if_tap.c revision 1.37 1 1.37 ad /* $NetBSD: if_tap.c,v 1.37 2008/01/04 21:18:15 ad Exp $ */
2 1.1 cube
3 1.1 cube /*
4 1.1 cube * Copyright (c) 2003, 2004 The NetBSD Foundation.
5 1.1 cube * All rights reserved.
6 1.1 cube *
7 1.1 cube * Redistribution and use in source and binary forms, with or without
8 1.1 cube * modification, are permitted provided that the following conditions
9 1.1 cube * are met:
10 1.1 cube * 1. Redistributions of source code must retain the above copyright
11 1.1 cube * notice, this list of conditions and the following disclaimer.
12 1.1 cube * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cube * notice, this list of conditions and the following disclaimer in the
14 1.1 cube * documentation and/or other materials provided with the distribution.
15 1.33 cube * 3. Neither the name of The NetBSD Foundation nor the names of its
16 1.1 cube * contributors may be used to endorse or promote products derived
17 1.1 cube * from this software without specific prior written permission.
18 1.6 perry *
19 1.1 cube * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 cube * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 cube * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 cube * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 cube * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 cube * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 cube * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 cube * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 cube * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 cube * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 cube * POSSIBILITY OF SUCH DAMAGE.
30 1.1 cube */
31 1.1 cube
32 1.1 cube /*
33 1.1 cube * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
34 1.1 cube * device to the system, but can also be accessed by userland through a
35 1.1 cube * character device interface, which allows reading and injecting frames.
36 1.1 cube */
37 1.1 cube
38 1.1 cube #include <sys/cdefs.h>
39 1.37 ad __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.37 2008/01/04 21:18:15 ad Exp $");
40 1.1 cube
41 1.2 cube #if defined(_KERNEL_OPT)
42 1.1 cube #include "bpfilter.h"
43 1.2 cube #endif
44 1.1 cube
45 1.1 cube #include <sys/param.h>
46 1.1 cube #include <sys/systm.h>
47 1.1 cube #include <sys/kernel.h>
48 1.1 cube #include <sys/malloc.h>
49 1.1 cube #include <sys/conf.h>
50 1.1 cube #include <sys/device.h>
51 1.1 cube #include <sys/file.h>
52 1.1 cube #include <sys/filedesc.h>
53 1.1 cube #include <sys/ksyms.h>
54 1.1 cube #include <sys/poll.h>
55 1.1 cube #include <sys/select.h>
56 1.1 cube #include <sys/sockio.h>
57 1.1 cube #include <sys/sysctl.h>
58 1.17 elad #include <sys/kauth.h>
59 1.34 ad #include <sys/mutex.h>
60 1.37 ad #include <sys/simplelock.h>
61 1.1 cube
62 1.1 cube #include <net/if.h>
63 1.1 cube #include <net/if_dl.h>
64 1.1 cube #include <net/if_ether.h>
65 1.1 cube #include <net/if_media.h>
66 1.1 cube #include <net/if_tap.h>
67 1.1 cube #if NBPFILTER > 0
68 1.1 cube #include <net/bpf.h>
69 1.1 cube #endif
70 1.1 cube
71 1.29 christos #include <compat/sys/sockio.h>
72 1.29 christos
73 1.1 cube /*
74 1.1 cube * sysctl node management
75 1.1 cube *
76 1.1 cube * It's not really possible to use a SYSCTL_SETUP block with
77 1.1 cube * current LKM implementation, so it is easier to just define
78 1.1 cube * our own function.
79 1.1 cube *
80 1.1 cube * The handler function is a "helper" in Andrew Brown's sysctl
81 1.1 cube * framework terminology. It is used as a gateway for sysctl
82 1.1 cube * requests over the nodes.
83 1.1 cube *
84 1.1 cube * tap_log allows the module to log creations of nodes and
85 1.1 cube * destroy them all at once using sysctl_teardown.
86 1.1 cube */
87 1.1 cube static int tap_node;
88 1.1 cube static int tap_sysctl_handler(SYSCTLFN_PROTO);
89 1.2 cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
90 1.1 cube
91 1.1 cube /*
92 1.1 cube * Since we're an Ethernet device, we need the 3 following
93 1.1 cube * components: a leading struct device, a struct ethercom,
94 1.1 cube * and also a struct ifmedia since we don't attach a PHY to
95 1.1 cube * ourselves. We could emulate one, but there's no real
96 1.1 cube * point.
97 1.1 cube */
98 1.1 cube
99 1.1 cube struct tap_softc {
100 1.1 cube struct device sc_dev;
101 1.1 cube struct ifmedia sc_im;
102 1.1 cube struct ethercom sc_ec;
103 1.1 cube int sc_flags;
104 1.1 cube #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
105 1.1 cube #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
106 1.1 cube #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
107 1.1 cube #define TAP_GOING 0x00000008 /* interface is being destroyed */
108 1.1 cube struct selinfo sc_rsel;
109 1.1 cube pid_t sc_pgid; /* For async. IO */
110 1.34 ad kmutex_t sc_rdlock;
111 1.1 cube struct simplelock sc_kqlock;
112 1.1 cube };
113 1.1 cube
114 1.1 cube /* autoconf(9) glue */
115 1.1 cube
116 1.1 cube void tapattach(int);
117 1.1 cube
118 1.1 cube static int tap_match(struct device *, struct cfdata *, void *);
119 1.1 cube static void tap_attach(struct device *, struct device *, void *);
120 1.1 cube static int tap_detach(struct device*, int);
121 1.1 cube
122 1.1 cube CFATTACH_DECL(tap, sizeof(struct tap_softc),
123 1.1 cube tap_match, tap_attach, tap_detach, NULL);
124 1.1 cube extern struct cfdriver tap_cd;
125 1.1 cube
126 1.1 cube /* Real device access routines */
127 1.1 cube static int tap_dev_close(struct tap_softc *);
128 1.1 cube static int tap_dev_read(int, struct uio *, int);
129 1.1 cube static int tap_dev_write(int, struct uio *, int);
130 1.26 christos static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
131 1.11 christos static int tap_dev_poll(int, int, struct lwp *);
132 1.1 cube static int tap_dev_kqfilter(int, struct knote *);
133 1.1 cube
134 1.1 cube /* Fileops access routines */
135 1.11 christos static int tap_fops_close(struct file *, struct lwp *);
136 1.1 cube static int tap_fops_read(struct file *, off_t *, struct uio *,
137 1.17 elad kauth_cred_t, int);
138 1.1 cube static int tap_fops_write(struct file *, off_t *, struct uio *,
139 1.17 elad kauth_cred_t, int);
140 1.1 cube static int tap_fops_ioctl(struct file *, u_long, void *,
141 1.11 christos struct lwp *);
142 1.11 christos static int tap_fops_poll(struct file *, int, struct lwp *);
143 1.1 cube static int tap_fops_kqfilter(struct file *, struct knote *);
144 1.1 cube
145 1.1 cube static const struct fileops tap_fileops = {
146 1.1 cube tap_fops_read,
147 1.1 cube tap_fops_write,
148 1.1 cube tap_fops_ioctl,
149 1.1 cube fnullop_fcntl,
150 1.1 cube tap_fops_poll,
151 1.1 cube fbadop_stat,
152 1.1 cube tap_fops_close,
153 1.1 cube tap_fops_kqfilter,
154 1.1 cube };
155 1.1 cube
156 1.1 cube /* Helper for cloning open() */
157 1.11 christos static int tap_dev_cloner(struct lwp *);
158 1.1 cube
159 1.1 cube /* Character device routines */
160 1.11 christos static int tap_cdev_open(dev_t, int, int, struct lwp *);
161 1.11 christos static int tap_cdev_close(dev_t, int, int, struct lwp *);
162 1.1 cube static int tap_cdev_read(dev_t, struct uio *, int);
163 1.1 cube static int tap_cdev_write(dev_t, struct uio *, int);
164 1.26 christos static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
165 1.11 christos static int tap_cdev_poll(dev_t, int, struct lwp *);
166 1.1 cube static int tap_cdev_kqfilter(dev_t, struct knote *);
167 1.1 cube
168 1.1 cube const struct cdevsw tap_cdevsw = {
169 1.1 cube tap_cdev_open, tap_cdev_close,
170 1.1 cube tap_cdev_read, tap_cdev_write,
171 1.1 cube tap_cdev_ioctl, nostop, notty,
172 1.1 cube tap_cdev_poll, nommap,
173 1.1 cube tap_cdev_kqfilter,
174 1.20 christos D_OTHER,
175 1.1 cube };
176 1.1 cube
177 1.1 cube #define TAP_CLONER 0xfffff /* Maximal minor value */
178 1.1 cube
179 1.1 cube /* kqueue-related routines */
180 1.1 cube static void tap_kqdetach(struct knote *);
181 1.1 cube static int tap_kqread(struct knote *, long);
182 1.1 cube
183 1.1 cube /*
184 1.1 cube * Those are needed by the if_media interface.
185 1.1 cube */
186 1.1 cube
187 1.1 cube static int tap_mediachange(struct ifnet *);
188 1.1 cube static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
189 1.1 cube
190 1.1 cube /*
191 1.1 cube * Those are needed by the ifnet interface, and would typically be
192 1.1 cube * there for any network interface driver.
193 1.1 cube * Some other routines are optional: watchdog and drain.
194 1.1 cube */
195 1.1 cube
196 1.1 cube static void tap_start(struct ifnet *);
197 1.1 cube static void tap_stop(struct ifnet *, int);
198 1.1 cube static int tap_init(struct ifnet *);
199 1.26 christos static int tap_ioctl(struct ifnet *, u_long, void *);
200 1.1 cube
201 1.1 cube /* This is an internal function to keep tap_ioctl readable */
202 1.1 cube static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
203 1.1 cube
204 1.1 cube /*
205 1.1 cube * tap is a clonable interface, although it is highly unrealistic for
206 1.1 cube * an Ethernet device.
207 1.1 cube *
208 1.1 cube * Here are the bits needed for a clonable interface.
209 1.1 cube */
210 1.1 cube static int tap_clone_create(struct if_clone *, int);
211 1.1 cube static int tap_clone_destroy(struct ifnet *);
212 1.1 cube
213 1.1 cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
214 1.1 cube tap_clone_create,
215 1.1 cube tap_clone_destroy);
216 1.1 cube
217 1.1 cube /* Helper functionis shared by the two cloning code paths */
218 1.1 cube static struct tap_softc * tap_clone_creator(int);
219 1.12 cube int tap_clone_destroyer(struct device *);
220 1.1 cube
221 1.1 cube void
222 1.23 christos tapattach(int n)
223 1.1 cube {
224 1.1 cube int error;
225 1.1 cube
226 1.1 cube error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
227 1.1 cube if (error) {
228 1.1 cube aprint_error("%s: unable to register cfattach\n",
229 1.1 cube tap_cd.cd_name);
230 1.1 cube (void)config_cfdriver_detach(&tap_cd);
231 1.1 cube return;
232 1.1 cube }
233 1.1 cube
234 1.1 cube if_clone_attach(&tap_cloners);
235 1.1 cube }
236 1.1 cube
237 1.1 cube /* Pretty much useless for a pseudo-device */
238 1.1 cube static int
239 1.23 christos tap_match(struct device *self, struct cfdata *cfdata,
240 1.23 christos void *arg)
241 1.1 cube {
242 1.1 cube return (1);
243 1.1 cube }
244 1.1 cube
245 1.1 cube void
246 1.23 christos tap_attach(struct device *parent, struct device *self,
247 1.23 christos void *aux)
248 1.1 cube {
249 1.1 cube struct tap_softc *sc = (struct tap_softc *)self;
250 1.1 cube struct ifnet *ifp;
251 1.18 kardel const struct sysctlnode *node;
252 1.1 cube u_int8_t enaddr[ETHER_ADDR_LEN] =
253 1.7 cube { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
254 1.14 christos char enaddrstr[3 * ETHER_ADDR_LEN];
255 1.18 kardel struct timeval tv;
256 1.1 cube uint32_t ui;
257 1.1 cube int error;
258 1.1 cube
259 1.1 cube /*
260 1.1 cube * In order to obtain unique initial Ethernet address on a host,
261 1.18 kardel * do some randomisation using the current uptime. It's not meant
262 1.18 kardel * for anything but avoiding hard-coding an address.
263 1.1 cube */
264 1.18 kardel getmicrouptime(&tv);
265 1.18 kardel ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
266 1.1 cube memcpy(enaddr+3, (u_int8_t *)&ui, 3);
267 1.1 cube
268 1.25 cube aprint_verbose("%s: Ethernet address %s\n", device_xname(&sc->sc_dev),
269 1.14 christos ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
270 1.1 cube
271 1.1 cube /*
272 1.1 cube * Why 1000baseT? Why not? You can add more.
273 1.1 cube *
274 1.1 cube * Note that there are 3 steps: init, one or several additions to
275 1.1 cube * list of supported media, and in the end, the selection of one
276 1.1 cube * of them.
277 1.1 cube */
278 1.1 cube ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
279 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
280 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
281 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
282 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
283 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
284 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
285 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
286 1.1 cube ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
287 1.1 cube
288 1.1 cube /*
289 1.1 cube * One should note that an interface must do multicast in order
290 1.1 cube * to support IPv6.
291 1.1 cube */
292 1.1 cube ifp = &sc->sc_ec.ec_if;
293 1.1 cube strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
294 1.1 cube ifp->if_softc = sc;
295 1.1 cube ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
296 1.1 cube ifp->if_ioctl = tap_ioctl;
297 1.1 cube ifp->if_start = tap_start;
298 1.1 cube ifp->if_stop = tap_stop;
299 1.1 cube ifp->if_init = tap_init;
300 1.1 cube IFQ_SET_READY(&ifp->if_snd);
301 1.1 cube
302 1.1 cube sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
303 1.1 cube
304 1.1 cube /* Those steps are mandatory for an Ethernet driver, the fisrt call
305 1.1 cube * being common to all network interface drivers. */
306 1.1 cube if_attach(ifp);
307 1.1 cube ether_ifattach(ifp, enaddr);
308 1.1 cube
309 1.1 cube sc->sc_flags = 0;
310 1.1 cube
311 1.1 cube /*
312 1.1 cube * Add a sysctl node for that interface.
313 1.1 cube *
314 1.1 cube * The pointer transmitted is not a string, but instead a pointer to
315 1.1 cube * the softc structure, which we can use to build the string value on
316 1.1 cube * the fly in the helper function of the node. See the comments for
317 1.1 cube * tap_sysctl_handler for details.
318 1.21 cube *
319 1.21 cube * Usually sysctl_createv is called with CTL_CREATE as the before-last
320 1.21 cube * component. However, we can allocate a number ourselves, as we are
321 1.21 cube * the only consumer of the net.link.<iface> node. In this case, the
322 1.21 cube * unit number is conveniently used to number the node. CTL_CREATE
323 1.21 cube * would just work, too.
324 1.1 cube */
325 1.1 cube if ((error = sysctl_createv(NULL, 0, NULL,
326 1.1 cube &node, CTLFLAG_READWRITE,
327 1.1 cube CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
328 1.1 cube tap_sysctl_handler, 0, sc, 18,
329 1.15 thorpej CTL_NET, AF_LINK, tap_node, device_unit(&sc->sc_dev),
330 1.15 thorpej CTL_EOL)) != 0)
331 1.1 cube aprint_error("%s: sysctl_createv returned %d, ignoring\n",
332 1.1 cube sc->sc_dev.dv_xname, error);
333 1.1 cube
334 1.1 cube /*
335 1.1 cube * Initialize the two locks for the device.
336 1.1 cube *
337 1.1 cube * We need a lock here because even though the tap device can be
338 1.1 cube * opened only once, the file descriptor might be passed to another
339 1.1 cube * process, say a fork(2)ed child.
340 1.1 cube *
341 1.1 cube * The Giant saves us from most of the hassle, but since the read
342 1.1 cube * operation can sleep, we don't want two processes to wake up at
343 1.1 cube * the same moment and both try and dequeue a single packet.
344 1.1 cube *
345 1.1 cube * The queue for event listeners (used by kqueue(9), see below) has
346 1.1 cube * to be protected, too, but we don't need the same level of
347 1.1 cube * complexity for that lock, so a simple spinning lock is fine.
348 1.1 cube */
349 1.34 ad mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
350 1.1 cube simple_lock_init(&sc->sc_kqlock);
351 1.1 cube }
352 1.1 cube
353 1.1 cube /*
354 1.1 cube * When detaching, we do the inverse of what is done in the attach
355 1.1 cube * routine, in reversed order.
356 1.1 cube */
357 1.1 cube static int
358 1.23 christos tap_detach(struct device* self, int flags)
359 1.1 cube {
360 1.1 cube struct tap_softc *sc = (struct tap_softc *)self;
361 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
362 1.1 cube int error, s;
363 1.1 cube
364 1.1 cube sc->sc_flags |= TAP_GOING;
365 1.1 cube s = splnet();
366 1.1 cube tap_stop(ifp, 1);
367 1.1 cube if_down(ifp);
368 1.1 cube splx(s);
369 1.1 cube
370 1.1 cube /*
371 1.1 cube * Destroying a single leaf is a very straightforward operation using
372 1.1 cube * sysctl_destroyv. One should be sure to always end the path with
373 1.1 cube * CTL_EOL.
374 1.1 cube */
375 1.3 cube if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
376 1.15 thorpej device_unit(&sc->sc_dev), CTL_EOL)) != 0)
377 1.1 cube aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
378 1.1 cube sc->sc_dev.dv_xname, error);
379 1.1 cube ether_ifdetach(ifp);
380 1.1 cube if_detach(ifp);
381 1.1 cube ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
382 1.34 ad mutex_destroy(&sc->sc_rdlock);
383 1.1 cube
384 1.1 cube return (0);
385 1.1 cube }
386 1.1 cube
387 1.1 cube /*
388 1.1 cube * This function is called by the ifmedia layer to notify the driver
389 1.1 cube * that the user requested a media change. A real driver would
390 1.1 cube * reconfigure the hardware.
391 1.1 cube */
392 1.1 cube static int
393 1.23 christos tap_mediachange(struct ifnet *ifp)
394 1.1 cube {
395 1.1 cube return (0);
396 1.1 cube }
397 1.1 cube
398 1.1 cube /*
399 1.1 cube * Here the user asks for the currently used media.
400 1.1 cube */
401 1.1 cube static void
402 1.1 cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
403 1.1 cube {
404 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
405 1.1 cube imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
406 1.1 cube }
407 1.1 cube
408 1.1 cube /*
409 1.1 cube * This is the function where we SEND packets.
410 1.1 cube *
411 1.1 cube * There is no 'receive' equivalent. A typical driver will get
412 1.1 cube * interrupts from the hardware, and from there will inject new packets
413 1.1 cube * into the network stack.
414 1.1 cube *
415 1.1 cube * Once handled, a packet must be freed. A real driver might not be able
416 1.1 cube * to fit all the pending packets into the hardware, and is allowed to
417 1.1 cube * return before having sent all the packets. It should then use the
418 1.1 cube * if_flags flag IFF_OACTIVE to notify the upper layer.
419 1.1 cube *
420 1.1 cube * There are also other flags one should check, such as IFF_PAUSE.
421 1.1 cube *
422 1.1 cube * It is our duty to make packets available to BPF listeners.
423 1.1 cube *
424 1.1 cube * You should be aware that this function is called by the Ethernet layer
425 1.1 cube * at splnet().
426 1.1 cube *
427 1.1 cube * When the device is opened, we have to pass the packet(s) to the
428 1.1 cube * userland. For that we stay in OACTIVE mode while the userland gets
429 1.1 cube * the packets, and we send a signal to the processes waiting to read.
430 1.1 cube *
431 1.1 cube * wakeup(sc) is the counterpart to the tsleep call in
432 1.1 cube * tap_dev_read, while selnotify() is used for kevent(2) and
433 1.1 cube * poll(2) (which includes select(2)) listeners.
434 1.1 cube */
435 1.1 cube static void
436 1.1 cube tap_start(struct ifnet *ifp)
437 1.1 cube {
438 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
439 1.1 cube struct mbuf *m0;
440 1.1 cube
441 1.1 cube if ((sc->sc_flags & TAP_INUSE) == 0) {
442 1.1 cube /* Simply drop packets */
443 1.1 cube for(;;) {
444 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m0);
445 1.1 cube if (m0 == NULL)
446 1.1 cube return;
447 1.1 cube
448 1.1 cube ifp->if_opackets++;
449 1.1 cube #if NBPFILTER > 0
450 1.1 cube if (ifp->if_bpf)
451 1.1 cube bpf_mtap(ifp->if_bpf, m0);
452 1.1 cube #endif
453 1.1 cube
454 1.1 cube m_freem(m0);
455 1.1 cube }
456 1.1 cube } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
457 1.1 cube ifp->if_flags |= IFF_OACTIVE;
458 1.1 cube wakeup(sc);
459 1.1 cube selnotify(&sc->sc_rsel, 1);
460 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
461 1.1 cube fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
462 1.1 cube POLLIN|POLLRDNORM, NULL);
463 1.1 cube }
464 1.1 cube }
465 1.1 cube
466 1.1 cube /*
467 1.1 cube * A typical driver will only contain the following handlers for
468 1.1 cube * ioctl calls, except SIOCSIFPHYADDR.
469 1.1 cube * The latter is a hack I used to set the Ethernet address of the
470 1.1 cube * faked device.
471 1.1 cube *
472 1.1 cube * Note that both ifmedia_ioctl() and ether_ioctl() have to be
473 1.1 cube * called under splnet().
474 1.1 cube */
475 1.1 cube static int
476 1.26 christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
477 1.1 cube {
478 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
479 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
480 1.1 cube int s, error;
481 1.1 cube
482 1.1 cube s = splnet();
483 1.1 cube
484 1.1 cube switch (cmd) {
485 1.29 christos #ifdef OSIOCSIFMEDIA
486 1.29 christos case OSIOCSIFMEDIA:
487 1.29 christos #endif
488 1.1 cube case SIOCSIFMEDIA:
489 1.1 cube case SIOCGIFMEDIA:
490 1.1 cube error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
491 1.1 cube break;
492 1.1 cube case SIOCSIFPHYADDR:
493 1.1 cube error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
494 1.1 cube break;
495 1.1 cube default:
496 1.1 cube error = ether_ioctl(ifp, cmd, data);
497 1.1 cube if (error == ENETRESET)
498 1.1 cube error = 0;
499 1.1 cube break;
500 1.1 cube }
501 1.1 cube
502 1.1 cube splx(s);
503 1.1 cube
504 1.1 cube return (error);
505 1.1 cube }
506 1.1 cube
507 1.1 cube /*
508 1.1 cube * Helper function to set Ethernet address. This shouldn't be done there,
509 1.1 cube * and should actually be available to all Ethernet drivers, real or not.
510 1.1 cube */
511 1.1 cube static int
512 1.23 christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
513 1.1 cube {
514 1.36 dyoung const struct sockaddr_dl *sdl = satosdl(&ifra->ifra_addr);
515 1.1 cube
516 1.36 dyoung if (sdl->sdl_family != AF_LINK)
517 1.1 cube return (EINVAL);
518 1.1 cube
519 1.36 dyoung if_set_sadl(ifp, CLLADDR(sdl), ETHER_ADDR_LEN);
520 1.1 cube
521 1.1 cube return (0);
522 1.1 cube }
523 1.1 cube
524 1.1 cube /*
525 1.1 cube * _init() would typically be called when an interface goes up,
526 1.1 cube * meaning it should configure itself into the state in which it
527 1.1 cube * can send packets.
528 1.1 cube */
529 1.1 cube static int
530 1.1 cube tap_init(struct ifnet *ifp)
531 1.1 cube {
532 1.1 cube ifp->if_flags |= IFF_RUNNING;
533 1.1 cube
534 1.1 cube tap_start(ifp);
535 1.1 cube
536 1.1 cube return (0);
537 1.1 cube }
538 1.1 cube
539 1.1 cube /*
540 1.1 cube * _stop() is called when an interface goes down. It is our
541 1.1 cube * responsability to validate that state by clearing the
542 1.1 cube * IFF_RUNNING flag.
543 1.1 cube *
544 1.1 cube * We have to wake up all the sleeping processes to have the pending
545 1.1 cube * read requests cancelled.
546 1.1 cube */
547 1.1 cube static void
548 1.23 christos tap_stop(struct ifnet *ifp, int disable)
549 1.1 cube {
550 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
551 1.1 cube
552 1.1 cube ifp->if_flags &= ~IFF_RUNNING;
553 1.1 cube wakeup(sc);
554 1.1 cube selnotify(&sc->sc_rsel, 1);
555 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
556 1.1 cube fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
557 1.1 cube }
558 1.1 cube
559 1.1 cube /*
560 1.1 cube * The 'create' command of ifconfig can be used to create
561 1.1 cube * any numbered instance of a given device. Thus we have to
562 1.1 cube * make sure we have enough room in cd_devs to create the
563 1.1 cube * user-specified instance. config_attach_pseudo will do this
564 1.1 cube * for us.
565 1.1 cube */
566 1.1 cube static int
567 1.23 christos tap_clone_create(struct if_clone *ifc, int unit)
568 1.1 cube {
569 1.1 cube if (tap_clone_creator(unit) == NULL) {
570 1.1 cube aprint_error("%s%d: unable to attach an instance\n",
571 1.1 cube tap_cd.cd_name, unit);
572 1.1 cube return (ENXIO);
573 1.1 cube }
574 1.1 cube
575 1.1 cube return (0);
576 1.1 cube }
577 1.1 cube
578 1.1 cube /*
579 1.1 cube * tap(4) can be cloned by two ways:
580 1.1 cube * using 'ifconfig tap0 create', which will use the network
581 1.1 cube * interface cloning API, and call tap_clone_create above.
582 1.1 cube * opening the cloning device node, whose minor number is TAP_CLONER.
583 1.1 cube * See below for an explanation on how this part work.
584 1.1 cube */
585 1.1 cube static struct tap_softc *
586 1.1 cube tap_clone_creator(int unit)
587 1.1 cube {
588 1.1 cube struct cfdata *cf;
589 1.1 cube
590 1.1 cube cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
591 1.1 cube cf->cf_name = tap_cd.cd_name;
592 1.1 cube cf->cf_atname = tap_ca.ca_name;
593 1.27 drochner if (unit == -1) {
594 1.27 drochner /* let autoconf find the first free one */
595 1.27 drochner cf->cf_unit = 0;
596 1.27 drochner cf->cf_fstate = FSTATE_STAR;
597 1.27 drochner } else {
598 1.27 drochner cf->cf_unit = unit;
599 1.27 drochner cf->cf_fstate = FSTATE_NOTFOUND;
600 1.27 drochner }
601 1.1 cube
602 1.1 cube return (struct tap_softc *)config_attach_pseudo(cf);
603 1.1 cube }
604 1.1 cube
605 1.1 cube /*
606 1.1 cube * The clean design of if_clone and autoconf(9) makes that part
607 1.1 cube * really straightforward. The second argument of config_detach
608 1.1 cube * means neither QUIET nor FORCED.
609 1.1 cube */
610 1.1 cube static int
611 1.1 cube tap_clone_destroy(struct ifnet *ifp)
612 1.1 cube {
613 1.1 cube return tap_clone_destroyer((struct device *)ifp->if_softc);
614 1.1 cube }
615 1.1 cube
616 1.12 cube int
617 1.1 cube tap_clone_destroyer(struct device *dev)
618 1.1 cube {
619 1.16 thorpej struct cfdata *cf = device_cfdata(dev);
620 1.1 cube int error;
621 1.1 cube
622 1.1 cube if ((error = config_detach(dev, 0)) != 0)
623 1.1 cube aprint_error("%s: unable to detach instance\n",
624 1.1 cube dev->dv_xname);
625 1.1 cube free(cf, M_DEVBUF);
626 1.1 cube
627 1.1 cube return (error);
628 1.1 cube }
629 1.1 cube
630 1.1 cube /*
631 1.1 cube * tap(4) is a bit of an hybrid device. It can be used in two different
632 1.1 cube * ways:
633 1.1 cube * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
634 1.1 cube * 2. open /dev/tap, get a new interface created and read/write off it.
635 1.1 cube * That interface is destroyed when the process that had it created exits.
636 1.1 cube *
637 1.1 cube * The first way is managed by the cdevsw structure, and you access interfaces
638 1.1 cube * through a (major, minor) mapping: tap4 is obtained by the minor number
639 1.1 cube * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
640 1.1 cube *
641 1.1 cube * The second way is the so-called "cloning" device. It's a special minor
642 1.1 cube * number (chosen as the maximal number, to allow as much tap devices as
643 1.1 cube * possible). The user first opens the cloner (e.g., /dev/tap), and that
644 1.1 cube * call ends in tap_cdev_open. The actual place where it is handled is
645 1.1 cube * tap_dev_cloner.
646 1.1 cube *
647 1.1 cube * An tap device cannot be opened more than once at a time, so the cdevsw
648 1.1 cube * part of open() does nothing but noting that the interface is being used and
649 1.1 cube * hence ready to actually handle packets.
650 1.1 cube */
651 1.1 cube
652 1.1 cube static int
653 1.23 christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
654 1.1 cube {
655 1.1 cube struct tap_softc *sc;
656 1.1 cube
657 1.1 cube if (minor(dev) == TAP_CLONER)
658 1.11 christos return tap_dev_cloner(l);
659 1.1 cube
660 1.1 cube sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
661 1.1 cube if (sc == NULL)
662 1.1 cube return (ENXIO);
663 1.1 cube
664 1.1 cube /* The device can only be opened once */
665 1.1 cube if (sc->sc_flags & TAP_INUSE)
666 1.1 cube return (EBUSY);
667 1.1 cube sc->sc_flags |= TAP_INUSE;
668 1.1 cube return (0);
669 1.1 cube }
670 1.1 cube
671 1.1 cube /*
672 1.1 cube * There are several kinds of cloning devices, and the most simple is the one
673 1.1 cube * tap(4) uses. What it does is change the file descriptor with a new one,
674 1.1 cube * with its own fileops structure (which maps to the various read, write,
675 1.1 cube * ioctl functions). It starts allocating a new file descriptor with falloc,
676 1.1 cube * then actually creates the new tap devices.
677 1.1 cube *
678 1.1 cube * Once those two steps are successful, we can re-wire the existing file
679 1.1 cube * descriptor to its new self. This is done with fdclone(): it fills the fp
680 1.1 cube * structure as needed (notably f_data gets filled with the fifth parameter
681 1.1 cube * passed, the unit of the tap device which will allows us identifying the
682 1.1 cube * device later), and returns EMOVEFD.
683 1.1 cube *
684 1.1 cube * That magic value is interpreted by sys_open() which then replaces the
685 1.1 cube * current file descriptor by the new one (through a magic member of struct
686 1.13 pooka * lwp, l_dupfd).
687 1.1 cube *
688 1.1 cube * The tap device is flagged as being busy since it otherwise could be
689 1.1 cube * externally accessed through the corresponding device node with the cdevsw
690 1.1 cube * interface.
691 1.1 cube */
692 1.1 cube
693 1.1 cube static int
694 1.11 christos tap_dev_cloner(struct lwp *l)
695 1.1 cube {
696 1.1 cube struct tap_softc *sc;
697 1.1 cube struct file *fp;
698 1.1 cube int error, fd;
699 1.1 cube
700 1.19 ad if ((error = falloc(l, &fp, &fd)) != 0)
701 1.1 cube return (error);
702 1.1 cube
703 1.27 drochner if ((sc = tap_clone_creator(-1)) == NULL) {
704 1.11 christos FILE_UNUSE(fp, l);
705 1.1 cube ffree(fp);
706 1.1 cube return (ENXIO);
707 1.1 cube }
708 1.1 cube
709 1.1 cube sc->sc_flags |= TAP_INUSE;
710 1.1 cube
711 1.11 christos return fdclone(l, fp, fd, FREAD|FWRITE, &tap_fileops,
712 1.15 thorpej (void *)(intptr_t)device_unit(&sc->sc_dev));
713 1.1 cube }
714 1.1 cube
715 1.1 cube /*
716 1.1 cube * While all other operations (read, write, ioctl, poll and kqfilter) are
717 1.1 cube * really the same whether we are in cdevsw or fileops mode, the close()
718 1.1 cube * function is slightly different in the two cases.
719 1.1 cube *
720 1.1 cube * As for the other, the core of it is shared in tap_dev_close. What
721 1.1 cube * it does is sufficient for the cdevsw interface, but the cloning interface
722 1.1 cube * needs another thing: the interface is destroyed when the processes that
723 1.1 cube * created it closes it.
724 1.1 cube */
725 1.1 cube static int
726 1.23 christos tap_cdev_close(dev_t dev, int flags, int fmt,
727 1.23 christos struct lwp *l)
728 1.1 cube {
729 1.1 cube struct tap_softc *sc =
730 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
731 1.1 cube
732 1.1 cube if (sc == NULL)
733 1.1 cube return (ENXIO);
734 1.1 cube
735 1.1 cube return tap_dev_close(sc);
736 1.1 cube }
737 1.1 cube
738 1.1 cube /*
739 1.1 cube * It might happen that the administrator used ifconfig to externally destroy
740 1.1 cube * the interface. In that case, tap_fops_close will be called while
741 1.1 cube * tap_detach is already happening. If we called it again from here, we
742 1.1 cube * would dead lock. TAP_GOING ensures that this situation doesn't happen.
743 1.1 cube */
744 1.1 cube static int
745 1.23 christos tap_fops_close(struct file *fp, struct lwp *l)
746 1.1 cube {
747 1.1 cube int unit = (intptr_t)fp->f_data;
748 1.1 cube struct tap_softc *sc;
749 1.1 cube int error;
750 1.1 cube
751 1.1 cube sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
752 1.1 cube if (sc == NULL)
753 1.1 cube return (ENXIO);
754 1.1 cube
755 1.1 cube /* tap_dev_close currently always succeeds, but it might not
756 1.1 cube * always be the case. */
757 1.1 cube if ((error = tap_dev_close(sc)) != 0)
758 1.1 cube return (error);
759 1.1 cube
760 1.1 cube /* Destroy the device now that it is no longer useful,
761 1.1 cube * unless it's already being destroyed. */
762 1.1 cube if ((sc->sc_flags & TAP_GOING) != 0)
763 1.1 cube return (0);
764 1.1 cube
765 1.1 cube return tap_clone_destroyer((struct device *)sc);
766 1.1 cube }
767 1.1 cube
768 1.1 cube static int
769 1.1 cube tap_dev_close(struct tap_softc *sc)
770 1.1 cube {
771 1.1 cube struct ifnet *ifp;
772 1.1 cube int s;
773 1.1 cube
774 1.1 cube s = splnet();
775 1.1 cube /* Let tap_start handle packets again */
776 1.1 cube ifp = &sc->sc_ec.ec_if;
777 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
778 1.1 cube
779 1.1 cube /* Purge output queue */
780 1.1 cube if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
781 1.1 cube struct mbuf *m;
782 1.1 cube
783 1.1 cube for (;;) {
784 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
785 1.1 cube if (m == NULL)
786 1.1 cube break;
787 1.1 cube
788 1.1 cube ifp->if_opackets++;
789 1.1 cube #if NBPFILTER > 0
790 1.1 cube if (ifp->if_bpf)
791 1.1 cube bpf_mtap(ifp->if_bpf, m);
792 1.1 cube #endif
793 1.1 cube }
794 1.1 cube }
795 1.1 cube splx(s);
796 1.1 cube
797 1.1 cube sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
798 1.1 cube
799 1.1 cube return (0);
800 1.1 cube }
801 1.1 cube
802 1.1 cube static int
803 1.1 cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
804 1.1 cube {
805 1.1 cube return tap_dev_read(minor(dev), uio, flags);
806 1.1 cube }
807 1.1 cube
808 1.1 cube static int
809 1.23 christos tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
810 1.23 christos kauth_cred_t cred, int flags)
811 1.1 cube {
812 1.1 cube return tap_dev_read((intptr_t)fp->f_data, uio, flags);
813 1.1 cube }
814 1.1 cube
815 1.1 cube static int
816 1.23 christos tap_dev_read(int unit, struct uio *uio, int flags)
817 1.1 cube {
818 1.1 cube struct tap_softc *sc =
819 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
820 1.1 cube struct ifnet *ifp;
821 1.1 cube struct mbuf *m, *n;
822 1.1 cube int error = 0, s;
823 1.1 cube
824 1.1 cube if (sc == NULL)
825 1.1 cube return (ENXIO);
826 1.1 cube
827 1.1 cube ifp = &sc->sc_ec.ec_if;
828 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
829 1.1 cube return (EHOSTDOWN);
830 1.1 cube
831 1.1 cube /*
832 1.1 cube * In the TAP_NBIO case, we have to make sure we won't be sleeping
833 1.1 cube */
834 1.34 ad if ((sc->sc_flags & TAP_NBIO) != 0) {
835 1.34 ad if (!mutex_tryenter(&sc->sc_rdlock))
836 1.34 ad return (EWOULDBLOCK);
837 1.34 ad } else {
838 1.34 ad mutex_enter(&sc->sc_rdlock);
839 1.34 ad }
840 1.1 cube
841 1.1 cube s = splnet();
842 1.1 cube if (IFQ_IS_EMPTY(&ifp->if_snd)) {
843 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
844 1.1 cube splx(s);
845 1.1 cube /*
846 1.1 cube * We must release the lock before sleeping, and re-acquire it
847 1.1 cube * after.
848 1.1 cube */
849 1.34 ad mutex_exit(&sc->sc_rdlock);
850 1.1 cube if (sc->sc_flags & TAP_NBIO)
851 1.1 cube error = EWOULDBLOCK;
852 1.1 cube else
853 1.1 cube error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
854 1.1 cube if (error != 0)
855 1.1 cube return (error);
856 1.1 cube /* The device might have been downed */
857 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
858 1.1 cube return (EHOSTDOWN);
859 1.34 ad if ((sc->sc_flags & TAP_NBIO)) {
860 1.34 ad if (!mutex_tryenter(&sc->sc_rdlock))
861 1.34 ad return (EWOULDBLOCK);
862 1.34 ad } else {
863 1.34 ad mutex_enter(&sc->sc_rdlock);
864 1.34 ad }
865 1.1 cube s = splnet();
866 1.1 cube }
867 1.1 cube
868 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
869 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
870 1.1 cube splx(s);
871 1.1 cube if (m == NULL) {
872 1.1 cube error = 0;
873 1.1 cube goto out;
874 1.1 cube }
875 1.1 cube
876 1.1 cube ifp->if_opackets++;
877 1.1 cube #if NBPFILTER > 0
878 1.1 cube if (ifp->if_bpf)
879 1.1 cube bpf_mtap(ifp->if_bpf, m);
880 1.1 cube #endif
881 1.1 cube
882 1.1 cube /*
883 1.1 cube * One read is one packet.
884 1.1 cube */
885 1.1 cube do {
886 1.26 christos error = uiomove(mtod(m, void *),
887 1.1 cube min(m->m_len, uio->uio_resid), uio);
888 1.1 cube MFREE(m, n);
889 1.1 cube m = n;
890 1.1 cube } while (m != NULL && uio->uio_resid > 0 && error == 0);
891 1.1 cube
892 1.1 cube if (m != NULL)
893 1.1 cube m_freem(m);
894 1.1 cube
895 1.1 cube out:
896 1.34 ad mutex_exit(&sc->sc_rdlock);
897 1.1 cube return (error);
898 1.1 cube }
899 1.1 cube
900 1.1 cube static int
901 1.1 cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
902 1.1 cube {
903 1.1 cube return tap_dev_write(minor(dev), uio, flags);
904 1.1 cube }
905 1.1 cube
906 1.1 cube static int
907 1.23 christos tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
908 1.23 christos kauth_cred_t cred, int flags)
909 1.1 cube {
910 1.1 cube return tap_dev_write((intptr_t)fp->f_data, uio, flags);
911 1.1 cube }
912 1.1 cube
913 1.1 cube static int
914 1.23 christos tap_dev_write(int unit, struct uio *uio, int flags)
915 1.1 cube {
916 1.1 cube struct tap_softc *sc =
917 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
918 1.1 cube struct ifnet *ifp;
919 1.1 cube struct mbuf *m, **mp;
920 1.1 cube int error = 0;
921 1.9 bouyer int s;
922 1.1 cube
923 1.1 cube if (sc == NULL)
924 1.1 cube return (ENXIO);
925 1.1 cube
926 1.1 cube ifp = &sc->sc_ec.ec_if;
927 1.1 cube
928 1.1 cube /* One write, one packet, that's the rule */
929 1.1 cube MGETHDR(m, M_DONTWAIT, MT_DATA);
930 1.1 cube if (m == NULL) {
931 1.1 cube ifp->if_ierrors++;
932 1.1 cube return (ENOBUFS);
933 1.1 cube }
934 1.1 cube m->m_pkthdr.len = uio->uio_resid;
935 1.1 cube
936 1.1 cube mp = &m;
937 1.1 cube while (error == 0 && uio->uio_resid > 0) {
938 1.1 cube if (*mp != m) {
939 1.1 cube MGET(*mp, M_DONTWAIT, MT_DATA);
940 1.1 cube if (*mp == NULL) {
941 1.1 cube error = ENOBUFS;
942 1.1 cube break;
943 1.1 cube }
944 1.1 cube }
945 1.1 cube (*mp)->m_len = min(MHLEN, uio->uio_resid);
946 1.26 christos error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
947 1.1 cube mp = &(*mp)->m_next;
948 1.1 cube }
949 1.1 cube if (error) {
950 1.1 cube ifp->if_ierrors++;
951 1.1 cube m_freem(m);
952 1.1 cube return (error);
953 1.1 cube }
954 1.1 cube
955 1.1 cube ifp->if_ipackets++;
956 1.1 cube m->m_pkthdr.rcvif = ifp;
957 1.1 cube
958 1.1 cube #if NBPFILTER > 0
959 1.1 cube if (ifp->if_bpf)
960 1.1 cube bpf_mtap(ifp->if_bpf, m);
961 1.1 cube #endif
962 1.9 bouyer s =splnet();
963 1.1 cube (*ifp->if_input)(ifp, m);
964 1.9 bouyer splx(s);
965 1.1 cube
966 1.1 cube return (0);
967 1.1 cube }
968 1.1 cube
969 1.1 cube static int
970 1.26 christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
971 1.11 christos struct lwp *l)
972 1.1 cube {
973 1.11 christos return tap_dev_ioctl(minor(dev), cmd, data, l);
974 1.1 cube }
975 1.1 cube
976 1.1 cube static int
977 1.11 christos tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct lwp *l)
978 1.1 cube {
979 1.26 christos return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (void *)data, l);
980 1.1 cube }
981 1.1 cube
982 1.1 cube static int
983 1.26 christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
984 1.1 cube {
985 1.1 cube struct tap_softc *sc =
986 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
987 1.1 cube int error = 0;
988 1.1 cube
989 1.1 cube if (sc == NULL)
990 1.1 cube return (ENXIO);
991 1.1 cube
992 1.1 cube switch (cmd) {
993 1.1 cube case FIONREAD:
994 1.1 cube {
995 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
996 1.1 cube struct mbuf *m;
997 1.1 cube int s;
998 1.1 cube
999 1.1 cube s = splnet();
1000 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1001 1.1 cube
1002 1.1 cube if (m == NULL)
1003 1.1 cube *(int *)data = 0;
1004 1.1 cube else
1005 1.1 cube *(int *)data = m->m_pkthdr.len;
1006 1.1 cube splx(s);
1007 1.1 cube } break;
1008 1.1 cube case TIOCSPGRP:
1009 1.1 cube case FIOSETOWN:
1010 1.11 christos error = fsetown(l->l_proc, &sc->sc_pgid, cmd, data);
1011 1.1 cube break;
1012 1.1 cube case TIOCGPGRP:
1013 1.1 cube case FIOGETOWN:
1014 1.11 christos error = fgetown(l->l_proc, sc->sc_pgid, cmd, data);
1015 1.1 cube break;
1016 1.1 cube case FIOASYNC:
1017 1.1 cube if (*(int *)data)
1018 1.1 cube sc->sc_flags |= TAP_ASYNCIO;
1019 1.1 cube else
1020 1.1 cube sc->sc_flags &= ~TAP_ASYNCIO;
1021 1.1 cube break;
1022 1.1 cube case FIONBIO:
1023 1.1 cube if (*(int *)data)
1024 1.1 cube sc->sc_flags |= TAP_NBIO;
1025 1.1 cube else
1026 1.1 cube sc->sc_flags &= ~TAP_NBIO;
1027 1.1 cube break;
1028 1.29 christos #ifdef OTAPGIFNAME
1029 1.29 christos case OTAPGIFNAME:
1030 1.29 christos #endif
1031 1.1 cube case TAPGIFNAME:
1032 1.1 cube {
1033 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
1034 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1035 1.1 cube
1036 1.1 cube strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1037 1.1 cube } break;
1038 1.1 cube default:
1039 1.1 cube error = ENOTTY;
1040 1.1 cube break;
1041 1.1 cube }
1042 1.1 cube
1043 1.1 cube return (0);
1044 1.1 cube }
1045 1.1 cube
1046 1.1 cube static int
1047 1.11 christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1048 1.1 cube {
1049 1.11 christos return tap_dev_poll(minor(dev), events, l);
1050 1.1 cube }
1051 1.1 cube
1052 1.1 cube static int
1053 1.11 christos tap_fops_poll(struct file *fp, int events, struct lwp *l)
1054 1.1 cube {
1055 1.11 christos return tap_dev_poll((intptr_t)fp->f_data, events, l);
1056 1.1 cube }
1057 1.1 cube
1058 1.1 cube static int
1059 1.11 christos tap_dev_poll(int unit, int events, struct lwp *l)
1060 1.1 cube {
1061 1.1 cube struct tap_softc *sc =
1062 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
1063 1.1 cube int revents = 0;
1064 1.1 cube
1065 1.1 cube if (sc == NULL)
1066 1.28 christos return POLLERR;
1067 1.1 cube
1068 1.1 cube if (events & (POLLIN|POLLRDNORM)) {
1069 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1070 1.1 cube struct mbuf *m;
1071 1.1 cube int s;
1072 1.1 cube
1073 1.1 cube s = splnet();
1074 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1075 1.1 cube splx(s);
1076 1.1 cube
1077 1.1 cube if (m != NULL)
1078 1.1 cube revents |= events & (POLLIN|POLLRDNORM);
1079 1.1 cube else {
1080 1.4 ragge simple_lock(&sc->sc_kqlock);
1081 1.11 christos selrecord(l, &sc->sc_rsel);
1082 1.1 cube simple_unlock(&sc->sc_kqlock);
1083 1.1 cube }
1084 1.1 cube }
1085 1.1 cube revents |= events & (POLLOUT|POLLWRNORM);
1086 1.1 cube
1087 1.1 cube return (revents);
1088 1.1 cube }
1089 1.1 cube
1090 1.1 cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1091 1.1 cube tap_kqread };
1092 1.1 cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1093 1.1 cube filt_seltrue };
1094 1.1 cube
1095 1.1 cube static int
1096 1.1 cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1097 1.1 cube {
1098 1.1 cube return tap_dev_kqfilter(minor(dev), kn);
1099 1.1 cube }
1100 1.1 cube
1101 1.1 cube static int
1102 1.1 cube tap_fops_kqfilter(struct file *fp, struct knote *kn)
1103 1.1 cube {
1104 1.1 cube return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1105 1.1 cube }
1106 1.1 cube
1107 1.1 cube static int
1108 1.1 cube tap_dev_kqfilter(int unit, struct knote *kn)
1109 1.1 cube {
1110 1.1 cube struct tap_softc *sc =
1111 1.1 cube (struct tap_softc *)device_lookup(&tap_cd, unit);
1112 1.1 cube
1113 1.1 cube if (sc == NULL)
1114 1.1 cube return (ENXIO);
1115 1.1 cube
1116 1.1 cube switch(kn->kn_filter) {
1117 1.1 cube case EVFILT_READ:
1118 1.1 cube kn->kn_fop = &tap_read_filterops;
1119 1.1 cube break;
1120 1.1 cube case EVFILT_WRITE:
1121 1.1 cube kn->kn_fop = &tap_seltrue_filterops;
1122 1.1 cube break;
1123 1.1 cube default:
1124 1.35 pooka return (EINVAL);
1125 1.1 cube }
1126 1.1 cube
1127 1.1 cube kn->kn_hook = sc;
1128 1.4 ragge simple_lock(&sc->sc_kqlock);
1129 1.1 cube SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1130 1.1 cube simple_unlock(&sc->sc_kqlock);
1131 1.1 cube return (0);
1132 1.1 cube }
1133 1.1 cube
1134 1.1 cube static void
1135 1.1 cube tap_kqdetach(struct knote *kn)
1136 1.1 cube {
1137 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1138 1.1 cube
1139 1.4 ragge simple_lock(&sc->sc_kqlock);
1140 1.1 cube SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1141 1.1 cube simple_unlock(&sc->sc_kqlock);
1142 1.1 cube }
1143 1.1 cube
1144 1.1 cube static int
1145 1.23 christos tap_kqread(struct knote *kn, long hint)
1146 1.1 cube {
1147 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1148 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1149 1.1 cube struct mbuf *m;
1150 1.1 cube int s;
1151 1.1 cube
1152 1.1 cube s = splnet();
1153 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1154 1.1 cube
1155 1.1 cube if (m == NULL)
1156 1.1 cube kn->kn_data = 0;
1157 1.1 cube else
1158 1.1 cube kn->kn_data = m->m_pkthdr.len;
1159 1.1 cube splx(s);
1160 1.1 cube return (kn->kn_data != 0 ? 1 : 0);
1161 1.1 cube }
1162 1.1 cube
1163 1.1 cube /*
1164 1.1 cube * sysctl management routines
1165 1.1 cube * You can set the address of an interface through:
1166 1.1 cube * net.link.tap.tap<number>
1167 1.1 cube *
1168 1.1 cube * Note the consistent use of tap_log in order to use
1169 1.1 cube * sysctl_teardown at unload time.
1170 1.1 cube *
1171 1.1 cube * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1172 1.1 cube * blocks register a function in a special section of the kernel
1173 1.1 cube * (called a link set) which is used at init_sysctl() time to cycle
1174 1.1 cube * through all those functions to create the kernel's sysctl tree.
1175 1.1 cube *
1176 1.1 cube * It is not (currently) possible to use link sets in a LKM, so the
1177 1.1 cube * easiest is to simply call our own setup routine at load time.
1178 1.1 cube *
1179 1.1 cube * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1180 1.1 cube * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1181 1.1 cube * whole kernel sysctl tree is built, it is not possible to add any
1182 1.1 cube * permanent node.
1183 1.1 cube *
1184 1.1 cube * It should be noted that we're not saving the sysctlnode pointer
1185 1.1 cube * we are returned when creating the "tap" node. That structure
1186 1.1 cube * cannot be trusted once out of the calling function, as it might
1187 1.1 cube * get reused. So we just save the MIB number, and always give the
1188 1.1 cube * full path starting from the root for later calls to sysctl_createv
1189 1.1 cube * and sysctl_destroyv.
1190 1.1 cube */
1191 1.1 cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1192 1.1 cube {
1193 1.10 atatat const struct sysctlnode *node;
1194 1.1 cube int error = 0;
1195 1.1 cube
1196 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL,
1197 1.1 cube CTLFLAG_PERMANENT,
1198 1.1 cube CTLTYPE_NODE, "net", NULL,
1199 1.1 cube NULL, 0, NULL, 0,
1200 1.1 cube CTL_NET, CTL_EOL)) != 0)
1201 1.1 cube return;
1202 1.1 cube
1203 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL,
1204 1.1 cube CTLFLAG_PERMANENT,
1205 1.1 cube CTLTYPE_NODE, "link", NULL,
1206 1.1 cube NULL, 0, NULL, 0,
1207 1.3 cube CTL_NET, AF_LINK, CTL_EOL)) != 0)
1208 1.1 cube return;
1209 1.1 cube
1210 1.1 cube /*
1211 1.1 cube * The first four parameters of sysctl_createv are for management.
1212 1.1 cube *
1213 1.1 cube * The four that follows, here starting with a '0' for the flags,
1214 1.1 cube * describe the node.
1215 1.1 cube *
1216 1.1 cube * The next series of four set its value, through various possible
1217 1.1 cube * means.
1218 1.1 cube *
1219 1.1 cube * Last but not least, the path to the node is described. That path
1220 1.1 cube * is relative to the given root (third argument). Here we're
1221 1.1 cube * starting from the root.
1222 1.1 cube */
1223 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, &node,
1224 1.1 cube CTLFLAG_PERMANENT,
1225 1.1 cube CTLTYPE_NODE, "tap", NULL,
1226 1.1 cube NULL, 0, NULL, 0,
1227 1.3 cube CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1228 1.1 cube return;
1229 1.1 cube tap_node = node->sysctl_num;
1230 1.1 cube }
1231 1.1 cube
1232 1.1 cube /*
1233 1.1 cube * The helper functions make Andrew Brown's interface really
1234 1.1 cube * shine. It makes possible to create value on the fly whether
1235 1.1 cube * the sysctl value is read or written.
1236 1.1 cube *
1237 1.1 cube * As shown as an example in the man page, the first step is to
1238 1.1 cube * create a copy of the node to have sysctl_lookup work on it.
1239 1.1 cube *
1240 1.1 cube * Here, we have more work to do than just a copy, since we have
1241 1.1 cube * to create the string. The first step is to collect the actual
1242 1.1 cube * value of the node, which is a convenient pointer to the softc
1243 1.1 cube * of the interface. From there we create the string and use it
1244 1.1 cube * as the value, but only for the *copy* of the node.
1245 1.1 cube *
1246 1.1 cube * Then we let sysctl_lookup do the magic, which consists in
1247 1.1 cube * setting oldp and newp as required by the operation. When the
1248 1.1 cube * value is read, that means that the string will be copied to
1249 1.1 cube * the user, and when it is written, the new value will be copied
1250 1.1 cube * over in the addr array.
1251 1.1 cube *
1252 1.1 cube * If newp is NULL, the user was reading the value, so we don't
1253 1.1 cube * have anything else to do. If a new value was written, we
1254 1.1 cube * have to check it.
1255 1.1 cube *
1256 1.1 cube * If it is incorrect, we can return an error and leave 'node' as
1257 1.1 cube * it is: since it is a copy of the actual node, the change will
1258 1.1 cube * be forgotten.
1259 1.1 cube *
1260 1.1 cube * Upon a correct input, we commit the change to the ifnet
1261 1.1 cube * structure of our interface.
1262 1.1 cube */
1263 1.1 cube static int
1264 1.1 cube tap_sysctl_handler(SYSCTLFN_ARGS)
1265 1.1 cube {
1266 1.1 cube struct sysctlnode node;
1267 1.1 cube struct tap_softc *sc;
1268 1.1 cube struct ifnet *ifp;
1269 1.1 cube int error;
1270 1.1 cube size_t len;
1271 1.14 christos char addr[3 * ETHER_ADDR_LEN];
1272 1.32 dyoung uint8_t enaddr[ETHER_ADDR_LEN];
1273 1.1 cube
1274 1.1 cube node = *rnode;
1275 1.1 cube sc = node.sysctl_data;
1276 1.1 cube ifp = &sc->sc_ec.ec_if;
1277 1.31 dyoung (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1278 1.1 cube node.sysctl_data = addr;
1279 1.1 cube error = sysctl_lookup(SYSCTLFN_CALL(&node));
1280 1.1 cube if (error || newp == NULL)
1281 1.1 cube return (error);
1282 1.1 cube
1283 1.1 cube len = strlen(addr);
1284 1.1 cube if (len < 11 || len > 17)
1285 1.1 cube return (EINVAL);
1286 1.1 cube
1287 1.1 cube /* Commit change */
1288 1.36 dyoung if (ether_nonstatic_aton(enaddr, addr) != 0)
1289 1.1 cube return (EINVAL);
1290 1.36 dyoung if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN);
1291 1.1 cube return (error);
1292 1.1 cube }
1293