();
    964       1.1      cube 	(*ifp->if_input)(ifp, m);
    965       1.9    bouyer 	splx(s);
    966       1.1      cube 
    967       1.1      cube 	return (0);
    968       1.1      cube }
    969       1.1      cube 
    970       1.1      cube static int
    971       1.1      cube tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
    972      1.11  christos     struct lwp *l)
    973       1.1      cube {
    974      1.11  christos 	return tap_dev_ioctl(minor(dev), cmd, data, l);
    975       1.1      cube }
    976       1.1      cube 
    977       1.1      cube static int
    978      1.11  christos tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
    979       1.1      cube {
    980      1.11  christos 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
    981       1.1      cube }
    982       1.1      cube 
    983       1.1      cube static int
    984      1.11  christos tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
    985       1.1      cube {
    986       1.1      cube 	struct tap_softc *sc =
    987       1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    988       1.1      cube 	int error = 0;
    989       1.1      cube 
    990       1.1      cube 	if (sc == NULL)
    991       1.1      cube 		return (ENXIO);
    992       1.1      cube 
    993       1.1      cube 	switch (cmd) {
    994       1.1      cube 	case FIONREAD:
    995       1.1      cube 		{
    996       1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
    997       1.1      cube 			struct mbuf *m;
    998       1.1      cube 			int s;
    999       1.1      cube 
   1000       1.1      cube 			s = splnet();
   1001       1.1      cube 			IFQ_POLL(&ifp->if_snd, m);
   1002       1.1      cube 
   1003       1.1      cube 			if (m == NULL)
   1004       1.1      cube 				*(int *)data = 0;
   1005       1.1      cube 			else
   1006       1.1      cube 				*(int *)data = m->m_pkthdr.len;
   1007       1.1      cube 			splx(s);
   1008       1.1      cube 		} break;
   1009       1.1      cube 	case TIOCSPGRP:
   1010       1.1      cube 	case FIOSETOWN:
   1011      1.11  christos 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
   1012       1.1      cube 		break;
   1013       1.1      cube 	case TIOCGPGRP:
   1014       1.1      cube 	case FIOGETOWN:
   1015      1.11  christos 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
   1016       1.1      cube 		break;
   1017       1.1      cube 	case FIOASYNC:
   1018       1.1      cube 		if (*(int *)data)
   1019       1.1      cube 			sc->sc_flags |= TAP_ASYNCIO;
   1020       1.1      cube 		else
   1021       1.1      cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1022       1.1      cube 		break;
   1023       1.1      cube 	case FIONBIO:
   1024       1.1      cube 		if (*(int *)data)
   1025       1.1      cube 			sc->sc_flags |= TAP_NBIO;
   1026       1.1      cube 		else
   1027       1.1      cube 			sc->sc_flags &= ~TAP_NBIO;
   1028       1.1      cube 		break;
   1029       1.1      cube 	case TAPGIFNAME:
   1030       1.1      cube 		{
   1031       1.1      cube 			struct ifreq *ifr = (struct ifreq *)data;
   1032       1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1033       1.1      cube 
   1034       1.1      cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1035       1.1      cube 		} break;
   1036       1.1      cube 	default:
   1037       1.1      cube 		error = ENOTTY;
   1038       1.1      cube 		break;
   1039       1.1      cube 	}
   1040       1.1      cube 
   1041       1.1      cube 	return (0);
   1042       1.1      cube }
   1043       1.1      cube 
   1044       1.1      cube static int
   1045      1.11  christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1046       1.1      cube {
   1047      1.11  christos 	return tap_dev_poll(minor(dev), events, l);
   1048       1.1      cube }
   1049       1.1      cube 
   1050       1.1      cube static int
   1051      1.11  christos tap_fops_poll(struct file *fp, int events, struct lwp *l)
   1052       1.1      cube {
   1053      1.11  christos 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
   1054       1.1      cube }
   1055       1.1      cube 
   1056       1.1      cube static int
   1057      1.11  christos tap_dev_poll(int unit, int events, struct lwp *l)
   1058       1.1      cube {
   1059       1.1      cube 	struct tap_softc *sc =
   1060       1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1061       1.1      cube 	int revents = 0;
   1062       1.1      cube 
   1063       1.1      cube 	if (sc == NULL)
   1064       1.1      cube 		return (ENXIO);
   1065       1.1      cube 
   1066       1.1      cube 	if (events & (POLLIN|POLLRDNORM)) {
   1067       1.1      cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1068       1.1      cube 		struct mbuf *m;
   1069       1.1      cube 		int s;
   1070       1.1      cube 
   1071       1.1      cube 		s = splnet();
   1072       1.1      cube 		IFQ_POLL(&ifp->if_snd, m);
   1073       1.1      cube 		splx(s);
   1074       1.1      cube 
   1075       1.1      cube 		if (m != NULL)
   1076       1.1      cube 			revents |= events & (POLLIN|POLLRDNORM);
   1077       1.1      cube 		else {
   1078       1.4     ragge 			simple_lock(&sc->sc_kqlock);
   1079      1.11  christos 			selrecord(l, &sc->sc_rsel);
   1080       1.1      cube 			simple_unlock(&sc->sc_kqlock);
   1081       1.1      cube 		}
   1082       1.1      cube 	}
   1083       1.1      cube 	revents |= events & (POLLOUT|POLLWRNORM);
   1084       1.1      cube 
   1085       1.1      cube 	return (revents);
   1086       1.1      cube }
   1087       1.1      cube 
   1088       1.1      cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1089       1.1      cube 	tap_kqread };
   1090       1.1      cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1091       1.1      cube 	filt_seltrue };
   1092       1.1      cube 
   1093       1.1      cube static int
   1094       1.1      cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1095       1.1      cube {
   1096       1.1      cube 	return tap_dev_kqfilter(minor(dev), kn);
   1097       1.1      cube }
   1098       1.1      cube 
   1099       1.1      cube static int
   1100       1.1      cube tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1101       1.1      cube {
   1102       1.1      cube 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1103       1.1      cube }
   1104       1.1      cube 
   1105       1.1      cube static int
   1106       1.1      cube tap_dev_kqfilter(int unit, struct knote *kn)
   1107       1.1      cube {
   1108       1.1      cube 	struct tap_softc *sc =
   1109       1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1110       1.1      cube 
   1111       1.1      cube 	if (sc == NULL)
   1112       1.1      cube 		return (ENXIO);
   1113       1.1      cube 
   1114       1.1      cube 	switch(kn->kn_filter) {
   1115       1.1      cube 	case EVFILT_READ:
   1116       1.1      cube 		kn->kn_fop = &tap_read_filterops;
   1117       1.1      cube 		break;
   1118       1.1      cube 	case EVFILT_WRITE:
   1119       1.1      cube 		kn->kn_fop = &tap_seltrue_filterops;
   1120       1.1      cube 		break;
   1121       1.1      cube 	default:
   1122       1.1      cube 		return (1);
   1123       1.1      cube 	}
   1124       1.1      cube 
   1125       1.1      cube 	kn->kn_hook = sc;
   1126       1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1127       1.1      cube 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1128       1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1129       1.1      cube 	return (0);
   1130       1.1      cube }
   1131       1.1      cube 
   1132       1.1      cube static void
   1133       1.1      cube tap_kqdetach(struct knote *kn)
   1134       1.1      cube {
   1135       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1136       1.1      cube 
   1137       1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1138       1.1      cube 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1139       1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1140       1.1      cube }
   1141       1.1      cube 
   1142       1.1      cube static int
   1143       1.1      cube tap_kqread(struct knote *kn, long hint)
   1144       1.1      cube {
   1145       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1146       1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1147       1.1      cube 	struct mbuf *m;
   1148       1.1      cube 	int s;
   1149       1.1      cube 
   1150       1.1      cube 	s = splnet();
   1151       1.1      cube 	IFQ_POLL(&ifp->if_snd, m);
   1152       1.1      cube 
   1153       1.1      cube 	if (m == NULL)
   1154       1.1      cube 		kn->kn_data = 0;
   1155       1.1      cube 	else
   1156       1.1      cube 		kn->kn_data = m->m_pkthdr.len;
   1157       1.1      cube 	splx(s);
   1158       1.1      cube 	return (kn->kn_data != 0 ? 1 : 0);
   1159       1.1      cube }
   1160       1.1      cube 
   1161       1.1      cube /*
   1162       1.1      cube  * sysctl management routines
   1163       1.1      cube  * You can set the address of an interface through:
   1164       1.1      cube  * net.link.tap.tap<number>
   1165       1.1      cube  *
   1166       1.1      cube  * Note the consistent use of tap_log in order to use
   1167       1.1      cube  * sysctl_teardown at unload time.
   1168       1.1      cube  *
   1169       1.1      cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1170       1.1      cube  * blocks register a function in a special section of the kernel
   1171       1.1      cube  * (called a link set) which is used at init_sysctl() time to cycle
   1172       1.1      cube  * through all those functions to create the kernel's sysctl tree.
   1173       1.1      cube  *
   1174       1.1      cube  * It is not (currently) possible to use link sets in a LKM, so the
   1175       1.1      cube  * easiest is to simply call our own setup routine at load time.
   1176       1.1      cube  *
   1177       1.1      cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1178       1.1      cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1179       1.1      cube  * whole kernel sysctl tree is built, it is not possible to add any
   1180       1.1      cube  * permanent node.
   1181       1.1      cube  *
   1182       1.1      cube  * It should be noted that we're not saving the sysctlnode pointer
   1183       1.1      cube  * we are returned when creating the "tap" node.  That structure
   1184       1.1      cube  * cannot be trusted once out of the calling function, as it might
   1185       1.1      cube  * get reused.  So we just save the MIB number, and always give the
   1186       1.1      cube  * full path starting from the root for later calls to sysctl_createv
   1187       1.1      cube  * and sysctl_destroyv.
   1188       1.1      cube  */
   1189       1.1      cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1190       1.1      cube {
   1191      1.10    atatat 	const struct sysctlnode *node;
   1192       1.1      cube 	int error = 0;
   1193       1.1      cube 
   1194       1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1195       1.1      cube 	    CTLFLAG_PERMANENT,
   1196       1.1      cube 	    CTLTYPE_NODE, "net", NULL,
   1197       1.1      cube 	    NULL, 0, NULL, 0,
   1198       1.1      cube 	    CTL_NET, CTL_EOL)) != 0)
   1199       1.1      cube 		return;
   1200       1.1      cube 
   1201       1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1202       1.1      cube 	    CTLFLAG_PERMANENT,
   1203       1.1      cube 	    CTLTYPE_NODE, "link", NULL,
   1204       1.1      cube 	    NULL, 0, NULL, 0,
   1205       1.3      cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1206       1.1      cube 		return;
   1207       1.1      cube 
   1208       1.1      cube 	/*
   1209       1.1      cube 	 * The first four parameters of sysctl_createv are for management.
   1210       1.1      cube 	 *
   1211       1.1      cube 	 * The four that follows, here starting with a '0' for the flags,
   1212       1.1      cube 	 * describe the node.
   1213       1.1      cube 	 *
   1214       1.1      cube 	 * The next series of four set its value, through various possible
   1215       1.1      cube 	 * means.
   1216       1.1      cube 	 *
   1217       1.1      cube 	 * Last but not least, the path to the node is described.  That path
   1218       1.1      cube 	 * is relative to the given root (third argument).  Here we're
   1219       1.1      cube 	 * starting from the root.
   1220       1.1      cube 	 */
   1221       1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1222       1.1      cube 	    CTLFLAG_PERMANENT,
   1223       1.1      cube 	    CTLTYPE_NODE, "tap", NULL,
   1224       1.1      cube 	    NULL, 0, NULL, 0,
   1225       1.3      cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1226       1.1      cube 		return;
   1227       1.1      cube 	tap_node = node->sysctl_num;
   1228       1.1      cube }
   1229       1.1      cube 
   1230       1.1      cube /*
   1231       1.1      cube  * The helper functions make Andrew Brown's interface really
   1232       1.1      cube  * shine.  It makes possible to create value on the fly whether
   1233       1.1      cube  * the sysctl value is read or written.
   1234       1.1      cube  *
   1235       1.1      cube  * As shown as an example in the man page, the first step is to
   1236       1.1      cube  * create a copy of the node to have sysctl_lookup work on it.
   1237       1.1      cube  *
   1238       1.1      cube  * Here, we have more work to do than just a copy, since we have
   1239       1.1      cube  * to create the string.  The first step is to collect the actual
   1240       1.1      cube  * value of the node, which is a convenient pointer to the softc
   1241       1.1      cube  * of the interface.  From there we create the string and use it
   1242       1.1      cube  * as the value, but only for the *copy* of the node.
   1243       1.1      cube  *
   1244       1.1      cube  * Then we let sysctl_lookup do the magic, which consists in
   1245       1.1      cube  * setting oldp and newp as required by the operation.  When the
   1246       1.1      cube  * value is read, that means that the string will be copied to
   1247       1.1      cube  * the user, and when it is written, the new value will be copied
   1248       1.1      cube  * over in the addr array.
   1249       1.1      cube  *
   1250       1.1      cube  * If newp is NULL, the user was reading the value, so we don't
   1251       1.1      cube  * have anything else to do.  If a new value was written, we
   1252       1.1      cube  * have to check it.
   1253       1.1      cube  *
   1254       1.1      cube  * If it is incorrect, we can return an error and leave 'node' as
   1255       1.1      cube  * it is:  since it is a copy of the actual node, the change will
   1256       1.1      cube  * be forgotten.
   1257       1.1      cube  *
   1258       1.1      cube  * Upon a correct input, we commit the change to the ifnet
   1259       1.1      cube  * structure of our interface.
   1260       1.1      cube  */
   1261       1.1      cube static int
   1262       1.1      cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1263       1.1      cube {
   1264       1.1      cube 	struct sysctlnode node;
   1265       1.1      cube 	struct tap_softc *sc;
   1266       1.1      cube 	struct ifnet *ifp;
   1267       1.1      cube 	int error;
   1268       1.1      cube 	size_t len;
   1269  1.13.2.1      yamt 	char addr[3 * ETHER_ADDR_LEN];
   1270       1.1      cube 
   1271       1.1      cube 	node = *rnode;
   1272       1.1      cube 	sc = node.sysctl_data;
   1273       1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1274  1.13.2.1      yamt 	(void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
   1275       1.1      cube 	node.sysctl_data = addr;
   1276       1.1      cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1277       1.1      cube 	if (error || newp == NULL)
   1278       1.1      cube 		return (error);
   1279       1.1      cube 
   1280       1.1      cube 	len = strlen(addr);
   1281       1.1      cube 	if (len < 11 || len > 17)
   1282       1.1      cube 		return (EINVAL);
   1283       1.1      cube 
   1284       1.1      cube 	/* Commit change */
   1285       1.1      cube 	if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1286       1.1      cube 		return (EINVAL);
   1287       1.1      cube 	return (error);
   1288       1.1      cube }
   1289       1.1      cube 
   1290       1.1      cube /*
   1291       1.1      cube  * ether_aton implementation, not using a static buffer.
   1292       1.1      cube  */
   1293       1.1      cube static int
   1294       1.1      cube tap_ether_aton(u_char *dest, char *str)
   1295       1.1      cube {
   1296       1.1      cube 	int i;
   1297       1.1      cube 	char *cp = str;
   1298       1.1      cube 	u_char val[6];
   1299       1.1      cube 
   1300       1.1      cube #define	set_value			\
   1301       1.1      cube 	if (*cp > '9' && *cp < 'a')	\
   1302       1.1      cube 		*cp -= 'A' - 10;	\
   1303       1.1      cube 	else if (*cp > '9')		\
   1304       1.1      cube 		*cp -= 'a' - 10;	\
   1305       1.1      cube 	else				\
   1306       1.1      cube 		*cp -= '0'
   1307       1.1      cube 
   1308       1.1      cube 	for (i = 0; i < 6; i++, cp++) {
   1309       1.1      cube 		if (!isxdigit(*cp))
   1310       1.1      cube 			return (1);
   1311       1.1      cube 		set_value;
   1312       1.1      cube 		val[i] = *cp++;
   1313       1.1      cube 		if (isxdigit(*cp)) {
   1314       1.1      cube 			set_value;
   1315       1.1      cube 			val[i] *= 16;
   1316       1.1      cube 			val[i] += *cp++;
   1317       1.1      cube 		}
   1318       1.1      cube 		if (*cp == ':' || i == 5)
   1319       1.1      cube 			continue;
   1320       1.1      cube 		else
   1321       1.1      cube 			return (1);
   1322       1.1      cube 	}
   1323       1.1      cube 	memcpy(dest, val, 6);
   1324       1.1      cube 	return (0);
   1325       1.1      cube }
   1326