if_tap.c revision 1.29 1 1.29 christos /* $NetBSD: if_tap.c,v 1.29 2007/05/29 21:32:30 christos Exp $ */
2 1.1 cube
3 1.1 cube /*
4 1.1 cube * Copyright (c) 2003, 2004 The NetBSD Foundation.
5 1.1 cube * All rights reserved.
6 1.1 cube *
7 1.1 cube * This code is derived from software contributed to the NetBSD Foundation
8 1.1 cube * by Quentin Garnier.
9 1.6 perry *
10 1.1 cube * Redistribution and use in source and binary forms, with or without
11 1.1 cube * modification, are permitted provided that the following conditions
12 1.1 cube * are met:
13 1.1 cube * 1. Redistributions of source code must retain the above copyright
14 1.1 cube * notice, this list of conditions and the following disclaimer.
15 1.1 cube * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 cube * notice, this list of conditions and the following disclaimer in the
17 1.1 cube * documentation and/or other materials provided with the distribution.
18 1.1 cube * 3. All advertising materials mentioning features or use of this software
19 1.1 cube * must display the following acknowledgement:
20 1.1 cube * This product includes software developed by the NetBSD
21 1.1 cube * Foundation, Inc. and its contributors.
22 1.1 cube * 4. Neither the name of The NetBSD Foundation nor the names of its
23 1.1 cube * contributors may be used to endorse or promote products derived
24 1.1 cube * from this software without specific prior written permission.
25 1.6 perry *
26 1.1 cube * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 1.1 cube * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 1.1 cube * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 1.1 cube * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 1.1 cube * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 1.1 cube * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 1.1 cube * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 1.1 cube * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 1.1 cube * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 1.1 cube * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 1.1 cube * POSSIBILITY OF SUCH DAMAGE.
37 1.1 cube */
38 1.1 cube
39 1.1 cube /*
40 1.1 cube * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
41 1.1 cube * device to the system, but can also be accessed by userland through a
42 1.1 cube * character device interface, which allows reading and injecting frames.
43 1.1 cube */
44 1.1 cube
45 1.1 cube #include <sys/cdefs.h>
46 1.29 christos __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.29 2007/05/29 21:32:30 christos Exp $");
47 1.1 cube
48 1.2 cube #if defined(_KERNEL_OPT)
49 1.1 cube #include "bpfilter.h"
50 1.29 christos #include "opt_compat_netbsd.h"
51 1.2 cube #endif
52 1.1 cube
53 1.1 cube #include <sys/param.h>
54 1.1 cube #include <sys/systm.h>
55 1.1 cube #include <sys/kernel.h>
56 1.1 cube #include <sys/malloc.h>
57 1.1 cube #include <sys/conf.h>
58 1.1 cube #include <sys/device.h>
59 1.1 cube #include <sys/file.h>
60 1.1 cube #include <sys/filedesc.h>
61 1.1 cube #include <sys/ksyms.h>
62 1.1 cube #include <sys/poll.h>
63 1.1 cube #include <sys/select.h>
64 1.1 cube #include <sys/sockio.h>
65 1.1 cube #include <sys/sysctl.h>
66 1.17 elad #include <sys/kauth.h>
67 1.1 cube
68 1.1 cube #include <net/if.h>
69 1.1 cube #include <net/if_dl.h>
70 1.1 cube #include <net/if_ether.h>
71 1.1 cube #include <net/if_media.h>
72 1.1 cube #include <net/if_tap.h>
73 1.1 cube #if NBPFILTER > 0
74 1.1 cube #include <net/bpf.h>
75 1.1 cube #endif
76 1.1 cube
77 1.29 christos #if defined(COMPAT_09) || defined(COMPAT_10) || defined(COMPAT_11) || \
78 1.29 christos defined(COMPAT_12) || defined(COMPAT_13) || defined(COMPAT_14) || \
79 1.29 christos defined(COMPAT_15) || defined(COMPAT_16) || defined(COMPAT_20) || \
80 1.29 christos defined(COMPAT_30) || defined(COMPAT_40)
81 1.29 christos #include <compat/sys/sockio.h>
82 1.29 christos #endif
83 1.29 christos
84 1.1 cube /*
85 1.1 cube * sysctl node management
86 1.1 cube *
87 1.1 cube * It's not really possible to use a SYSCTL_SETUP block with
88 1.1 cube * current LKM implementation, so it is easier to just define
89 1.1 cube * our own function.
90 1.1 cube *
91 1.1 cube * The handler function is a "helper" in Andrew Brown's sysctl
92 1.1 cube * framework terminology. It is used as a gateway for sysctl
93 1.1 cube * requests over the nodes.
94 1.1 cube *
95 1.1 cube * tap_log allows the module to log creations of nodes and
96 1.1 cube * destroy them all at once using sysctl_teardown.
97 1.1 cube */
98 1.1 cube static int tap_node;
99 1.1 cube static int tap_sysctl_handler(SYSCTLFN_PROTO);
100 1.2 cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
101 1.1 cube
102 1.1 cube /*
103 1.1 cube * Since we're an Ethernet device, we need the 3 following
104 1.1 cube * components: a leading struct device, a struct ethercom,
105 1.1 cube * and also a struct ifmedia since we don't attach a PHY to
106 1.1 cube * ourselves. We could emulate one, but there's no real
107 1.1 cube * point.
108 1.1 cube */
109 1.1 cube
110 1.1 cube struct tap_softc {
111 1.1 cube struct device sc_dev;
112 1.1 cube struct ifmedia sc_im;
113 1.1 cube struct ethercom sc_ec;
114 1.1 cube int sc_flags;
115 1.1 cube #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
116 1.1 cube #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
117 1.1 cube #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
118 1.1 cube #define TAP_GOING 0x00000008 /* interface is being destroyed */
119 1.1 cube struct selinfo sc_rsel;
120 1.1 cube pid_t sc_pgid; /* For async. IO */
121 1.1 cube struct lock sc_rdlock;
122 1.1 cube struct simplelock sc_kqlock;
123 1.1 cube };
124 1.1 cube
125 1.1 cube /* autoconf(9) glue */
126 1.1 cube
127 1.1 cube void tapattach(int);
128 1.1 cube
129 1.1 cube static int tap_match(struct device *, struct cfdata *, void *);
130 1.1 cube static void tap_attach(struct device *, struct device *, void *);
131 1.1 cube static int tap_detach(struct device*, int);
132 1.1 cube
133 1.1 cube CFATTACH_DECL(tap, sizeof(struct tap_softc),
134 1.1 cube tap_match, tap_attach, tap_detach, NULL);
135 1.1 cube extern struct cfdriver tap_cd;
136 1.1 cube
137 1.1 cube /* Real device access routines */
138 1.1 cube static int tap_dev_close(struct tap_softc *);
139 1.1 cube static int tap_dev_read(int, struct uio *, int);
140 1.1 cube static int tap_dev_write(int, struct uio *, int);
141 1.26 christos static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
142 1.11 christos static int tap_dev_poll(int, int, struct lwp *);
143 1.1 cube static int tap_dev_kqfilter(int, struct knote *);
144 1.1 cube
145 1.1 cube /* Fileops access routines */
146 1.11 christos static int tap_fops_close(struct file *, struct lwp *);
147 1.1 cube static int tap_fops_read(struct file *, off_t *, struct uio *,
148 1.17 elad kauth_cred_t, int);
149 1.1 cube static int tap_fops_write(struct file *, off_t *, struct uio *,
150 1.17 elad kauth_cred_t, int);
151 1.1 cube static int tap_fops_ioctl(struct file *, u_long, void *,
152 1.11 christos struct lwp *);
153 1.11 christos static int tap_fops_poll(struct file *, int, struct lwp *);
154 1.1 cube static int tap_fops_kqfilter(struct file *, struct knote *);
155 1.1 cube
156 1.1 cube static const struct fileops tap_fileops = {
157 1.1 cube tap_fops_read,
158 1.1 cube tap_fops_write,
159 1.1 cube tap_fops_ioctl,
160 1.1 cube fnullop_fcntl,
161 1.1 cube tap_fops_poll,
162 1.1 cube fbadop_stat,
163 1.1 cube tap_fops_close,
164 1.1 cube tap_fops_kqfilter,
165 1.1 cube };
166 1.1 cube
167 1.1 cube /* Helper for cloning open() */
168 1.11 christos static int tap_dev_cloner(struct lwp *);
169 1.1 cube
170 1.1 cube /* Character device routines */
171 1.11 christos static int tap_cdev_open(dev_t, int, int, struct lwp *);
172 1.11 christos static int tap_cdev_close(dev_t, int, int, struct lwp *);
173 1.1 cube static int tap_cdev_read(dev_t, struct uio *, int);
174 1.1 cube static int tap_cdev_write(dev_t, struct uio *, int);
175 1.26 christos static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
176 1.11 christos static int tap_cdev_poll(dev_t, int, struct lwp *);
177 1.1 cube static int tap_cdev_kqfilter(dev_t, struct knote *);
178 1.1 cube
179 1.1 cube const struct cdevsw tap_cdevsw = {
180 1.1 cube tap_cdev_open, tap_cdev_close,
181 1.1 cube tap_cdev_read, tap_cdev_write,
182 1.1 cube tap_cdev_ioctl, nostop, notty,
183 1.1 cube tap_cdev_poll, nommap,
184 1.1 cube tap_cdev_kqfilter,
185 1.20 christos D_OTHER,
186 1.1 cube };
187 1.1 cube
188 1.1 cube #define TAP_CLONER 0xfffff /* Maximal minor value */
189 1.1 cube
190 1.1 cube /* kqueue-related routines */
191 1.1 cube static void tap_kqdetach(struct knote *);
192 1.1 cube static int tap_kqread(struct knote *, long);
193 1.1 cube
194 1.1 cube /*
195 1.1 cube * Those are needed by the if_media interface.
196 1.1 cube */
197 1.1 cube
198 1.1 cube static int tap_mediachange(struct ifnet *);
199 1.1 cube static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
200 1.1 cube
201 1.1 cube /*
202 1.1 cube * Those are needed by the ifnet interface, and would typically be
203 1.1 cube * there for any network interface driver.
204 1.1 cube * Some other routines are optional: watchdog and drain.
205 1.1 cube */
206 1.1 cube
207 1.1 cube static void tap_start(struct ifnet *);
208 1.1 cube static void tap_stop(struct ifnet *, int);
209 1.1 cube static int tap_init(struct ifnet *);
210 1.26 christos static int tap_ioctl(struct ifnet *, u_long, void *);
211 1.1 cube
212 1.1 cube /* This is an internal function to keep tap_ioctl readable */
213 1.1 cube static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
214 1.1 cube
215 1.1 cube /*
216 1.1 cube * tap is a clonable interface, although it is highly unrealistic for
217 1.1 cube * an Ethernet device.
218 1.1 cube *
219 1.1 cube * Here are the bits needed for a clonable interface.
220 1.1 cube */
221 1.1 cube static int tap_clone_create(struct if_clone *, int);
222 1.1 cube static int tap_clone_destroy(struct ifnet *);
223 1.1 cube
224 1.1 cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
225 1.1 cube tap_clone_create,
226 1.1 cube tap_clone_destroy);
227 1.1 cube
228 1.1 cube /* Helper functionis shared by the two cloning code paths */
229 1.1 cube static struct tap_softc * tap_clone_creator(int);
230 1.12 cube int tap_clone_destroyer(struct device *);
231 1.1 cube
232 1.1 cube void
233 1.23 christos tapattach(int n)
234 1.1 cube {
235 1.1 cube int error;
236 1.1 cube
237 1.1 cube error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
238 1.1 cube if (error) {
239 1.1 cube aprint_error("%s: unable to register cfattach\n",
240 1.1 cube tap_cd.cd_name);
241 1.1 cube (void)config_cfdriver_detach(&tap_cd);
242 1.1 cube return;
243 1.1 cube }
244 1.1 cube
245 1.1 cube if_clone_attach(&tap_cloners);
246 1.1 cube }
247 1.1 cube
248 1.1 cube /* Pretty much useless for a pseudo-device */
249 1.1 cube static int
250 1.23 christos tap_match(struct device *self, struct cfdata *cfdata,
251 1.23 christos void *arg)
252 1.1 cube {
253 1.1 cube return (1);
254 1.1 cube }
255 1.1 cube
256 1.1 cube void
257 1.23 christos tap_attach(struct device *parent, struct device *self,
258 1.23 christos void *aux)
259 1.1 cube {
260 1.1 cube struct tap_softc *sc = (struct tap_softc *)self;
261 1.1 cube struct ifnet *ifp;
262 1.18 kardel const struct sysctlnode *node;
263 1.1 cube u_int8_t enaddr[ETHER_ADDR_LEN] =
264 1.7 cube { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
265 1.14 christos char enaddrstr[3 * ETHER_ADDR_LEN];
266 1.18 kardel struct timeval tv;
267 1.1 cube uint32_t ui;
268 1.1 cube int error;
269 1.1 cube
270 1.1 cube /*
271 1.1 cube * In order to obtain unique initial Ethernet address on a host,
272 1.18 kardel * do some randomisation using the current uptime. It's not meant
273 1.18 kardel * for anything but avoiding hard-coding an address.
274 1.1 cube */
275 1.18 kardel getmicrouptime(&tv);
276 1.18 kardel ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
277 1.1 cube memcpy(enaddr+3, (u_int8_t *)&ui, 3);
278 1.1 cube
279 1.25 cube aprint_verbose("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
280 1.14 christos ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
281 1.1 cube
282 1.1 cube /*
283 1.1 cube * Why 1000baseT? Why not? You can add more.
284 1.1 cube *
285 1.1 cube * Note that there are 3 steps: init, one or several additions to
286 1.1 cube * list of supported media, and in the end, the selection of one
287 1.1 cube * of them.
288 1.1 cube */
289 1.1 cube ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
290 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
291 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
292 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
293 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
294 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
295 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
296 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
297 1.1 cube ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
298 1.1 cube
299 1.1 cube /*
300 1.1 cube * One should note that an interface must do multicast in order
301 1.1 cube * to support IPv6.
302 1.1 cube */
303 1.1 cube ifp = &sc->sc_ec.ec_if;
304 1.1 cube strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
305 1.1 cube ifp->if_softc = sc;
306 1.1 cube ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
307 1.1 cube ifp->if_ioctl = tap_ioctl;
308 1.1 cube ifp->if_start = tap_start;
309 1.1 cube ifp->if_stop = tap_stop;
310 1.1 cube ifp->if_init = tap_init;
311 1.1 cube IFQ_SET_READY(&ifp->if_snd);
312 1.1 cube
313 1.1 cube sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
314 1.1 cube
315 1.1 cube /* Those steps are mandatory for an Ethernet driver, the fisrt call
316 1.1 cube * being common to all network interface drivers. */
317 1.1 cube if_attach(ifp);
318 1.1 cube ether_ifattach(ifp, enaddr);
319 1.1 cube
320 1.1 cube sc->sc_flags = 0;
321 1.1 cube
322 1.1 cube /*
323 1.1 cube * Add a sysctl node for that interface.
324 1.1 cube *
325 1.1 cube * The pointer transmitted is not a string, but instead a pointer to
326 1.1 cube * the softc structure, which we can use to build the string value on
327 1.1 cube * the fly in the helper function of the node. See the comments for
328 1.1 cube * tap_sysctl_handler for details.
329 1.21 cube *
330 1.21 cube * Usually sysctl_createv is called with CTL_CREATE as the before-last
331 1.21 cube * component. However, we can allocate a number ourselves, as we are
332 1.21 cube * the only consumer of the net.link.<iface> node. In this case, the
333 1.21 cube * unit number is conveniently used to number the node. CTL_CREATE
334 1.21 cube * would just work, too.
335 1.1 cube */
336 1.1 cube if ((error = sysctl_createv(NULL, 0, NULL,
337 1.1 cube &node, CTLFLAG_READWRITE,
338 1.1 cube CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
339 1.1 cube tap_sysctl_handler, 0, sc, 18,
340 1.15 thorpej CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
341 1.15 thorpej CTL_EOL)) != 0)
342 1.1 cube aprint_error("%s: sysctl_createv returned %d, ignoring\n",
343 1.1 cube sc->sc_dev.dv_xname, error);
344 1.1 cube
345 1.1 cube /*
346 1.1 cube * Initialize the two locks for the device.
347 1.1 cube *
348 1.1 cube * We need a lock here because even though the tap device can be
349 1.1 cube * opened only once, the file descriptor might be passed to another
350 1.1 cube * process, say a fork(2)ed child.
351 1.1 cube *
352 1.1 cube * The Giant saves us from most of the hassle, but since the read
353 1.1 cube * operation can sleep, we don't want two processes to wake up at
354 1.1 cube * the same moment and both try and dequeue a single packet.
355 1.1 cube *
356 1.1 cube * The queue for event listeners (used by kqueue(9), see below) has
357 1.1 cube * to be protected, too, but we don't need the same level of
358 1.1 cube * complexity for that lock, so a simple spinning lock is fine.
359 1.1 cube */
360 1.1 cube lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
361 1.1 cube simple_lock_init(&sc->sc_kqlock);
362 1.1 cube }
363 1.1 cube
364 1.1 cube /*
365 1.1 cube * When detaching, we do the inverse of what is done in the attach
366 1.1 cube * routine, in reversed order.
367 1.1 cube */
368 1.1 cube static int
369 1.23 christos tap_detach(struct device* self, int flags)
370 1.1 cube {
371 1.1 cube struct tap_softc *sc = (struct tap_softc *)self;
372 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
373 1.1 cube int error, s;
374 1.1 cube
375 1.1 cube /*
376 1.1 cube * Some processes might be sleeping on "tap", so we have to make
377 1.1 cube * them release their hold on the device.
378 1.1 cube *
379 1.1 cube * The LK_DRAIN operation will wait for every locked process to
380 1.1 cube * release their hold.
381 1.1 cube */
382 1.1 cube sc->sc_flags |= TAP_GOING;
383 1.1 cube s = splnet();
384 1.1 cube tap_stop(ifp, 1);
385 1.1 cube if_down(ifp);
386 1.1 cube splx(s);
387 1.1 cube lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
388 1.1 cube
389 1.1 cube /*
390 1.1 cube * Destroying a single leaf is a very straightforward operation using
391 1.1 cube * sysctl_destroyv. One should be sure to always end the path with
392 1.1 cube * CTL_EOL.
393 1.1 cube */
394 1.3 cube if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
395 1.15 thorpej device_unit(&sc->sc_dev), CTL_EOL)) != 0)
396 1.1 cube aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
397 1.1 cube sc->sc_dev.dv_xname, error);
398 1.1 cube ether_ifdetach(ifp);
399 1.1 cube if_detach(ifp);
400 1.1 cube ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
401 1.1 cube
402 1.1 cube return (0);
403 1.1 cube }
404 1.1 cube
405 1.1 cube /*
406 1.1 cube * This function is called by the ifmedia layer to notify the driver
407 1.1 cube * that the user requested a media change. A real driver would
408 1.1 cube * reconfigure the hardware.
409 1.1 cube */
410 1.1 cube static int
411 1.23 christos tap_mediachange(struct ifnet *ifp)
412 1.1 cube {
413 1.1 cube return (0);
414 1.1 cube }
415 1.1 cube
416 1.1 cube /*
417 1.1 cube * Here the user asks for the currently used media.
418 1.1 cube */
419 1.1 cube static void
420 1.1 cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
421 1.1 cube {
422 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
423 1.1 cube imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
424 1.1 cube }
425 1.1 cube
426 1.1 cube /*
427 1.1 cube * This is the function where we SEND packets.
428 1.1 cube *
429 1.1 cube * There is no 'receive' equivalent. A typical driver will get
430 1.1 cube * interrupts from the hardware, and from there will inject new packets
431 1.1 cube * into the network stack.
432 1.1 cube *
433 1.1 cube * Once handled, a packet must be freed. A real driver might not be able
434 1.1 cube * to fit all the pending packets into the hardware, and is allowed to
435 1.1 cube * return before having sent all the packets. It should then use the
436 1.1 cube * if_flags flag IFF_OACTIVE to notify the upper layer.
437 1.1 cube *
438 1.1 cube * There are also other flags one should check, such as IFF_PAUSE.
439 1.1 cube *
440 1.1 cube * It is our duty to make packets available to BPF listeners.
441 1.1 cube *
442 1.1 cube * You should be aware that this function is called by the Ethernet layer
443 1.1 cube * at splnet().
444 1.1 cube *
445 1.1 cube * When the device is opened, we have to pass the packet(s) to the
446 1.1 cube * userland. For that we stay in OACTIVE mode while the userland gets
447 1.1 cube * the packets, and we send a signal to the processes waiting to read.
448 1.1 cube *
449 1.1 cube * wakeup(sc) is the counterpart to the tsleep call in
450 1.1 cube * tap_dev_read, while selnotify() is used for kevent(2) and
451 1.1 cube * poll(2) (which includes select(2)) listeners.
452 1.1 cube */
453 1.1 cube static void
454 1.1 cube tap_start(struct ifnet *ifp)
455 1.1 cube {
456 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
457 1.1 cube struct mbuf *m0;
458 1.1 cube
459 1.1 cube if ((sc->sc_flags & TAP_INUSE) == 0) {
460 1.1 cube /* Simply drop packets */
461 1.1 cube for(;;) {
462 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m0);
463 1.1 cube if (m0 == NULL)
464 1.1 cube return;
465 1.1 cube
466 1.1 cube ifp->if_opackets++;
467 1.1 cube #if NBPFILTER > 0
468 1.1 cube if (ifp->if_bpf)
469 1.1 cube bpf_mtap(ifp->if_bpf, m0);
470 1.1 cube #endif
471 1.1 cube
472 1.1 cube m_freem(m0);
473 1.1 cube }
474 1.1 cube } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
475 1.1 cube ifp->if_flags |= IFF_OACTIVE;
476 1.1 cube wakeup(sc);
477 1.1 cube selnotify(&sc->sc_rsel, 1);
478 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
479 1.1 cube fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
480 1.1 cube POLLIN|POLLRDNORM, NULL);
481 1.1 cube }
482 1.1 cube }
483 1.1 cube
484 1.1 cube /*
485 1.1 cube * A typical driver will only contain the following handlers for
486 1.1 cube * ioctl calls, except SIOCSIFPHYADDR.
487 1.1 cube * The latter is a hack I used to set the Ethernet address of the
488 1.1 cube * faked device.
489 1.1 cube *
490 1.1 cube * Note that both ifmedia_ioctl() and ether_ioctl() have to be
491 1.1 cube * called under splnet().
492 1.1 cube */
493 1.1 cube static int
494 1.26 christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
495 1.1 cube {
496 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
497 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
498 1.1 cube int s, error;
499 1.1 cube
500 1.1 cube s = splnet();
501 1.1 cube
502 1.1 cube switch (cmd) {
503 1.29 christos #ifdef OSIOCSIFMEDIA
504 1.29 christos case OSIOCSIFMEDIA:
505 1.29 christos #endif
506 1.1 cube case SIOCSIFMEDIA:
507 1.1 cube case SIOCGIFMEDIA:
508 1.1 cube error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
509 1.1 cube break;
510 1.1 cube case SIOCSIFPHYADDR:
511 1.1 cube error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
512 1.1 cube break;
513 1.1 cube default:
514 1.1 cube error = ether_ioctl(ifp, cmd, data);
515 1.1 cube if (error == ENETRESET)
516 1.1 cube error = 0;
517 1.1 cube break;
518 1.1 cube }
519 1.1 cube
520 1.1 cube splx(s);
521 1.1 cube
522 1.1 cube return (error);
523 1.1 cube }
524 1.1 cube
525 1.1 cube /*
526 1.1 cube * Helper function to set Ethernet address. This shouldn't be done there,
527 1.1 cube * and should actually be available to all Ethernet drivers, real or not.
528 1.1 cube */
529 1.1 cube static int
530 1.23 christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
531 1.1 cube {
532 1.1 cube struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
533 1.1 cube
534 1.1 cube if (sa->sa_family != AF_LINK)
535 1.1 cube return (EINVAL);
536 1.1 cube
537 1.1 cube memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
538 1.1 cube
539 1.1 cube return (0);
540 1.1 cube }
541 1.1 cube
542 1.1 cube /*
543 1.1 cube * _init() would typically be called when an interface goes up,
544 1.1 cube * meaning it should configure itself into the state in which it
545 1.1 cube * can send packets.
546 1.1 cube */
547 1.1 cube static int
548 1.1 cube tap_init(struct ifnet *ifp)
549 1.1 cube {
550 1.1 cube ifp->if_flags |= IFF_RUNNING;
551 1.1 cube
552 1.1 cube tap_start(ifp);
553 1.1 cube
554 1.1 cube return (0);
555 1.1 cube }
556 1.1 cube
557 1.1 cube /*
558 1.1 cube * _stop() is called when an interface goes down. It is our
559 1.1 cube * responsability to validate that state by clearing the
560 1.1 cube * IFF_RUNNING flag.
561 1.1 cube *
562 1.1 cube * We have to wake up all the sleeping processes to have the pending
563 1.1 cube * read requests cancelled.
564 1.1 cube */
565 1.1 cube static void
566 1.23 christos tap_stop(struct ifnet *ifp, int disable)
567 1.1 cube {
568 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
569 1.1 cube
570 1.1 cube ifp->if_flags &= ~IFF_RUNNING;
571 1.1 cube wakeup(sc);
572 1.1 cube selnotify(&sc->sc_rsel, 1);
573 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
574 1.1 cube fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
575 1.1 cube }
576 1.1 cube
577 1.1 cube /*
578 1.1 cube * The 'create' command of ifconfig can be used to create
579 1.1 cube * any numbered instance of a given device. Thus we have to
580 1.1 cube * make sure we have enough room in cd_devs to create the
581 1.1 cube * user-specified instance. config_attach_pseudo will do this
582 1.1 cube * for us.
583 1.1 cube */
584 1.1 cube static int
585 1.23 christos tap_clone_create(struct if_clone *ifc, int unit)
586 1.1 cube {
587 1.1 cube if (tap_clone_creator(unit) == NULL) {
588 1.1 cube aprint_error("%s%d: unable to attach an instance\n",
589 1.1 cube tap_cd.cd_name, unit);
590 1.1 cube return (ENXIO);
591 1.1 cube }
592 1.1 cube
593 1.1 cube return (0);
594 1.1 cube }
595 1.1 cube
596 1.1 cube /*
597 1.1 cube * tap(4) can be cloned by two ways:
598 1.1 cube * using 'ifconfig tap0 create', which will use the network
599 1.1 cube * interface cloning API, and call tap_clone_create above.
600 1.1 cube * opening the cloning device node, whose minor number is TAP_CLONER.
601 1.1 cube * See below for an explanation on how this part work.
602 1.1 cube */
603 1.1 cube static struct tap_softc *
604 1.1 cube tap_clone_creator(int unit)
605 1.1 cube {
606 1.1 cube struct cfdata *cf;
607 1.1 cube
608 1.1 cube cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
609 1.1 cube cf->cf_name = tap_cd.cd_name;
610 1.1 cube cf->cf_atname = tap_ca.ca_name;
611 1.27 drochner if (unit == -1) {
612 1.27 drochner /* let autoconf find the first free one */
613 1.27 drochner cf->cf_unit = 0;
614 1.27 drochner cf->cf_fstate = FSTATE_STAR;
615 1.27 drochner } else {
616 1.27 drochner cf->cf_unit = unit;
617 1.27 drochner cf->cf_fstate = FSTATE_NOTFOUND;
618 1.27 drochner }
619 1.1 cube
620 1.1 cube return (struct tap_softc *)config_attach_pseudo(cf);
621 1.1 cube }
622 1.1 cube
623 1.1 cube /*
624 1.1 cube * The clean design of if_clone and autoconf(9) makes that part
625 1.1 cube * really straightforward. The second argument of config_detach
626 1.1 cube * means neither QUIET nor FORCED.
627 1.1 cube */
628 1.1 cube static int
629 1.1 cube tap_clone_destroy(struct ifnet *ifp)
630 1.1 cube {
631 1.1 cube return tap_clone_destroyer((struct device *)ifp->if_softc);
632 1.1 cube }
633 1.1 cube
634 1.12 cube int
635 1.1 cube tap_clone_destroyer(struct device *dev)
636 1.1 cube {
637 1.16 thorpej struct cfdata *cf = device_cfdata(dev);
638 1.1 cube int error;
639 1.1 cube
640 1.1 cube if ((error = config_detach(dev, 0)) != 0)
641 1.1 cube aprint_error("%s: unable to detach instance\n",
642 1.1 cube dev->dv_xname);
643 1.1 cube free(cf, M_DEVBUF);
644 1.1 cube
645 1.1 cube return (error);
646 1.1 cube }
647 1.1 cube
648 1.1 cube /*
649 1.1 cube * tap(4) is a bit of an hybrid device. It can be used in two different
650 1.1 cube * ways:
651 1.1 cube * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
652 1.1 cube * 2. open /dev/tap, get a new interface created and read/write off it.
653 1.1 cube * That interface is destroyed when the process that had it created exits.
654 1.1 cube *
655 1.1 cube * The first way is managed by the cdevsw structure, and you access interfaces
656 1.1 cube * through a (major, minor) mapping: tap4 is obtained by the minor number
657 1.1 cube * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
658 1.1 cube *
659 1.1 cube * The second way is the so-called "cloning" device. It's a special minor
660 1.1 cube * number (chosen as the maximal number, to allow as much tap devices as
661 1.1 cube * possible). The user first opens the cloner (e.g., /dev/tap), and that
662 1.1 cube * call ends in tap_cdev_open. The actual place where it is handled is
663 1.1 cube * tap_dev_cloner.
664 1.1 cube *
665 1.1 cube * An tap device cannot be opened more than once at a time, so the cdevsw
666 1.1 cube * part of open() does nothing but noting that the interface is being used and
667 1.1 cube * hence ready to actually handle packets.
668 1.1 cube */
669 1.1 cube
670 1.1 cube static int
671 1.23 christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
672 1.1 cube {
673 1.1 cube struct tap_softc *sc;
674 1.1 cube
675 1.1 cube if (minor(dev) == TAP_CLONER)
676 1.11 christos return tap_dev_cloner(l);
677 1.1 cube
678 1.1 cube sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
679 1.1 cube if (sc == NULL)
680 1.1 cube return (ENXIO);
681 1.1 cube
682 1.1 cube /* The device can only be opened once */
683 1.1 cube if (sc->sc_flags & TAP_INUSE)
684 1.1 cube return (EBUSY);
685 1.1 cube sc->sc_flags |= TAP_INUSE;
686 1.1 cube return (0);
687 1.1 cube }
688 1.1 cube
689 1.1 cube /*
690 1.1 cube * There are several kinds of cloning devices, and the most simple is the one
691 1.1 cube * tap(4) uses. What it does is change the file descriptor with a new one,
692 1.1 cube * with its own fileops structure (which maps to the various read, write,
693 1.1 cube * ioctl functions). It starts allocating a new file descriptor with falloc,
694 1.1 cube * then actually creates the new tap devices.
695 1.1 cube *
696 1.1 cube * Once those two steps are successful, we can re-wire the existing file
697 1.1 cube * descriptor to its new self. This is done with fdclone(): it fills the fp
698 1.1 cube * structure as needed (notably f_data gets filled with the fifth parameter
699 1.1 cube * passed, the unit of the tap device which will allows us identifying the
700 1.1 cube * device later), and returns EMOVEFD.
701 1.1 cube *
702 1.1 cube * That magic value is interpreted by sys_open() which then replaces the
703 1.1 cube * current file descriptor by the new one (through a magic member of struct
704 1.13 pooka * lwp, l_dupfd).
705 1.1 cube *
706 1.1 cube * The tap device is flagged as being busy since it otherwise could be
707 1.1 cube * externally accessed through the corresponding device node with the cdevsw
708 1.1 cube * interface.
709 1.1 cube */
710 1.1 cube
711 1.1 cube static int
712 1.11 christos tap_dev_cloner(struct lwp *l)
713 1.1 cube {
714 1.1 cube struct tap_softc *sc;
715 1.1 cube struct file *fp;
716 1.1 cube int error, fd;
717 1.1 cube
718 1.19 ad if ((error = falloc(l, &fp, &fd)) != 0)
719 1.1 cube return (error);
720 1.1 cube
721 1.27 drochner if ((sc = tap_clone_creator(-1)) == NULL) {
722 1.11 christos FILE_UNUSE(fp, l);
723 1.1 cube ffree(fp);
724 1.1 cube return (ENXIO);
725 1.1 cube }
726 1.1 cube
727 1.1 cube sc->sc_flags |= TAP_INUSE;
728 1.1 cube
729 1.11 christos return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
730 1.15 thorpej (void *)(intptr_t)device_unit(&sc->sc_dev));
731 1.1 cube }
732 1.1 cube
733 1.1 cube /*
734 1.1 cube * While all other operations (read, write, ioctl, poll and kqfilter) are
735 1.1 cube * really the same whether we are in cdevsw or fileops mode, the close()
736 1.1 cube * function is slightly different in the two cases.
737 1.1 cube *
738 1.1 cube * As for the other, the core of it is shared in tap_dev_close. What
739 1.1 cube * it does is sufficient for the cdevsw interface, but the cloning interface
740 1.1 cube * needs another thing: the interface is destroyed when the processes that
741 1.1 cube * created it closes it.
742 1.1 cube */
743 1.1 cube static int
744 1.23 christos tap_cdev_close(dev_t dev, int flags, int fmt,
745 1.23 christos struct lwp *l)
746 1.1 cube {
747 1.1 cube struct tap_softc *sc =
748 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
749 1.1 cube
750 1.1 cube if (sc == NULL)
751 1.1 cube return (ENXIO);
752 1.1 cube
753 1.1 cube return tap_dev_close(sc);
754 1.1 cube }
755 1.1 cube
756 1.1 cube /*
757 1.1 cube * It might happen that the administrator used ifconfig to externally destroy
758 1.1 cube * the interface. In that case, tap_fops_close will be called while
759 1.1 cube * tap_detach is already happening. If we called it again from here, we
760 1.1 cube * would dead lock. TAP_GOING ensures that this situation doesn't happen.
761 1.1 cube */
762 1.1 cube static int
763 1.23 christos tap_fops_close(struct file *fp, struct lwp *l)
764 1.1 cube {
765 1.1 cube int unit = (intptr_t)fp->f_data;
766 1.1 cube struct tap_softc *sc;
767 1.1 cube int error;
768 1.1 cube
769 1.1 cube sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
770 1.1 cube if (sc == NULL)
771 1.1 cube return (ENXIO);
772 1.1 cube
773 1.1 cube /* tap_dev_close currently always succeeds, but it might not
774 1.1 cube * always be the case. */
775 1.1 cube if ((error = tap_dev_close(sc)) != 0)
776 1.1 cube return (error);
777 1.1 cube
778 1.1 cube /* Destroy the device now that it is no longer useful,
779 1.1 cube * unless it's already being destroyed. */
780 1.1 cube if ((sc->sc_flags & TAP_GOING) != 0)
781 1.1 cube return (0);
782 1.1 cube
783 1.1 cube return tap_clone_destroyer((struct device *)sc);
784 1.1 cube }
785 1.1 cube
786 1.1 cube static int
787 1.1 cube tap_dev_close(struct tap_softc *sc)
788 1.1 cube {
789 1.1 cube struct ifnet *ifp;
790 1.1 cube int s;
791 1.1 cube
792 1.1 cube s = splnet();
793 1.1 cube /* Let tap_start handle packets again */
794 1.1 cube ifp = &sc->sc_ec.ec_if;
795 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
796 1.1 cube
797 1.1 cube /* Purge output queue */
798 1.1 cube if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
799 1.1 cube struct mbuf *m;
800 1.1 cube
801 1.1 cube for (;;) {
802 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
803 1.1 cube if (m == NULL)
804 1.1 cube break;
805 1.1 cube
806 1.1 cube ifp->if_opackets++;
807 1.1 cube #if NBPFILTER > 0
808 1.1 cube if (ifp->if_bpf)
809 1.1 cube bpf_mtap(ifp->if_bpf, m);
810 1.1 cube #endif
811 1.1 cube }
812 1.1 cube }
813 1.1 cube splx(s);
814 1.1 cube
815 1.1 cube sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
816 1.1 cube
817 1.1 cube return (0);
818 1.1 cube }
819 1.1 cube
820 1.1 cube static int
821 1.1 cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
822 1.1 cube {
823 1.1 cube return tap_dev_read(minor(dev), uio, flags);
824 1.1 cube }
825 1.1 cube
826 1.1 cube static int
827 1.23 christos tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
828 1.23 christos kauth_cred_t cred, int flags)
829 1.1 cube {
830 1.1 cube return tap_dev_read((intptr_t)fp->f_data, uio, flags);
831 1.1 cube }
832 1.1 cube
833 1.1 cube static int
834 1.23 christos tap_dev_read(int unit, struct uio *uio, int flags)
835 1.1 cube {
836 1.1 cube struct tap_softc *sc =
837 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
838 1.1 cube struct ifnet *ifp;
839 1.1 cube struct mbuf *m, *n;
840 1.1 cube int error = 0, s;
841 1.1 cube
842 1.1 cube if (sc == NULL)
843 1.1 cube return (ENXIO);
844 1.1 cube
845 1.1 cube ifp = &sc->sc_ec.ec_if;
846 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
847 1.1 cube return (EHOSTDOWN);
848 1.1 cube
849 1.1 cube /*
850 1.1 cube * In the TAP_NBIO case, we have to make sure we won't be sleeping
851 1.1 cube */
852 1.1 cube if ((sc->sc_flags & TAP_NBIO) &&
853 1.1 cube lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
854 1.1 cube return (EWOULDBLOCK);
855 1.1 cube error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
856 1.1 cube if (error != 0)
857 1.1 cube return (error);
858 1.1 cube
859 1.1 cube s = splnet();
860 1.1 cube if (IFQ_IS_EMPTY(&ifp->if_snd)) {
861 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
862 1.1 cube splx(s);
863 1.1 cube /*
864 1.1 cube * We must release the lock before sleeping, and re-acquire it
865 1.1 cube * after.
866 1.1 cube */
867 1.1 cube (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
868 1.1 cube if (sc->sc_flags & TAP_NBIO)
869 1.1 cube error = EWOULDBLOCK;
870 1.1 cube else
871 1.1 cube error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
872 1.1 cube
873 1.1 cube if (error != 0)
874 1.1 cube return (error);
875 1.1 cube /* The device might have been downed */
876 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
877 1.1 cube return (EHOSTDOWN);
878 1.1 cube if ((sc->sc_flags & TAP_NBIO) &&
879 1.1 cube lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
880 1.1 cube return (EWOULDBLOCK);
881 1.1 cube error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
882 1.1 cube if (error != 0)
883 1.1 cube return (error);
884 1.1 cube s = splnet();
885 1.1 cube }
886 1.1 cube
887 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
888 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
889 1.1 cube splx(s);
890 1.1 cube if (m == NULL) {
891 1.1 cube error = 0;
892 1.1 cube goto out;
893 1.1 cube }
894 1.1 cube
895 1.1 cube ifp->if_opackets++;
896 1.1 cube #if NBPFILTER > 0
897 1.1 cube if (ifp->if_bpf)
898 1.1 cube bpf_mtap(ifp->if_bpf, m);
899 1.1 cube #endif
900 1.1 cube
901 1.1 cube /*
902 1.1 cube * One read is one packet.
903 1.1 cube */
904 1.1 cube do {
905 1.26 christos error = uiomove(mtod(m, void *),
906 1.1 cube min(m->m_len, uio->uio_resid), uio);
907 1.1 cube MFREE(m, n);
908 1.1 cube m = n;
909 1.1 cube } while (m != NULL && uio->uio_resid > 0 && error == 0);
910 1.1 cube
911 1.1 cube if (m != NULL)
912 1.1 cube m_freem(m);
913 1.1 cube
914 1.1 cube out:
915 1.1 cube (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
916 1.1 cube return (error);
917 1.1 cube }
918 1.1 cube
919 1.1 cube static int
920 1.1 cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
921 1.1 cube {
922 1.1 cube return tap_dev_write(minor(dev), uio, flags);
923 1.1 cube }
924 1.1 cube
925 1.1 cube static int
926 1.23 christos tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
927 1.23 christos kauth_cred_t cred, int flags)
928 1.1 cube {
929 1.1 cube return tap_dev_write((intptr_t)fp->f_data, uio, flags);
930 1.1 cube }
931 1.1 cube
932 1.1 cube static int
933 1.23 christos tap_dev_write(int unit, struct uio *uio, int flags)
934 1.1 cube {
935 1.1 cube struct tap_softc *sc =
936 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
937 1.1 cube struct ifnet *ifp;
938 1.1 cube struct mbuf *m, **mp;
939 1.1 cube int error = 0;
940 1.9 bouyer int s;
941 1.1 cube
942 1.1 cube if (sc == NULL)
943 1.1 cube return (ENXIO);
944 1.1 cube
945 1.1 cube ifp = &sc->sc_ec.ec_if;
946 1.1 cube
947 1.1 cube /* One write, one packet, that's the rule */
948 1.1 cube MGETHDR(m, M_DONTWAIT, MT_DATA);
949 1.1 cube if (m == NULL) {
950 1.1 cube ifp->if_ierrors++;
951 1.1 cube return (ENOBUFS);
952 1.1 cube }
953 1.1 cube m->m_pkthdr.len = uio->uio_resid;
954 1.1 cube
955 1.1 cube mp = &m;
956 1.1 cube while (error == 0 && uio->uio_resid > 0) {
957 1.1 cube if (*mp != m) {
958 1.1 cube MGET(*mp, M_DONTWAIT, MT_DATA);
959 1.1 cube if (*mp == NULL) {
960 1.1 cube error = ENOBUFS;
961 1.1 cube break;
962 1.1 cube }
963 1.1 cube }
964 1.1 cube (*mp)->m_len = min(MHLEN, uio->uio_resid);
965 1.26 christos error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
966 1.1 cube mp = &(*mp)->m_next;
967 1.1 cube }
968 1.1 cube if (error) {
969 1.1 cube ifp->if_ierrors++;
970 1.1 cube m_freem(m);
971 1.1 cube return (error);
972 1.1 cube }
973 1.1 cube
974 1.1 cube ifp->if_ipackets++;
975 1.1 cube m->m_pkthdr.rcvif = ifp;
976 1.1 cube
977 1.1 cube #if NBPFILTER > 0
978 1.1 cube if (ifp->if_bpf)
979 1.1 cube bpf_mtap(ifp->if_bpf, m);
980 1.1 cube #endif
981 1.9 bouyer s =splnet();
982 1.1 cube (*ifp->if_input)(ifp, m);
983 1.9 bouyer splx(s);
984 1.1 cube
985 1.1 cube return (0);
986 1.1 cube }
987 1.1 cube
988 1.1 cube static int
989 1.26 christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
990 1.11 christos struct lwp *l)
991 1.1 cube {
992 1.11 christos return tap_dev_ioctl(minor(dev), cmd, data, l);
993 1.1 cube }
994 1.1 cube
995 1.1 cube static int
996 1.11 christos tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
997 1.1 cube {
998 1.26 christos return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (void *)data, l);
999 1.1 cube }
1000 1.1 cube
1001 1.1 cube static int
1002 1.26 christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1003 1.1 cube {
1004 1.1 cube struct tap_softc *sc =
1005 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
1006 1.1 cube int error = 0;
1007 1.1 cube
1008 1.1 cube if (sc == NULL)
1009 1.1 cube return (ENXIO);
1010 1.1 cube
1011 1.1 cube switch (cmd) {
1012 1.1 cube case FIONREAD:
1013 1.1 cube {
1014 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1015 1.1 cube struct mbuf *m;
1016 1.1 cube int s;
1017 1.1 cube
1018 1.1 cube s = splnet();
1019 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1020 1.1 cube
1021 1.1 cube if (m == NULL)
1022 1.1 cube *(int *)data = 0;
1023 1.1 cube else
1024 1.1 cube *(int *)data = m->m_pkthdr.len;
1025 1.1 cube splx(s);
1026 1.1 cube } break;
1027 1.1 cube case TIOCSPGRP:
1028 1.1 cube case FIOSETOWN:
1029 1.11 christos error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
1030 1.1 cube break;
1031 1.1 cube case TIOCGPGRP:
1032 1.1 cube case FIOGETOWN:
1033 1.11 christos error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
1034 1.1 cube break;
1035 1.1 cube case FIOASYNC:
1036 1.1 cube if (*(int *)data)
1037 1.1 cube sc->sc_flags |= TAP_ASYNCIO;
1038 1.1 cube else
1039 1.1 cube sc->sc_flags &= ~TAP_ASYNCIO;
1040 1.1 cube break;
1041 1.1 cube case FIONBIO:
1042 1.1 cube if (*(int *)data)
1043 1.1 cube sc->sc_flags |= TAP_NBIO;
1044 1.1 cube else
1045 1.1 cube sc->sc_flags &= ~TAP_NBIO;
1046 1.1 cube break;
1047 1.29 christos #ifdef OTAPGIFNAME
1048 1.29 christos case OTAPGIFNAME:
1049 1.29 christos #endif
1050 1.1 cube case TAPGIFNAME:
1051 1.1 cube {
1052 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
1053 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1054 1.1 cube
1055 1.1 cube strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1056 1.1 cube } break;
1057 1.1 cube default:
1058 1.1 cube error = ENOTTY;
1059 1.1 cube break;
1060 1.1 cube }
1061 1.1 cube
1062 1.1 cube return (0);
1063 1.1 cube }
1064 1.1 cube
1065 1.1 cube static int
1066 1.11 christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1067 1.1 cube {
1068 1.11 christos return tap_dev_poll(minor(dev), events, l);
1069 1.1 cube }
1070 1.1 cube
1071 1.1 cube static int
1072 1.11 christos tap_fops_poll(struct file *fp, int events, struct lwp *l)
1073 1.1 cube {
1074 1.11 christos return tap_dev_poll((intptr_t)fp->f_data, events, l);
1075 1.1 cube }
1076 1.1 cube
1077 1.1 cube static int
1078 1.11 christos tap_dev_poll(int unit, int events, struct lwp *l)
1079 1.1 cube {
1080 1.1 cube struct tap_softc *sc =
1081 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
1082 1.1 cube int revents = 0;
1083 1.1 cube
1084 1.1 cube if (sc == NULL)
1085 1.28 christos return POLLERR;
1086 1.1 cube
1087 1.1 cube if (events & (POLLIN|POLLRDNORM)) {
1088 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1089 1.1 cube struct mbuf *m;
1090 1.1 cube int s;
1091 1.1 cube
1092 1.1 cube s = splnet();
1093 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1094 1.1 cube splx(s);
1095 1.1 cube
1096 1.1 cube if (m != NULL)
1097 1.1 cube revents |= events & (POLLIN|POLLRDNORM);
1098 1.1 cube else {
1099 1.4 ragge simple_lock(&sc->sc_kqlock);
1100 1.11 christos selrecord(l, &sc->sc_rsel);
1101 1.1 cube simple_unlock(&sc->sc_kqlock);
1102 1.1 cube }
1103 1.1 cube }
1104 1.1 cube revents |= events & (POLLOUT|POLLWRNORM);
1105 1.1 cube
1106 1.1 cube return (revents);
1107 1.1 cube }
1108 1.1 cube
1109 1.1 cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1110 1.1 cube tap_kqread };
1111 1.1 cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1112 1.1 cube filt_seltrue };
1113 1.1 cube
1114 1.1 cube static int
1115 1.1 cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1116 1.1 cube {
1117 1.1 cube return tap_dev_kqfilter(minor(dev), kn);
1118 1.1 cube }
1119 1.1 cube
1120 1.1 cube static int
1121 1.1 cube tap_fops_kqfilter(struct file *fp, struct knote *kn)
1122 1.1 cube {
1123 1.1 cube return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1124 1.1 cube }
1125 1.1 cube
1126 1.1 cube static int
1127 1.1 cube tap_dev_kqfilter(int unit, struct knote *kn)
1128 1.1 cube {
1129 1.1 cube struct tap_softc *sc =
1130 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
1131 1.1 cube
1132 1.1 cube if (sc == NULL)
1133 1.1 cube return (ENXIO);
1134 1.1 cube
1135 1.1 cube switch(kn->kn_filter) {
1136 1.1 cube case EVFILT_READ:
1137 1.1 cube kn->kn_fop = &tap_read_filterops;
1138 1.1 cube break;
1139 1.1 cube case EVFILT_WRITE:
1140 1.1 cube kn->kn_fop = &tap_seltrue_filterops;
1141 1.1 cube break;
1142 1.1 cube default:
1143 1.1 cube return (1);
1144 1.1 cube }
1145 1.1 cube
1146 1.1 cube kn->kn_hook = sc;
1147 1.4 ragge simple_lock(&sc->sc_kqlock);
1148 1.1 cube SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1149 1.1 cube simple_unlock(&sc->sc_kqlock);
1150 1.1 cube return (0);
1151 1.1 cube }
1152 1.1 cube
1153 1.1 cube static void
1154 1.1 cube tap_kqdetach(struct knote *kn)
1155 1.1 cube {
1156 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1157 1.1 cube
1158 1.4 ragge simple_lock(&sc->sc_kqlock);
1159 1.1 cube SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1160 1.1 cube simple_unlock(&sc->sc_kqlock);
1161 1.1 cube }
1162 1.1 cube
1163 1.1 cube static int
1164 1.23 christos tap_kqread(struct knote *kn, long hint)
1165 1.1 cube {
1166 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1167 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1168 1.1 cube struct mbuf *m;
1169 1.1 cube int s;
1170 1.1 cube
1171 1.1 cube s = splnet();
1172 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1173 1.1 cube
1174 1.1 cube if (m == NULL)
1175 1.1 cube kn->kn_data = 0;
1176 1.1 cube else
1177 1.1 cube kn->kn_data = m->m_pkthdr.len;
1178 1.1 cube splx(s);
1179 1.1 cube return (kn->kn_data != 0 ? 1 : 0);
1180 1.1 cube }
1181 1.1 cube
1182 1.1 cube /*
1183 1.1 cube * sysctl management routines
1184 1.1 cube * You can set the address of an interface through:
1185 1.1 cube * net.link.tap.tap<number>
1186 1.1 cube *
1187 1.1 cube * Note the consistent use of tap_log in order to use
1188 1.1 cube * sysctl_teardown at unload time.
1189 1.1 cube *
1190 1.1 cube * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1191 1.1 cube * blocks register a function in a special section of the kernel
1192 1.1 cube * (called a link set) which is used at init_sysctl() time to cycle
1193 1.1 cube * through all those functions to create the kernel's sysctl tree.
1194 1.1 cube *
1195 1.1 cube * It is not (currently) possible to use link sets in a LKM, so the
1196 1.1 cube * easiest is to simply call our own setup routine at load time.
1197 1.1 cube *
1198 1.1 cube * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1199 1.1 cube * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1200 1.1 cube * whole kernel sysctl tree is built, it is not possible to add any
1201 1.1 cube * permanent node.
1202 1.1 cube *
1203 1.1 cube * It should be noted that we're not saving the sysctlnode pointer
1204 1.1 cube * we are returned when creating the "tap" node. That structure
1205 1.1 cube * cannot be trusted once out of the calling function, as it might
1206 1.1 cube * get reused. So we just save the MIB number, and always give the
1207 1.1 cube * full path starting from the root for later calls to sysctl_createv
1208 1.1 cube * and sysctl_destroyv.
1209 1.1 cube */
1210 1.1 cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1211 1.1 cube {
1212 1.10 atatat const struct sysctlnode *node;
1213 1.1 cube int error = 0;
1214 1.1 cube
1215 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL,
1216 1.1 cube CTLFLAG_PERMANENT,
1217 1.1 cube CTLTYPE_NODE, "net", NULL,
1218 1.1 cube NULL, 0, NULL, 0,
1219 1.1 cube CTL_NET, CTL_EOL)) != 0)
1220 1.1 cube return;
1221 1.1 cube
1222 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL,
1223 1.1 cube CTLFLAG_PERMANENT,
1224 1.1 cube CTLTYPE_NODE, "link", NULL,
1225 1.1 cube NULL, 0, NULL, 0,
1226 1.3 cube CTL_NET, AF_LINK, CTL_EOL)) != 0)
1227 1.1 cube return;
1228 1.1 cube
1229 1.1 cube /*
1230 1.1 cube * The first four parameters of sysctl_createv are for management.
1231 1.1 cube *
1232 1.1 cube * The four that follows, here starting with a '0' for the flags,
1233 1.1 cube * describe the node.
1234 1.1 cube *
1235 1.1 cube * The next series of four set its value, through various possible
1236 1.1 cube * means.
1237 1.1 cube *
1238 1.1 cube * Last but not least, the path to the node is described. That path
1239 1.1 cube * is relative to the given root (third argument). Here we're
1240 1.1 cube * starting from the root.
1241 1.1 cube */
1242 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, &node,
1243 1.1 cube CTLFLAG_PERMANENT,
1244 1.1 cube CTLTYPE_NODE, "tap", NULL,
1245 1.1 cube NULL, 0, NULL, 0,
1246 1.3 cube CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1247 1.1 cube return;
1248 1.1 cube tap_node = node->sysctl_num;
1249 1.1 cube }
1250 1.1 cube
1251 1.1 cube /*
1252 1.1 cube * The helper functions make Andrew Brown's interface really
1253 1.1 cube * shine. It makes possible to create value on the fly whether
1254 1.1 cube * the sysctl value is read or written.
1255 1.1 cube *
1256 1.1 cube * As shown as an example in the man page, the first step is to
1257 1.1 cube * create a copy of the node to have sysctl_lookup work on it.
1258 1.1 cube *
1259 1.1 cube * Here, we have more work to do than just a copy, since we have
1260 1.1 cube * to create the string. The first step is to collect the actual
1261 1.1 cube * value of the node, which is a convenient pointer to the softc
1262 1.1 cube * of the interface. From there we create the string and use it
1263 1.1 cube * as the value, but only for the *copy* of the node.
1264 1.1 cube *
1265 1.1 cube * Then we let sysctl_lookup do the magic, which consists in
1266 1.1 cube * setting oldp and newp as required by the operation. When the
1267 1.1 cube * value is read, that means that the string will be copied to
1268 1.1 cube * the user, and when it is written, the new value will be copied
1269 1.1 cube * over in the addr array.
1270 1.1 cube *
1271 1.1 cube * If newp is NULL, the user was reading the value, so we don't
1272 1.1 cube * have anything else to do. If a new value was written, we
1273 1.1 cube * have to check it.
1274 1.1 cube *
1275 1.1 cube * If it is incorrect, we can return an error and leave 'node' as
1276 1.1 cube * it is: since it is a copy of the actual node, the change will
1277 1.1 cube * be forgotten.
1278 1.1 cube *
1279 1.1 cube * Upon a correct input, we commit the change to the ifnet
1280 1.1 cube * structure of our interface.
1281 1.1 cube */
1282 1.1 cube static int
1283 1.1 cube tap_sysctl_handler(SYSCTLFN_ARGS)
1284 1.1 cube {
1285 1.1 cube struct sysctlnode node;
1286 1.1 cube struct tap_softc *sc;
1287 1.1 cube struct ifnet *ifp;
1288 1.1 cube int error;
1289 1.1 cube size_t len;
1290 1.14 christos char addr[3 * ETHER_ADDR_LEN];
1291 1.1 cube
1292 1.1 cube node = *rnode;
1293 1.1 cube sc = node.sysctl_data;
1294 1.1 cube ifp = &sc->sc_ec.ec_if;
1295 1.14 christos (void)ether_snprintf(addr, sizeof(addr), LLADDR(ifp->if_sadl));
1296 1.1 cube node.sysctl_data = addr;
1297 1.1 cube error = sysctl_lookup(SYSCTLFN_CALL(&node));
1298 1.1 cube if (error || newp == NULL)
1299 1.1 cube return (error);
1300 1.1 cube
1301 1.1 cube len = strlen(addr);
1302 1.1 cube if (len < 11 || len > 17)
1303 1.1 cube return (EINVAL);
1304 1.1 cube
1305 1.1 cube /* Commit change */
1306 1.24 rpaulo if (ether_nonstatic_aton(LLADDR(ifp->if_sadl), addr) != 0)
1307 1.1 cube return (EINVAL);
1308 1.1 cube return (error);
1309 1.1 cube }
1310