if_tap.c revision 1.27 1 1.27 drochner /* $NetBSD: if_tap.c,v 1.27 2007/03/09 18:42:22 drochner Exp $ */
2 1.1 cube
3 1.1 cube /*
4 1.1 cube * Copyright (c) 2003, 2004 The NetBSD Foundation.
5 1.1 cube * All rights reserved.
6 1.1 cube *
7 1.1 cube * This code is derived from software contributed to the NetBSD Foundation
8 1.1 cube * by Quentin Garnier.
9 1.6 perry *
10 1.1 cube * Redistribution and use in source and binary forms, with or without
11 1.1 cube * modification, are permitted provided that the following conditions
12 1.1 cube * are met:
13 1.1 cube * 1. Redistributions of source code must retain the above copyright
14 1.1 cube * notice, this list of conditions and the following disclaimer.
15 1.1 cube * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cube * notice, this list of conditions and the following disclaimer in the
17 1.1 cube * documentation and/or other materials provided with the distribution.
18 1.1 cube * 3. All advertising materials mentioning features or use of this software
19 1.1 cube * must display the following acknowledgement:
20 1.1 cube * This product includes software developed by the NetBSD
21 1.1 cube * Foundation, Inc. and its contributors.
22 1.1 cube * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 cube * contributors may be used to endorse or promote products derived
24 1.1 cube * from this software without specific prior written permission.
25 1.6 perry *
26 1.1 cube * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 cube * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 cube * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 cube * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 cube * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 cube * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 cube * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 cube * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 cube * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 cube * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 cube * POSSIBILITY OF SUCH DAMAGE.
37 1.1 cube */
38 1.1 cube
39 1.1 cube /*
40 1.1 cube * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
41 1.1 cube * device to the system, but can also be accessed by userland through a
42 1.1 cube * character device interface, which allows reading and injecting frames.
43 1.1 cube */
44 1.1 cube
45 1.1 cube #include <sys/cdefs.h>
46 1.27 drochner __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.27 2007/03/09 18:42:22 drochner Exp $");
47 1.1 cube
48 1.2 cube #if defined(_KERNEL_OPT)
49 1.1 cube #include "bpfilter.h"
50 1.2 cube #endif
51 1.1 cube
52 1.1 cube #include <sys/param.h>
53 1.1 cube #include <sys/systm.h>
54 1.1 cube #include <sys/kernel.h>
55 1.1 cube #include <sys/malloc.h>
56 1.1 cube #include <sys/conf.h>
57 1.1 cube #include <sys/device.h>
58 1.1 cube #include <sys/file.h>
59 1.1 cube #include <sys/filedesc.h>
60 1.1 cube #include <sys/ksyms.h>
61 1.1 cube #include <sys/poll.h>
62 1.1 cube #include <sys/select.h>
63 1.1 cube #include <sys/sockio.h>
64 1.1 cube #include <sys/sysctl.h>
65 1.17 elad #include <sys/kauth.h>
66 1.1 cube
67 1.1 cube #include <net/if.h>
68 1.1 cube #include <net/if_dl.h>
69 1.1 cube #include <net/if_ether.h>
70 1.1 cube #include <net/if_media.h>
71 1.1 cube #include <net/if_tap.h>
72 1.1 cube #if NBPFILTER > 0
73 1.1 cube #include <net/bpf.h>
74 1.1 cube #endif
75 1.1 cube
76 1.1 cube /*
77 1.1 cube * sysctl node management
78 1.1 cube *
79 1.1 cube * It's not really possible to use a SYSCTL_SETUP block with
80 1.1 cube * current LKM implementation, so it is easier to just define
81 1.1 cube * our own function.
82 1.1 cube *
83 1.1 cube * The handler function is a "helper" in Andrew Brown's sysctl
84 1.1 cube * framework terminology. It is used as a gateway for sysctl
85 1.1 cube * requests over the nodes.
86 1.1 cube *
87 1.1 cube * tap_log allows the module to log creations of nodes and
88 1.1 cube * destroy them all at once using sysctl_teardown.
89 1.1 cube */
90 1.1 cube static int tap_node;
91 1.1 cube static int tap_sysctl_handler(SYSCTLFN_PROTO);
92 1.2 cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
93 1.1 cube
94 1.1 cube /*
95 1.1 cube * Since we're an Ethernet device, we need the 3 following
96 1.1 cube * components: a leading struct device, a struct ethercom,
97 1.1 cube * and also a struct ifmedia since we don't attach a PHY to
98 1.1 cube * ourselves. We could emulate one, but there's no real
99 1.1 cube * point.
100 1.1 cube */
101 1.1 cube
102 1.1 cube struct tap_softc {
103 1.1 cube struct device sc_dev;
104 1.1 cube struct ifmedia sc_im;
105 1.1 cube struct ethercom sc_ec;
106 1.1 cube int sc_flags;
107 1.1 cube #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
108 1.1 cube #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
109 1.1 cube #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
110 1.1 cube #define TAP_GOING 0x00000008 /* interface is being destroyed */
111 1.1 cube struct selinfo sc_rsel;
112 1.1 cube pid_t sc_pgid; /* For async. IO */
113 1.1 cube struct lock sc_rdlock;
114 1.1 cube struct simplelock sc_kqlock;
115 1.1 cube };
116 1.1 cube
117 1.1 cube /* autoconf(9) glue */
118 1.1 cube
119 1.1 cube void tapattach(int);
120 1.1 cube
121 1.1 cube static int tap_match(struct device *, struct cfdata *, void *);
122 1.1 cube static void tap_attach(struct device *, struct device *, void *);
123 1.1 cube static int tap_detach(struct device*, int);
124 1.1 cube
125 1.1 cube CFATTACH_DECL(tap, sizeof(struct tap_softc),
126 1.1 cube tap_match, tap_attach, tap_detach, NULL);
127 1.1 cube extern struct cfdriver tap_cd;
128 1.1 cube
129 1.1 cube /* Real device access routines */
130 1.1 cube static int tap_dev_close(struct tap_softc *);
131 1.1 cube static int tap_dev_read(int, struct uio *, int);
132 1.1 cube static int tap_dev_write(int, struct uio *, int);
133 1.26 christos static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
134 1.11 christos static int tap_dev_poll(int, int, struct lwp *);
135 1.1 cube static int tap_dev_kqfilter(int, struct knote *);
136 1.1 cube
137 1.1 cube /* Fileops access routines */
138 1.11 christos static int tap_fops_close(struct file *, struct lwp *);
139 1.1 cube static int tap_fops_read(struct file *, off_t *, struct uio *,
140 1.17 elad kauth_cred_t, int);
141 1.1 cube static int tap_fops_write(struct file *, off_t *, struct uio *,
142 1.17 elad kauth_cred_t, int);
143 1.1 cube static int tap_fops_ioctl(struct file *, u_long, void *,
144 1.11 christos struct lwp *);
145 1.11 christos static int tap_fops_poll(struct file *, int, struct lwp *);
146 1.1 cube static int tap_fops_kqfilter(struct file *, struct knote *);
147 1.1 cube
148 1.1 cube static const struct fileops tap_fileops = {
149 1.1 cube tap_fops_read,
150 1.1 cube tap_fops_write,
151 1.1 cube tap_fops_ioctl,
152 1.1 cube fnullop_fcntl,
153 1.1 cube tap_fops_poll,
154 1.1 cube fbadop_stat,
155 1.1 cube tap_fops_close,
156 1.1 cube tap_fops_kqfilter,
157 1.1 cube };
158 1.1 cube
159 1.1 cube /* Helper for cloning open() */
160 1.11 christos static int tap_dev_cloner(struct lwp *);
161 1.1 cube
162 1.1 cube /* Character device routines */
163 1.11 christos static int tap_cdev_open(dev_t, int, int, struct lwp *);
164 1.11 christos static int tap_cdev_close(dev_t, int, int, struct lwp *);
165 1.1 cube static int tap_cdev_read(dev_t, struct uio *, int);
166 1.1 cube static int tap_cdev_write(dev_t, struct uio *, int);
167 1.26 christos static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
168 1.11 christos static int tap_cdev_poll(dev_t, int, struct lwp *);
169 1.1 cube static int tap_cdev_kqfilter(dev_t, struct knote *);
170 1.1 cube
171 1.1 cube const struct cdevsw tap_cdevsw = {
172 1.1 cube tap_cdev_open, tap_cdev_close,
173 1.1 cube tap_cdev_read, tap_cdev_write,
174 1.1 cube tap_cdev_ioctl, nostop, notty,
175 1.1 cube tap_cdev_poll, nommap,
176 1.1 cube tap_cdev_kqfilter,
177 1.20 christos D_OTHER,
178 1.1 cube };
179 1.1 cube
180 1.1 cube #define TAP_CLONER 0xfffff /* Maximal minor value */
181 1.1 cube
182 1.1 cube /* kqueue-related routines */
183 1.1 cube static void tap_kqdetach(struct knote *);
184 1.1 cube static int tap_kqread(struct knote *, long);
185 1.1 cube
186 1.1 cube /*
187 1.1 cube * Those are needed by the if_media interface.
188 1.1 cube */
189 1.1 cube
190 1.1 cube static int tap_mediachange(struct ifnet *);
191 1.1 cube static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
192 1.1 cube
193 1.1 cube /*
194 1.1 cube * Those are needed by the ifnet interface, and would typically be
195 1.1 cube * there for any network interface driver.
196 1.1 cube * Some other routines are optional: watchdog and drain.
197 1.1 cube */
198 1.1 cube
199 1.1 cube static void tap_start(struct ifnet *);
200 1.1 cube static void tap_stop(struct ifnet *, int);
201 1.1 cube static int tap_init(struct ifnet *);
202 1.26 christos static int tap_ioctl(struct ifnet *, u_long, void *);
203 1.1 cube
204 1.1 cube /* This is an internal function to keep tap_ioctl readable */
205 1.1 cube static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
206 1.1 cube
207 1.1 cube /*
208 1.1 cube * tap is a clonable interface, although it is highly unrealistic for
209 1.1 cube * an Ethernet device.
210 1.1 cube *
211 1.1 cube * Here are the bits needed for a clonable interface.
212 1.1 cube */
213 1.1 cube static int tap_clone_create(struct if_clone *, int);
214 1.1 cube static int tap_clone_destroy(struct ifnet *);
215 1.1 cube
216 1.1 cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
217 1.1 cube tap_clone_create,
218 1.1 cube tap_clone_destroy);
219 1.1 cube
220 1.1 cube /* Helper functionis shared by the two cloning code paths */
221 1.1 cube static struct tap_softc * tap_clone_creator(int);
222 1.12 cube int tap_clone_destroyer(struct device *);
223 1.1 cube
224 1.1 cube void
225 1.23 christos tapattach(int n)
226 1.1 cube {
227 1.1 cube int error;
228 1.1 cube
229 1.1 cube error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
230 1.1 cube if (error) {
231 1.1 cube aprint_error("%s: unable to register cfattach\n",
232 1.1 cube tap_cd.cd_name);
233 1.1 cube (void)config_cfdriver_detach(&tap_cd);
234 1.1 cube return;
235 1.1 cube }
236 1.1 cube
237 1.1 cube if_clone_attach(&tap_cloners);
238 1.1 cube }
239 1.1 cube
240 1.1 cube /* Pretty much useless for a pseudo-device */
241 1.1 cube static int
242 1.23 christos tap_match(struct device *self, struct cfdata *cfdata,
243 1.23 christos void *arg)
244 1.1 cube {
245 1.1 cube return (1);
246 1.1 cube }
247 1.1 cube
248 1.1 cube void
249 1.23 christos tap_attach(struct device *parent, struct device *self,
250 1.23 christos void *aux)
251 1.1 cube {
252 1.1 cube struct tap_softc *sc = (struct tap_softc *)self;
253 1.1 cube struct ifnet *ifp;
254 1.18 kardel const struct sysctlnode *node;
255 1.1 cube u_int8_t enaddr[ETHER_ADDR_LEN] =
256 1.7 cube { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
257 1.14 christos char enaddrstr[3 * ETHER_ADDR_LEN];
258 1.18 kardel struct timeval tv;
259 1.1 cube uint32_t ui;
260 1.1 cube int error;
261 1.1 cube
262 1.1 cube /*
263 1.1 cube * In order to obtain unique initial Ethernet address on a host,
264 1.18 kardel * do some randomisation using the current uptime. It's not meant
265 1.18 kardel * for anything but avoiding hard-coding an address.
266 1.1 cube */
267 1.18 kardel getmicrouptime(&tv);
268 1.18 kardel ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
269 1.1 cube memcpy(enaddr+3, (u_int8_t *)&ui, 3);
270 1.1 cube
271 1.25 cube aprint_verbose("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
272 1.14 christos ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
273 1.1 cube
274 1.1 cube /*
275 1.1 cube * Why 1000baseT? Why not? You can add more.
276 1.1 cube *
277 1.1 cube * Note that there are 3 steps: init, one or several additions to
278 1.1 cube * list of supported media, and in the end, the selection of one
279 1.1 cube * of them.
280 1.1 cube */
281 1.1 cube ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
282 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
283 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
284 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
285 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
286 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
287 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
288 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
289 1.1 cube ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
290 1.1 cube
291 1.1 cube /*
292 1.1 cube * One should note that an interface must do multicast in order
293 1.1 cube * to support IPv6.
294 1.1 cube */
295 1.1 cube ifp = &sc->sc_ec.ec_if;
296 1.1 cube strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
297 1.1 cube ifp->if_softc = sc;
298 1.1 cube ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
299 1.1 cube ifp->if_ioctl = tap_ioctl;
300 1.1 cube ifp->if_start = tap_start;
301 1.1 cube ifp->if_stop = tap_stop;
302 1.1 cube ifp->if_init = tap_init;
303 1.1 cube IFQ_SET_READY(&ifp->if_snd);
304 1.1 cube
305 1.1 cube sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
306 1.1 cube
307 1.1 cube /* Those steps are mandatory for an Ethernet driver, the fisrt call
308 1.1 cube * being common to all network interface drivers. */
309 1.1 cube if_attach(ifp);
310 1.1 cube ether_ifattach(ifp, enaddr);
311 1.1 cube
312 1.1 cube sc->sc_flags = 0;
313 1.1 cube
314 1.1 cube /*
315 1.1 cube * Add a sysctl node for that interface.
316 1.1 cube *
317 1.1 cube * The pointer transmitted is not a string, but instead a pointer to
318 1.1 cube * the softc structure, which we can use to build the string value on
319 1.1 cube * the fly in the helper function of the node. See the comments for
320 1.1 cube * tap_sysctl_handler for details.
321 1.21 cube *
322 1.21 cube * Usually sysctl_createv is called with CTL_CREATE as the before-last
323 1.21 cube * component. However, we can allocate a number ourselves, as we are
324 1.21 cube * the only consumer of the net.link.<iface> node. In this case, the
325 1.21 cube * unit number is conveniently used to number the node. CTL_CREATE
326 1.21 cube * would just work, too.
327 1.1 cube */
328 1.1 cube if ((error = sysctl_createv(NULL, 0, NULL,
329 1.1 cube &node, CTLFLAG_READWRITE,
330 1.1 cube CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
331 1.1 cube tap_sysctl_handler, 0, sc, 18,
332 1.15 thorpej CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
333 1.15 thorpej CTL_EOL)) != 0)
334 1.1 cube aprint_error("%s: sysctl_createv returned %d, ignoring\n",
335 1.1 cube sc->sc_dev.dv_xname, error);
336 1.1 cube
337 1.1 cube /*
338 1.1 cube * Initialize the two locks for the device.
339 1.1 cube *
340 1.1 cube * We need a lock here because even though the tap device can be
341 1.1 cube * opened only once, the file descriptor might be passed to another
342 1.1 cube * process, say a fork(2)ed child.
343 1.1 cube *
344 1.1 cube * The Giant saves us from most of the hassle, but since the read
345 1.1 cube * operation can sleep, we don't want two processes to wake up at
346 1.1 cube * the same moment and both try and dequeue a single packet.
347 1.1 cube *
348 1.1 cube * The queue for event listeners (used by kqueue(9), see below) has
349 1.1 cube * to be protected, too, but we don't need the same level of
350 1.1 cube * complexity for that lock, so a simple spinning lock is fine.
351 1.1 cube */
352 1.1 cube lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
353 1.1 cube simple_lock_init(&sc->sc_kqlock);
354 1.1 cube }
355 1.1 cube
356 1.1 cube /*
357 1.1 cube * When detaching, we do the inverse of what is done in the attach
358 1.1 cube * routine, in reversed order.
359 1.1 cube */
360 1.1 cube static int
361 1.23 christos tap_detach(struct device* self, int flags)
362 1.1 cube {
363 1.1 cube struct tap_softc *sc = (struct tap_softc *)self;
364 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
365 1.1 cube int error, s;
366 1.1 cube
367 1.1 cube /*
368 1.1 cube * Some processes might be sleeping on "tap", so we have to make
369 1.1 cube * them release their hold on the device.
370 1.1 cube *
371 1.1 cube * The LK_DRAIN operation will wait for every locked process to
372 1.1 cube * release their hold.
373 1.1 cube */
374 1.1 cube sc->sc_flags |= TAP_GOING;
375 1.1 cube s = splnet();
376 1.1 cube tap_stop(ifp, 1);
377 1.1 cube if_down(ifp);
378 1.1 cube splx(s);
379 1.1 cube lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
380 1.1 cube
381 1.1 cube /*
382 1.1 cube * Destroying a single leaf is a very straightforward operation using
383 1.1 cube * sysctl_destroyv. One should be sure to always end the path with
384 1.1 cube * CTL_EOL.
385 1.1 cube */
386 1.3 cube if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
387 1.15 thorpej device_unit(&sc->sc_dev), CTL_EOL)) != 0)
388 1.1 cube aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
389 1.1 cube sc->sc_dev.dv_xname, error);
390 1.1 cube ether_ifdetach(ifp);
391 1.1 cube if_detach(ifp);
392 1.1 cube ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
393 1.1 cube
394 1.1 cube return (0);
395 1.1 cube }
396 1.1 cube
397 1.1 cube /*
398 1.1 cube * This function is called by the ifmedia layer to notify the driver
399 1.1 cube * that the user requested a media change. A real driver would
400 1.1 cube * reconfigure the hardware.
401 1.1 cube */
402 1.1 cube static int
403 1.23 christos tap_mediachange(struct ifnet *ifp)
404 1.1 cube {
405 1.1 cube return (0);
406 1.1 cube }
407 1.1 cube
408 1.1 cube /*
409 1.1 cube * Here the user asks for the currently used media.
410 1.1 cube */
411 1.1 cube static void
412 1.1 cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
413 1.1 cube {
414 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
415 1.1 cube imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
416 1.1 cube }
417 1.1 cube
418 1.1 cube /*
419 1.1 cube * This is the function where we SEND packets.
420 1.1 cube *
421 1.1 cube * There is no 'receive' equivalent. A typical driver will get
422 1.1 cube * interrupts from the hardware, and from there will inject new packets
423 1.1 cube * into the network stack.
424 1.1 cube *
425 1.1 cube * Once handled, a packet must be freed. A real driver might not be able
426 1.1 cube * to fit all the pending packets into the hardware, and is allowed to
427 1.1 cube * return before having sent all the packets. It should then use the
428 1.1 cube * if_flags flag IFF_OACTIVE to notify the upper layer.
429 1.1 cube *
430 1.1 cube * There are also other flags one should check, such as IFF_PAUSE.
431 1.1 cube *
432 1.1 cube * It is our duty to make packets available to BPF listeners.
433 1.1 cube *
434 1.1 cube * You should be aware that this function is called by the Ethernet layer
435 1.1 cube * at splnet().
436 1.1 cube *
437 1.1 cube * When the device is opened, we have to pass the packet(s) to the
438 1.1 cube * userland. For that we stay in OACTIVE mode while the userland gets
439 1.1 cube * the packets, and we send a signal to the processes waiting to read.
440 1.1 cube *
441 1.1 cube * wakeup(sc) is the counterpart to the tsleep call in
442 1.1 cube * tap_dev_read, while selnotify() is used for kevent(2) and
443 1.1 cube * poll(2) (which includes select(2)) listeners.
444 1.1 cube */
445 1.1 cube static void
446 1.1 cube tap_start(struct ifnet *ifp)
447 1.1 cube {
448 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
449 1.1 cube struct mbuf *m0;
450 1.1 cube
451 1.1 cube if ((sc->sc_flags & TAP_INUSE) == 0) {
452 1.1 cube /* Simply drop packets */
453 1.1 cube for(;;) {
454 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m0);
455 1.1 cube if (m0 == NULL)
456 1.1 cube return;
457 1.1 cube
458 1.1 cube ifp->if_opackets++;
459 1.1 cube #if NBPFILTER > 0
460 1.1 cube if (ifp->if_bpf)
461 1.1 cube bpf_mtap(ifp->if_bpf, m0);
462 1.1 cube #endif
463 1.1 cube
464 1.1 cube m_freem(m0);
465 1.1 cube }
466 1.1 cube } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
467 1.1 cube ifp->if_flags |= IFF_OACTIVE;
468 1.1 cube wakeup(sc);
469 1.1 cube selnotify(&sc->sc_rsel, 1);
470 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
471 1.1 cube fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
472 1.1 cube POLLIN|POLLRDNORM, NULL);
473 1.1 cube }
474 1.1 cube }
475 1.1 cube
476 1.1 cube /*
477 1.1 cube * A typical driver will only contain the following handlers for
478 1.1 cube * ioctl calls, except SIOCSIFPHYADDR.
479 1.1 cube * The latter is a hack I used to set the Ethernet address of the
480 1.1 cube * faked device.
481 1.1 cube *
482 1.1 cube * Note that both ifmedia_ioctl() and ether_ioctl() have to be
483 1.1 cube * called under splnet().
484 1.1 cube */
485 1.1 cube static int
486 1.26 christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
487 1.1 cube {
488 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
489 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
490 1.1 cube int s, error;
491 1.1 cube
492 1.1 cube s = splnet();
493 1.1 cube
494 1.1 cube switch (cmd) {
495 1.1 cube case SIOCSIFMEDIA:
496 1.1 cube case SIOCGIFMEDIA:
497 1.1 cube error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
498 1.1 cube break;
499 1.1 cube case SIOCSIFPHYADDR:
500 1.1 cube error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
501 1.1 cube break;
502 1.1 cube default:
503 1.1 cube error = ether_ioctl(ifp, cmd, data);
504 1.1 cube if (error == ENETRESET)
505 1.1 cube error = 0;
506 1.1 cube break;
507 1.1 cube }
508 1.1 cube
509 1.1 cube splx(s);
510 1.1 cube
511 1.1 cube return (error);
512 1.1 cube }
513 1.1 cube
514 1.1 cube /*
515 1.1 cube * Helper function to set Ethernet address. This shouldn't be done there,
516 1.1 cube * and should actually be available to all Ethernet drivers, real or not.
517 1.1 cube */
518 1.1 cube static int
519 1.23 christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
520 1.1 cube {
521 1.1 cube struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
522 1.1 cube
523 1.1 cube if (sa->sa_family != AF_LINK)
524 1.1 cube return (EINVAL);
525 1.1 cube
526 1.1 cube memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
527 1.1 cube
528 1.1 cube return (0);
529 1.1 cube }
530 1.1 cube
531 1.1 cube /*
532 1.1 cube * _init() would typically be called when an interface goes up,
533 1.1 cube * meaning it should configure itself into the state in which it
534 1.1 cube * can send packets.
535 1.1 cube */
536 1.1 cube static int
537 1.1 cube tap_init(struct ifnet *ifp)
538 1.1 cube {
539 1.1 cube ifp->if_flags |= IFF_RUNNING;
540 1.1 cube
541 1.1 cube tap_start(ifp);
542 1.1 cube
543 1.1 cube return (0);
544 1.1 cube }
545 1.1 cube
546 1.1 cube /*
547 1.1 cube * _stop() is called when an interface goes down. It is our
548 1.1 cube * responsability to validate that state by clearing the
549 1.1 cube * IFF_RUNNING flag.
550 1.1 cube *
551 1.1 cube * We have to wake up all the sleeping processes to have the pending
552 1.1 cube * read requests cancelled.
553 1.1 cube */
554 1.1 cube static void
555 1.23 christos tap_stop(struct ifnet *ifp, int disable)
556 1.1 cube {
557 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
558 1.1 cube
559 1.1 cube ifp->if_flags &= ~IFF_RUNNING;
560 1.1 cube wakeup(sc);
561 1.1 cube selnotify(&sc->sc_rsel, 1);
562 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
563 1.1 cube fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
564 1.1 cube }
565 1.1 cube
566 1.1 cube /*
567 1.1 cube * The 'create' command of ifconfig can be used to create
568 1.1 cube * any numbered instance of a given device. Thus we have to
569 1.1 cube * make sure we have enough room in cd_devs to create the
570 1.1 cube * user-specified instance. config_attach_pseudo will do this
571 1.1 cube * for us.
572 1.1 cube */
573 1.1 cube static int
574 1.23 christos tap_clone_create(struct if_clone *ifc, int unit)
575 1.1 cube {
576 1.1 cube if (tap_clone_creator(unit) == NULL) {
577 1.1 cube aprint_error("%s%d: unable to attach an instance\n",
578 1.1 cube tap_cd.cd_name, unit);
579 1.1 cube return (ENXIO);
580 1.1 cube }
581 1.1 cube
582 1.1 cube return (0);
583 1.1 cube }
584 1.1 cube
585 1.1 cube /*
586 1.1 cube * tap(4) can be cloned by two ways:
587 1.1 cube * using 'ifconfig tap0 create', which will use the network
588 1.1 cube * interface cloning API, and call tap_clone_create above.
589 1.1 cube * opening the cloning device node, whose minor number is TAP_CLONER.
590 1.1 cube * See below for an explanation on how this part work.
591 1.1 cube */
592 1.1 cube static struct tap_softc *
593 1.1 cube tap_clone_creator(int unit)
594 1.1 cube {
595 1.1 cube struct cfdata *cf;
596 1.1 cube
597 1.1 cube cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
598 1.1 cube cf->cf_name = tap_cd.cd_name;
599 1.1 cube cf->cf_atname = tap_ca.ca_name;
600 1.27 drochner if (unit == -1) {
601 1.27 drochner /* let autoconf find the first free one */
602 1.27 drochner cf->cf_unit = 0;
603 1.27 drochner cf->cf_fstate = FSTATE_STAR;
604 1.27 drochner } else {
605 1.27 drochner cf->cf_unit = unit;
606 1.27 drochner cf->cf_fstate = FSTATE_NOTFOUND;
607 1.27 drochner }
608 1.1 cube
609 1.1 cube return (struct tap_softc *)config_attach_pseudo(cf);
610 1.1 cube }
611 1.1 cube
612 1.1 cube /*
613 1.1 cube * The clean design of if_clone and autoconf(9) makes that part
614 1.1 cube * really straightforward. The second argument of config_detach
615 1.1 cube * means neither QUIET nor FORCED.
616 1.1 cube */
617 1.1 cube static int
618 1.1 cube tap_clone_destroy(struct ifnet *ifp)
619 1.1 cube {
620 1.1 cube return tap_clone_destroyer((struct device *)ifp->if_softc);
621 1.1 cube }
622 1.1 cube
623 1.12 cube int
624 1.1 cube tap_clone_destroyer(struct device *dev)
625 1.1 cube {
626 1.16 thorpej struct cfdata *cf = device_cfdata(dev);
627 1.1 cube int error;
628 1.1 cube
629 1.1 cube if ((error = config_detach(dev, 0)) != 0)
630 1.1 cube aprint_error("%s: unable to detach instance\n",
631 1.1 cube dev->dv_xname);
632 1.1 cube free(cf, M_DEVBUF);
633 1.1 cube
634 1.1 cube return (error);
635 1.1 cube }
636 1.1 cube
637 1.1 cube /*
638 1.1 cube * tap(4) is a bit of an hybrid device. It can be used in two different
639 1.1 cube * ways:
640 1.1 cube * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
641 1.1 cube * 2. open /dev/tap, get a new interface created and read/write off it.
642 1.1 cube * That interface is destroyed when the process that had it created exits.
643 1.1 cube *
644 1.1 cube * The first way is managed by the cdevsw structure, and you access interfaces
645 1.1 cube * through a (major, minor) mapping: tap4 is obtained by the minor number
646 1.1 cube * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
647 1.1 cube *
648 1.1 cube * The second way is the so-called "cloning" device. It's a special minor
649 1.1 cube * number (chosen as the maximal number, to allow as much tap devices as
650 1.1 cube * possible). The user first opens the cloner (e.g., /dev/tap), and that
651 1.1 cube * call ends in tap_cdev_open. The actual place where it is handled is
652 1.1 cube * tap_dev_cloner.
653 1.1 cube *
654 1.1 cube * An tap device cannot be opened more than once at a time, so the cdevsw
655 1.1 cube * part of open() does nothing but noting that the interface is being used and
656 1.1 cube * hence ready to actually handle packets.
657 1.1 cube */
658 1.1 cube
659 1.1 cube static int
660 1.23 christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
661 1.1 cube {
662 1.1 cube struct tap_softc *sc;
663 1.1 cube
664 1.1 cube if (minor(dev) == TAP_CLONER)
665 1.11 christos return tap_dev_cloner(l);
666 1.1 cube
667 1.1 cube sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
668 1.1 cube if (sc == NULL)
669 1.1 cube return (ENXIO);
670 1.1 cube
671 1.1 cube /* The device can only be opened once */
672 1.1 cube if (sc->sc_flags & TAP_INUSE)
673 1.1 cube return (EBUSY);
674 1.1 cube sc->sc_flags |= TAP_INUSE;
675 1.1 cube return (0);
676 1.1 cube }
677 1.1 cube
678 1.1 cube /*
679 1.1 cube * There are several kinds of cloning devices, and the most simple is the one
680 1.1 cube * tap(4) uses. What it does is change the file descriptor with a new one,
681 1.1 cube * with its own fileops structure (which maps to the various read, write,
682 1.1 cube * ioctl functions). It starts allocating a new file descriptor with falloc,
683 1.1 cube * then actually creates the new tap devices.
684 1.1 cube *
685 1.1 cube * Once those two steps are successful, we can re-wire the existing file
686 1.1 cube * descriptor to its new self. This is done with fdclone(): it fills the fp
687 1.1 cube * structure as needed (notably f_data gets filled with the fifth parameter
688 1.1 cube * passed, the unit of the tap device which will allows us identifying the
689 1.1 cube * device later), and returns EMOVEFD.
690 1.1 cube *
691 1.1 cube * That magic value is interpreted by sys_open() which then replaces the
692 1.1 cube * current file descriptor by the new one (through a magic member of struct
693 1.13 pooka * lwp, l_dupfd).
694 1.1 cube *
695 1.1 cube * The tap device is flagged as being busy since it otherwise could be
696 1.1 cube * externally accessed through the corresponding device node with the cdevsw
697 1.1 cube * interface.
698 1.1 cube */
699 1.1 cube
700 1.1 cube static int
701 1.11 christos tap_dev_cloner(struct lwp *l)
702 1.1 cube {
703 1.1 cube struct tap_softc *sc;
704 1.1 cube struct file *fp;
705 1.1 cube int error, fd;
706 1.1 cube
707 1.19 ad if ((error = falloc(l, &fp, &fd)) != 0)
708 1.1 cube return (error);
709 1.1 cube
710 1.27 drochner if ((sc = tap_clone_creator(-1)) == NULL) {
711 1.11 christos FILE_UNUSE(fp, l);
712 1.1 cube ffree(fp);
713 1.1 cube return (ENXIO);
714 1.1 cube }
715 1.1 cube
716 1.1 cube sc->sc_flags |= TAP_INUSE;
717 1.1 cube
718 1.11 christos return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
719 1.15 thorpej (void *)(intptr_t)device_unit(&sc->sc_dev));
720 1.1 cube }
721 1.1 cube
722 1.1 cube /*
723 1.1 cube * While all other operations (read, write, ioctl, poll and kqfilter) are
724 1.1 cube * really the same whether we are in cdevsw or fileops mode, the close()
725 1.1 cube * function is slightly different in the two cases.
726 1.1 cube *
727 1.1 cube * As for the other, the core of it is shared in tap_dev_close. What
728 1.1 cube * it does is sufficient for the cdevsw interface, but the cloning interface
729 1.1 cube * needs another thing: the interface is destroyed when the processes that
730 1.1 cube * created it closes it.
731 1.1 cube */
732 1.1 cube static int
733 1.23 christos tap_cdev_close(dev_t dev, int flags, int fmt,
734 1.23 christos struct lwp *l)
735 1.1 cube {
736 1.1 cube struct tap_softc *sc =
737 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
738 1.1 cube
739 1.1 cube if (sc == NULL)
740 1.1 cube return (ENXIO);
741 1.1 cube
742 1.1 cube return tap_dev_close(sc);
743 1.1 cube }
744 1.1 cube
745 1.1 cube /*
746 1.1 cube * It might happen that the administrator used ifconfig to externally destroy
747 1.1 cube * the interface. In that case, tap_fops_close will be called while
748 1.1 cube * tap_detach is already happening. If we called it again from here, we
749 1.1 cube * would dead lock. TAP_GOING ensures that this situation doesn't happen.
750 1.1 cube */
751 1.1 cube static int
752 1.23 christos tap_fops_close(struct file *fp, struct lwp *l)
753 1.1 cube {
754 1.1 cube int unit = (intptr_t)fp->f_data;
755 1.1 cube struct tap_softc *sc;
756 1.1 cube int error;
757 1.1 cube
758 1.1 cube sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
759 1.1 cube if (sc == NULL)
760 1.1 cube return (ENXIO);
761 1.1 cube
762 1.1 cube /* tap_dev_close currently always succeeds, but it might not
763 1.1 cube * always be the case. */
764 1.1 cube if ((error = tap_dev_close(sc)) != 0)
765 1.1 cube return (error);
766 1.1 cube
767 1.1 cube /* Destroy the device now that it is no longer useful,
768 1.1 cube * unless it's already being destroyed. */
769 1.1 cube if ((sc->sc_flags & TAP_GOING) != 0)
770 1.1 cube return (0);
771 1.1 cube
772 1.1 cube return tap_clone_destroyer((struct device *)sc);
773 1.1 cube }
774 1.1 cube
775 1.1 cube static int
776 1.1 cube tap_dev_close(struct tap_softc *sc)
777 1.1 cube {
778 1.1 cube struct ifnet *ifp;
779 1.1 cube int s;
780 1.1 cube
781 1.1 cube s = splnet();
782 1.1 cube /* Let tap_start handle packets again */
783 1.1 cube ifp = &sc->sc_ec.ec_if;
784 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
785 1.1 cube
786 1.1 cube /* Purge output queue */
787 1.1 cube if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
788 1.1 cube struct mbuf *m;
789 1.1 cube
790 1.1 cube for (;;) {
791 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
792 1.1 cube if (m == NULL)
793 1.1 cube break;
794 1.1 cube
795 1.1 cube ifp->if_opackets++;
796 1.1 cube #if NBPFILTER > 0
797 1.1 cube if (ifp->if_bpf)
798 1.1 cube bpf_mtap(ifp->if_bpf, m);
799 1.1 cube #endif
800 1.1 cube }
801 1.1 cube }
802 1.1 cube splx(s);
803 1.1 cube
804 1.1 cube sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
805 1.1 cube
806 1.1 cube return (0);
807 1.1 cube }
808 1.1 cube
809 1.1 cube static int
810 1.1 cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
811 1.1 cube {
812 1.1 cube return tap_dev_read(minor(dev), uio, flags);
813 1.1 cube }
814 1.1 cube
815 1.1 cube static int
816 1.23 christos tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
817 1.23 christos kauth_cred_t cred, int flags)
818 1.1 cube {
819 1.1 cube return tap_dev_read((intptr_t)fp->f_data, uio, flags);
820 1.1 cube }
821 1.1 cube
822 1.1 cube static int
823 1.23 christos tap_dev_read(int unit, struct uio *uio, int flags)
824 1.1 cube {
825 1.1 cube struct tap_softc *sc =
826 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
827 1.1 cube struct ifnet *ifp;
828 1.1 cube struct mbuf *m, *n;
829 1.1 cube int error = 0, s;
830 1.1 cube
831 1.1 cube if (sc == NULL)
832 1.1 cube return (ENXIO);
833 1.1 cube
834 1.1 cube ifp = &sc->sc_ec.ec_if;
835 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
836 1.1 cube return (EHOSTDOWN);
837 1.1 cube
838 1.1 cube /*
839 1.1 cube * In the TAP_NBIO case, we have to make sure we won't be sleeping
840 1.1 cube */
841 1.1 cube if ((sc->sc_flags & TAP_NBIO) &&
842 1.1 cube lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
843 1.1 cube return (EWOULDBLOCK);
844 1.1 cube error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
845 1.1 cube if (error != 0)
846 1.1 cube return (error);
847 1.1 cube
848 1.1 cube s = splnet();
849 1.1 cube if (IFQ_IS_EMPTY(&ifp->if_snd)) {
850 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
851 1.1 cube splx(s);
852 1.1 cube /*
853 1.1 cube * We must release the lock before sleeping, and re-acquire it
854 1.1 cube * after.
855 1.1 cube */
856 1.1 cube (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
857 1.1 cube if (sc->sc_flags & TAP_NBIO)
858 1.1 cube error = EWOULDBLOCK;
859 1.1 cube else
860 1.1 cube error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
861 1.1 cube
862 1.1 cube if (error != 0)
863 1.1 cube return (error);
864 1.1 cube /* The device might have been downed */
865 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
866 1.1 cube return (EHOSTDOWN);
867 1.1 cube if ((sc->sc_flags & TAP_NBIO) &&
868 1.1 cube lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
869 1.1 cube return (EWOULDBLOCK);
870 1.1 cube error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
871 1.1 cube if (error != 0)
872 1.1 cube return (error);
873 1.1 cube s = splnet();
874 1.1 cube }
875 1.1 cube
876 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
877 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
878 1.1 cube splx(s);
879 1.1 cube if (m == NULL) {
880 1.1 cube error = 0;
881 1.1 cube goto out;
882 1.1 cube }
883 1.1 cube
884 1.1 cube ifp->if_opackets++;
885 1.1 cube #if NBPFILTER > 0
886 1.1 cube if (ifp->if_bpf)
887 1.1 cube bpf_mtap(ifp->if_bpf, m);
888 1.1 cube #endif
889 1.1 cube
890 1.1 cube /*
891 1.1 cube * One read is one packet.
892 1.1 cube */
893 1.1 cube do {
894 1.26 christos error = uiomove(mtod(m, void *),
895 1.1 cube min(m->m_len, uio->uio_resid), uio);
896 1.1 cube MFREE(m, n);
897 1.1 cube m = n;
898 1.1 cube } while (m != NULL && uio->uio_resid > 0 && error == 0);
899 1.1 cube
900 1.1 cube if (m != NULL)
901 1.1 cube m_freem(m);
902 1.1 cube
903 1.1 cube out:
904 1.1 cube (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
905 1.1 cube return (error);
906 1.1 cube }
907 1.1 cube
908 1.1 cube static int
909 1.1 cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
910 1.1 cube {
911 1.1 cube return tap_dev_write(minor(dev), uio, flags);
912 1.1 cube }
913 1.1 cube
914 1.1 cube static int
915 1.23 christos tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
916 1.23 christos kauth_cred_t cred, int flags)
917 1.1 cube {
918 1.1 cube return tap_dev_write((intptr_t)fp->f_data, uio, flags);
919 1.1 cube }
920 1.1 cube
921 1.1 cube static int
922 1.23 christos tap_dev_write(int unit, struct uio *uio, int flags)
923 1.1 cube {
924 1.1 cube struct tap_softc *sc =
925 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
926 1.1 cube struct ifnet *ifp;
927 1.1 cube struct mbuf *m, **mp;
928 1.1 cube int error = 0;
929 1.9 bouyer int s;
930 1.1 cube
931 1.1 cube if (sc == NULL)
932 1.1 cube return (ENXIO);
933 1.1 cube
934 1.1 cube ifp = &sc->sc_ec.ec_if;
935 1.1 cube
936 1.1 cube /* One write, one packet, that's the rule */
937 1.1 cube MGETHDR(m, M_DONTWAIT, MT_DATA);
938 1.1 cube if (m == NULL) {
939 1.1 cube ifp->if_ierrors++;
940 1.1 cube return (ENOBUFS);
941 1.1 cube }
942 1.1 cube m->m_pkthdr.len = uio->uio_resid;
943 1.1 cube
944 1.1 cube mp = &m;
945 1.1 cube while (error == 0 && uio->uio_resid > 0) {
946 1.1 cube if (*mp != m) {
947 1.1 cube MGET(*mp, M_DONTWAIT, MT_DATA);
948 1.1 cube if (*mp == NULL) {
949 1.1 cube error = ENOBUFS;
950 1.1 cube break;
951 1.1 cube }
952 1.1 cube }
953 1.1 cube (*mp)->m_len = min(MHLEN, uio->uio_resid);
954 1.26 christos error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
955 1.1 cube mp = &(*mp)->m_next;
956 1.1 cube }
957 1.1 cube if (error) {
958 1.1 cube ifp->if_ierrors++;
959 1.1 cube m_freem(m);
960 1.1 cube return (error);
961 1.1 cube }
962 1.1 cube
963 1.1 cube ifp->if_ipackets++;
964 1.1 cube m->m_pkthdr.rcvif = ifp;
965 1.1 cube
966 1.1 cube #if NBPFILTER > 0
967 1.1 cube if (ifp->if_bpf)
968 1.1 cube bpf_mtap(ifp->if_bpf, m);
969 1.1 cube #endif
970 1.9 bouyer s =splnet();
971 1.1 cube (*ifp->if_input)(ifp, m);
972 1.9 bouyer splx(s);
973 1.1 cube
974 1.1 cube return (0);
975 1.1 cube }
976 1.1 cube
977 1.1 cube static int
978 1.26 christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
979 1.11 christos struct lwp *l)
980 1.1 cube {
981 1.11 christos return tap_dev_ioctl(minor(dev), cmd, data, l);
982 1.1 cube }
983 1.1 cube
984 1.1 cube static int
985 1.11 christos tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
986 1.1 cube {
987 1.26 christos return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (void *)data, l);
988 1.1 cube }
989 1.1 cube
990 1.1 cube static int
991 1.26 christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
992 1.1 cube {
993 1.1 cube struct tap_softc *sc =
994 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
995 1.1 cube int error = 0;
996 1.1 cube
997 1.1 cube if (sc == NULL)
998 1.1 cube return (ENXIO);
999 1.1 cube
1000 1.1 cube switch (cmd) {
1001 1.1 cube case FIONREAD:
1002 1.1 cube {
1003 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1004 1.1 cube struct mbuf *m;
1005 1.1 cube int s;
1006 1.1 cube
1007 1.1 cube s = splnet();
1008 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1009 1.1 cube
1010 1.1 cube if (m == NULL)
1011 1.1 cube *(int *)data = 0;
1012 1.1 cube else
1013 1.1 cube *(int *)data = m->m_pkthdr.len;
1014 1.1 cube splx(s);
1015 1.1 cube } break;
1016 1.1 cube case TIOCSPGRP:
1017 1.1 cube case FIOSETOWN:
1018 1.11 christos error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
1019 1.1 cube break;
1020 1.1 cube case TIOCGPGRP:
1021 1.1 cube case FIOGETOWN:
1022 1.11 christos error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
1023 1.1 cube break;
1024 1.1 cube case FIOASYNC:
1025 1.1 cube if (*(int *)data)
1026 1.1 cube sc->sc_flags |= TAP_ASYNCIO;
1027 1.1 cube else
1028 1.1 cube sc->sc_flags &= ~TAP_ASYNCIO;
1029 1.1 cube break;
1030 1.1 cube case FIONBIO:
1031 1.1 cube if (*(int *)data)
1032 1.1 cube sc->sc_flags |= TAP_NBIO;
1033 1.1 cube else
1034 1.1 cube sc->sc_flags &= ~TAP_NBIO;
1035 1.1 cube break;
1036 1.1 cube case TAPGIFNAME:
1037 1.1 cube {
1038 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
1039 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1040 1.1 cube
1041 1.1 cube strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1042 1.1 cube } break;
1043 1.1 cube default:
1044 1.1 cube error = ENOTTY;
1045 1.1 cube break;
1046 1.1 cube }
1047 1.1 cube
1048 1.1 cube return (0);
1049 1.1 cube }
1050 1.1 cube
1051 1.1 cube static int
1052 1.11 christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1053 1.1 cube {
1054 1.11 christos return tap_dev_poll(minor(dev), events, l);
1055 1.1 cube }
1056 1.1 cube
1057 1.1 cube static int
1058 1.11 christos tap_fops_poll(struct file *fp, int events, struct lwp *l)
1059 1.1 cube {
1060 1.11 christos return tap_dev_poll((intptr_t)fp->f_data, events, l);
1061 1.1 cube }
1062 1.1 cube
1063 1.1 cube static int
1064 1.11 christos tap_dev_poll(int unit, int events, struct lwp *l)
1065 1.1 cube {
1066 1.1 cube struct tap_softc *sc =
1067 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
1068 1.1 cube int revents = 0;
1069 1.1 cube
1070 1.1 cube if (sc == NULL)
1071 1.1 cube return (ENXIO);
1072 1.1 cube
1073 1.1 cube if (events & (POLLIN|POLLRDNORM)) {
1074 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1075 1.1 cube struct mbuf *m;
1076 1.1 cube int s;
1077 1.1 cube
1078 1.1 cube s = splnet();
1079 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1080 1.1 cube splx(s);
1081 1.1 cube
1082 1.1 cube if (m != NULL)
1083 1.1 cube revents |= events & (POLLIN|POLLRDNORM);
1084 1.1 cube else {
1085 1.4 ragge simple_lock(&sc->sc_kqlock);
1086 1.11 christos selrecord(l, &sc->sc_rsel);
1087 1.1 cube simple_unlock(&sc->sc_kqlock);
1088 1.1 cube }
1089 1.1 cube }
1090 1.1 cube revents |= events & (POLLOUT|POLLWRNORM);
1091 1.1 cube
1092 1.1 cube return (revents);
1093 1.1 cube }
1094 1.1 cube
1095 1.1 cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1096 1.1 cube tap_kqread };
1097 1.1 cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1098 1.1 cube filt_seltrue };
1099 1.1 cube
1100 1.1 cube static int
1101 1.1 cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1102 1.1 cube {
1103 1.1 cube return tap_dev_kqfilter(minor(dev), kn);
1104 1.1 cube }
1105 1.1 cube
1106 1.1 cube static int
1107 1.1 cube tap_fops_kqfilter(struct file *fp, struct knote *kn)
1108 1.1 cube {
1109 1.1 cube return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1110 1.1 cube }
1111 1.1 cube
1112 1.1 cube static int
1113 1.1 cube tap_dev_kqfilter(int unit, struct knote *kn)
1114 1.1 cube {
1115 1.1 cube struct tap_softc *sc =
1116 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
1117 1.1 cube
1118 1.1 cube if (sc == NULL)
1119 1.1 cube return (ENXIO);
1120 1.1 cube
1121 1.1 cube switch(kn->kn_filter) {
1122 1.1 cube case EVFILT_READ:
1123 1.1 cube kn->kn_fop = &tap_read_filterops;
1124 1.1 cube break;
1125 1.1 cube case EVFILT_WRITE:
1126 1.1 cube kn->kn_fop = &tap_seltrue_filterops;
1127 1.1 cube break;
1128 1.1 cube default:
1129 1.1 cube return (1);
1130 1.1 cube }
1131 1.1 cube
1132 1.1 cube kn->kn_hook = sc;
1133 1.4 ragge simple_lock(&sc->sc_kqlock);
1134 1.1 cube SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1135 1.1 cube simple_unlock(&sc->sc_kqlock);
1136 1.1 cube return (0);
1137 1.1 cube }
1138 1.1 cube
1139 1.1 cube static void
1140 1.1 cube tap_kqdetach(struct knote *kn)
1141 1.1 cube {
1142 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1143 1.1 cube
1144 1.4 ragge simple_lock(&sc->sc_kqlock);
1145 1.1 cube SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1146 1.1 cube simple_unlock(&sc->sc_kqlock);
1147 1.1 cube }
1148 1.1 cube
1149 1.1 cube static int
1150 1.23 christos tap_kqread(struct knote *kn, long hint)
1151 1.1 cube {
1152 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1153 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1154 1.1 cube struct mbuf *m;
1155 1.1 cube int s;
1156 1.1 cube
1157 1.1 cube s = splnet();
1158 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1159 1.1 cube
1160 1.1 cube if (m == NULL)
1161 1.1 cube kn->kn_data = 0;
1162 1.1 cube else
1163 1.1 cube kn->kn_data = m->m_pkthdr.len;
1164 1.1 cube splx(s);
1165 1.1 cube return (kn->kn_data != 0 ? 1 : 0);
1166 1.1 cube }
1167 1.1 cube
1168 1.1 cube /*
1169 1.1 cube * sysctl management routines
1170 1.1 cube * You can set the address of an interface through:
1171 1.1 cube * net.link.tap.tap<number>
1172 1.1 cube *
1173 1.1 cube * Note the consistent use of tap_log in order to use
1174 1.1 cube * sysctl_teardown at unload time.
1175 1.1 cube *
1176 1.1 cube * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1177 1.1 cube * blocks register a function in a special section of the kernel
1178 1.1 cube * (called a link set) which is used at init_sysctl() time to cycle
1179 1.1 cube * through all those functions to create the kernel's sysctl tree.
1180 1.1 cube *
1181 1.1 cube * It is not (currently) possible to use link sets in a LKM, so the
1182 1.1 cube * easiest is to simply call our own setup routine at load time.
1183 1.1 cube *
1184 1.1 cube * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1185 1.1 cube * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1186 1.1 cube * whole kernel sysctl tree is built, it is not possible to add any
1187 1.1 cube * permanent node.
1188 1.1 cube *
1189 1.1 cube * It should be noted that we're not saving the sysctlnode pointer
1190 1.1 cube * we are returned when creating the "tap" node. That structure
1191 1.1 cube * cannot be trusted once out of the calling function, as it might
1192 1.1 cube * get reused. So we just save the MIB number, and always give the
1193 1.1 cube * full path starting from the root for later calls to sysctl_createv
1194 1.1 cube * and sysctl_destroyv.
1195 1.1 cube */
1196 1.1 cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1197 1.1 cube {
1198 1.10 atatat const struct sysctlnode *node;
1199 1.1 cube int error = 0;
1200 1.1 cube
1201 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL,
1202 1.1 cube CTLFLAG_PERMANENT,
1203 1.1 cube CTLTYPE_NODE, "net", NULL,
1204 1.1 cube NULL, 0, NULL, 0,
1205 1.1 cube CTL_NET, CTL_EOL)) != 0)
1206 1.1 cube return;
1207 1.1 cube
1208 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL,
1209 1.1 cube CTLFLAG_PERMANENT,
1210 1.1 cube CTLTYPE_NODE, "link", NULL,
1211 1.1 cube NULL, 0, NULL, 0,
1212 1.3 cube CTL_NET, AF_LINK, CTL_EOL)) != 0)
1213 1.1 cube return;
1214 1.1 cube
1215 1.1 cube /*
1216 1.1 cube * The first four parameters of sysctl_createv are for management.
1217 1.1 cube *
1218 1.1 cube * The four that follows, here starting with a '0' for the flags,
1219 1.1 cube * describe the node.
1220 1.1 cube *
1221 1.1 cube * The next series of four set its value, through various possible
1222 1.1 cube * means.
1223 1.1 cube *
1224 1.1 cube * Last but not least, the path to the node is described. That path
1225 1.1 cube * is relative to the given root (third argument). Here we're
1226 1.1 cube * starting from the root.
1227 1.1 cube */
1228 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, &node,
1229 1.1 cube CTLFLAG_PERMANENT,
1230 1.1 cube CTLTYPE_NODE, "tap", NULL,
1231 1.1 cube NULL, 0, NULL, 0,
1232 1.3 cube CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1233 1.1 cube return;
1234 1.1 cube tap_node = node->sysctl_num;
1235 1.1 cube }
1236 1.1 cube
1237 1.1 cube /*
1238 1.1 cube * The helper functions make Andrew Brown's interface really
1239 1.1 cube * shine. It makes possible to create value on the fly whether
1240 1.1 cube * the sysctl value is read or written.
1241 1.1 cube *
1242 1.1 cube * As shown as an example in the man page, the first step is to
1243 1.1 cube * create a copy of the node to have sysctl_lookup work on it.
1244 1.1 cube *
1245 1.1 cube * Here, we have more work to do than just a copy, since we have
1246 1.1 cube * to create the string. The first step is to collect the actual
1247 1.1 cube * value of the node, which is a convenient pointer to the softc
1248 1.1 cube * of the interface. From there we create the string and use it
1249 1.1 cube * as the value, but only for the *copy* of the node.
1250 1.1 cube *
1251 1.1 cube * Then we let sysctl_lookup do the magic, which consists in
1252 1.1 cube * setting oldp and newp as required by the operation. When the
1253 1.1 cube * value is read, that means that the string will be copied to
1254 1.1 cube * the user, and when it is written, the new value will be copied
1255 1.1 cube * over in the addr array.
1256 1.1 cube *
1257 1.1 cube * If newp is NULL, the user was reading the value, so we don't
1258 1.1 cube * have anything else to do. If a new value was written, we
1259 1.1 cube * have to check it.
1260 1.1 cube *
1261 1.1 cube * If it is incorrect, we can return an error and leave 'node' as
1262 1.1 cube * it is: since it is a copy of the actual node, the change will
1263 1.1 cube * be forgotten.
1264 1.1 cube *
1265 1.1 cube * Upon a correct input, we commit the change to the ifnet
1266 1.1 cube * structure of our interface.
1267 1.1 cube */
1268 1.1 cube static int
1269 1.1 cube tap_sysctl_handler(SYSCTLFN_ARGS)
1270 1.1 cube {
1271 1.1 cube struct sysctlnode node;
1272 1.1 cube struct tap_softc *sc;
1273 1.1 cube struct ifnet *ifp;
1274 1.1 cube int error;
1275 1.1 cube size_t len;
1276 1.14 christos char addr[3 * ETHER_ADDR_LEN];
1277 1.1 cube
1278 1.1 cube node = *rnode;
1279 1.1 cube sc = node.sysctl_data;
1280 1.1 cube ifp = &sc->sc_ec.ec_if;
1281 1.14 christos (void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
1282 1.1 cube node.sysctl_data = addr;
1283 1.1 cube error = sysctl_lookup(SYSCTLFN_CALL(&node));
1284 1.1 cube if (error || newp == NULL)
1285 1.1 cube return (error);
1286 1.1 cube
1287 1.1 cube len = strlen(addr);
1288 1.1 cube if (len < 11 || len > 17)
1289 1.1 cube return (EINVAL);
1290 1.1 cube
1291 1.1 cube /* Commit change */
1292 1.24 rpaulo if (ether_nonstatic_aton(LLADDR(ifp->if_sadl), addr) != 0)
1293 1.1 cube return (EINVAL);
1294 1.1 cube return (error);
1295 1.1 cube }
1296