if_tap.c revision 1.33 1 1.33 cube /* $NetBSD: if_tap.c,v 1.33 2007/09/10 10:35:54 cube Exp $ */
2 1.1 cube
3 1.1 cube /*
4 1.1 cube * Copyright (c) 2003, 2004 The NetBSD Foundation.
5 1.1 cube * All rights reserved.
6 1.1 cube *
7 1.1 cube * Redistribution and use in source and binary forms, with or without
8 1.1 cube * modification, are permitted provided that the following conditions
9 1.1 cube * are met:
10 1.1 cube * 1. Redistributions of source code must retain the above copyright
11 1.1 cube * notice, this list of conditions and the following disclaimer.
12 1.1 cube * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cube * notice, this list of conditions and the following disclaimer in the
14 1.1 cube * documentation and/or other materials provided with the distribution.
15 1.33 cube * 3. Neither the name of The NetBSD Foundation nor the names of its
16 1.1 cube * contributors may be used to endorse or promote products derived
17 1.1 cube * from this software without specific prior written permission.
18 1.6 perry *
19 1.1 cube * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 cube * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 cube * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 cube * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 cube * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 cube * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 cube * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 cube * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 cube * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 cube * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 cube * POSSIBILITY OF SUCH DAMAGE.
30 1.1 cube */
31 1.1 cube
32 1.1 cube /*
33 1.1 cube * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
34 1.1 cube * device to the system, but can also be accessed by userland through a
35 1.1 cube * character device interface, which allows reading and injecting frames.
36 1.1 cube */
37 1.1 cube
38 1.1 cube #include <sys/cdefs.h>
39 1.33 cube __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.33 2007/09/10 10:35:54 cube Exp $");
40 1.1 cube
41 1.2 cube #if defined(_KERNEL_OPT)
42 1.1 cube #include "bpfilter.h"
43 1.2 cube #endif
44 1.1 cube
45 1.1 cube #include <sys/param.h>
46 1.1 cube #include <sys/systm.h>
47 1.1 cube #include <sys/kernel.h>
48 1.1 cube #include <sys/malloc.h>
49 1.1 cube #include <sys/conf.h>
50 1.1 cube #include <sys/device.h>
51 1.1 cube #include <sys/file.h>
52 1.1 cube #include <sys/filedesc.h>
53 1.1 cube #include <sys/ksyms.h>
54 1.1 cube #include <sys/poll.h>
55 1.1 cube #include <sys/select.h>
56 1.1 cube #include <sys/sockio.h>
57 1.1 cube #include <sys/sysctl.h>
58 1.17 elad #include <sys/kauth.h>
59 1.1 cube
60 1.1 cube #include <net/if.h>
61 1.1 cube #include <net/if_dl.h>
62 1.1 cube #include <net/if_ether.h>
63 1.1 cube #include <net/if_media.h>
64 1.1 cube #include <net/if_tap.h>
65 1.1 cube #if NBPFILTER > 0
66 1.1 cube #include <net/bpf.h>
67 1.1 cube #endif
68 1.1 cube
69 1.29 christos #include <compat/sys/sockio.h>
70 1.29 christos
71 1.1 cube /*
72 1.1 cube * sysctl node management
73 1.1 cube *
74 1.1 cube * It's not really possible to use a SYSCTL_SETUP block with
75 1.1 cube * current LKM implementation, so it is easier to just define
76 1.1 cube * our own function.
77 1.1 cube *
78 1.1 cube * The handler function is a "helper" in Andrew Brown's sysctl
79 1.1 cube * framework terminology. It is used as a gateway for sysctl
80 1.1 cube * requests over the nodes.
81 1.1 cube *
82 1.1 cube * tap_log allows the module to log creations of nodes and
83 1.1 cube * destroy them all at once using sysctl_teardown.
84 1.1 cube */
85 1.1 cube static int tap_node;
86 1.1 cube static int tap_sysctl_handler(SYSCTLFN_PROTO);
87 1.2 cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
88 1.1 cube
89 1.1 cube /*
90 1.1 cube * Since we're an Ethernet device, we need the 3 following
91 1.1 cube * components: a leading struct device, a struct ethercom,
92 1.1 cube * and also a struct ifmedia since we don't attach a PHY to
93 1.1 cube * ourselves. We could emulate one, but there's no real
94 1.1 cube * point.
95 1.1 cube */
96 1.1 cube
97 1.1 cube struct tap_softc {
98 1.1 cube struct device sc_dev;
99 1.1 cube struct ifmedia sc_im;
100 1.1 cube struct ethercom sc_ec;
101 1.1 cube int sc_flags;
102 1.1 cube #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
103 1.1 cube #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
104 1.1 cube #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
105 1.1 cube #define TAP_GOING 0x00000008 /* interface is being destroyed */
106 1.1 cube struct selinfo sc_rsel;
107 1.1 cube pid_t sc_pgid; /* For async. IO */
108 1.1 cube struct lock sc_rdlock;
109 1.1 cube struct simplelock sc_kqlock;
110 1.1 cube };
111 1.1 cube
112 1.1 cube /* autoconf(9) glue */
113 1.1 cube
114 1.1 cube void tapattach(int);
115 1.1 cube
116 1.1 cube static int tap_match(struct device *, struct cfdata *, void *);
117 1.1 cube static void tap_attach(struct device *, struct device *, void *);
118 1.1 cube static int tap_detach(struct device*, int);
119 1.1 cube
120 1.1 cube CFATTACH_DECL(tap, sizeof(struct tap_softc),
121 1.1 cube tap_match, tap_attach, tap_detach, NULL);
122 1.1 cube extern struct cfdriver tap_cd;
123 1.1 cube
124 1.1 cube /* Real device access routines */
125 1.1 cube static int tap_dev_close(struct tap_softc *);
126 1.1 cube static int tap_dev_read(int, struct uio *, int);
127 1.1 cube static int tap_dev_write(int, struct uio *, int);
128 1.26 christos static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
129 1.11 christos static int tap_dev_poll(int, int, struct lwp *);
130 1.1 cube static int tap_dev_kqfilter(int, struct knote *);
131 1.1 cube
132 1.1 cube /* Fileops access routines */
133 1.11 christos static int tap_fops_close(struct file *, struct lwp *);
134 1.1 cube static int tap_fops_read(struct file *, off_t *, struct uio *,
135 1.17 elad kauth_cred_t, int);
136 1.1 cube static int tap_fops_write(struct file *, off_t *, struct uio *,
137 1.17 elad kauth_cred_t, int);
138 1.1 cube static int tap_fops_ioctl(struct file *, u_long, void *,
139 1.11 christos struct lwp *);
140 1.11 christos static int tap_fops_poll(struct file *, int, struct lwp *);
141 1.1 cube static int tap_fops_kqfilter(struct file *, struct knote *);
142 1.1 cube
143 1.1 cube static const struct fileops tap_fileops = {
144 1.1 cube tap_fops_read,
145 1.1 cube tap_fops_write,
146 1.1 cube tap_fops_ioctl,
147 1.1 cube fnullop_fcntl,
148 1.1 cube tap_fops_poll,
149 1.1 cube fbadop_stat,
150 1.1 cube tap_fops_close,
151 1.1 cube tap_fops_kqfilter,
152 1.1 cube };
153 1.1 cube
154 1.1 cube /* Helper for cloning open() */
155 1.11 christos static int tap_dev_cloner(struct lwp *);
156 1.1 cube
157 1.1 cube /* Character device routines */
158 1.11 christos static int tap_cdev_open(dev_t, int, int, struct lwp *);
159 1.11 christos static int tap_cdev_close(dev_t, int, int, struct lwp *);
160 1.1 cube static int tap_cdev_read(dev_t, struct uio *, int);
161 1.1 cube static int tap_cdev_write(dev_t, struct uio *, int);
162 1.26 christos static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
163 1.11 christos static int tap_cdev_poll(dev_t, int, struct lwp *);
164 1.1 cube static int tap_cdev_kqfilter(dev_t, struct knote *);
165 1.1 cube
166 1.1 cube const struct cdevsw tap_cdevsw = {
167 1.1 cube tap_cdev_open, tap_cdev_close,
168 1.1 cube tap_cdev_read, tap_cdev_write,
169 1.1 cube tap_cdev_ioctl, nostop, notty,
170 1.1 cube tap_cdev_poll, nommap,
171 1.1 cube tap_cdev_kqfilter,
172 1.20 christos D_OTHER,
173 1.1 cube };
174 1.1 cube
175 1.1 cube #define TAP_CLONER 0xfffff /* Maximal minor value */
176 1.1 cube
177 1.1 cube /* kqueue-related routines */
178 1.1 cube static void tap_kqdetach(struct knote *);
179 1.1 cube static int tap_kqread(struct knote *, long);
180 1.1 cube
181 1.1 cube /*
182 1.1 cube * Those are needed by the if_media interface.
183 1.1 cube */
184 1.1 cube
185 1.1 cube static int tap_mediachange(struct ifnet *);
186 1.1 cube static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
187 1.1 cube
188 1.1 cube /*
189 1.1 cube * Those are needed by the ifnet interface, and would typically be
190 1.1 cube * there for any network interface driver.
191 1.1 cube * Some other routines are optional: watchdog and drain.
192 1.1 cube */
193 1.1 cube
194 1.1 cube static void tap_start(struct ifnet *);
195 1.1 cube static void tap_stop(struct ifnet *, int);
196 1.1 cube static int tap_init(struct ifnet *);
197 1.26 christos static int tap_ioctl(struct ifnet *, u_long, void *);
198 1.1 cube
199 1.1 cube /* This is an internal function to keep tap_ioctl readable */
200 1.1 cube static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
201 1.1 cube
202 1.1 cube /*
203 1.1 cube * tap is a clonable interface, although it is highly unrealistic for
204 1.1 cube * an Ethernet device.
205 1.1 cube *
206 1.1 cube * Here are the bits needed for a clonable interface.
207 1.1 cube */
208 1.1 cube static int tap_clone_create(struct if_clone *, int);
209 1.1 cube static int tap_clone_destroy(struct ifnet *);
210 1.1 cube
211 1.1 cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
212 1.1 cube tap_clone_create,
213 1.1 cube tap_clone_destroy);
214 1.1 cube
215 1.1 cube /* Helper functionis shared by the two cloning code paths */
216 1.1 cube static struct tap_softc * tap_clone_creator(int);
217 1.12 cube int tap_clone_destroyer(struct device *);
218 1.1 cube
219 1.1 cube void
220 1.23 christos tapattach(int n)
221 1.1 cube {
222 1.1 cube int error;
223 1.1 cube
224 1.1 cube error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
225 1.1 cube if (error) {
226 1.1 cube aprint_error("%s: unable to register cfattach\n",
227 1.1 cube tap_cd.cd_name);
228 1.1 cube (void)config_cfdriver_detach(&tap_cd);
229 1.1 cube return;
230 1.1 cube }
231 1.1 cube
232 1.1 cube if_clone_attach(&tap_cloners);
233 1.1 cube }
234 1.1 cube
235 1.1 cube /* Pretty much useless for a pseudo-device */
236 1.1 cube static int
237 1.23 christos tap_match(struct device *self, struct cfdata *cfdata,
238 1.23 christos void *arg)
239 1.1 cube {
240 1.1 cube return (1);
241 1.1 cube }
242 1.1 cube
243 1.1 cube void
244 1.23 christos tap_attach(struct device *parent, struct device *self,
245 1.23 christos void *aux)
246 1.1 cube {
247 1.1 cube struct tap_softc *sc = (struct tap_softc *)self;
248 1.1 cube struct ifnet *ifp;
249 1.18 kardel const struct sysctlnode *node;
250 1.1 cube u_int8_t enaddr[ETHER_ADDR_LEN] =
251 1.7 cube { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
252 1.14 christos char enaddrstr[3 * ETHER_ADDR_LEN];
253 1.18 kardel struct timeval tv;
254 1.1 cube uint32_t ui;
255 1.1 cube int error;
256 1.1 cube
257 1.1 cube /*
258 1.1 cube * In order to obtain unique initial Ethernet address on a host,
259 1.18 kardel * do some randomisation using the current uptime. It's not meant
260 1.18 kardel * for anything but avoiding hard-coding an address.
261 1.1 cube */
262 1.18 kardel getmicrouptime(&tv);
263 1.18 kardel ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
264 1.1 cube memcpy(enaddr+3, (u_int8_t *)&ui, 3);
265 1.1 cube
266 1.25 cube aprint_verbose("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
267 1.14 christos ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
268 1.1 cube
269 1.1 cube /*
270 1.1 cube * Why 1000baseT? Why not? You can add more.
271 1.1 cube *
272 1.1 cube * Note that there are 3 steps: init, one or several additions to
273 1.1 cube * list of supported media, and in the end, the selection of one
274 1.1 cube * of them.
275 1.1 cube */
276 1.1 cube ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
277 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
278 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
279 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
280 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
281 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
282 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
283 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
284 1.1 cube ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
285 1.1 cube
286 1.1 cube /*
287 1.1 cube * One should note that an interface must do multicast in order
288 1.1 cube * to support IPv6.
289 1.1 cube */
290 1.1 cube ifp = &sc->sc_ec.ec_if;
291 1.1 cube strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
292 1.1 cube ifp->if_softc = sc;
293 1.1 cube ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
294 1.1 cube ifp->if_ioctl = tap_ioctl;
295 1.1 cube ifp->if_start = tap_start;
296 1.1 cube ifp->if_stop = tap_stop;
297 1.1 cube ifp->if_init = tap_init;
298 1.1 cube IFQ_SET_READY(&ifp->if_snd);
299 1.1 cube
300 1.1 cube sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
301 1.1 cube
302 1.1 cube /* Those steps are mandatory for an Ethernet driver, the fisrt call
303 1.1 cube * being common to all network interface drivers. */
304 1.1 cube if_attach(ifp);
305 1.1 cube ether_ifattach(ifp, enaddr);
306 1.1 cube
307 1.1 cube sc->sc_flags = 0;
308 1.1 cube
309 1.1 cube /*
310 1.1 cube * Add a sysctl node for that interface.
311 1.1 cube *
312 1.1 cube * The pointer transmitted is not a string, but instead a pointer to
313 1.1 cube * the softc structure, which we can use to build the string value on
314 1.1 cube * the fly in the helper function of the node. See the comments for
315 1.1 cube * tap_sysctl_handler for details.
316 1.21 cube *
317 1.21 cube * Usually sysctl_createv is called with CTL_CREATE as the before-last
318 1.21 cube * component. However, we can allocate a number ourselves, as we are
319 1.21 cube * the only consumer of the net.link.<iface> node. In this case, the
320 1.21 cube * unit number is conveniently used to number the node. CTL_CREATE
321 1.21 cube * would just work, too.
322 1.1 cube */
323 1.1 cube if ((error = sysctl_createv(NULL, 0, NULL,
324 1.1 cube &node, CTLFLAG_READWRITE,
325 1.1 cube CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
326 1.1 cube tap_sysctl_handler, 0, sc, 18,
327 1.15 thorpej CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
328 1.15 thorpej CTL_EOL)) != 0)
329 1.1 cube aprint_error("%s: sysctl_createv returned %d, ignoring\n",
330 1.1 cube sc->sc_dev.dv_xname, error);
331 1.1 cube
332 1.1 cube /*
333 1.1 cube * Initialize the two locks for the device.
334 1.1 cube *
335 1.1 cube * We need a lock here because even though the tap device can be
336 1.1 cube * opened only once, the file descriptor might be passed to another
337 1.1 cube * process, say a fork(2)ed child.
338 1.1 cube *
339 1.1 cube * The Giant saves us from most of the hassle, but since the read
340 1.1 cube * operation can sleep, we don't want two processes to wake up at
341 1.1 cube * the same moment and both try and dequeue a single packet.
342 1.1 cube *
343 1.1 cube * The queue for event listeners (used by kqueue(9), see below) has
344 1.1 cube * to be protected, too, but we don't need the same level of
345 1.1 cube * complexity for that lock, so a simple spinning lock is fine.
346 1.1 cube */
347 1.1 cube lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
348 1.1 cube simple_lock_init(&sc->sc_kqlock);
349 1.1 cube }
350 1.1 cube
351 1.1 cube /*
352 1.1 cube * When detaching, we do the inverse of what is done in the attach
353 1.1 cube * routine, in reversed order.
354 1.1 cube */
355 1.1 cube static int
356 1.23 christos tap_detach(struct device* self, int flags)
357 1.1 cube {
358 1.1 cube struct tap_softc *sc = (struct tap_softc *)self;
359 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
360 1.1 cube int error, s;
361 1.1 cube
362 1.1 cube /*
363 1.1 cube * Some processes might be sleeping on "tap", so we have to make
364 1.1 cube * them release their hold on the device.
365 1.1 cube *
366 1.1 cube * The LK_DRAIN operation will wait for every locked process to
367 1.1 cube * release their hold.
368 1.1 cube */
369 1.1 cube sc->sc_flags |= TAP_GOING;
370 1.1 cube s = splnet();
371 1.1 cube tap_stop(ifp, 1);
372 1.1 cube if_down(ifp);
373 1.1 cube splx(s);
374 1.1 cube lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
375 1.1 cube
376 1.1 cube /*
377 1.1 cube * Destroying a single leaf is a very straightforward operation using
378 1.1 cube * sysctl_destroyv. One should be sure to always end the path with
379 1.1 cube * CTL_EOL.
380 1.1 cube */
381 1.3 cube if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
382 1.15 thorpej device_unit(&sc->sc_dev), CTL_EOL)) != 0)
383 1.1 cube aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
384 1.1 cube sc->sc_dev.dv_xname, error);
385 1.1 cube ether_ifdetach(ifp);
386 1.1 cube if_detach(ifp);
387 1.1 cube ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
388 1.1 cube
389 1.1 cube return (0);
390 1.1 cube }
391 1.1 cube
392 1.1 cube /*
393 1.1 cube * This function is called by the ifmedia layer to notify the driver
394 1.1 cube * that the user requested a media change. A real driver would
395 1.1 cube * reconfigure the hardware.
396 1.1 cube */
397 1.1 cube static int
398 1.23 christos tap_mediachange(struct ifnet *ifp)
399 1.1 cube {
400 1.1 cube return (0);
401 1.1 cube }
402 1.1 cube
403 1.1 cube /*
404 1.1 cube * Here the user asks for the currently used media.
405 1.1 cube */
406 1.1 cube static void
407 1.1 cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
408 1.1 cube {
409 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
410 1.1 cube imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
411 1.1 cube }
412 1.1 cube
413 1.1 cube /*
414 1.1 cube * This is the function where we SEND packets.
415 1.1 cube *
416 1.1 cube * There is no 'receive' equivalent. A typical driver will get
417 1.1 cube * interrupts from the hardware, and from there will inject new packets
418 1.1 cube * into the network stack.
419 1.1 cube *
420 1.1 cube * Once handled, a packet must be freed. A real driver might not be able
421 1.1 cube * to fit all the pending packets into the hardware, and is allowed to
422 1.1 cube * return before having sent all the packets. It should then use the
423 1.1 cube * if_flags flag IFF_OACTIVE to notify the upper layer.
424 1.1 cube *
425 1.1 cube * There are also other flags one should check, such as IFF_PAUSE.
426 1.1 cube *
427 1.1 cube * It is our duty to make packets available to BPF listeners.
428 1.1 cube *
429 1.1 cube * You should be aware that this function is called by the Ethernet layer
430 1.1 cube * at splnet().
431 1.1 cube *
432 1.1 cube * When the device is opened, we have to pass the packet(s) to the
433 1.1 cube * userland. For that we stay in OACTIVE mode while the userland gets
434 1.1 cube * the packets, and we send a signal to the processes waiting to read.
435 1.1 cube *
436 1.1 cube * wakeup(sc) is the counterpart to the tsleep call in
437 1.1 cube * tap_dev_read, while selnotify() is used for kevent(2) and
438 1.1 cube * poll(2) (which includes select(2)) listeners.
439 1.1 cube */
440 1.1 cube static void
441 1.1 cube tap_start(struct ifnet *ifp)
442 1.1 cube {
443 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
444 1.1 cube struct mbuf *m0;
445 1.1 cube
446 1.1 cube if ((sc->sc_flags & TAP_INUSE) == 0) {
447 1.1 cube /* Simply drop packets */
448 1.1 cube for(;;) {
449 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m0);
450 1.1 cube if (m0 == NULL)
451 1.1 cube return;
452 1.1 cube
453 1.1 cube ifp->if_opackets++;
454 1.1 cube #if NBPFILTER > 0
455 1.1 cube if (ifp->if_bpf)
456 1.1 cube bpf_mtap(ifp->if_bpf, m0);
457 1.1 cube #endif
458 1.1 cube
459 1.1 cube m_freem(m0);
460 1.1 cube }
461 1.1 cube } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
462 1.1 cube ifp->if_flags |= IFF_OACTIVE;
463 1.1 cube wakeup(sc);
464 1.1 cube selnotify(&sc->sc_rsel, 1);
465 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
466 1.1 cube fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
467 1.1 cube POLLIN|POLLRDNORM, NULL);
468 1.1 cube }
469 1.1 cube }
470 1.1 cube
471 1.1 cube /*
472 1.1 cube * A typical driver will only contain the following handlers for
473 1.1 cube * ioctl calls, except SIOCSIFPHYADDR.
474 1.1 cube * The latter is a hack I used to set the Ethernet address of the
475 1.1 cube * faked device.
476 1.1 cube *
477 1.1 cube * Note that both ifmedia_ioctl() and ether_ioctl() have to be
478 1.1 cube * called under splnet().
479 1.1 cube */
480 1.1 cube static int
481 1.26 christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
482 1.1 cube {
483 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
484 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
485 1.1 cube int s, error;
486 1.1 cube
487 1.1 cube s = splnet();
488 1.1 cube
489 1.1 cube switch (cmd) {
490 1.29 christos #ifdef OSIOCSIFMEDIA
491 1.29 christos case OSIOCSIFMEDIA:
492 1.29 christos #endif
493 1.1 cube case SIOCSIFMEDIA:
494 1.1 cube case SIOCGIFMEDIA:
495 1.1 cube error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
496 1.1 cube break;
497 1.1 cube case SIOCSIFPHYADDR:
498 1.1 cube error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
499 1.1 cube break;
500 1.1 cube default:
501 1.1 cube error = ether_ioctl(ifp, cmd, data);
502 1.1 cube if (error == ENETRESET)
503 1.1 cube error = 0;
504 1.1 cube break;
505 1.1 cube }
506 1.1 cube
507 1.1 cube splx(s);
508 1.1 cube
509 1.1 cube return (error);
510 1.1 cube }
511 1.1 cube
512 1.1 cube /*
513 1.1 cube * Helper function to set Ethernet address. This shouldn't be done there,
514 1.1 cube * and should actually be available to all Ethernet drivers, real or not.
515 1.1 cube */
516 1.1 cube static int
517 1.23 christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
518 1.1 cube {
519 1.1 cube struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
520 1.1 cube
521 1.1 cube if (sa->sa_family != AF_LINK)
522 1.1 cube return (EINVAL);
523 1.1 cube
524 1.32 dyoung (void)sockaddr_dl_setaddr(ifp->if_sadl, ifp->if_sadl->sdl_len,
525 1.32 dyoung sa->sa_data, ETHER_ADDR_LEN);
526 1.1 cube
527 1.1 cube return (0);
528 1.1 cube }
529 1.1 cube
530 1.1 cube /*
531 1.1 cube * _init() would typically be called when an interface goes up,
532 1.1 cube * meaning it should configure itself into the state in which it
533 1.1 cube * can send packets.
534 1.1 cube */
535 1.1 cube static int
536 1.1 cube tap_init(struct ifnet *ifp)
537 1.1 cube {
538 1.1 cube ifp->if_flags |= IFF_RUNNING;
539 1.1 cube
540 1.1 cube tap_start(ifp);
541 1.1 cube
542 1.1 cube return (0);
543 1.1 cube }
544 1.1 cube
545 1.1 cube /*
546 1.1 cube * _stop() is called when an interface goes down. It is our
547 1.1 cube * responsability to validate that state by clearing the
548 1.1 cube * IFF_RUNNING flag.
549 1.1 cube *
550 1.1 cube * We have to wake up all the sleeping processes to have the pending
551 1.1 cube * read requests cancelled.
552 1.1 cube */
553 1.1 cube static void
554 1.23 christos tap_stop(struct ifnet *ifp, int disable)
555 1.1 cube {
556 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
557 1.1 cube
558 1.1 cube ifp->if_flags &= ~IFF_RUNNING;
559 1.1 cube wakeup(sc);
560 1.1 cube selnotify(&sc->sc_rsel, 1);
561 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
562 1.1 cube fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
563 1.1 cube }
564 1.1 cube
565 1.1 cube /*
566 1.1 cube * The 'create' command of ifconfig can be used to create
567 1.1 cube * any numbered instance of a given device. Thus we have to
568 1.1 cube * make sure we have enough room in cd_devs to create the
569 1.1 cube * user-specified instance. config_attach_pseudo will do this
570 1.1 cube * for us.
571 1.1 cube */
572 1.1 cube static int
573 1.23 christos tap_clone_create(struct if_clone *ifc, int unit)
574 1.1 cube {
575 1.1 cube if (tap_clone_creator(unit) == NULL) {
576 1.1 cube aprint_error("%s%d: unable to attach an instance\n",
577 1.1 cube tap_cd.cd_name, unit);
578 1.1 cube return (ENXIO);
579 1.1 cube }
580 1.1 cube
581 1.1 cube return (0);
582 1.1 cube }
583 1.1 cube
584 1.1 cube /*
585 1.1 cube * tap(4) can be cloned by two ways:
586 1.1 cube * using 'ifconfig tap0 create', which will use the network
587 1.1 cube * interface cloning API, and call tap_clone_create above.
588 1.1 cube * opening the cloning device node, whose minor number is TAP_CLONER.
589 1.1 cube * See below for an explanation on how this part work.
590 1.1 cube */
591 1.1 cube static struct tap_softc *
592 1.1 cube tap_clone_creator(int unit)
593 1.1 cube {
594 1.1 cube struct cfdata *cf;
595 1.1 cube
596 1.1 cube cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
597 1.1 cube cf->cf_name = tap_cd.cd_name;
598 1.1 cube cf->cf_atname = tap_ca.ca_name;
599 1.27 drochner if (unit == -1) {
600 1.27 drochner /* let autoconf find the first free one */
601 1.27 drochner cf->cf_unit = 0;
602 1.27 drochner cf->cf_fstate = FSTATE_STAR;
603 1.27 drochner } else {
604 1.27 drochner cf->cf_unit = unit;
605 1.27 drochner cf->cf_fstate = FSTATE_NOTFOUND;
606 1.27 drochner }
607 1.1 cube
608 1.1 cube return (struct tap_softc *)config_attach_pseudo(cf);
609 1.1 cube }
610 1.1 cube
611 1.1 cube /*
612 1.1 cube * The clean design of if_clone and autoconf(9) makes that part
613 1.1 cube * really straightforward. The second argument of config_detach
614 1.1 cube * means neither QUIET nor FORCED.
615 1.1 cube */
616 1.1 cube static int
617 1.1 cube tap_clone_destroy(struct ifnet *ifp)
618 1.1 cube {
619 1.1 cube return tap_clone_destroyer((struct device *)ifp->if_softc);
620 1.1 cube }
621 1.1 cube
622 1.12 cube int
623 1.1 cube tap_clone_destroyer(struct device *dev)
624 1.1 cube {
625 1.16 thorpej struct cfdata *cf = device_cfdata(dev);
626 1.1 cube int error;
627 1.1 cube
628 1.1 cube if ((error = config_detach(dev, 0)) != 0)
629 1.1 cube aprint_error("%s: unable to detach instance\n",
630 1.1 cube dev->dv_xname);
631 1.1 cube free(cf, M_DEVBUF);
632 1.1 cube
633 1.1 cube return (error);
634 1.1 cube }
635 1.1 cube
636 1.1 cube /*
637 1.1 cube * tap(4) is a bit of an hybrid device. It can be used in two different
638 1.1 cube * ways:
639 1.1 cube * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
640 1.1 cube * 2. open /dev/tap, get a new interface created and read/write off it.
641 1.1 cube * That interface is destroyed when the process that had it created exits.
642 1.1 cube *
643 1.1 cube * The first way is managed by the cdevsw structure, and you access interfaces
644 1.1 cube * through a (major, minor) mapping: tap4 is obtained by the minor number
645 1.1 cube * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
646 1.1 cube *
647 1.1 cube * The second way is the so-called "cloning" device. It's a special minor
648 1.1 cube * number (chosen as the maximal number, to allow as much tap devices as
649 1.1 cube * possible). The user first opens the cloner (e.g., /dev/tap), and that
650 1.1 cube * call ends in tap_cdev_open. The actual place where it is handled is
651 1.1 cube * tap_dev_cloner.
652 1.1 cube *
653 1.1 cube * An tap device cannot be opened more than once at a time, so the cdevsw
654 1.1 cube * part of open() does nothing but noting that the interface is being used and
655 1.1 cube * hence ready to actually handle packets.
656 1.1 cube */
657 1.1 cube
658 1.1 cube static int
659 1.23 christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
660 1.1 cube {
661 1.1 cube struct tap_softc *sc;
662 1.1 cube
663 1.1 cube if (minor(dev) == TAP_CLONER)
664 1.11 christos return tap_dev_cloner(l);
665 1.1 cube
666 1.1 cube sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
667 1.1 cube if (sc == NULL)
668 1.1 cube return (ENXIO);
669 1.1 cube
670 1.1 cube /* The device can only be opened once */
671 1.1 cube if (sc->sc_flags & TAP_INUSE)
672 1.1 cube return (EBUSY);
673 1.1 cube sc->sc_flags |= TAP_INUSE;
674 1.1 cube return (0);
675 1.1 cube }
676 1.1 cube
677 1.1 cube /*
678 1.1 cube * There are several kinds of cloning devices, and the most simple is the one
679 1.1 cube * tap(4) uses. What it does is change the file descriptor with a new one,
680 1.1 cube * with its own fileops structure (which maps to the various read, write,
681 1.1 cube * ioctl functions). It starts allocating a new file descriptor with falloc,
682 1.1 cube * then actually creates the new tap devices.
683 1.1 cube *
684 1.1 cube * Once those two steps are successful, we can re-wire the existing file
685 1.1 cube * descriptor to its new self. This is done with fdclone(): it fills the fp
686 1.1 cube * structure as needed (notably f_data gets filled with the fifth parameter
687 1.1 cube * passed, the unit of the tap device which will allows us identifying the
688 1.1 cube * device later), and returns EMOVEFD.
689 1.1 cube *
690 1.1 cube * That magic value is interpreted by sys_open() which then replaces the
691 1.1 cube * current file descriptor by the new one (through a magic member of struct
692 1.13 pooka * lwp, l_dupfd).
693 1.1 cube *
694 1.1 cube * The tap device is flagged as being busy since it otherwise could be
695 1.1 cube * externally accessed through the corresponding device node with the cdevsw
696 1.1 cube * interface.
697 1.1 cube */
698 1.1 cube
699 1.1 cube static int
700 1.11 christos tap_dev_cloner(struct lwp *l)
701 1.1 cube {
702 1.1 cube struct tap_softc *sc;
703 1.1 cube struct file *fp;
704 1.1 cube int error, fd;
705 1.1 cube
706 1.19 ad if ((error = falloc(l, &fp, &fd)) != 0)
707 1.1 cube return (error);
708 1.1 cube
709 1.27 drochner if ((sc = tap_clone_creator(-1)) == NULL) {
710 1.11 christos FILE_UNUSE(fp, l);
711 1.1 cube ffree(fp);
712 1.1 cube return (ENXIO);
713 1.1 cube }
714 1.1 cube
715 1.1 cube sc->sc_flags |= TAP_INUSE;
716 1.1 cube
717 1.11 christos return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
718 1.15 thorpej (void *)(intptr_t)device_unit(&sc->sc_dev));
719 1.1 cube }
720 1.1 cube
721 1.1 cube /*
722 1.1 cube * While all other operations (read, write, ioctl, poll and kqfilter) are
723 1.1 cube * really the same whether we are in cdevsw or fileops mode, the close()
724 1.1 cube * function is slightly different in the two cases.
725 1.1 cube *
726 1.1 cube * As for the other, the core of it is shared in tap_dev_close. What
727 1.1 cube * it does is sufficient for the cdevsw interface, but the cloning interface
728 1.1 cube * needs another thing: the interface is destroyed when the processes that
729 1.1 cube * created it closes it.
730 1.1 cube */
731 1.1 cube static int
732 1.23 christos tap_cdev_close(dev_t dev, int flags, int fmt,
733 1.23 christos struct lwp *l)
734 1.1 cube {
735 1.1 cube struct tap_softc *sc =
736 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
737 1.1 cube
738 1.1 cube if (sc == NULL)
739 1.1 cube return (ENXIO);
740 1.1 cube
741 1.1 cube return tap_dev_close(sc);
742 1.1 cube }
743 1.1 cube
744 1.1 cube /*
745 1.1 cube * It might happen that the administrator used ifconfig to externally destroy
746 1.1 cube * the interface. In that case, tap_fops_close will be called while
747 1.1 cube * tap_detach is already happening. If we called it again from here, we
748 1.1 cube * would dead lock. TAP_GOING ensures that this situation doesn't happen.
749 1.1 cube */
750 1.1 cube static int
751 1.23 christos tap_fops_close(struct file *fp, struct lwp *l)
752 1.1 cube {
753 1.1 cube int unit = (intptr_t)fp->f_data;
754 1.1 cube struct tap_softc *sc;
755 1.1 cube int error;
756 1.1 cube
757 1.1 cube sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
758 1.1 cube if (sc == NULL)
759 1.1 cube return (ENXIO);
760 1.1 cube
761 1.1 cube /* tap_dev_close currently always succeeds, but it might not
762 1.1 cube * always be the case. */
763 1.1 cube if ((error = tap_dev_close(sc)) != 0)
764 1.1 cube return (error);
765 1.1 cube
766 1.1 cube /* Destroy the device now that it is no longer useful,
767 1.1 cube * unless it's already being destroyed. */
768 1.1 cube if ((sc->sc_flags & TAP_GOING) != 0)
769 1.1 cube return (0);
770 1.1 cube
771 1.1 cube return tap_clone_destroyer((struct device *)sc);
772 1.1 cube }
773 1.1 cube
774 1.1 cube static int
775 1.1 cube tap_dev_close(struct tap_softc *sc)
776 1.1 cube {
777 1.1 cube struct ifnet *ifp;
778 1.1 cube int s;
779 1.1 cube
780 1.1 cube s = splnet();
781 1.1 cube /* Let tap_start handle packets again */
782 1.1 cube ifp = &sc->sc_ec.ec_if;
783 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
784 1.1 cube
785 1.1 cube /* Purge output queue */
786 1.1 cube if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
787 1.1 cube struct mbuf *m;
788 1.1 cube
789 1.1 cube for (;;) {
790 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
791 1.1 cube if (m == NULL)
792 1.1 cube break;
793 1.1 cube
794 1.1 cube ifp->if_opackets++;
795 1.1 cube #if NBPFILTER > 0
796 1.1 cube if (ifp->if_bpf)
797 1.1 cube bpf_mtap(ifp->if_bpf, m);
798 1.1 cube #endif
799 1.1 cube }
800 1.1 cube }
801 1.1 cube splx(s);
802 1.1 cube
803 1.1 cube sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
804 1.1 cube
805 1.1 cube return (0);
806 1.1 cube }
807 1.1 cube
808 1.1 cube static int
809 1.1 cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
810 1.1 cube {
811 1.1 cube return tap_dev_read(minor(dev), uio, flags);
812 1.1 cube }
813 1.1 cube
814 1.1 cube static int
815 1.23 christos tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
816 1.23 christos kauth_cred_t cred, int flags)
817 1.1 cube {
818 1.1 cube return tap_dev_read((intptr_t)fp->f_data, uio, flags);
819 1.1 cube }
820 1.1 cube
821 1.1 cube static int
822 1.23 christos tap_dev_read(int unit, struct uio *uio, int flags)
823 1.1 cube {
824 1.1 cube struct tap_softc *sc =
825 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
826 1.1 cube struct ifnet *ifp;
827 1.1 cube struct mbuf *m, *n;
828 1.1 cube int error = 0, s;
829 1.1 cube
830 1.1 cube if (sc == NULL)
831 1.1 cube return (ENXIO);
832 1.1 cube
833 1.1 cube ifp = &sc->sc_ec.ec_if;
834 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
835 1.1 cube return (EHOSTDOWN);
836 1.1 cube
837 1.1 cube /*
838 1.1 cube * In the TAP_NBIO case, we have to make sure we won't be sleeping
839 1.1 cube */
840 1.1 cube if ((sc->sc_flags & TAP_NBIO) &&
841 1.1 cube lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
842 1.1 cube return (EWOULDBLOCK);
843 1.1 cube error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
844 1.1 cube if (error != 0)
845 1.1 cube return (error);
846 1.1 cube
847 1.1 cube s = splnet();
848 1.1 cube if (IFQ_IS_EMPTY(&ifp->if_snd)) {
849 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
850 1.1 cube splx(s);
851 1.1 cube /*
852 1.1 cube * We must release the lock before sleeping, and re-acquire it
853 1.1 cube * after.
854 1.1 cube */
855 1.1 cube (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
856 1.1 cube if (sc->sc_flags & TAP_NBIO)
857 1.1 cube error = EWOULDBLOCK;
858 1.1 cube else
859 1.1 cube error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
860 1.1 cube
861 1.1 cube if (error != 0)
862 1.1 cube return (error);
863 1.1 cube /* The device might have been downed */
864 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
865 1.1 cube return (EHOSTDOWN);
866 1.1 cube if ((sc->sc_flags & TAP_NBIO) &&
867 1.1 cube lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
868 1.1 cube return (EWOULDBLOCK);
869 1.1 cube error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
870 1.1 cube if (error != 0)
871 1.1 cube return (error);
872 1.1 cube s = splnet();
873 1.1 cube }
874 1.1 cube
875 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
876 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
877 1.1 cube splx(s);
878 1.1 cube if (m == NULL) {
879 1.1 cube error = 0;
880 1.1 cube goto out;
881 1.1 cube }
882 1.1 cube
883 1.1 cube ifp->if_opackets++;
884 1.1 cube #if NBPFILTER > 0
885 1.1 cube if (ifp->if_bpf)
886 1.1 cube bpf_mtap(ifp->if_bpf, m);
887 1.1 cube #endif
888 1.1 cube
889 1.1 cube /*
890 1.1 cube * One read is one packet.
891 1.1 cube */
892 1.1 cube do {
893 1.26 christos error = uiomove(mtod(m, void *),
894 1.1 cube min(m->m_len, uio->uio_resid), uio);
895 1.1 cube MFREE(m, n);
896 1.1 cube m = n;
897 1.1 cube } while (m != NULL && uio->uio_resid > 0 && error == 0);
898 1.1 cube
899 1.1 cube if (m != NULL)
900 1.1 cube m_freem(m);
901 1.1 cube
902 1.1 cube out:
903 1.1 cube (void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
904 1.1 cube return (error);
905 1.1 cube }
906 1.1 cube
907 1.1 cube static int
908 1.1 cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
909 1.1 cube {
910 1.1 cube return tap_dev_write(minor(dev), uio, flags);
911 1.1 cube }
912 1.1 cube
913 1.1 cube static int
914 1.23 christos tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
915 1.23 christos kauth_cred_t cred, int flags)
916 1.1 cube {
917 1.1 cube return tap_dev_write((intptr_t)fp->f_data, uio, flags);
918 1.1 cube }
919 1.1 cube
920 1.1 cube static int
921 1.23 christos tap_dev_write(int unit, struct uio *uio, int flags)
922 1.1 cube {
923 1.1 cube struct tap_softc *sc =
924 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
925 1.1 cube struct ifnet *ifp;
926 1.1 cube struct mbuf *m, **mp;
927 1.1 cube int error = 0;
928 1.9 bouyer int s;
929 1.1 cube
930 1.1 cube if (sc == NULL)
931 1.1 cube return (ENXIO);
932 1.1 cube
933 1.1 cube ifp = &sc->sc_ec.ec_if;
934 1.1 cube
935 1.1 cube /* One write, one packet, that's the rule */
936 1.1 cube MGETHDR(m, M_DONTWAIT, MT_DATA);
937 1.1 cube if (m == NULL) {
938 1.1 cube ifp->if_ierrors++;
939 1.1 cube return (ENOBUFS);
940 1.1 cube }
941 1.1 cube m->m_pkthdr.len = uio->uio_resid;
942 1.1 cube
943 1.1 cube mp = &m;
944 1.1 cube while (error == 0 && uio->uio_resid > 0) {
945 1.1 cube if (*mp != m) {
946 1.1 cube MGET(*mp, M_DONTWAIT, MT_DATA);
947 1.1 cube if (*mp == NULL) {
948 1.1 cube error = ENOBUFS;
949 1.1 cube break;
950 1.1 cube }
951 1.1 cube }
952 1.1 cube (*mp)->m_len = min(MHLEN, uio->uio_resid);
953 1.26 christos error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
954 1.1 cube mp = &(*mp)->m_next;
955 1.1 cube }
956 1.1 cube if (error) {
957 1.1 cube ifp->if_ierrors++;
958 1.1 cube m_freem(m);
959 1.1 cube return (error);
960 1.1 cube }
961 1.1 cube
962 1.1 cube ifp->if_ipackets++;
963 1.1 cube m->m_pkthdr.rcvif = ifp;
964 1.1 cube
965 1.1 cube #if NBPFILTER > 0
966 1.1 cube if (ifp->if_bpf)
967 1.1 cube bpf_mtap(ifp->if_bpf, m);
968 1.1 cube #endif
969 1.9 bouyer s =splnet();
970 1.1 cube (*ifp->if_input)(ifp, m);
971 1.9 bouyer splx(s);
972 1.1 cube
973 1.1 cube return (0);
974 1.1 cube }
975 1.1 cube
976 1.1 cube static int
977 1.26 christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
978 1.11 christos struct lwp *l)
979 1.1 cube {
980 1.11 christos return tap_dev_ioctl(minor(dev), cmd, data, l);
981 1.1 cube }
982 1.1 cube
983 1.1 cube static int
984 1.11 christos tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
985 1.1 cube {
986 1.26 christos return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (void *)data, l);
987 1.1 cube }
988 1.1 cube
989 1.1 cube static int
990 1.26 christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
991 1.1 cube {
992 1.1 cube struct tap_softc *sc =
993 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
994 1.1 cube int error = 0;
995 1.1 cube
996 1.1 cube if (sc == NULL)
997 1.1 cube return (ENXIO);
998 1.1 cube
999 1.1 cube switch (cmd) {
1000 1.1 cube case FIONREAD:
1001 1.1 cube {
1002 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1003 1.1 cube struct mbuf *m;
1004 1.1 cube int s;
1005 1.1 cube
1006 1.1 cube s = splnet();
1007 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1008 1.1 cube
1009 1.1 cube if (m == NULL)
1010 1.1 cube *(int *)data = 0;
1011 1.1 cube else
1012 1.1 cube *(int *)data = m->m_pkthdr.len;
1013 1.1 cube splx(s);
1014 1.1 cube } break;
1015 1.1 cube case TIOCSPGRP:
1016 1.1 cube case FIOSETOWN:
1017 1.11 christos error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
1018 1.1 cube break;
1019 1.1 cube case TIOCGPGRP:
1020 1.1 cube case FIOGETOWN:
1021 1.11 christos error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
1022 1.1 cube break;
1023 1.1 cube case FIOASYNC:
1024 1.1 cube if (*(int *)data)
1025 1.1 cube sc->sc_flags |= TAP_ASYNCIO;
1026 1.1 cube else
1027 1.1 cube sc->sc_flags &= ~TAP_ASYNCIO;
1028 1.1 cube break;
1029 1.1 cube case FIONBIO:
1030 1.1 cube if (*(int *)data)
1031 1.1 cube sc->sc_flags |= TAP_NBIO;
1032 1.1 cube else
1033 1.1 cube sc->sc_flags &= ~TAP_NBIO;
1034 1.1 cube break;
1035 1.29 christos #ifdef OTAPGIFNAME
1036 1.29 christos case OTAPGIFNAME:
1037 1.29 christos #endif
1038 1.1 cube case TAPGIFNAME:
1039 1.1 cube {
1040 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
1041 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1042 1.1 cube
1043 1.1 cube strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1044 1.1 cube } break;
1045 1.1 cube default:
1046 1.1 cube error = ENOTTY;
1047 1.1 cube break;
1048 1.1 cube }
1049 1.1 cube
1050 1.1 cube return (0);
1051 1.1 cube }
1052 1.1 cube
1053 1.1 cube static int
1054 1.11 christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1055 1.1 cube {
1056 1.11 christos return tap_dev_poll(minor(dev), events, l);
1057 1.1 cube }
1058 1.1 cube
1059 1.1 cube static int
1060 1.11 christos tap_fops_poll(struct file *fp, int events, struct lwp *l)
1061 1.1 cube {
1062 1.11 christos return tap_dev_poll((intptr_t)fp->f_data, events, l);
1063 1.1 cube }
1064 1.1 cube
1065 1.1 cube static int
1066 1.11 christos tap_dev_poll(int unit, int events, struct lwp *l)
1067 1.1 cube {
1068 1.1 cube struct tap_softc *sc =
1069 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
1070 1.1 cube int revents = 0;
1071 1.1 cube
1072 1.1 cube if (sc == NULL)
1073 1.28 christos return POLLERR;
1074 1.1 cube
1075 1.1 cube if (events & (POLLIN|POLLRDNORM)) {
1076 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1077 1.1 cube struct mbuf *m;
1078 1.1 cube int s;
1079 1.1 cube
1080 1.1 cube s = splnet();
1081 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1082 1.1 cube splx(s);
1083 1.1 cube
1084 1.1 cube if (m != NULL)
1085 1.1 cube revents |= events & (POLLIN|POLLRDNORM);
1086 1.1 cube else {
1087 1.4 ragge simple_lock(&sc->sc_kqlock);
1088 1.11 christos selrecord(l, &sc->sc_rsel);
1089 1.1 cube simple_unlock(&sc->sc_kqlock);
1090 1.1 cube }
1091 1.1 cube }
1092 1.1 cube revents |= events & (POLLOUT|POLLWRNORM);
1093 1.1 cube
1094 1.1 cube return (revents);
1095 1.1 cube }
1096 1.1 cube
1097 1.1 cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1098 1.1 cube tap_kqread };
1099 1.1 cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1100 1.1 cube filt_seltrue };
1101 1.1 cube
1102 1.1 cube static int
1103 1.1 cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1104 1.1 cube {
1105 1.1 cube return tap_dev_kqfilter(minor(dev), kn);
1106 1.1 cube }
1107 1.1 cube
1108 1.1 cube static int
1109 1.1 cube tap_fops_kqfilter(struct file *fp, struct knote *kn)
1110 1.1 cube {
1111 1.1 cube return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1112 1.1 cube }
1113 1.1 cube
1114 1.1 cube static int
1115 1.1 cube tap_dev_kqfilter(int unit, struct knote *kn)
1116 1.1 cube {
1117 1.1 cube struct tap_softc *sc =
1118 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
1119 1.1 cube
1120 1.1 cube if (sc == NULL)
1121 1.1 cube return (ENXIO);
1122 1.1 cube
1123 1.1 cube switch(kn->kn_filter) {
1124 1.1 cube case EVFILT_READ:
1125 1.1 cube kn->kn_fop = &tap_read_filterops;
1126 1.1 cube break;
1127 1.1 cube case EVFILT_WRITE:
1128 1.1 cube kn->kn_fop = &tap_seltrue_filterops;
1129 1.1 cube break;
1130 1.1 cube default:
1131 1.1 cube return (1);
1132 1.1 cube }
1133 1.1 cube
1134 1.1 cube kn->kn_hook = sc;
1135 1.4 ragge simple_lock(&sc->sc_kqlock);
1136 1.1 cube SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1137 1.1 cube simple_unlock(&sc->sc_kqlock);
1138 1.1 cube return (0);
1139 1.1 cube }
1140 1.1 cube
1141 1.1 cube static void
1142 1.1 cube tap_kqdetach(struct knote *kn)
1143 1.1 cube {
1144 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1145 1.1 cube
1146 1.4 ragge simple_lock(&sc->sc_kqlock);
1147 1.1 cube SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1148 1.1 cube simple_unlock(&sc->sc_kqlock);
1149 1.1 cube }
1150 1.1 cube
1151 1.1 cube static int
1152 1.23 christos tap_kqread(struct knote *kn, long hint)
1153 1.1 cube {
1154 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1155 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1156 1.1 cube struct mbuf *m;
1157 1.1 cube int s;
1158 1.1 cube
1159 1.1 cube s = splnet();
1160 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1161 1.1 cube
1162 1.1 cube if (m == NULL)
1163 1.1 cube kn->kn_data = 0;
1164 1.1 cube else
1165 1.1 cube kn->kn_data = m->m_pkthdr.len;
1166 1.1 cube splx(s);
1167 1.1 cube return (kn->kn_data != 0 ? 1 : 0);
1168 1.1 cube }
1169 1.1 cube
1170 1.1 cube /*
1171 1.1 cube * sysctl management routines
1172 1.1 cube * You can set the address of an interface through:
1173 1.1 cube * net.link.tap.tap<number>
1174 1.1 cube *
1175 1.1 cube * Note the consistent use of tap_log in order to use
1176 1.1 cube * sysctl_teardown at unload time.
1177 1.1 cube *
1178 1.1 cube * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1179 1.1 cube * blocks register a function in a special section of the kernel
1180 1.1 cube * (called a link set) which is used at init_sysctl() time to cycle
1181 1.1 cube * through all those functions to create the kernel's sysctl tree.
1182 1.1 cube *
1183 1.1 cube * It is not (currently) possible to use link sets in a LKM, so the
1184 1.1 cube * easiest is to simply call our own setup routine at load time.
1185 1.1 cube *
1186 1.1 cube * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1187 1.1 cube * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1188 1.1 cube * whole kernel sysctl tree is built, it is not possible to add any
1189 1.1 cube * permanent node.
1190 1.1 cube *
1191 1.1 cube * It should be noted that we're not saving the sysctlnode pointer
1192 1.1 cube * we are returned when creating the "tap" node. That structure
1193 1.1 cube * cannot be trusted once out of the calling function, as it might
1194 1.1 cube * get reused. So we just save the MIB number, and always give the
1195 1.1 cube * full path starting from the root for later calls to sysctl_createv
1196 1.1 cube * and sysctl_destroyv.
1197 1.1 cube */
1198 1.1 cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1199 1.1 cube {
1200 1.10 atatat const struct sysctlnode *node;
1201 1.1 cube int error = 0;
1202 1.1 cube
1203 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL,
1204 1.1 cube CTLFLAG_PERMANENT,
1205 1.1 cube CTLTYPE_NODE, "net", NULL,
1206 1.1 cube NULL, 0, NULL, 0,
1207 1.1 cube CTL_NET, CTL_EOL)) != 0)
1208 1.1 cube return;
1209 1.1 cube
1210 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL,
1211 1.1 cube CTLFLAG_PERMANENT,
1212 1.1 cube CTLTYPE_NODE, "link", NULL,
1213 1.1 cube NULL, 0, NULL, 0,
1214 1.3 cube CTL_NET, AF_LINK, CTL_EOL)) != 0)
1215 1.1 cube return;
1216 1.1 cube
1217 1.1 cube /*
1218 1.1 cube * The first four parameters of sysctl_createv are for management.
1219 1.1 cube *
1220 1.1 cube * The four that follows, here starting with a '0' for the flags,
1221 1.1 cube * describe the node.
1222 1.1 cube *
1223 1.1 cube * The next series of four set its value, through various possible
1224 1.1 cube * means.
1225 1.1 cube *
1226 1.1 cube * Last but not least, the path to the node is described. That path
1227 1.1 cube * is relative to the given root (third argument). Here we're
1228 1.1 cube * starting from the root.
1229 1.1 cube */
1230 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, &node,
1231 1.1 cube CTLFLAG_PERMANENT,
1232 1.1 cube CTLTYPE_NODE, "tap", NULL,
1233 1.1 cube NULL, 0, NULL, 0,
1234 1.3 cube CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1235 1.1 cube return;
1236 1.1 cube tap_node = node->sysctl_num;
1237 1.1 cube }
1238 1.1 cube
1239 1.1 cube /*
1240 1.1 cube * The helper functions make Andrew Brown's interface really
1241 1.1 cube * shine. It makes possible to create value on the fly whether
1242 1.1 cube * the sysctl value is read or written.
1243 1.1 cube *
1244 1.1 cube * As shown as an example in the man page, the first step is to
1245 1.1 cube * create a copy of the node to have sysctl_lookup work on it.
1246 1.1 cube *
1247 1.1 cube * Here, we have more work to do than just a copy, since we have
1248 1.1 cube * to create the string. The first step is to collect the actual
1249 1.1 cube * value of the node, which is a convenient pointer to the softc
1250 1.1 cube * of the interface. From there we create the string and use it
1251 1.1 cube * as the value, but only for the *copy* of the node.
1252 1.1 cube *
1253 1.1 cube * Then we let sysctl_lookup do the magic, which consists in
1254 1.1 cube * setting oldp and newp as required by the operation. When the
1255 1.1 cube * value is read, that means that the string will be copied to
1256 1.1 cube * the user, and when it is written, the new value will be copied
1257 1.1 cube * over in the addr array.
1258 1.1 cube *
1259 1.1 cube * If newp is NULL, the user was reading the value, so we don't
1260 1.1 cube * have anything else to do. If a new value was written, we
1261 1.1 cube * have to check it.
1262 1.1 cube *
1263 1.1 cube * If it is incorrect, we can return an error and leave 'node' as
1264 1.1 cube * it is: since it is a copy of the actual node, the change will
1265 1.1 cube * be forgotten.
1266 1.1 cube *
1267 1.1 cube * Upon a correct input, we commit the change to the ifnet
1268 1.1 cube * structure of our interface.
1269 1.1 cube */
1270 1.1 cube static int
1271 1.1 cube tap_sysctl_handler(SYSCTLFN_ARGS)
1272 1.1 cube {
1273 1.1 cube struct sysctlnode node;
1274 1.1 cube struct tap_softc *sc;
1275 1.1 cube struct ifnet *ifp;
1276 1.1 cube int error;
1277 1.1 cube size_t len;
1278 1.14 christos char addr[3 * ETHER_ADDR_LEN];
1279 1.32 dyoung uint8_t enaddr[ETHER_ADDR_LEN];
1280 1.1 cube
1281 1.1 cube node = *rnode;
1282 1.1 cube sc = node.sysctl_data;
1283 1.1 cube ifp = &sc->sc_ec.ec_if;
1284 1.31 dyoung (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1285 1.1 cube node.sysctl_data = addr;
1286 1.1 cube error = sysctl_lookup(SYSCTLFN_CALL(&node));
1287 1.1 cube if (error || newp == NULL)
1288 1.1 cube return (error);
1289 1.1 cube
1290 1.1 cube len = strlen(addr);
1291 1.1 cube if (len < 11 || len > 17)
1292 1.1 cube return (EINVAL);
1293 1.1 cube
1294 1.1 cube /* Commit change */
1295 1.32 dyoung if (ether_nonstatic_aton(enaddr, addr) != 0 ||
1296 1.32 dyoung sockaddr_dl_setaddr(ifp->if_sadl, ifp->if_sadl->sdl_len, enaddr,
1297 1.32 dyoung ETHER_ADDR_LEN) == NULL)
1298 1.1 cube return (EINVAL);
1299 1.1 cube return (error);
1300 1.1 cube }
1301