Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.24
      1  1.24    rpaulo /*	$NetBSD: if_tap.c,v 1.24 2006/11/24 01:04:30 rpaulo Exp $	*/
      2   1.1      cube 
      3   1.1      cube /*
      4   1.1      cube  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5   1.1      cube  *  All rights reserved.
      6   1.1      cube  *
      7   1.1      cube  *  This code is derived from software contributed to the NetBSD Foundation
      8   1.1      cube  *   by Quentin Garnier.
      9   1.6     perry  *
     10   1.1      cube  *  Redistribution and use in source and binary forms, with or without
     11   1.1      cube  *  modification, are permitted provided that the following conditions
     12   1.1      cube  *  are met:
     13   1.1      cube  *  1. Redistributions of source code must retain the above copyright
     14   1.1      cube  *     notice, this list of conditions and the following disclaimer.
     15   1.1      cube  *  2. Redistributions in binary form must reproduce the above copyright
     16   1.1      cube  *     notice, this list of conditions and the following disclaimer in the
     17   1.1      cube  *     documentation and/or other materials provided with the distribution.
     18   1.1      cube  *  3. All advertising materials mentioning features or use of this software
     19   1.1      cube  *     must display the following acknowledgement:
     20   1.1      cube  *         This product includes software developed by the NetBSD
     21   1.1      cube  *         Foundation, Inc. and its contributors.
     22   1.1      cube  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23   1.1      cube  *     contributors may be used to endorse or promote products derived
     24   1.1      cube  *     from this software without specific prior written permission.
     25   1.6     perry  *
     26   1.1      cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27   1.1      cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28   1.1      cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29   1.1      cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30   1.1      cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31   1.1      cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32   1.1      cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33   1.1      cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34   1.1      cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35   1.1      cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36   1.1      cube  *  POSSIBILITY OF SUCH DAMAGE.
     37   1.1      cube  */
     38   1.1      cube 
     39   1.1      cube /*
     40   1.1      cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41   1.1      cube  * device to the system, but can also be accessed by userland through a
     42   1.1      cube  * character device interface, which allows reading and injecting frames.
     43   1.1      cube  */
     44   1.1      cube 
     45   1.1      cube #include <sys/cdefs.h>
     46  1.24    rpaulo __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.24 2006/11/24 01:04:30 rpaulo Exp $");
     47   1.1      cube 
     48   1.2      cube #if defined(_KERNEL_OPT)
     49   1.1      cube #include "bpfilter.h"
     50   1.2      cube #endif
     51   1.1      cube 
     52   1.1      cube #include <sys/param.h>
     53   1.1      cube #include <sys/systm.h>
     54   1.1      cube #include <sys/kernel.h>
     55   1.1      cube #include <sys/malloc.h>
     56   1.1      cube #include <sys/conf.h>
     57   1.1      cube #include <sys/device.h>
     58   1.1      cube #include <sys/file.h>
     59   1.1      cube #include <sys/filedesc.h>
     60   1.1      cube #include <sys/ksyms.h>
     61   1.1      cube #include <sys/poll.h>
     62   1.1      cube #include <sys/select.h>
     63   1.1      cube #include <sys/sockio.h>
     64   1.1      cube #include <sys/sysctl.h>
     65  1.17      elad #include <sys/kauth.h>
     66   1.1      cube 
     67   1.1      cube #include <net/if.h>
     68   1.1      cube #include <net/if_dl.h>
     69   1.1      cube #include <net/if_ether.h>
     70   1.1      cube #include <net/if_media.h>
     71   1.1      cube #include <net/if_tap.h>
     72   1.1      cube #if NBPFILTER > 0
     73   1.1      cube #include <net/bpf.h>
     74   1.1      cube #endif
     75   1.1      cube 
     76   1.1      cube /*
     77   1.1      cube  * sysctl node management
     78   1.1      cube  *
     79   1.1      cube  * It's not really possible to use a SYSCTL_SETUP block with
     80   1.1      cube  * current LKM implementation, so it is easier to just define
     81   1.1      cube  * our own function.
     82   1.1      cube  *
     83   1.1      cube  * The handler function is a "helper" in Andrew Brown's sysctl
     84   1.1      cube  * framework terminology.  It is used as a gateway for sysctl
     85   1.1      cube  * requests over the nodes.
     86   1.1      cube  *
     87   1.1      cube  * tap_log allows the module to log creations of nodes and
     88   1.1      cube  * destroy them all at once using sysctl_teardown.
     89   1.1      cube  */
     90   1.1      cube static int tap_node;
     91   1.1      cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     92   1.2      cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     93   1.1      cube 
     94   1.1      cube /*
     95   1.1      cube  * Since we're an Ethernet device, we need the 3 following
     96   1.1      cube  * components: a leading struct device, a struct ethercom,
     97   1.1      cube  * and also a struct ifmedia since we don't attach a PHY to
     98   1.1      cube  * ourselves. We could emulate one, but there's no real
     99   1.1      cube  * point.
    100   1.1      cube  */
    101   1.1      cube 
    102   1.1      cube struct tap_softc {
    103   1.1      cube 	struct device	sc_dev;
    104   1.1      cube 	struct ifmedia	sc_im;
    105   1.1      cube 	struct ethercom	sc_ec;
    106   1.1      cube 	int		sc_flags;
    107   1.1      cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    108   1.1      cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    109   1.1      cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    110   1.1      cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
    111   1.1      cube 	struct selinfo	sc_rsel;
    112   1.1      cube 	pid_t		sc_pgid; /* For async. IO */
    113   1.1      cube 	struct lock	sc_rdlock;
    114   1.1      cube 	struct simplelock	sc_kqlock;
    115   1.1      cube };
    116   1.1      cube 
    117   1.1      cube /* autoconf(9) glue */
    118   1.1      cube 
    119   1.1      cube void	tapattach(int);
    120   1.1      cube 
    121   1.1      cube static int	tap_match(struct device *, struct cfdata *, void *);
    122   1.1      cube static void	tap_attach(struct device *, struct device *, void *);
    123   1.1      cube static int	tap_detach(struct device*, int);
    124   1.1      cube 
    125   1.1      cube CFATTACH_DECL(tap, sizeof(struct tap_softc),
    126   1.1      cube     tap_match, tap_attach, tap_detach, NULL);
    127   1.1      cube extern struct cfdriver tap_cd;
    128   1.1      cube 
    129   1.1      cube /* Real device access routines */
    130   1.1      cube static int	tap_dev_close(struct tap_softc *);
    131   1.1      cube static int	tap_dev_read(int, struct uio *, int);
    132   1.1      cube static int	tap_dev_write(int, struct uio *, int);
    133  1.11  christos static int	tap_dev_ioctl(int, u_long, caddr_t, struct lwp *);
    134  1.11  christos static int	tap_dev_poll(int, int, struct lwp *);
    135   1.1      cube static int	tap_dev_kqfilter(int, struct knote *);
    136   1.1      cube 
    137   1.1      cube /* Fileops access routines */
    138  1.11  christos static int	tap_fops_close(struct file *, struct lwp *);
    139   1.1      cube static int	tap_fops_read(struct file *, off_t *, struct uio *,
    140  1.17      elad     kauth_cred_t, int);
    141   1.1      cube static int	tap_fops_write(struct file *, off_t *, struct uio *,
    142  1.17      elad     kauth_cred_t, int);
    143   1.1      cube static int	tap_fops_ioctl(struct file *, u_long, void *,
    144  1.11  christos     struct lwp *);
    145  1.11  christos static int	tap_fops_poll(struct file *, int, struct lwp *);
    146   1.1      cube static int	tap_fops_kqfilter(struct file *, struct knote *);
    147   1.1      cube 
    148   1.1      cube static const struct fileops tap_fileops = {
    149   1.1      cube 	tap_fops_read,
    150   1.1      cube 	tap_fops_write,
    151   1.1      cube 	tap_fops_ioctl,
    152   1.1      cube 	fnullop_fcntl,
    153   1.1      cube 	tap_fops_poll,
    154   1.1      cube 	fbadop_stat,
    155   1.1      cube 	tap_fops_close,
    156   1.1      cube 	tap_fops_kqfilter,
    157   1.1      cube };
    158   1.1      cube 
    159   1.1      cube /* Helper for cloning open() */
    160  1.11  christos static int	tap_dev_cloner(struct lwp *);
    161   1.1      cube 
    162   1.1      cube /* Character device routines */
    163  1.11  christos static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    164  1.11  christos static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    165   1.1      cube static int	tap_cdev_read(dev_t, struct uio *, int);
    166   1.1      cube static int	tap_cdev_write(dev_t, struct uio *, int);
    167  1.11  christos static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct lwp *);
    168  1.11  christos static int	tap_cdev_poll(dev_t, int, struct lwp *);
    169   1.1      cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    170   1.1      cube 
    171   1.1      cube const struct cdevsw tap_cdevsw = {
    172   1.1      cube 	tap_cdev_open, tap_cdev_close,
    173   1.1      cube 	tap_cdev_read, tap_cdev_write,
    174   1.1      cube 	tap_cdev_ioctl, nostop, notty,
    175   1.1      cube 	tap_cdev_poll, nommap,
    176   1.1      cube 	tap_cdev_kqfilter,
    177  1.20  christos 	D_OTHER,
    178   1.1      cube };
    179   1.1      cube 
    180   1.1      cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    181   1.1      cube 
    182   1.1      cube /* kqueue-related routines */
    183   1.1      cube static void	tap_kqdetach(struct knote *);
    184   1.1      cube static int	tap_kqread(struct knote *, long);
    185   1.1      cube 
    186   1.1      cube /*
    187   1.1      cube  * Those are needed by the if_media interface.
    188   1.1      cube  */
    189   1.1      cube 
    190   1.1      cube static int	tap_mediachange(struct ifnet *);
    191   1.1      cube static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    192   1.1      cube 
    193   1.1      cube /*
    194   1.1      cube  * Those are needed by the ifnet interface, and would typically be
    195   1.1      cube  * there for any network interface driver.
    196   1.1      cube  * Some other routines are optional: watchdog and drain.
    197   1.1      cube  */
    198   1.1      cube 
    199   1.1      cube static void	tap_start(struct ifnet *);
    200   1.1      cube static void	tap_stop(struct ifnet *, int);
    201   1.1      cube static int	tap_init(struct ifnet *);
    202   1.1      cube static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
    203   1.1      cube 
    204   1.1      cube /* This is an internal function to keep tap_ioctl readable */
    205   1.1      cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    206   1.1      cube 
    207   1.1      cube /*
    208   1.1      cube  * tap is a clonable interface, although it is highly unrealistic for
    209   1.1      cube  * an Ethernet device.
    210   1.1      cube  *
    211   1.1      cube  * Here are the bits needed for a clonable interface.
    212   1.1      cube  */
    213   1.1      cube static int	tap_clone_create(struct if_clone *, int);
    214   1.1      cube static int	tap_clone_destroy(struct ifnet *);
    215   1.1      cube 
    216   1.1      cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    217   1.1      cube 					tap_clone_create,
    218   1.1      cube 					tap_clone_destroy);
    219   1.1      cube 
    220   1.1      cube /* Helper functionis shared by the two cloning code paths */
    221   1.1      cube static struct tap_softc *	tap_clone_creator(int);
    222  1.12      cube int	tap_clone_destroyer(struct device *);
    223   1.1      cube 
    224   1.1      cube void
    225  1.23  christos tapattach(int n)
    226   1.1      cube {
    227   1.1      cube 	int error;
    228   1.1      cube 
    229   1.1      cube 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    230   1.1      cube 	if (error) {
    231   1.1      cube 		aprint_error("%s: unable to register cfattach\n",
    232   1.1      cube 		    tap_cd.cd_name);
    233   1.1      cube 		(void)config_cfdriver_detach(&tap_cd);
    234   1.1      cube 		return;
    235   1.1      cube 	}
    236   1.1      cube 
    237   1.1      cube 	if_clone_attach(&tap_cloners);
    238   1.1      cube }
    239   1.1      cube 
    240   1.1      cube /* Pretty much useless for a pseudo-device */
    241   1.1      cube static int
    242  1.23  christos tap_match(struct device *self, struct cfdata *cfdata,
    243  1.23  christos     void *arg)
    244   1.1      cube {
    245   1.1      cube 	return (1);
    246   1.1      cube }
    247   1.1      cube 
    248   1.1      cube void
    249  1.23  christos tap_attach(struct device *parent, struct device *self,
    250  1.23  christos     void *aux)
    251   1.1      cube {
    252   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)self;
    253   1.1      cube 	struct ifnet *ifp;
    254  1.18    kardel 	const struct sysctlnode *node;
    255   1.1      cube 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    256   1.7      cube 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    257  1.14  christos 	char enaddrstr[3 * ETHER_ADDR_LEN];
    258  1.18    kardel 	struct timeval tv;
    259   1.1      cube 	uint32_t ui;
    260   1.1      cube 	int error;
    261   1.1      cube 
    262   1.1      cube 	aprint_normal("%s: faking Ethernet device\n",
    263   1.1      cube 	    self->dv_xname);
    264   1.1      cube 
    265   1.1      cube 	/*
    266   1.1      cube 	 * In order to obtain unique initial Ethernet address on a host,
    267  1.18    kardel 	 * do some randomisation using the current uptime.  It's not meant
    268  1.18    kardel 	 * for anything but avoiding hard-coding an address.
    269   1.1      cube 	 */
    270  1.18    kardel 	getmicrouptime(&tv);
    271  1.18    kardel 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    272   1.1      cube 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    273   1.1      cube 
    274   1.1      cube 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    275  1.14  christos 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    276   1.1      cube 
    277   1.1      cube 	/*
    278   1.1      cube 	 * Why 1000baseT? Why not? You can add more.
    279   1.1      cube 	 *
    280   1.1      cube 	 * Note that there are 3 steps: init, one or several additions to
    281   1.1      cube 	 * list of supported media, and in the end, the selection of one
    282   1.1      cube 	 * of them.
    283   1.1      cube 	 */
    284   1.1      cube 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    285   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    286   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    287   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    288   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    289   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    290   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    291   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    292   1.1      cube 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    293   1.1      cube 
    294   1.1      cube 	/*
    295   1.1      cube 	 * One should note that an interface must do multicast in order
    296   1.1      cube 	 * to support IPv6.
    297   1.1      cube 	 */
    298   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    299   1.1      cube 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    300   1.1      cube 	ifp->if_softc	= sc;
    301   1.1      cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    302   1.1      cube 	ifp->if_ioctl	= tap_ioctl;
    303   1.1      cube 	ifp->if_start	= tap_start;
    304   1.1      cube 	ifp->if_stop	= tap_stop;
    305   1.1      cube 	ifp->if_init	= tap_init;
    306   1.1      cube 	IFQ_SET_READY(&ifp->if_snd);
    307   1.1      cube 
    308   1.1      cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    309   1.1      cube 
    310   1.1      cube 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    311   1.1      cube 	 * being common to all network interface drivers. */
    312   1.1      cube 	if_attach(ifp);
    313   1.1      cube 	ether_ifattach(ifp, enaddr);
    314   1.1      cube 
    315   1.1      cube 	sc->sc_flags = 0;
    316   1.1      cube 
    317   1.1      cube 	/*
    318   1.1      cube 	 * Add a sysctl node for that interface.
    319   1.1      cube 	 *
    320   1.1      cube 	 * The pointer transmitted is not a string, but instead a pointer to
    321   1.1      cube 	 * the softc structure, which we can use to build the string value on
    322   1.1      cube 	 * the fly in the helper function of the node.  See the comments for
    323   1.1      cube 	 * tap_sysctl_handler for details.
    324  1.21      cube 	 *
    325  1.21      cube 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    326  1.21      cube 	 * component.  However, we can allocate a number ourselves, as we are
    327  1.21      cube 	 * the only consumer of the net.link.<iface> node.  In this case, the
    328  1.21      cube 	 * unit number is conveniently used to number the node.  CTL_CREATE
    329  1.21      cube 	 * would just work, too.
    330   1.1      cube 	 */
    331   1.1      cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    332   1.1      cube 	    &node, CTLFLAG_READWRITE,
    333   1.1      cube 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    334   1.1      cube 	    tap_sysctl_handler, 0, sc, 18,
    335  1.15   thorpej 	    CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
    336  1.15   thorpej 	    CTL_EOL)) != 0)
    337   1.1      cube 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    338   1.1      cube 		    sc->sc_dev.dv_xname, error);
    339   1.1      cube 
    340   1.1      cube 	/*
    341   1.1      cube 	 * Initialize the two locks for the device.
    342   1.1      cube 	 *
    343   1.1      cube 	 * We need a lock here because even though the tap device can be
    344   1.1      cube 	 * opened only once, the file descriptor might be passed to another
    345   1.1      cube 	 * process, say a fork(2)ed child.
    346   1.1      cube 	 *
    347   1.1      cube 	 * The Giant saves us from most of the hassle, but since the read
    348   1.1      cube 	 * operation can sleep, we don't want two processes to wake up at
    349   1.1      cube 	 * the same moment and both try and dequeue a single packet.
    350   1.1      cube 	 *
    351   1.1      cube 	 * The queue for event listeners (used by kqueue(9), see below) has
    352   1.1      cube 	 * to be protected, too, but we don't need the same level of
    353   1.1      cube 	 * complexity for that lock, so a simple spinning lock is fine.
    354   1.1      cube 	 */
    355   1.1      cube 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    356   1.1      cube 	simple_lock_init(&sc->sc_kqlock);
    357   1.1      cube }
    358   1.1      cube 
    359   1.1      cube /*
    360   1.1      cube  * When detaching, we do the inverse of what is done in the attach
    361   1.1      cube  * routine, in reversed order.
    362   1.1      cube  */
    363   1.1      cube static int
    364  1.23  christos tap_detach(struct device* self, int flags)
    365   1.1      cube {
    366   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)self;
    367   1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    368   1.1      cube 	int error, s;
    369   1.1      cube 
    370   1.1      cube 	/*
    371   1.1      cube 	 * Some processes might be sleeping on "tap", so we have to make
    372   1.1      cube 	 * them release their hold on the device.
    373   1.1      cube 	 *
    374   1.1      cube 	 * The LK_DRAIN operation will wait for every locked process to
    375   1.1      cube 	 * release their hold.
    376   1.1      cube 	 */
    377   1.1      cube 	sc->sc_flags |= TAP_GOING;
    378   1.1      cube 	s = splnet();
    379   1.1      cube 	tap_stop(ifp, 1);
    380   1.1      cube 	if_down(ifp);
    381   1.1      cube 	splx(s);
    382   1.1      cube 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    383   1.1      cube 
    384   1.1      cube 	/*
    385   1.1      cube 	 * Destroying a single leaf is a very straightforward operation using
    386   1.1      cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    387   1.1      cube 	 * CTL_EOL.
    388   1.1      cube 	 */
    389   1.3      cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    390  1.15   thorpej 	    device_unit(&sc->sc_dev), CTL_EOL)) != 0)
    391   1.1      cube 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    392   1.1      cube 		    sc->sc_dev.dv_xname, error);
    393   1.1      cube 	ether_ifdetach(ifp);
    394   1.1      cube 	if_detach(ifp);
    395   1.1      cube 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    396   1.1      cube 
    397   1.1      cube 	return (0);
    398   1.1      cube }
    399   1.1      cube 
    400   1.1      cube /*
    401   1.1      cube  * This function is called by the ifmedia layer to notify the driver
    402   1.1      cube  * that the user requested a media change.  A real driver would
    403   1.1      cube  * reconfigure the hardware.
    404   1.1      cube  */
    405   1.1      cube static int
    406  1.23  christos tap_mediachange(struct ifnet *ifp)
    407   1.1      cube {
    408   1.1      cube 	return (0);
    409   1.1      cube }
    410   1.1      cube 
    411   1.1      cube /*
    412   1.1      cube  * Here the user asks for the currently used media.
    413   1.1      cube  */
    414   1.1      cube static void
    415   1.1      cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    416   1.1      cube {
    417   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    418   1.1      cube 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    419   1.1      cube }
    420   1.1      cube 
    421   1.1      cube /*
    422   1.1      cube  * This is the function where we SEND packets.
    423   1.1      cube  *
    424   1.1      cube  * There is no 'receive' equivalent.  A typical driver will get
    425   1.1      cube  * interrupts from the hardware, and from there will inject new packets
    426   1.1      cube  * into the network stack.
    427   1.1      cube  *
    428   1.1      cube  * Once handled, a packet must be freed.  A real driver might not be able
    429   1.1      cube  * to fit all the pending packets into the hardware, and is allowed to
    430   1.1      cube  * return before having sent all the packets.  It should then use the
    431   1.1      cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    432   1.1      cube  *
    433   1.1      cube  * There are also other flags one should check, such as IFF_PAUSE.
    434   1.1      cube  *
    435   1.1      cube  * It is our duty to make packets available to BPF listeners.
    436   1.1      cube  *
    437   1.1      cube  * You should be aware that this function is called by the Ethernet layer
    438   1.1      cube  * at splnet().
    439   1.1      cube  *
    440   1.1      cube  * When the device is opened, we have to pass the packet(s) to the
    441   1.1      cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    442   1.1      cube  * the packets, and we send a signal to the processes waiting to read.
    443   1.1      cube  *
    444   1.1      cube  * wakeup(sc) is the counterpart to the tsleep call in
    445   1.1      cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    446   1.1      cube  * poll(2) (which includes select(2)) listeners.
    447   1.1      cube  */
    448   1.1      cube static void
    449   1.1      cube tap_start(struct ifnet *ifp)
    450   1.1      cube {
    451   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    452   1.1      cube 	struct mbuf *m0;
    453   1.1      cube 
    454   1.1      cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    455   1.1      cube 		/* Simply drop packets */
    456   1.1      cube 		for(;;) {
    457   1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    458   1.1      cube 			if (m0 == NULL)
    459   1.1      cube 				return;
    460   1.1      cube 
    461   1.1      cube 			ifp->if_opackets++;
    462   1.1      cube #if NBPFILTER > 0
    463   1.1      cube 			if (ifp->if_bpf)
    464   1.1      cube 				bpf_mtap(ifp->if_bpf, m0);
    465   1.1      cube #endif
    466   1.1      cube 
    467   1.1      cube 			m_freem(m0);
    468   1.1      cube 		}
    469   1.1      cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    470   1.1      cube 		ifp->if_flags |= IFF_OACTIVE;
    471   1.1      cube 		wakeup(sc);
    472   1.1      cube 		selnotify(&sc->sc_rsel, 1);
    473   1.1      cube 		if (sc->sc_flags & TAP_ASYNCIO)
    474   1.1      cube 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    475   1.1      cube 			    POLLIN|POLLRDNORM, NULL);
    476   1.1      cube 	}
    477   1.1      cube }
    478   1.1      cube 
    479   1.1      cube /*
    480   1.1      cube  * A typical driver will only contain the following handlers for
    481   1.1      cube  * ioctl calls, except SIOCSIFPHYADDR.
    482   1.1      cube  * The latter is a hack I used to set the Ethernet address of the
    483   1.1      cube  * faked device.
    484   1.1      cube  *
    485   1.1      cube  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    486   1.1      cube  * called under splnet().
    487   1.1      cube  */
    488   1.1      cube static int
    489   1.1      cube tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    490   1.1      cube {
    491   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    492   1.1      cube 	struct ifreq *ifr = (struct ifreq *)data;
    493   1.1      cube 	int s, error;
    494   1.1      cube 
    495   1.1      cube 	s = splnet();
    496   1.1      cube 
    497   1.1      cube 	switch (cmd) {
    498   1.1      cube 	case SIOCSIFMEDIA:
    499   1.1      cube 	case SIOCGIFMEDIA:
    500   1.1      cube 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    501   1.1      cube 		break;
    502   1.1      cube 	case SIOCSIFPHYADDR:
    503   1.1      cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    504   1.1      cube 		break;
    505   1.1      cube 	default:
    506   1.1      cube 		error = ether_ioctl(ifp, cmd, data);
    507   1.1      cube 		if (error == ENETRESET)
    508   1.1      cube 			error = 0;
    509   1.1      cube 		break;
    510   1.1      cube 	}
    511   1.1      cube 
    512   1.1      cube 	splx(s);
    513   1.1      cube 
    514   1.1      cube 	return (error);
    515   1.1      cube }
    516   1.1      cube 
    517   1.1      cube /*
    518   1.1      cube  * Helper function to set Ethernet address.  This shouldn't be done there,
    519   1.1      cube  * and should actually be available to all Ethernet drivers, real or not.
    520   1.1      cube  */
    521   1.1      cube static int
    522  1.23  christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    523   1.1      cube {
    524   1.1      cube 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    525   1.1      cube 
    526   1.1      cube 	if (sa->sa_family != AF_LINK)
    527   1.1      cube 		return (EINVAL);
    528   1.1      cube 
    529   1.1      cube 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    530   1.1      cube 
    531   1.1      cube 	return (0);
    532   1.1      cube }
    533   1.1      cube 
    534   1.1      cube /*
    535   1.1      cube  * _init() would typically be called when an interface goes up,
    536   1.1      cube  * meaning it should configure itself into the state in which it
    537   1.1      cube  * can send packets.
    538   1.1      cube  */
    539   1.1      cube static int
    540   1.1      cube tap_init(struct ifnet *ifp)
    541   1.1      cube {
    542   1.1      cube 	ifp->if_flags |= IFF_RUNNING;
    543   1.1      cube 
    544   1.1      cube 	tap_start(ifp);
    545   1.1      cube 
    546   1.1      cube 	return (0);
    547   1.1      cube }
    548   1.1      cube 
    549   1.1      cube /*
    550   1.1      cube  * _stop() is called when an interface goes down.  It is our
    551   1.1      cube  * responsability to validate that state by clearing the
    552   1.1      cube  * IFF_RUNNING flag.
    553   1.1      cube  *
    554   1.1      cube  * We have to wake up all the sleeping processes to have the pending
    555   1.1      cube  * read requests cancelled.
    556   1.1      cube  */
    557   1.1      cube static void
    558  1.23  christos tap_stop(struct ifnet *ifp, int disable)
    559   1.1      cube {
    560   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    561   1.1      cube 
    562   1.1      cube 	ifp->if_flags &= ~IFF_RUNNING;
    563   1.1      cube 	wakeup(sc);
    564   1.1      cube 	selnotify(&sc->sc_rsel, 1);
    565   1.1      cube 	if (sc->sc_flags & TAP_ASYNCIO)
    566   1.1      cube 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    567   1.1      cube }
    568   1.1      cube 
    569   1.1      cube /*
    570   1.1      cube  * The 'create' command of ifconfig can be used to create
    571   1.1      cube  * any numbered instance of a given device.  Thus we have to
    572   1.1      cube  * make sure we have enough room in cd_devs to create the
    573   1.1      cube  * user-specified instance.  config_attach_pseudo will do this
    574   1.1      cube  * for us.
    575   1.1      cube  */
    576   1.1      cube static int
    577  1.23  christos tap_clone_create(struct if_clone *ifc, int unit)
    578   1.1      cube {
    579   1.1      cube 	if (tap_clone_creator(unit) == NULL) {
    580   1.1      cube 		aprint_error("%s%d: unable to attach an instance\n",
    581   1.1      cube                     tap_cd.cd_name, unit);
    582   1.1      cube 		return (ENXIO);
    583   1.1      cube 	}
    584   1.1      cube 
    585   1.1      cube 	return (0);
    586   1.1      cube }
    587   1.1      cube 
    588   1.1      cube /*
    589   1.1      cube  * tap(4) can be cloned by two ways:
    590   1.1      cube  *   using 'ifconfig tap0 create', which will use the network
    591   1.1      cube  *     interface cloning API, and call tap_clone_create above.
    592   1.1      cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    593   1.1      cube  *     See below for an explanation on how this part work.
    594   1.1      cube  *
    595   1.1      cube  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
    596   1.1      cube  * autoconf(9) choose a unit number for us.  This is what happens when
    597   1.1      cube  * the cloner is openend, while the ifcloner interface creates a device
    598   1.1      cube  * with a specific unit number.
    599   1.1      cube  */
    600   1.1      cube static struct tap_softc *
    601   1.1      cube tap_clone_creator(int unit)
    602   1.1      cube {
    603   1.1      cube 	struct cfdata *cf;
    604   1.1      cube 
    605   1.1      cube 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    606   1.1      cube 	cf->cf_name = tap_cd.cd_name;
    607   1.1      cube 	cf->cf_atname = tap_ca.ca_name;
    608   1.1      cube 	cf->cf_unit = unit;
    609   1.1      cube 	cf->cf_fstate = FSTATE_STAR;
    610   1.1      cube 
    611   1.1      cube 	return (struct tap_softc *)config_attach_pseudo(cf);
    612   1.1      cube }
    613   1.1      cube 
    614   1.1      cube /*
    615   1.1      cube  * The clean design of if_clone and autoconf(9) makes that part
    616   1.1      cube  * really straightforward.  The second argument of config_detach
    617   1.1      cube  * means neither QUIET nor FORCED.
    618   1.1      cube  */
    619   1.1      cube static int
    620   1.1      cube tap_clone_destroy(struct ifnet *ifp)
    621   1.1      cube {
    622   1.1      cube 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    623   1.1      cube }
    624   1.1      cube 
    625  1.12      cube int
    626   1.1      cube tap_clone_destroyer(struct device *dev)
    627   1.1      cube {
    628  1.16   thorpej 	struct cfdata *cf = device_cfdata(dev);
    629   1.1      cube 	int error;
    630   1.1      cube 
    631   1.1      cube 	if ((error = config_detach(dev, 0)) != 0)
    632   1.1      cube 		aprint_error("%s: unable to detach instance\n",
    633   1.1      cube 		    dev->dv_xname);
    634   1.1      cube 	free(cf, M_DEVBUF);
    635   1.1      cube 
    636   1.1      cube 	return (error);
    637   1.1      cube }
    638   1.1      cube 
    639   1.1      cube /*
    640   1.1      cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    641   1.1      cube  * ways:
    642   1.1      cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    643   1.1      cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    644   1.1      cube  *     That interface is destroyed when the process that had it created exits.
    645   1.1      cube  *
    646   1.1      cube  * The first way is managed by the cdevsw structure, and you access interfaces
    647   1.1      cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    648   1.1      cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    649   1.1      cube  *
    650   1.1      cube  * The second way is the so-called "cloning" device.  It's a special minor
    651   1.1      cube  * number (chosen as the maximal number, to allow as much tap devices as
    652   1.1      cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    653   1.1      cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    654   1.1      cube  * tap_dev_cloner.
    655   1.1      cube  *
    656   1.1      cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    657   1.1      cube  * part of open() does nothing but noting that the interface is being used and
    658   1.1      cube  * hence ready to actually handle packets.
    659   1.1      cube  */
    660   1.1      cube 
    661   1.1      cube static int
    662  1.23  christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    663   1.1      cube {
    664   1.1      cube 	struct tap_softc *sc;
    665   1.1      cube 
    666   1.1      cube 	if (minor(dev) == TAP_CLONER)
    667  1.11  christos 		return tap_dev_cloner(l);
    668   1.1      cube 
    669   1.1      cube 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    670   1.1      cube 	if (sc == NULL)
    671   1.1      cube 		return (ENXIO);
    672   1.1      cube 
    673   1.1      cube 	/* The device can only be opened once */
    674   1.1      cube 	if (sc->sc_flags & TAP_INUSE)
    675   1.1      cube 		return (EBUSY);
    676   1.1      cube 	sc->sc_flags |= TAP_INUSE;
    677   1.1      cube 	return (0);
    678   1.1      cube }
    679   1.1      cube 
    680   1.1      cube /*
    681   1.1      cube  * There are several kinds of cloning devices, and the most simple is the one
    682   1.1      cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    683   1.1      cube  * with its own fileops structure (which maps to the various read, write,
    684   1.1      cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    685   1.1      cube  * then actually creates the new tap devices.
    686   1.1      cube  *
    687   1.1      cube  * Once those two steps are successful, we can re-wire the existing file
    688   1.1      cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    689   1.1      cube  * structure as needed (notably f_data gets filled with the fifth parameter
    690   1.1      cube  * passed, the unit of the tap device which will allows us identifying the
    691   1.1      cube  * device later), and returns EMOVEFD.
    692   1.1      cube  *
    693   1.1      cube  * That magic value is interpreted by sys_open() which then replaces the
    694   1.1      cube  * current file descriptor by the new one (through a magic member of struct
    695  1.13     pooka  * lwp, l_dupfd).
    696   1.1      cube  *
    697   1.1      cube  * The tap device is flagged as being busy since it otherwise could be
    698   1.1      cube  * externally accessed through the corresponding device node with the cdevsw
    699   1.1      cube  * interface.
    700   1.1      cube  */
    701   1.1      cube 
    702   1.1      cube static int
    703  1.11  christos tap_dev_cloner(struct lwp *l)
    704   1.1      cube {
    705   1.1      cube 	struct tap_softc *sc;
    706   1.1      cube 	struct file *fp;
    707   1.1      cube 	int error, fd;
    708   1.1      cube 
    709  1.19        ad 	if ((error = falloc(l, &fp, &fd)) != 0)
    710   1.1      cube 		return (error);
    711   1.1      cube 
    712   1.1      cube 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
    713  1.11  christos 		FILE_UNUSE(fp, l);
    714   1.1      cube 		ffree(fp);
    715   1.1      cube 		return (ENXIO);
    716   1.1      cube 	}
    717   1.1      cube 
    718   1.1      cube 	sc->sc_flags |= TAP_INUSE;
    719   1.1      cube 
    720  1.11  christos 	return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
    721  1.15   thorpej 	    (void *)(intptr_t)device_unit(&sc->sc_dev));
    722   1.1      cube }
    723   1.1      cube 
    724   1.1      cube /*
    725   1.1      cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    726   1.1      cube  * really the same whether we are in cdevsw or fileops mode, the close()
    727   1.1      cube  * function is slightly different in the two cases.
    728   1.1      cube  *
    729   1.1      cube  * As for the other, the core of it is shared in tap_dev_close.  What
    730   1.1      cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    731   1.1      cube  * needs another thing:  the interface is destroyed when the processes that
    732   1.1      cube  * created it closes it.
    733   1.1      cube  */
    734   1.1      cube static int
    735  1.23  christos tap_cdev_close(dev_t dev, int flags, int fmt,
    736  1.23  christos     struct lwp *l)
    737   1.1      cube {
    738   1.1      cube 	struct tap_softc *sc =
    739   1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    740   1.1      cube 
    741   1.1      cube 	if (sc == NULL)
    742   1.1      cube 		return (ENXIO);
    743   1.1      cube 
    744   1.1      cube 	return tap_dev_close(sc);
    745   1.1      cube }
    746   1.1      cube 
    747   1.1      cube /*
    748   1.1      cube  * It might happen that the administrator used ifconfig to externally destroy
    749   1.1      cube  * the interface.  In that case, tap_fops_close will be called while
    750   1.1      cube  * tap_detach is already happening.  If we called it again from here, we
    751   1.1      cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    752   1.1      cube  */
    753   1.1      cube static int
    754  1.23  christos tap_fops_close(struct file *fp, struct lwp *l)
    755   1.1      cube {
    756   1.1      cube 	int unit = (intptr_t)fp->f_data;
    757   1.1      cube 	struct tap_softc *sc;
    758   1.1      cube 	int error;
    759   1.1      cube 
    760   1.1      cube 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    761   1.1      cube 	if (sc == NULL)
    762   1.1      cube 		return (ENXIO);
    763   1.1      cube 
    764   1.1      cube 	/* tap_dev_close currently always succeeds, but it might not
    765   1.1      cube 	 * always be the case. */
    766   1.1      cube 	if ((error = tap_dev_close(sc)) != 0)
    767   1.1      cube 		return (error);
    768   1.1      cube 
    769   1.1      cube 	/* Destroy the device now that it is no longer useful,
    770   1.1      cube 	 * unless it's already being destroyed. */
    771   1.1      cube 	if ((sc->sc_flags & TAP_GOING) != 0)
    772   1.1      cube 		return (0);
    773   1.1      cube 
    774   1.1      cube 	return tap_clone_destroyer((struct device *)sc);
    775   1.1      cube }
    776   1.1      cube 
    777   1.1      cube static int
    778   1.1      cube tap_dev_close(struct tap_softc *sc)
    779   1.1      cube {
    780   1.1      cube 	struct ifnet *ifp;
    781   1.1      cube 	int s;
    782   1.1      cube 
    783   1.1      cube 	s = splnet();
    784   1.1      cube 	/* Let tap_start handle packets again */
    785   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    786   1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    787   1.1      cube 
    788   1.1      cube 	/* Purge output queue */
    789   1.1      cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    790   1.1      cube 		struct mbuf *m;
    791   1.1      cube 
    792   1.1      cube 		for (;;) {
    793   1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    794   1.1      cube 			if (m == NULL)
    795   1.1      cube 				break;
    796   1.1      cube 
    797   1.1      cube 			ifp->if_opackets++;
    798   1.1      cube #if NBPFILTER > 0
    799   1.1      cube 			if (ifp->if_bpf)
    800   1.1      cube 				bpf_mtap(ifp->if_bpf, m);
    801   1.1      cube #endif
    802   1.1      cube 		}
    803   1.1      cube 	}
    804   1.1      cube 	splx(s);
    805   1.1      cube 
    806   1.1      cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    807   1.1      cube 
    808   1.1      cube 	return (0);
    809   1.1      cube }
    810   1.1      cube 
    811   1.1      cube static int
    812   1.1      cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    813   1.1      cube {
    814   1.1      cube 	return tap_dev_read(minor(dev), uio, flags);
    815   1.1      cube }
    816   1.1      cube 
    817   1.1      cube static int
    818  1.23  christos tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    819  1.23  christos     kauth_cred_t cred, int flags)
    820   1.1      cube {
    821   1.1      cube 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    822   1.1      cube }
    823   1.1      cube 
    824   1.1      cube static int
    825  1.23  christos tap_dev_read(int unit, struct uio *uio, int flags)
    826   1.1      cube {
    827   1.1      cube 	struct tap_softc *sc =
    828   1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    829   1.1      cube 	struct ifnet *ifp;
    830   1.1      cube 	struct mbuf *m, *n;
    831   1.1      cube 	int error = 0, s;
    832   1.1      cube 
    833   1.1      cube 	if (sc == NULL)
    834   1.1      cube 		return (ENXIO);
    835   1.1      cube 
    836   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    837   1.1      cube 	if ((ifp->if_flags & IFF_UP) == 0)
    838   1.1      cube 		return (EHOSTDOWN);
    839   1.1      cube 
    840   1.1      cube 	/*
    841   1.1      cube 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    842   1.1      cube 	 */
    843   1.1      cube 	if ((sc->sc_flags & TAP_NBIO) &&
    844   1.1      cube 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    845   1.1      cube 		return (EWOULDBLOCK);
    846   1.1      cube 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    847   1.1      cube 	if (error != 0)
    848   1.1      cube 		return (error);
    849   1.1      cube 
    850   1.1      cube 	s = splnet();
    851   1.1      cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    852   1.1      cube 		ifp->if_flags &= ~IFF_OACTIVE;
    853   1.1      cube 		splx(s);
    854   1.1      cube 		/*
    855   1.1      cube 		 * We must release the lock before sleeping, and re-acquire it
    856   1.1      cube 		 * after.
    857   1.1      cube 		 */
    858   1.1      cube 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    859   1.1      cube 		if (sc->sc_flags & TAP_NBIO)
    860   1.1      cube 			error = EWOULDBLOCK;
    861   1.1      cube 		else
    862   1.1      cube 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    863   1.1      cube 
    864   1.1      cube 		if (error != 0)
    865   1.1      cube 			return (error);
    866   1.1      cube 		/* The device might have been downed */
    867   1.1      cube 		if ((ifp->if_flags & IFF_UP) == 0)
    868   1.1      cube 			return (EHOSTDOWN);
    869   1.1      cube 		if ((sc->sc_flags & TAP_NBIO) &&
    870   1.1      cube 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    871   1.1      cube 			return (EWOULDBLOCK);
    872   1.1      cube 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    873   1.1      cube 		if (error != 0)
    874   1.1      cube 			return (error);
    875   1.1      cube 		s = splnet();
    876   1.1      cube 	}
    877   1.1      cube 
    878   1.1      cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    879   1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    880   1.1      cube 	splx(s);
    881   1.1      cube 	if (m == NULL) {
    882   1.1      cube 		error = 0;
    883   1.1      cube 		goto out;
    884   1.1      cube 	}
    885   1.1      cube 
    886   1.1      cube 	ifp->if_opackets++;
    887   1.1      cube #if NBPFILTER > 0
    888   1.1      cube 	if (ifp->if_bpf)
    889   1.1      cube 		bpf_mtap(ifp->if_bpf, m);
    890   1.1      cube #endif
    891   1.1      cube 
    892   1.1      cube 	/*
    893   1.1      cube 	 * One read is one packet.
    894   1.1      cube 	 */
    895   1.1      cube 	do {
    896   1.1      cube 		error = uiomove(mtod(m, caddr_t),
    897   1.1      cube 		    min(m->m_len, uio->uio_resid), uio);
    898   1.1      cube 		MFREE(m, n);
    899   1.1      cube 		m = n;
    900   1.1      cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    901   1.1      cube 
    902   1.1      cube 	if (m != NULL)
    903   1.1      cube 		m_freem(m);
    904   1.1      cube 
    905   1.1      cube out:
    906   1.1      cube 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    907   1.1      cube 	return (error);
    908   1.1      cube }
    909   1.1      cube 
    910   1.1      cube static int
    911   1.1      cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    912   1.1      cube {
    913   1.1      cube 	return tap_dev_write(minor(dev), uio, flags);
    914   1.1      cube }
    915   1.1      cube 
    916   1.1      cube static int
    917  1.23  christos tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    918  1.23  christos     kauth_cred_t cred, int flags)
    919   1.1      cube {
    920   1.1      cube 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    921   1.1      cube }
    922   1.1      cube 
    923   1.1      cube static int
    924  1.23  christos tap_dev_write(int unit, struct uio *uio, int flags)
    925   1.1      cube {
    926   1.1      cube 	struct tap_softc *sc =
    927   1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    928   1.1      cube 	struct ifnet *ifp;
    929   1.1      cube 	struct mbuf *m, **mp;
    930   1.1      cube 	int error = 0;
    931   1.9    bouyer 	int s;
    932   1.1      cube 
    933   1.1      cube 	if (sc == NULL)
    934   1.1      cube 		return (ENXIO);
    935   1.1      cube 
    936   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    937   1.1      cube 
    938   1.1      cube 	/* One write, one packet, that's the rule */
    939   1.1      cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    940   1.1      cube 	if (m == NULL) {
    941   1.1      cube 		ifp->if_ierrors++;
    942   1.1      cube 		return (ENOBUFS);
    943   1.1      cube 	}
    944   1.1      cube 	m->m_pkthdr.len = uio->uio_resid;
    945   1.1      cube 
    946   1.1      cube 	mp = &m;
    947   1.1      cube 	while (error == 0 && uio->uio_resid > 0) {
    948   1.1      cube 		if (*mp != m) {
    949   1.1      cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
    950   1.1      cube 			if (*mp == NULL) {
    951   1.1      cube 				error = ENOBUFS;
    952   1.1      cube 				break;
    953   1.1      cube 			}
    954   1.1      cube 		}
    955   1.1      cube 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    956   1.1      cube 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
    957   1.1      cube 		mp = &(*mp)->m_next;
    958   1.1      cube 	}
    959   1.1      cube 	if (error) {
    960   1.1      cube 		ifp->if_ierrors++;
    961   1.1      cube 		m_freem(m);
    962   1.1      cube 		return (error);
    963   1.1      cube 	}
    964   1.1      cube 
    965   1.1      cube 	ifp->if_ipackets++;
    966   1.1      cube 	m->m_pkthdr.rcvif = ifp;
    967   1.1      cube 
    968   1.1      cube #if NBPFILTER > 0
    969   1.1      cube 	if (ifp->if_bpf)
    970   1.1      cube 		bpf_mtap(ifp->if_bpf, m);
    971   1.1      cube #endif
    972   1.9    bouyer 	s =splnet();
    973   1.1      cube 	(*ifp->if_input)(ifp, m);
    974   1.9    bouyer 	splx(s);
    975   1.1      cube 
    976   1.1      cube 	return (0);
    977   1.1      cube }
    978   1.1      cube 
    979   1.1      cube static int
    980  1.23  christos tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
    981  1.11  christos     struct lwp *l)
    982   1.1      cube {
    983  1.11  christos 	return tap_dev_ioctl(minor(dev), cmd, data, l);
    984   1.1      cube }
    985   1.1      cube 
    986   1.1      cube static int
    987  1.11  christos tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
    988   1.1      cube {
    989  1.11  christos 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, l);
    990   1.1      cube }
    991   1.1      cube 
    992   1.1      cube static int
    993  1.11  christos tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct lwp *l)
    994   1.1      cube {
    995   1.1      cube 	struct tap_softc *sc =
    996   1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    997   1.1      cube 	int error = 0;
    998   1.1      cube 
    999   1.1      cube 	if (sc == NULL)
   1000   1.1      cube 		return (ENXIO);
   1001   1.1      cube 
   1002   1.1      cube 	switch (cmd) {
   1003   1.1      cube 	case FIONREAD:
   1004   1.1      cube 		{
   1005   1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1006   1.1      cube 			struct mbuf *m;
   1007   1.1      cube 			int s;
   1008   1.1      cube 
   1009   1.1      cube 			s = splnet();
   1010   1.1      cube 			IFQ_POLL(&ifp->if_snd, m);
   1011   1.1      cube 
   1012   1.1      cube 			if (m == NULL)
   1013   1.1      cube 				*(int *)data = 0;
   1014   1.1      cube 			else
   1015   1.1      cube 				*(int *)data = m->m_pkthdr.len;
   1016   1.1      cube 			splx(s);
   1017   1.1      cube 		} break;
   1018   1.1      cube 	case TIOCSPGRP:
   1019   1.1      cube 	case FIOSETOWN:
   1020  1.11  christos 		error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
   1021   1.1      cube 		break;
   1022   1.1      cube 	case TIOCGPGRP:
   1023   1.1      cube 	case FIOGETOWN:
   1024  1.11  christos 		error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
   1025   1.1      cube 		break;
   1026   1.1      cube 	case FIOASYNC:
   1027   1.1      cube 		if (*(int *)data)
   1028   1.1      cube 			sc->sc_flags |= TAP_ASYNCIO;
   1029   1.1      cube 		else
   1030   1.1      cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1031   1.1      cube 		break;
   1032   1.1      cube 	case FIONBIO:
   1033   1.1      cube 		if (*(int *)data)
   1034   1.1      cube 			sc->sc_flags |= TAP_NBIO;
   1035   1.1      cube 		else
   1036   1.1      cube 			sc->sc_flags &= ~TAP_NBIO;
   1037   1.1      cube 		break;
   1038   1.1      cube 	case TAPGIFNAME:
   1039   1.1      cube 		{
   1040   1.1      cube 			struct ifreq *ifr = (struct ifreq *)data;
   1041   1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1042   1.1      cube 
   1043   1.1      cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1044   1.1      cube 		} break;
   1045   1.1      cube 	default:
   1046   1.1      cube 		error = ENOTTY;
   1047   1.1      cube 		break;
   1048   1.1      cube 	}
   1049   1.1      cube 
   1050   1.1      cube 	return (0);
   1051   1.1      cube }
   1052   1.1      cube 
   1053   1.1      cube static int
   1054  1.11  christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1055   1.1      cube {
   1056  1.11  christos 	return tap_dev_poll(minor(dev), events, l);
   1057   1.1      cube }
   1058   1.1      cube 
   1059   1.1      cube static int
   1060  1.11  christos tap_fops_poll(struct file *fp, int events, struct lwp *l)
   1061   1.1      cube {
   1062  1.11  christos 	return tap_dev_poll((intptr_t)fp->f_data, events, l);
   1063   1.1      cube }
   1064   1.1      cube 
   1065   1.1      cube static int
   1066  1.11  christos tap_dev_poll(int unit, int events, struct lwp *l)
   1067   1.1      cube {
   1068   1.1      cube 	struct tap_softc *sc =
   1069   1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1070   1.1      cube 	int revents = 0;
   1071   1.1      cube 
   1072   1.1      cube 	if (sc == NULL)
   1073   1.1      cube 		return (ENXIO);
   1074   1.1      cube 
   1075   1.1      cube 	if (events & (POLLIN|POLLRDNORM)) {
   1076   1.1      cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1077   1.1      cube 		struct mbuf *m;
   1078   1.1      cube 		int s;
   1079   1.1      cube 
   1080   1.1      cube 		s = splnet();
   1081   1.1      cube 		IFQ_POLL(&ifp->if_snd, m);
   1082   1.1      cube 		splx(s);
   1083   1.1      cube 
   1084   1.1      cube 		if (m != NULL)
   1085   1.1      cube 			revents |= events & (POLLIN|POLLRDNORM);
   1086   1.1      cube 		else {
   1087   1.4     ragge 			simple_lock(&sc->sc_kqlock);
   1088  1.11  christos 			selrecord(l, &sc->sc_rsel);
   1089   1.1      cube 			simple_unlock(&sc->sc_kqlock);
   1090   1.1      cube 		}
   1091   1.1      cube 	}
   1092   1.1      cube 	revents |= events & (POLLOUT|POLLWRNORM);
   1093   1.1      cube 
   1094   1.1      cube 	return (revents);
   1095   1.1      cube }
   1096   1.1      cube 
   1097   1.1      cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1098   1.1      cube 	tap_kqread };
   1099   1.1      cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1100   1.1      cube 	filt_seltrue };
   1101   1.1      cube 
   1102   1.1      cube static int
   1103   1.1      cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1104   1.1      cube {
   1105   1.1      cube 	return tap_dev_kqfilter(minor(dev), kn);
   1106   1.1      cube }
   1107   1.1      cube 
   1108   1.1      cube static int
   1109   1.1      cube tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1110   1.1      cube {
   1111   1.1      cube 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1112   1.1      cube }
   1113   1.1      cube 
   1114   1.1      cube static int
   1115   1.1      cube tap_dev_kqfilter(int unit, struct knote *kn)
   1116   1.1      cube {
   1117   1.1      cube 	struct tap_softc *sc =
   1118   1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1119   1.1      cube 
   1120   1.1      cube 	if (sc == NULL)
   1121   1.1      cube 		return (ENXIO);
   1122   1.1      cube 
   1123   1.1      cube 	switch(kn->kn_filter) {
   1124   1.1      cube 	case EVFILT_READ:
   1125   1.1      cube 		kn->kn_fop = &tap_read_filterops;
   1126   1.1      cube 		break;
   1127   1.1      cube 	case EVFILT_WRITE:
   1128   1.1      cube 		kn->kn_fop = &tap_seltrue_filterops;
   1129   1.1      cube 		break;
   1130   1.1      cube 	default:
   1131   1.1      cube 		return (1);
   1132   1.1      cube 	}
   1133   1.1      cube 
   1134   1.1      cube 	kn->kn_hook = sc;
   1135   1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1136   1.1      cube 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1137   1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1138   1.1      cube 	return (0);
   1139   1.1      cube }
   1140   1.1      cube 
   1141   1.1      cube static void
   1142   1.1      cube tap_kqdetach(struct knote *kn)
   1143   1.1      cube {
   1144   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1145   1.1      cube 
   1146   1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1147   1.1      cube 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1148   1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1149   1.1      cube }
   1150   1.1      cube 
   1151   1.1      cube static int
   1152  1.23  christos tap_kqread(struct knote *kn, long hint)
   1153   1.1      cube {
   1154   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1155   1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1156   1.1      cube 	struct mbuf *m;
   1157   1.1      cube 	int s;
   1158   1.1      cube 
   1159   1.1      cube 	s = splnet();
   1160   1.1      cube 	IFQ_POLL(&ifp->if_snd, m);
   1161   1.1      cube 
   1162   1.1      cube 	if (m == NULL)
   1163   1.1      cube 		kn->kn_data = 0;
   1164   1.1      cube 	else
   1165   1.1      cube 		kn->kn_data = m->m_pkthdr.len;
   1166   1.1      cube 	splx(s);
   1167   1.1      cube 	return (kn->kn_data != 0 ? 1 : 0);
   1168   1.1      cube }
   1169   1.1      cube 
   1170   1.1      cube /*
   1171   1.1      cube  * sysctl management routines
   1172   1.1      cube  * You can set the address of an interface through:
   1173   1.1      cube  * net.link.tap.tap<number>
   1174   1.1      cube  *
   1175   1.1      cube  * Note the consistent use of tap_log in order to use
   1176   1.1      cube  * sysctl_teardown at unload time.
   1177   1.1      cube  *
   1178   1.1      cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1179   1.1      cube  * blocks register a function in a special section of the kernel
   1180   1.1      cube  * (called a link set) which is used at init_sysctl() time to cycle
   1181   1.1      cube  * through all those functions to create the kernel's sysctl tree.
   1182   1.1      cube  *
   1183   1.1      cube  * It is not (currently) possible to use link sets in a LKM, so the
   1184   1.1      cube  * easiest is to simply call our own setup routine at load time.
   1185   1.1      cube  *
   1186   1.1      cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1187   1.1      cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1188   1.1      cube  * whole kernel sysctl tree is built, it is not possible to add any
   1189   1.1      cube  * permanent node.
   1190   1.1      cube  *
   1191   1.1      cube  * It should be noted that we're not saving the sysctlnode pointer
   1192   1.1      cube  * we are returned when creating the "tap" node.  That structure
   1193   1.1      cube  * cannot be trusted once out of the calling function, as it might
   1194   1.1      cube  * get reused.  So we just save the MIB number, and always give the
   1195   1.1      cube  * full path starting from the root for later calls to sysctl_createv
   1196   1.1      cube  * and sysctl_destroyv.
   1197   1.1      cube  */
   1198   1.1      cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1199   1.1      cube {
   1200  1.10    atatat 	const struct sysctlnode *node;
   1201   1.1      cube 	int error = 0;
   1202   1.1      cube 
   1203   1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1204   1.1      cube 	    CTLFLAG_PERMANENT,
   1205   1.1      cube 	    CTLTYPE_NODE, "net", NULL,
   1206   1.1      cube 	    NULL, 0, NULL, 0,
   1207   1.1      cube 	    CTL_NET, CTL_EOL)) != 0)
   1208   1.1      cube 		return;
   1209   1.1      cube 
   1210   1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1211   1.1      cube 	    CTLFLAG_PERMANENT,
   1212   1.1      cube 	    CTLTYPE_NODE, "link", NULL,
   1213   1.1      cube 	    NULL, 0, NULL, 0,
   1214   1.3      cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1215   1.1      cube 		return;
   1216   1.1      cube 
   1217   1.1      cube 	/*
   1218   1.1      cube 	 * The first four parameters of sysctl_createv are for management.
   1219   1.1      cube 	 *
   1220   1.1      cube 	 * The four that follows, here starting with a '0' for the flags,
   1221   1.1      cube 	 * describe the node.
   1222   1.1      cube 	 *
   1223   1.1      cube 	 * The next series of four set its value, through various possible
   1224   1.1      cube 	 * means.
   1225   1.1      cube 	 *
   1226   1.1      cube 	 * Last but not least, the path to the node is described.  That path
   1227   1.1      cube 	 * is relative to the given root (third argument).  Here we're
   1228   1.1      cube 	 * starting from the root.
   1229   1.1      cube 	 */
   1230   1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1231   1.1      cube 	    CTLFLAG_PERMANENT,
   1232   1.1      cube 	    CTLTYPE_NODE, "tap", NULL,
   1233   1.1      cube 	    NULL, 0, NULL, 0,
   1234   1.3      cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1235   1.1      cube 		return;
   1236   1.1      cube 	tap_node = node->sysctl_num;
   1237   1.1      cube }
   1238   1.1      cube 
   1239   1.1      cube /*
   1240   1.1      cube  * The helper functions make Andrew Brown's interface really
   1241   1.1      cube  * shine.  It makes possible to create value on the fly whether
   1242   1.1      cube  * the sysctl value is read or written.
   1243   1.1      cube  *
   1244   1.1      cube  * As shown as an example in the man page, the first step is to
   1245   1.1      cube  * create a copy of the node to have sysctl_lookup work on it.
   1246   1.1      cube  *
   1247   1.1      cube  * Here, we have more work to do than just a copy, since we have
   1248   1.1      cube  * to create the string.  The first step is to collect the actual
   1249   1.1      cube  * value of the node, which is a convenient pointer to the softc
   1250   1.1      cube  * of the interface.  From there we create the string and use it
   1251   1.1      cube  * as the value, but only for the *copy* of the node.
   1252   1.1      cube  *
   1253   1.1      cube  * Then we let sysctl_lookup do the magic, which consists in
   1254   1.1      cube  * setting oldp and newp as required by the operation.  When the
   1255   1.1      cube  * value is read, that means that the string will be copied to
   1256   1.1      cube  * the user, and when it is written, the new value will be copied
   1257   1.1      cube  * over in the addr array.
   1258   1.1      cube  *
   1259   1.1      cube  * If newp is NULL, the user was reading the value, so we don't
   1260   1.1      cube  * have anything else to do.  If a new value was written, we
   1261   1.1      cube  * have to check it.
   1262   1.1      cube  *
   1263   1.1      cube  * If it is incorrect, we can return an error and leave 'node' as
   1264   1.1      cube  * it is:  since it is a copy of the actual node, the change will
   1265   1.1      cube  * be forgotten.
   1266   1.1      cube  *
   1267   1.1      cube  * Upon a correct input, we commit the change to the ifnet
   1268   1.1      cube  * structure of our interface.
   1269   1.1      cube  */
   1270   1.1      cube static int
   1271   1.1      cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1272   1.1      cube {
   1273   1.1      cube 	struct sysctlnode node;
   1274   1.1      cube 	struct tap_softc *sc;
   1275   1.1      cube 	struct ifnet *ifp;
   1276   1.1      cube 	int error;
   1277   1.1      cube 	size_t len;
   1278  1.14  christos 	char addr[3 * ETHER_ADDR_LEN];
   1279   1.1      cube 
   1280   1.1      cube 	node = *rnode;
   1281   1.1      cube 	sc = node.sysctl_data;
   1282   1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1283  1.14  christos 	(void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
   1284   1.1      cube 	node.sysctl_data = addr;
   1285   1.1      cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1286   1.1      cube 	if (error || newp == NULL)
   1287   1.1      cube 		return (error);
   1288   1.1      cube 
   1289   1.1      cube 	len = strlen(addr);
   1290   1.1      cube 	if (len < 11 || len > 17)
   1291   1.1      cube 		return (EINVAL);
   1292   1.1      cube 
   1293   1.1      cube 	/* Commit change */
   1294  1.24    rpaulo 	if (ether_nonstatic_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1295   1.1      cube 		return (EINVAL);
   1296   1.1      cube 	return (error);
   1297   1.1      cube }
   1298