Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.41.2.3
      1  1.41.2.3      yamt /*	$NetBSD: if_tap.c,v 1.41.2.3 2008/06/17 09:15:13 yamt Exp $	*/
      2       1.1      cube 
      3       1.1      cube /*
      4      1.41        ad  *  Copyright (c) 2003, 2004, 2008 The NetBSD Foundation.
      5       1.1      cube  *  All rights reserved.
      6       1.1      cube  *
      7       1.1      cube  *  Redistribution and use in source and binary forms, with or without
      8       1.1      cube  *  modification, are permitted provided that the following conditions
      9       1.1      cube  *  are met:
     10       1.1      cube  *  1. Redistributions of source code must retain the above copyright
     11       1.1      cube  *     notice, this list of conditions and the following disclaimer.
     12       1.1      cube  *  2. Redistributions in binary form must reproduce the above copyright
     13       1.1      cube  *     notice, this list of conditions and the following disclaimer in the
     14       1.1      cube  *     documentation and/or other materials provided with the distribution.
     15       1.6     perry  *
     16       1.1      cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17       1.1      cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18       1.1      cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19       1.1      cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20       1.1      cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21       1.1      cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22       1.1      cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23       1.1      cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24       1.1      cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25       1.1      cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26       1.1      cube  *  POSSIBILITY OF SUCH DAMAGE.
     27       1.1      cube  */
     28       1.1      cube 
     29       1.1      cube /*
     30       1.1      cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31       1.1      cube  * device to the system, but can also be accessed by userland through a
     32       1.1      cube  * character device interface, which allows reading and injecting frames.
     33       1.1      cube  */
     34       1.1      cube 
     35       1.1      cube #include <sys/cdefs.h>
     36  1.41.2.3      yamt __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.41.2.3 2008/06/17 09:15:13 yamt Exp $");
     37       1.1      cube 
     38       1.2      cube #if defined(_KERNEL_OPT)
     39       1.1      cube #include "bpfilter.h"
     40       1.2      cube #endif
     41       1.1      cube 
     42       1.1      cube #include <sys/param.h>
     43       1.1      cube #include <sys/systm.h>
     44       1.1      cube #include <sys/kernel.h>
     45       1.1      cube #include <sys/malloc.h>
     46       1.1      cube #include <sys/conf.h>
     47       1.1      cube #include <sys/device.h>
     48       1.1      cube #include <sys/file.h>
     49       1.1      cube #include <sys/filedesc.h>
     50       1.1      cube #include <sys/ksyms.h>
     51       1.1      cube #include <sys/poll.h>
     52       1.1      cube #include <sys/select.h>
     53       1.1      cube #include <sys/sockio.h>
     54       1.1      cube #include <sys/sysctl.h>
     55      1.17      elad #include <sys/kauth.h>
     56      1.34        ad #include <sys/mutex.h>
     57      1.37        ad #include <sys/simplelock.h>
     58  1.41.2.1      yamt #include <sys/intr.h>
     59       1.1      cube 
     60       1.1      cube #include <net/if.h>
     61       1.1      cube #include <net/if_dl.h>
     62       1.1      cube #include <net/if_ether.h>
     63       1.1      cube #include <net/if_media.h>
     64       1.1      cube #include <net/if_tap.h>
     65       1.1      cube #if NBPFILTER > 0
     66       1.1      cube #include <net/bpf.h>
     67       1.1      cube #endif
     68       1.1      cube 
     69      1.29  christos #include <compat/sys/sockio.h>
     70      1.29  christos 
     71       1.1      cube /*
     72       1.1      cube  * sysctl node management
     73       1.1      cube  *
     74       1.1      cube  * It's not really possible to use a SYSCTL_SETUP block with
     75       1.1      cube  * current LKM implementation, so it is easier to just define
     76       1.1      cube  * our own function.
     77       1.1      cube  *
     78       1.1      cube  * The handler function is a "helper" in Andrew Brown's sysctl
     79       1.1      cube  * framework terminology.  It is used as a gateway for sysctl
     80       1.1      cube  * requests over the nodes.
     81       1.1      cube  *
     82       1.1      cube  * tap_log allows the module to log creations of nodes and
     83       1.1      cube  * destroy them all at once using sysctl_teardown.
     84       1.1      cube  */
     85       1.1      cube static int tap_node;
     86       1.1      cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     87       1.2      cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     88       1.1      cube 
     89       1.1      cube /*
     90       1.1      cube  * Since we're an Ethernet device, we need the 3 following
     91       1.1      cube  * components: a leading struct device, a struct ethercom,
     92       1.1      cube  * and also a struct ifmedia since we don't attach a PHY to
     93       1.1      cube  * ourselves. We could emulate one, but there's no real
     94       1.1      cube  * point.
     95       1.1      cube  */
     96       1.1      cube 
     97       1.1      cube struct tap_softc {
     98      1.40      cube 	device_t	sc_dev;
     99       1.1      cube 	struct ifmedia	sc_im;
    100       1.1      cube 	struct ethercom	sc_ec;
    101       1.1      cube 	int		sc_flags;
    102       1.1      cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    103       1.1      cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    104       1.1      cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    105       1.1      cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
    106       1.1      cube 	struct selinfo	sc_rsel;
    107       1.1      cube 	pid_t		sc_pgid; /* For async. IO */
    108      1.34        ad 	kmutex_t	sc_rdlock;
    109       1.1      cube 	struct simplelock	sc_kqlock;
    110  1.41.2.1      yamt 	void		*sc_sih;
    111       1.1      cube };
    112       1.1      cube 
    113       1.1      cube /* autoconf(9) glue */
    114       1.1      cube 
    115       1.1      cube void	tapattach(int);
    116       1.1      cube 
    117      1.40      cube static int	tap_match(device_t, cfdata_t, void *);
    118      1.40      cube static void	tap_attach(device_t, device_t, void *);
    119      1.40      cube static int	tap_detach(device_t, int);
    120       1.1      cube 
    121      1.40      cube CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    122       1.1      cube     tap_match, tap_attach, tap_detach, NULL);
    123       1.1      cube extern struct cfdriver tap_cd;
    124       1.1      cube 
    125       1.1      cube /* Real device access routines */
    126       1.1      cube static int	tap_dev_close(struct tap_softc *);
    127       1.1      cube static int	tap_dev_read(int, struct uio *, int);
    128       1.1      cube static int	tap_dev_write(int, struct uio *, int);
    129      1.26  christos static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    130      1.11  christos static int	tap_dev_poll(int, int, struct lwp *);
    131       1.1      cube static int	tap_dev_kqfilter(int, struct knote *);
    132       1.1      cube 
    133       1.1      cube /* Fileops access routines */
    134      1.41        ad static int	tap_fops_close(file_t *);
    135      1.41        ad static int	tap_fops_read(file_t *, off_t *, struct uio *,
    136      1.17      elad     kauth_cred_t, int);
    137      1.41        ad static int	tap_fops_write(file_t *, off_t *, struct uio *,
    138      1.17      elad     kauth_cred_t, int);
    139      1.41        ad static int	tap_fops_ioctl(file_t *, u_long, void *);
    140      1.41        ad static int	tap_fops_poll(file_t *, int);
    141      1.41        ad static int	tap_fops_kqfilter(file_t *, struct knote *);
    142       1.1      cube 
    143       1.1      cube static const struct fileops tap_fileops = {
    144       1.1      cube 	tap_fops_read,
    145       1.1      cube 	tap_fops_write,
    146       1.1      cube 	tap_fops_ioctl,
    147       1.1      cube 	fnullop_fcntl,
    148       1.1      cube 	tap_fops_poll,
    149       1.1      cube 	fbadop_stat,
    150       1.1      cube 	tap_fops_close,
    151       1.1      cube 	tap_fops_kqfilter,
    152       1.1      cube };
    153       1.1      cube 
    154       1.1      cube /* Helper for cloning open() */
    155      1.11  christos static int	tap_dev_cloner(struct lwp *);
    156       1.1      cube 
    157       1.1      cube /* Character device routines */
    158      1.11  christos static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    159      1.11  christos static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    160       1.1      cube static int	tap_cdev_read(dev_t, struct uio *, int);
    161       1.1      cube static int	tap_cdev_write(dev_t, struct uio *, int);
    162      1.26  christos static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    163      1.11  christos static int	tap_cdev_poll(dev_t, int, struct lwp *);
    164       1.1      cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    165       1.1      cube 
    166       1.1      cube const struct cdevsw tap_cdevsw = {
    167       1.1      cube 	tap_cdev_open, tap_cdev_close,
    168       1.1      cube 	tap_cdev_read, tap_cdev_write,
    169       1.1      cube 	tap_cdev_ioctl, nostop, notty,
    170       1.1      cube 	tap_cdev_poll, nommap,
    171       1.1      cube 	tap_cdev_kqfilter,
    172      1.20  christos 	D_OTHER,
    173       1.1      cube };
    174       1.1      cube 
    175       1.1      cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    176       1.1      cube 
    177       1.1      cube /* kqueue-related routines */
    178       1.1      cube static void	tap_kqdetach(struct knote *);
    179       1.1      cube static int	tap_kqread(struct knote *, long);
    180       1.1      cube 
    181       1.1      cube /*
    182       1.1      cube  * Those are needed by the if_media interface.
    183       1.1      cube  */
    184       1.1      cube 
    185       1.1      cube static int	tap_mediachange(struct ifnet *);
    186       1.1      cube static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    187       1.1      cube 
    188       1.1      cube /*
    189       1.1      cube  * Those are needed by the ifnet interface, and would typically be
    190       1.1      cube  * there for any network interface driver.
    191       1.1      cube  * Some other routines are optional: watchdog and drain.
    192       1.1      cube  */
    193       1.1      cube 
    194       1.1      cube static void	tap_start(struct ifnet *);
    195       1.1      cube static void	tap_stop(struct ifnet *, int);
    196       1.1      cube static int	tap_init(struct ifnet *);
    197      1.26  christos static int	tap_ioctl(struct ifnet *, u_long, void *);
    198       1.1      cube 
    199  1.41.2.1      yamt /* Internal functions */
    200       1.1      cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    201  1.41.2.1      yamt static void	tap_softintr(void *);
    202       1.1      cube 
    203       1.1      cube /*
    204       1.1      cube  * tap is a clonable interface, although it is highly unrealistic for
    205       1.1      cube  * an Ethernet device.
    206       1.1      cube  *
    207       1.1      cube  * Here are the bits needed for a clonable interface.
    208       1.1      cube  */
    209       1.1      cube static int	tap_clone_create(struct if_clone *, int);
    210       1.1      cube static int	tap_clone_destroy(struct ifnet *);
    211       1.1      cube 
    212       1.1      cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    213       1.1      cube 					tap_clone_create,
    214       1.1      cube 					tap_clone_destroy);
    215       1.1      cube 
    216       1.1      cube /* Helper functionis shared by the two cloning code paths */
    217       1.1      cube static struct tap_softc *	tap_clone_creator(int);
    218      1.40      cube int	tap_clone_destroyer(device_t);
    219       1.1      cube 
    220       1.1      cube void
    221      1.23  christos tapattach(int n)
    222       1.1      cube {
    223       1.1      cube 	int error;
    224       1.1      cube 
    225       1.1      cube 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    226       1.1      cube 	if (error) {
    227       1.1      cube 		aprint_error("%s: unable to register cfattach\n",
    228       1.1      cube 		    tap_cd.cd_name);
    229       1.1      cube 		(void)config_cfdriver_detach(&tap_cd);
    230       1.1      cube 		return;
    231       1.1      cube 	}
    232       1.1      cube 
    233       1.1      cube 	if_clone_attach(&tap_cloners);
    234       1.1      cube }
    235       1.1      cube 
    236       1.1      cube /* Pretty much useless for a pseudo-device */
    237       1.1      cube static int
    238      1.40      cube tap_match(device_t parent, cfdata_t cfdata, void *arg)
    239       1.1      cube {
    240      1.40      cube 
    241       1.1      cube 	return (1);
    242       1.1      cube }
    243       1.1      cube 
    244       1.1      cube void
    245      1.40      cube tap_attach(device_t parent, device_t self, void *aux)
    246       1.1      cube {
    247      1.40      cube 	struct tap_softc *sc = device_private(self);
    248       1.1      cube 	struct ifnet *ifp;
    249      1.18    kardel 	const struct sysctlnode *node;
    250      1.38      matt 	uint8_t enaddr[ETHER_ADDR_LEN] =
    251       1.7      cube 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    252      1.14  christos 	char enaddrstr[3 * ETHER_ADDR_LEN];
    253      1.18    kardel 	struct timeval tv;
    254       1.1      cube 	uint32_t ui;
    255       1.1      cube 	int error;
    256       1.1      cube 
    257      1.40      cube 	sc->sc_dev = self;
    258  1.41.2.1      yamt 	sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
    259      1.40      cube 
    260       1.1      cube 	/*
    261       1.1      cube 	 * In order to obtain unique initial Ethernet address on a host,
    262      1.18    kardel 	 * do some randomisation using the current uptime.  It's not meant
    263      1.18    kardel 	 * for anything but avoiding hard-coding an address.
    264       1.1      cube 	 */
    265      1.18    kardel 	getmicrouptime(&tv);
    266      1.18    kardel 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    267      1.38      matt 	memcpy(enaddr+3, (uint8_t *)&ui, 3);
    268       1.1      cube 
    269      1.40      cube 	aprint_verbose_dev(self, "Ethernet address %s\n",
    270      1.14  christos 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    271       1.1      cube 
    272       1.1      cube 	/*
    273       1.1      cube 	 * Why 1000baseT? Why not? You can add more.
    274       1.1      cube 	 *
    275       1.1      cube 	 * Note that there are 3 steps: init, one or several additions to
    276       1.1      cube 	 * list of supported media, and in the end, the selection of one
    277       1.1      cube 	 * of them.
    278       1.1      cube 	 */
    279       1.1      cube 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    280       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    281       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    282       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    283       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    284       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    285       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    286       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    287       1.1      cube 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    288       1.1      cube 
    289       1.1      cube 	/*
    290       1.1      cube 	 * One should note that an interface must do multicast in order
    291       1.1      cube 	 * to support IPv6.
    292       1.1      cube 	 */
    293       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    294      1.40      cube 	strcpy(ifp->if_xname, device_xname(self));
    295       1.1      cube 	ifp->if_softc	= sc;
    296       1.1      cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    297       1.1      cube 	ifp->if_ioctl	= tap_ioctl;
    298       1.1      cube 	ifp->if_start	= tap_start;
    299       1.1      cube 	ifp->if_stop	= tap_stop;
    300       1.1      cube 	ifp->if_init	= tap_init;
    301       1.1      cube 	IFQ_SET_READY(&ifp->if_snd);
    302       1.1      cube 
    303       1.1      cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    304       1.1      cube 
    305       1.1      cube 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    306       1.1      cube 	 * being common to all network interface drivers. */
    307       1.1      cube 	if_attach(ifp);
    308       1.1      cube 	ether_ifattach(ifp, enaddr);
    309       1.1      cube 
    310       1.1      cube 	sc->sc_flags = 0;
    311       1.1      cube 
    312       1.1      cube 	/*
    313       1.1      cube 	 * Add a sysctl node for that interface.
    314       1.1      cube 	 *
    315       1.1      cube 	 * The pointer transmitted is not a string, but instead a pointer to
    316       1.1      cube 	 * the softc structure, which we can use to build the string value on
    317       1.1      cube 	 * the fly in the helper function of the node.  See the comments for
    318       1.1      cube 	 * tap_sysctl_handler for details.
    319      1.21      cube 	 *
    320      1.21      cube 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    321      1.21      cube 	 * component.  However, we can allocate a number ourselves, as we are
    322      1.21      cube 	 * the only consumer of the net.link.<iface> node.  In this case, the
    323      1.21      cube 	 * unit number is conveniently used to number the node.  CTL_CREATE
    324      1.21      cube 	 * would just work, too.
    325       1.1      cube 	 */
    326       1.1      cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    327       1.1      cube 	    &node, CTLFLAG_READWRITE,
    328      1.40      cube 	    CTLTYPE_STRING, device_xname(self), NULL,
    329       1.1      cube 	    tap_sysctl_handler, 0, sc, 18,
    330      1.40      cube 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    331      1.15   thorpej 	    CTL_EOL)) != 0)
    332      1.40      cube 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    333      1.40      cube 		    error);
    334       1.1      cube 
    335       1.1      cube 	/*
    336       1.1      cube 	 * Initialize the two locks for the device.
    337       1.1      cube 	 *
    338       1.1      cube 	 * We need a lock here because even though the tap device can be
    339       1.1      cube 	 * opened only once, the file descriptor might be passed to another
    340       1.1      cube 	 * process, say a fork(2)ed child.
    341       1.1      cube 	 *
    342       1.1      cube 	 * The Giant saves us from most of the hassle, but since the read
    343       1.1      cube 	 * operation can sleep, we don't want two processes to wake up at
    344       1.1      cube 	 * the same moment and both try and dequeue a single packet.
    345       1.1      cube 	 *
    346       1.1      cube 	 * The queue for event listeners (used by kqueue(9), see below) has
    347       1.1      cube 	 * to be protected, too, but we don't need the same level of
    348       1.1      cube 	 * complexity for that lock, so a simple spinning lock is fine.
    349       1.1      cube 	 */
    350      1.34        ad 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    351       1.1      cube 	simple_lock_init(&sc->sc_kqlock);
    352       1.1      cube }
    353       1.1      cube 
    354       1.1      cube /*
    355       1.1      cube  * When detaching, we do the inverse of what is done in the attach
    356       1.1      cube  * routine, in reversed order.
    357       1.1      cube  */
    358       1.1      cube static int
    359      1.40      cube tap_detach(device_t self, int flags)
    360       1.1      cube {
    361      1.40      cube 	struct tap_softc *sc = device_private(self);
    362       1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    363       1.1      cube 	int error, s;
    364       1.1      cube 
    365       1.1      cube 	sc->sc_flags |= TAP_GOING;
    366       1.1      cube 	s = splnet();
    367       1.1      cube 	tap_stop(ifp, 1);
    368       1.1      cube 	if_down(ifp);
    369       1.1      cube 	splx(s);
    370       1.1      cube 
    371  1.41.2.1      yamt 	softint_disestablish(sc->sc_sih);
    372  1.41.2.1      yamt 
    373       1.1      cube 	/*
    374       1.1      cube 	 * Destroying a single leaf is a very straightforward operation using
    375       1.1      cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    376       1.1      cube 	 * CTL_EOL.
    377       1.1      cube 	 */
    378       1.3      cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    379      1.40      cube 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    380      1.40      cube 		aprint_error_dev(self,
    381      1.40      cube 		    "sysctl_destroyv returned %d, ignoring\n", error);
    382       1.1      cube 	ether_ifdetach(ifp);
    383       1.1      cube 	if_detach(ifp);
    384       1.1      cube 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    385      1.34        ad 	mutex_destroy(&sc->sc_rdlock);
    386       1.1      cube 
    387       1.1      cube 	return (0);
    388       1.1      cube }
    389       1.1      cube 
    390       1.1      cube /*
    391       1.1      cube  * This function is called by the ifmedia layer to notify the driver
    392       1.1      cube  * that the user requested a media change.  A real driver would
    393       1.1      cube  * reconfigure the hardware.
    394       1.1      cube  */
    395       1.1      cube static int
    396      1.23  christos tap_mediachange(struct ifnet *ifp)
    397       1.1      cube {
    398       1.1      cube 	return (0);
    399       1.1      cube }
    400       1.1      cube 
    401       1.1      cube /*
    402       1.1      cube  * Here the user asks for the currently used media.
    403       1.1      cube  */
    404       1.1      cube static void
    405       1.1      cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    406       1.1      cube {
    407       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    408       1.1      cube 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    409       1.1      cube }
    410       1.1      cube 
    411       1.1      cube /*
    412       1.1      cube  * This is the function where we SEND packets.
    413       1.1      cube  *
    414       1.1      cube  * There is no 'receive' equivalent.  A typical driver will get
    415       1.1      cube  * interrupts from the hardware, and from there will inject new packets
    416       1.1      cube  * into the network stack.
    417       1.1      cube  *
    418       1.1      cube  * Once handled, a packet must be freed.  A real driver might not be able
    419       1.1      cube  * to fit all the pending packets into the hardware, and is allowed to
    420       1.1      cube  * return before having sent all the packets.  It should then use the
    421       1.1      cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    422       1.1      cube  *
    423       1.1      cube  * There are also other flags one should check, such as IFF_PAUSE.
    424       1.1      cube  *
    425       1.1      cube  * It is our duty to make packets available to BPF listeners.
    426       1.1      cube  *
    427       1.1      cube  * You should be aware that this function is called by the Ethernet layer
    428       1.1      cube  * at splnet().
    429       1.1      cube  *
    430       1.1      cube  * When the device is opened, we have to pass the packet(s) to the
    431       1.1      cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    432       1.1      cube  * the packets, and we send a signal to the processes waiting to read.
    433       1.1      cube  *
    434       1.1      cube  * wakeup(sc) is the counterpart to the tsleep call in
    435       1.1      cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    436       1.1      cube  * poll(2) (which includes select(2)) listeners.
    437       1.1      cube  */
    438       1.1      cube static void
    439       1.1      cube tap_start(struct ifnet *ifp)
    440       1.1      cube {
    441       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    442       1.1      cube 	struct mbuf *m0;
    443       1.1      cube 
    444       1.1      cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    445       1.1      cube 		/* Simply drop packets */
    446       1.1      cube 		for(;;) {
    447       1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    448       1.1      cube 			if (m0 == NULL)
    449       1.1      cube 				return;
    450       1.1      cube 
    451       1.1      cube 			ifp->if_opackets++;
    452       1.1      cube #if NBPFILTER > 0
    453       1.1      cube 			if (ifp->if_bpf)
    454       1.1      cube 				bpf_mtap(ifp->if_bpf, m0);
    455       1.1      cube #endif
    456       1.1      cube 
    457       1.1      cube 			m_freem(m0);
    458       1.1      cube 		}
    459       1.1      cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    460       1.1      cube 		ifp->if_flags |= IFF_OACTIVE;
    461       1.1      cube 		wakeup(sc);
    462      1.39     rmind 		selnotify(&sc->sc_rsel, 0, 1);
    463       1.1      cube 		if (sc->sc_flags & TAP_ASYNCIO)
    464  1.41.2.1      yamt 			softint_schedule(sc->sc_sih);
    465  1.41.2.1      yamt 	}
    466  1.41.2.1      yamt }
    467  1.41.2.1      yamt 
    468  1.41.2.1      yamt static void
    469  1.41.2.1      yamt tap_softintr(void *cookie)
    470  1.41.2.1      yamt {
    471  1.41.2.1      yamt 	struct tap_softc *sc;
    472  1.41.2.1      yamt 	struct ifnet *ifp;
    473  1.41.2.1      yamt 	int a, b;
    474  1.41.2.1      yamt 
    475  1.41.2.1      yamt 	sc = cookie;
    476  1.41.2.1      yamt 
    477  1.41.2.1      yamt 	if (sc->sc_flags & TAP_ASYNCIO) {
    478  1.41.2.1      yamt 		ifp = &sc->sc_ec.ec_if;
    479  1.41.2.1      yamt 		if (ifp->if_flags & IFF_RUNNING) {
    480  1.41.2.1      yamt 			a = POLL_IN;
    481  1.41.2.1      yamt 			b = POLLIN|POLLRDNORM;
    482  1.41.2.1      yamt 		} else {
    483  1.41.2.1      yamt 			a = POLL_HUP;
    484  1.41.2.1      yamt 			b = 0;
    485  1.41.2.1      yamt 		}
    486  1.41.2.1      yamt 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    487       1.1      cube 	}
    488       1.1      cube }
    489       1.1      cube 
    490       1.1      cube /*
    491       1.1      cube  * A typical driver will only contain the following handlers for
    492       1.1      cube  * ioctl calls, except SIOCSIFPHYADDR.
    493       1.1      cube  * The latter is a hack I used to set the Ethernet address of the
    494       1.1      cube  * faked device.
    495       1.1      cube  *
    496       1.1      cube  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    497       1.1      cube  * called under splnet().
    498       1.1      cube  */
    499       1.1      cube static int
    500      1.26  christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    501       1.1      cube {
    502       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    503       1.1      cube 	struct ifreq *ifr = (struct ifreq *)data;
    504       1.1      cube 	int s, error;
    505       1.1      cube 
    506       1.1      cube 	s = splnet();
    507       1.1      cube 
    508       1.1      cube 	switch (cmd) {
    509      1.29  christos #ifdef OSIOCSIFMEDIA
    510      1.29  christos 	case OSIOCSIFMEDIA:
    511      1.29  christos #endif
    512       1.1      cube 	case SIOCSIFMEDIA:
    513       1.1      cube 	case SIOCGIFMEDIA:
    514       1.1      cube 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    515       1.1      cube 		break;
    516       1.1      cube 	case SIOCSIFPHYADDR:
    517       1.1      cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    518       1.1      cube 		break;
    519       1.1      cube 	default:
    520       1.1      cube 		error = ether_ioctl(ifp, cmd, data);
    521       1.1      cube 		if (error == ENETRESET)
    522       1.1      cube 			error = 0;
    523       1.1      cube 		break;
    524       1.1      cube 	}
    525       1.1      cube 
    526       1.1      cube 	splx(s);
    527       1.1      cube 
    528       1.1      cube 	return (error);
    529       1.1      cube }
    530       1.1      cube 
    531       1.1      cube /*
    532       1.1      cube  * Helper function to set Ethernet address.  This shouldn't be done there,
    533       1.1      cube  * and should actually be available to all Ethernet drivers, real or not.
    534       1.1      cube  */
    535       1.1      cube static int
    536      1.23  christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    537       1.1      cube {
    538      1.36    dyoung 	const struct sockaddr_dl *sdl = satosdl(&ifra->ifra_addr);
    539       1.1      cube 
    540      1.36    dyoung 	if (sdl->sdl_family != AF_LINK)
    541       1.1      cube 		return (EINVAL);
    542       1.1      cube 
    543      1.36    dyoung 	if_set_sadl(ifp, CLLADDR(sdl), ETHER_ADDR_LEN);
    544       1.1      cube 
    545       1.1      cube 	return (0);
    546       1.1      cube }
    547       1.1      cube 
    548       1.1      cube /*
    549       1.1      cube  * _init() would typically be called when an interface goes up,
    550       1.1      cube  * meaning it should configure itself into the state in which it
    551       1.1      cube  * can send packets.
    552       1.1      cube  */
    553       1.1      cube static int
    554       1.1      cube tap_init(struct ifnet *ifp)
    555       1.1      cube {
    556       1.1      cube 	ifp->if_flags |= IFF_RUNNING;
    557       1.1      cube 
    558       1.1      cube 	tap_start(ifp);
    559       1.1      cube 
    560       1.1      cube 	return (0);
    561       1.1      cube }
    562       1.1      cube 
    563       1.1      cube /*
    564       1.1      cube  * _stop() is called when an interface goes down.  It is our
    565       1.1      cube  * responsability to validate that state by clearing the
    566       1.1      cube  * IFF_RUNNING flag.
    567       1.1      cube  *
    568       1.1      cube  * We have to wake up all the sleeping processes to have the pending
    569       1.1      cube  * read requests cancelled.
    570       1.1      cube  */
    571       1.1      cube static void
    572      1.23  christos tap_stop(struct ifnet *ifp, int disable)
    573       1.1      cube {
    574       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    575       1.1      cube 
    576       1.1      cube 	ifp->if_flags &= ~IFF_RUNNING;
    577       1.1      cube 	wakeup(sc);
    578      1.39     rmind 	selnotify(&sc->sc_rsel, 0, 1);
    579       1.1      cube 	if (sc->sc_flags & TAP_ASYNCIO)
    580  1.41.2.1      yamt 		softint_schedule(sc->sc_sih);
    581       1.1      cube }
    582       1.1      cube 
    583       1.1      cube /*
    584       1.1      cube  * The 'create' command of ifconfig can be used to create
    585       1.1      cube  * any numbered instance of a given device.  Thus we have to
    586       1.1      cube  * make sure we have enough room in cd_devs to create the
    587       1.1      cube  * user-specified instance.  config_attach_pseudo will do this
    588       1.1      cube  * for us.
    589       1.1      cube  */
    590       1.1      cube static int
    591      1.23  christos tap_clone_create(struct if_clone *ifc, int unit)
    592       1.1      cube {
    593       1.1      cube 	if (tap_clone_creator(unit) == NULL) {
    594       1.1      cube 		aprint_error("%s%d: unable to attach an instance\n",
    595       1.1      cube                     tap_cd.cd_name, unit);
    596       1.1      cube 		return (ENXIO);
    597       1.1      cube 	}
    598       1.1      cube 
    599       1.1      cube 	return (0);
    600       1.1      cube }
    601       1.1      cube 
    602       1.1      cube /*
    603       1.1      cube  * tap(4) can be cloned by two ways:
    604       1.1      cube  *   using 'ifconfig tap0 create', which will use the network
    605       1.1      cube  *     interface cloning API, and call tap_clone_create above.
    606       1.1      cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    607       1.1      cube  *     See below for an explanation on how this part work.
    608       1.1      cube  */
    609       1.1      cube static struct tap_softc *
    610       1.1      cube tap_clone_creator(int unit)
    611       1.1      cube {
    612       1.1      cube 	struct cfdata *cf;
    613       1.1      cube 
    614       1.1      cube 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    615       1.1      cube 	cf->cf_name = tap_cd.cd_name;
    616       1.1      cube 	cf->cf_atname = tap_ca.ca_name;
    617      1.27  drochner 	if (unit == -1) {
    618      1.27  drochner 		/* let autoconf find the first free one */
    619      1.27  drochner 		cf->cf_unit = 0;
    620      1.27  drochner 		cf->cf_fstate = FSTATE_STAR;
    621      1.27  drochner 	} else {
    622      1.27  drochner 		cf->cf_unit = unit;
    623  1.41.2.2      yamt 		cf->cf_fstate = FSTATE_FOUND;
    624      1.27  drochner 	}
    625       1.1      cube 
    626      1.40      cube 	return device_private(config_attach_pseudo(cf));
    627       1.1      cube }
    628       1.1      cube 
    629       1.1      cube /*
    630       1.1      cube  * The clean design of if_clone and autoconf(9) makes that part
    631       1.1      cube  * really straightforward.  The second argument of config_detach
    632       1.1      cube  * means neither QUIET nor FORCED.
    633       1.1      cube  */
    634       1.1      cube static int
    635       1.1      cube tap_clone_destroy(struct ifnet *ifp)
    636       1.1      cube {
    637  1.41.2.2      yamt 	struct tap_softc *sc = ifp->if_softc;
    638  1.41.2.2      yamt 
    639  1.41.2.2      yamt 	return tap_clone_destroyer(sc->sc_dev);
    640       1.1      cube }
    641       1.1      cube 
    642      1.12      cube int
    643      1.40      cube tap_clone_destroyer(device_t dev)
    644       1.1      cube {
    645      1.40      cube 	cfdata_t cf = device_cfdata(dev);
    646       1.1      cube 	int error;
    647       1.1      cube 
    648       1.1      cube 	if ((error = config_detach(dev, 0)) != 0)
    649      1.40      cube 		aprint_error_dev(dev, "unable to detach instance\n");
    650       1.1      cube 	free(cf, M_DEVBUF);
    651       1.1      cube 
    652       1.1      cube 	return (error);
    653       1.1      cube }
    654       1.1      cube 
    655       1.1      cube /*
    656       1.1      cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    657       1.1      cube  * ways:
    658       1.1      cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    659       1.1      cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    660       1.1      cube  *     That interface is destroyed when the process that had it created exits.
    661       1.1      cube  *
    662       1.1      cube  * The first way is managed by the cdevsw structure, and you access interfaces
    663       1.1      cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    664       1.1      cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    665       1.1      cube  *
    666       1.1      cube  * The second way is the so-called "cloning" device.  It's a special minor
    667       1.1      cube  * number (chosen as the maximal number, to allow as much tap devices as
    668       1.1      cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    669       1.1      cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    670       1.1      cube  * tap_dev_cloner.
    671       1.1      cube  *
    672       1.1      cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    673       1.1      cube  * part of open() does nothing but noting that the interface is being used and
    674       1.1      cube  * hence ready to actually handle packets.
    675       1.1      cube  */
    676       1.1      cube 
    677       1.1      cube static int
    678      1.23  christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    679       1.1      cube {
    680       1.1      cube 	struct tap_softc *sc;
    681       1.1      cube 
    682       1.1      cube 	if (minor(dev) == TAP_CLONER)
    683      1.11  christos 		return tap_dev_cloner(l);
    684       1.1      cube 
    685  1.41.2.3      yamt 	sc = device_lookup_private(&tap_cd, minor(dev));
    686       1.1      cube 	if (sc == NULL)
    687       1.1      cube 		return (ENXIO);
    688       1.1      cube 
    689       1.1      cube 	/* The device can only be opened once */
    690       1.1      cube 	if (sc->sc_flags & TAP_INUSE)
    691       1.1      cube 		return (EBUSY);
    692       1.1      cube 	sc->sc_flags |= TAP_INUSE;
    693       1.1      cube 	return (0);
    694       1.1      cube }
    695       1.1      cube 
    696       1.1      cube /*
    697       1.1      cube  * There are several kinds of cloning devices, and the most simple is the one
    698       1.1      cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    699       1.1      cube  * with its own fileops structure (which maps to the various read, write,
    700       1.1      cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    701       1.1      cube  * then actually creates the new tap devices.
    702       1.1      cube  *
    703       1.1      cube  * Once those two steps are successful, we can re-wire the existing file
    704       1.1      cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    705       1.1      cube  * structure as needed (notably f_data gets filled with the fifth parameter
    706       1.1      cube  * passed, the unit of the tap device which will allows us identifying the
    707       1.1      cube  * device later), and returns EMOVEFD.
    708       1.1      cube  *
    709       1.1      cube  * That magic value is interpreted by sys_open() which then replaces the
    710       1.1      cube  * current file descriptor by the new one (through a magic member of struct
    711      1.13     pooka  * lwp, l_dupfd).
    712       1.1      cube  *
    713       1.1      cube  * The tap device is flagged as being busy since it otherwise could be
    714       1.1      cube  * externally accessed through the corresponding device node with the cdevsw
    715       1.1      cube  * interface.
    716       1.1      cube  */
    717       1.1      cube 
    718       1.1      cube static int
    719      1.11  christos tap_dev_cloner(struct lwp *l)
    720       1.1      cube {
    721       1.1      cube 	struct tap_softc *sc;
    722      1.41        ad 	file_t *fp;
    723       1.1      cube 	int error, fd;
    724       1.1      cube 
    725      1.41        ad 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    726       1.1      cube 		return (error);
    727       1.1      cube 
    728      1.27  drochner 	if ((sc = tap_clone_creator(-1)) == NULL) {
    729      1.41        ad 		fd_abort(curproc, fp, fd);
    730       1.1      cube 		return (ENXIO);
    731       1.1      cube 	}
    732       1.1      cube 
    733       1.1      cube 	sc->sc_flags |= TAP_INUSE;
    734       1.1      cube 
    735      1.41        ad 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    736      1.40      cube 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    737       1.1      cube }
    738       1.1      cube 
    739       1.1      cube /*
    740       1.1      cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    741       1.1      cube  * really the same whether we are in cdevsw or fileops mode, the close()
    742       1.1      cube  * function is slightly different in the two cases.
    743       1.1      cube  *
    744       1.1      cube  * As for the other, the core of it is shared in tap_dev_close.  What
    745       1.1      cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    746       1.1      cube  * needs another thing:  the interface is destroyed when the processes that
    747       1.1      cube  * created it closes it.
    748       1.1      cube  */
    749       1.1      cube static int
    750      1.23  christos tap_cdev_close(dev_t dev, int flags, int fmt,
    751      1.23  christos     struct lwp *l)
    752       1.1      cube {
    753       1.1      cube 	struct tap_softc *sc =
    754  1.41.2.3      yamt 	    device_lookup_private(&tap_cd, minor(dev));
    755       1.1      cube 
    756       1.1      cube 	if (sc == NULL)
    757       1.1      cube 		return (ENXIO);
    758       1.1      cube 
    759       1.1      cube 	return tap_dev_close(sc);
    760       1.1      cube }
    761       1.1      cube 
    762       1.1      cube /*
    763       1.1      cube  * It might happen that the administrator used ifconfig to externally destroy
    764       1.1      cube  * the interface.  In that case, tap_fops_close will be called while
    765       1.1      cube  * tap_detach is already happening.  If we called it again from here, we
    766       1.1      cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    767       1.1      cube  */
    768       1.1      cube static int
    769      1.41        ad tap_fops_close(file_t *fp)
    770       1.1      cube {
    771       1.1      cube 	int unit = (intptr_t)fp->f_data;
    772       1.1      cube 	struct tap_softc *sc;
    773       1.1      cube 	int error;
    774       1.1      cube 
    775  1.41.2.3      yamt 	sc = device_lookup_private(&tap_cd, unit);
    776       1.1      cube 	if (sc == NULL)
    777       1.1      cube 		return (ENXIO);
    778       1.1      cube 
    779       1.1      cube 	/* tap_dev_close currently always succeeds, but it might not
    780       1.1      cube 	 * always be the case. */
    781  1.41.2.2      yamt 	KERNEL_LOCK(1, NULL);
    782  1.41.2.2      yamt 	if ((error = tap_dev_close(sc)) != 0) {
    783  1.41.2.2      yamt 		KERNEL_UNLOCK_ONE(NULL);
    784       1.1      cube 		return (error);
    785  1.41.2.2      yamt 	}
    786       1.1      cube 
    787       1.1      cube 	/* Destroy the device now that it is no longer useful,
    788       1.1      cube 	 * unless it's already being destroyed. */
    789  1.41.2.2      yamt 	if ((sc->sc_flags & TAP_GOING) != 0) {
    790  1.41.2.2      yamt 		KERNEL_UNLOCK_ONE(NULL);
    791       1.1      cube 		return (0);
    792  1.41.2.2      yamt 	}
    793       1.1      cube 
    794  1.41.2.2      yamt 	error = tap_clone_destroyer(sc->sc_dev);
    795  1.41.2.2      yamt 	KERNEL_UNLOCK_ONE(NULL);
    796  1.41.2.2      yamt 	return error;
    797       1.1      cube }
    798       1.1      cube 
    799       1.1      cube static int
    800       1.1      cube tap_dev_close(struct tap_softc *sc)
    801       1.1      cube {
    802       1.1      cube 	struct ifnet *ifp;
    803       1.1      cube 	int s;
    804       1.1      cube 
    805       1.1      cube 	s = splnet();
    806       1.1      cube 	/* Let tap_start handle packets again */
    807       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    808       1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    809       1.1      cube 
    810       1.1      cube 	/* Purge output queue */
    811       1.1      cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    812       1.1      cube 		struct mbuf *m;
    813       1.1      cube 
    814       1.1      cube 		for (;;) {
    815       1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    816       1.1      cube 			if (m == NULL)
    817       1.1      cube 				break;
    818       1.1      cube 
    819       1.1      cube 			ifp->if_opackets++;
    820       1.1      cube #if NBPFILTER > 0
    821       1.1      cube 			if (ifp->if_bpf)
    822       1.1      cube 				bpf_mtap(ifp->if_bpf, m);
    823       1.1      cube #endif
    824       1.1      cube 		}
    825       1.1      cube 	}
    826       1.1      cube 	splx(s);
    827       1.1      cube 
    828       1.1      cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    829       1.1      cube 
    830       1.1      cube 	return (0);
    831       1.1      cube }
    832       1.1      cube 
    833       1.1      cube static int
    834       1.1      cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    835       1.1      cube {
    836       1.1      cube 	return tap_dev_read(minor(dev), uio, flags);
    837       1.1      cube }
    838       1.1      cube 
    839       1.1      cube static int
    840      1.41        ad tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    841      1.23  christos     kauth_cred_t cred, int flags)
    842       1.1      cube {
    843  1.41.2.2      yamt 	int error;
    844  1.41.2.2      yamt 
    845  1.41.2.2      yamt 	KERNEL_LOCK(1, NULL);
    846  1.41.2.2      yamt 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
    847  1.41.2.2      yamt 	KERNEL_UNLOCK_ONE(NULL);
    848  1.41.2.2      yamt 	return error;
    849       1.1      cube }
    850       1.1      cube 
    851       1.1      cube static int
    852      1.23  christos tap_dev_read(int unit, struct uio *uio, int flags)
    853       1.1      cube {
    854       1.1      cube 	struct tap_softc *sc =
    855  1.41.2.3      yamt 	    device_lookup_private(&tap_cd, unit);
    856       1.1      cube 	struct ifnet *ifp;
    857       1.1      cube 	struct mbuf *m, *n;
    858       1.1      cube 	int error = 0, s;
    859       1.1      cube 
    860       1.1      cube 	if (sc == NULL)
    861       1.1      cube 		return (ENXIO);
    862       1.1      cube 
    863       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    864       1.1      cube 	if ((ifp->if_flags & IFF_UP) == 0)
    865       1.1      cube 		return (EHOSTDOWN);
    866       1.1      cube 
    867       1.1      cube 	/*
    868       1.1      cube 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    869       1.1      cube 	 */
    870      1.34        ad 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    871      1.34        ad 		if (!mutex_tryenter(&sc->sc_rdlock))
    872      1.34        ad 			return (EWOULDBLOCK);
    873      1.34        ad 	} else {
    874      1.34        ad 		mutex_enter(&sc->sc_rdlock);
    875      1.34        ad 	}
    876       1.1      cube 
    877       1.1      cube 	s = splnet();
    878       1.1      cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    879       1.1      cube 		ifp->if_flags &= ~IFF_OACTIVE;
    880       1.1      cube 		splx(s);
    881       1.1      cube 		/*
    882       1.1      cube 		 * We must release the lock before sleeping, and re-acquire it
    883       1.1      cube 		 * after.
    884       1.1      cube 		 */
    885      1.34        ad 		mutex_exit(&sc->sc_rdlock);
    886       1.1      cube 		if (sc->sc_flags & TAP_NBIO)
    887       1.1      cube 			error = EWOULDBLOCK;
    888       1.1      cube 		else
    889       1.1      cube 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    890       1.1      cube 		if (error != 0)
    891       1.1      cube 			return (error);
    892       1.1      cube 		/* The device might have been downed */
    893       1.1      cube 		if ((ifp->if_flags & IFF_UP) == 0)
    894       1.1      cube 			return (EHOSTDOWN);
    895      1.34        ad 		if ((sc->sc_flags & TAP_NBIO)) {
    896      1.34        ad 			if (!mutex_tryenter(&sc->sc_rdlock))
    897      1.34        ad 				return (EWOULDBLOCK);
    898      1.34        ad 		} else {
    899      1.34        ad 			mutex_enter(&sc->sc_rdlock);
    900      1.34        ad 		}
    901       1.1      cube 		s = splnet();
    902       1.1      cube 	}
    903       1.1      cube 
    904       1.1      cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    905       1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    906       1.1      cube 	splx(s);
    907       1.1      cube 	if (m == NULL) {
    908       1.1      cube 		error = 0;
    909       1.1      cube 		goto out;
    910       1.1      cube 	}
    911       1.1      cube 
    912       1.1      cube 	ifp->if_opackets++;
    913       1.1      cube #if NBPFILTER > 0
    914       1.1      cube 	if (ifp->if_bpf)
    915       1.1      cube 		bpf_mtap(ifp->if_bpf, m);
    916       1.1      cube #endif
    917       1.1      cube 
    918       1.1      cube 	/*
    919       1.1      cube 	 * One read is one packet.
    920       1.1      cube 	 */
    921       1.1      cube 	do {
    922      1.26  christos 		error = uiomove(mtod(m, void *),
    923       1.1      cube 		    min(m->m_len, uio->uio_resid), uio);
    924       1.1      cube 		MFREE(m, n);
    925       1.1      cube 		m = n;
    926       1.1      cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    927       1.1      cube 
    928       1.1      cube 	if (m != NULL)
    929       1.1      cube 		m_freem(m);
    930       1.1      cube 
    931       1.1      cube out:
    932      1.34        ad 	mutex_exit(&sc->sc_rdlock);
    933       1.1      cube 	return (error);
    934       1.1      cube }
    935       1.1      cube 
    936       1.1      cube static int
    937       1.1      cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    938       1.1      cube {
    939       1.1      cube 	return tap_dev_write(minor(dev), uio, flags);
    940       1.1      cube }
    941       1.1      cube 
    942       1.1      cube static int
    943      1.41        ad tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
    944      1.23  christos     kauth_cred_t cred, int flags)
    945       1.1      cube {
    946  1.41.2.2      yamt 	int error;
    947  1.41.2.2      yamt 
    948  1.41.2.2      yamt 	KERNEL_LOCK(1, NULL);
    949  1.41.2.2      yamt 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
    950  1.41.2.2      yamt 	KERNEL_UNLOCK_ONE(NULL);
    951  1.41.2.2      yamt 	return error;
    952       1.1      cube }
    953       1.1      cube 
    954       1.1      cube static int
    955      1.23  christos tap_dev_write(int unit, struct uio *uio, int flags)
    956       1.1      cube {
    957       1.1      cube 	struct tap_softc *sc =
    958  1.41.2.3      yamt 	    device_lookup_private(&tap_cd, unit);
    959       1.1      cube 	struct ifnet *ifp;
    960       1.1      cube 	struct mbuf *m, **mp;
    961       1.1      cube 	int error = 0;
    962       1.9    bouyer 	int s;
    963       1.1      cube 
    964       1.1      cube 	if (sc == NULL)
    965       1.1      cube 		return (ENXIO);
    966       1.1      cube 
    967       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    968       1.1      cube 
    969       1.1      cube 	/* One write, one packet, that's the rule */
    970       1.1      cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    971       1.1      cube 	if (m == NULL) {
    972       1.1      cube 		ifp->if_ierrors++;
    973       1.1      cube 		return (ENOBUFS);
    974       1.1      cube 	}
    975       1.1      cube 	m->m_pkthdr.len = uio->uio_resid;
    976       1.1      cube 
    977       1.1      cube 	mp = &m;
    978       1.1      cube 	while (error == 0 && uio->uio_resid > 0) {
    979       1.1      cube 		if (*mp != m) {
    980       1.1      cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
    981       1.1      cube 			if (*mp == NULL) {
    982       1.1      cube 				error = ENOBUFS;
    983       1.1      cube 				break;
    984       1.1      cube 			}
    985       1.1      cube 		}
    986       1.1      cube 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    987      1.26  christos 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
    988       1.1      cube 		mp = &(*mp)->m_next;
    989       1.1      cube 	}
    990       1.1      cube 	if (error) {
    991       1.1      cube 		ifp->if_ierrors++;
    992       1.1      cube 		m_freem(m);
    993       1.1      cube 		return (error);
    994       1.1      cube 	}
    995       1.1      cube 
    996       1.1      cube 	ifp->if_ipackets++;
    997       1.1      cube 	m->m_pkthdr.rcvif = ifp;
    998       1.1      cube 
    999       1.1      cube #if NBPFILTER > 0
   1000       1.1      cube 	if (ifp->if_bpf)
   1001       1.1      cube 		bpf_mtap(ifp->if_bpf, m);
   1002       1.1      cube #endif
   1003       1.9    bouyer 	s =splnet();
   1004       1.1      cube 	(*ifp->if_input)(ifp, m);
   1005       1.9    bouyer 	splx(s);
   1006       1.1      cube 
   1007       1.1      cube 	return (0);
   1008       1.1      cube }
   1009       1.1      cube 
   1010       1.1      cube static int
   1011      1.26  christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1012      1.11  christos     struct lwp *l)
   1013       1.1      cube {
   1014      1.11  christos 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1015       1.1      cube }
   1016       1.1      cube 
   1017       1.1      cube static int
   1018      1.41        ad tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1019       1.1      cube {
   1020      1.41        ad 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
   1021       1.1      cube }
   1022       1.1      cube 
   1023       1.1      cube static int
   1024      1.26  christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1025       1.1      cube {
   1026       1.1      cube 	struct tap_softc *sc =
   1027  1.41.2.3      yamt 	    device_lookup_private(&tap_cd, unit);
   1028       1.1      cube 	int error = 0;
   1029       1.1      cube 
   1030       1.1      cube 	if (sc == NULL)
   1031       1.1      cube 		return (ENXIO);
   1032       1.1      cube 
   1033       1.1      cube 	switch (cmd) {
   1034       1.1      cube 	case FIONREAD:
   1035       1.1      cube 		{
   1036       1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1037       1.1      cube 			struct mbuf *m;
   1038       1.1      cube 			int s;
   1039       1.1      cube 
   1040       1.1      cube 			s = splnet();
   1041       1.1      cube 			IFQ_POLL(&ifp->if_snd, m);
   1042       1.1      cube 
   1043       1.1      cube 			if (m == NULL)
   1044       1.1      cube 				*(int *)data = 0;
   1045       1.1      cube 			else
   1046       1.1      cube 				*(int *)data = m->m_pkthdr.len;
   1047       1.1      cube 			splx(s);
   1048       1.1      cube 		} break;
   1049       1.1      cube 	case TIOCSPGRP:
   1050       1.1      cube 	case FIOSETOWN:
   1051      1.41        ad 		error = fsetown(&sc->sc_pgid, cmd, data);
   1052       1.1      cube 		break;
   1053       1.1      cube 	case TIOCGPGRP:
   1054       1.1      cube 	case FIOGETOWN:
   1055      1.41        ad 		error = fgetown(sc->sc_pgid, cmd, data);
   1056       1.1      cube 		break;
   1057       1.1      cube 	case FIOASYNC:
   1058       1.1      cube 		if (*(int *)data)
   1059       1.1      cube 			sc->sc_flags |= TAP_ASYNCIO;
   1060       1.1      cube 		else
   1061       1.1      cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1062       1.1      cube 		break;
   1063       1.1      cube 	case FIONBIO:
   1064       1.1      cube 		if (*(int *)data)
   1065       1.1      cube 			sc->sc_flags |= TAP_NBIO;
   1066       1.1      cube 		else
   1067       1.1      cube 			sc->sc_flags &= ~TAP_NBIO;
   1068       1.1      cube 		break;
   1069      1.29  christos #ifdef OTAPGIFNAME
   1070      1.29  christos 	case OTAPGIFNAME:
   1071      1.29  christos #endif
   1072       1.1      cube 	case TAPGIFNAME:
   1073       1.1      cube 		{
   1074       1.1      cube 			struct ifreq *ifr = (struct ifreq *)data;
   1075       1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1076       1.1      cube 
   1077       1.1      cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1078       1.1      cube 		} break;
   1079       1.1      cube 	default:
   1080       1.1      cube 		error = ENOTTY;
   1081       1.1      cube 		break;
   1082       1.1      cube 	}
   1083       1.1      cube 
   1084       1.1      cube 	return (0);
   1085       1.1      cube }
   1086       1.1      cube 
   1087       1.1      cube static int
   1088      1.11  christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1089       1.1      cube {
   1090      1.11  christos 	return tap_dev_poll(minor(dev), events, l);
   1091       1.1      cube }
   1092       1.1      cube 
   1093       1.1      cube static int
   1094      1.41        ad tap_fops_poll(file_t *fp, int events)
   1095       1.1      cube {
   1096      1.41        ad 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
   1097       1.1      cube }
   1098       1.1      cube 
   1099       1.1      cube static int
   1100      1.11  christos tap_dev_poll(int unit, int events, struct lwp *l)
   1101       1.1      cube {
   1102       1.1      cube 	struct tap_softc *sc =
   1103  1.41.2.3      yamt 	    device_lookup_private(&tap_cd, unit);
   1104       1.1      cube 	int revents = 0;
   1105       1.1      cube 
   1106       1.1      cube 	if (sc == NULL)
   1107      1.28  christos 		return POLLERR;
   1108       1.1      cube 
   1109       1.1      cube 	if (events & (POLLIN|POLLRDNORM)) {
   1110       1.1      cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1111       1.1      cube 		struct mbuf *m;
   1112       1.1      cube 		int s;
   1113       1.1      cube 
   1114       1.1      cube 		s = splnet();
   1115       1.1      cube 		IFQ_POLL(&ifp->if_snd, m);
   1116       1.1      cube 		splx(s);
   1117       1.1      cube 
   1118       1.1      cube 		if (m != NULL)
   1119       1.1      cube 			revents |= events & (POLLIN|POLLRDNORM);
   1120       1.1      cube 		else {
   1121       1.4     ragge 			simple_lock(&sc->sc_kqlock);
   1122      1.11  christos 			selrecord(l, &sc->sc_rsel);
   1123       1.1      cube 			simple_unlock(&sc->sc_kqlock);
   1124       1.1      cube 		}
   1125       1.1      cube 	}
   1126       1.1      cube 	revents |= events & (POLLOUT|POLLWRNORM);
   1127       1.1      cube 
   1128       1.1      cube 	return (revents);
   1129       1.1      cube }
   1130       1.1      cube 
   1131       1.1      cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1132       1.1      cube 	tap_kqread };
   1133       1.1      cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1134       1.1      cube 	filt_seltrue };
   1135       1.1      cube 
   1136       1.1      cube static int
   1137       1.1      cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1138       1.1      cube {
   1139       1.1      cube 	return tap_dev_kqfilter(minor(dev), kn);
   1140       1.1      cube }
   1141       1.1      cube 
   1142       1.1      cube static int
   1143      1.41        ad tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1144       1.1      cube {
   1145       1.1      cube 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1146       1.1      cube }
   1147       1.1      cube 
   1148       1.1      cube static int
   1149       1.1      cube tap_dev_kqfilter(int unit, struct knote *kn)
   1150       1.1      cube {
   1151       1.1      cube 	struct tap_softc *sc =
   1152  1.41.2.3      yamt 	    device_lookup_private(&tap_cd, unit);
   1153       1.1      cube 
   1154       1.1      cube 	if (sc == NULL)
   1155       1.1      cube 		return (ENXIO);
   1156       1.1      cube 
   1157  1.41.2.2      yamt 	KERNEL_LOCK(1, NULL);
   1158       1.1      cube 	switch(kn->kn_filter) {
   1159       1.1      cube 	case EVFILT_READ:
   1160       1.1      cube 		kn->kn_fop = &tap_read_filterops;
   1161       1.1      cube 		break;
   1162       1.1      cube 	case EVFILT_WRITE:
   1163       1.1      cube 		kn->kn_fop = &tap_seltrue_filterops;
   1164       1.1      cube 		break;
   1165       1.1      cube 	default:
   1166  1.41.2.2      yamt 		KERNEL_UNLOCK_ONE(NULL);
   1167      1.35     pooka 		return (EINVAL);
   1168       1.1      cube 	}
   1169       1.1      cube 
   1170       1.1      cube 	kn->kn_hook = sc;
   1171       1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1172       1.1      cube 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1173       1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1174  1.41.2.2      yamt 	KERNEL_UNLOCK_ONE(NULL);
   1175       1.1      cube 	return (0);
   1176       1.1      cube }
   1177       1.1      cube 
   1178       1.1      cube static void
   1179       1.1      cube tap_kqdetach(struct knote *kn)
   1180       1.1      cube {
   1181       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1182       1.1      cube 
   1183  1.41.2.2      yamt 	KERNEL_LOCK(1, NULL);
   1184       1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1185       1.1      cube 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1186       1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1187  1.41.2.2      yamt 	KERNEL_UNLOCK_ONE(NULL);
   1188       1.1      cube }
   1189       1.1      cube 
   1190       1.1      cube static int
   1191      1.23  christos tap_kqread(struct knote *kn, long hint)
   1192       1.1      cube {
   1193       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1194       1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1195       1.1      cube 	struct mbuf *m;
   1196  1.41.2.2      yamt 	int s, rv;
   1197       1.1      cube 
   1198  1.41.2.2      yamt 	KERNEL_LOCK(1, NULL);
   1199       1.1      cube 	s = splnet();
   1200       1.1      cube 	IFQ_POLL(&ifp->if_snd, m);
   1201       1.1      cube 
   1202       1.1      cube 	if (m == NULL)
   1203       1.1      cube 		kn->kn_data = 0;
   1204       1.1      cube 	else
   1205       1.1      cube 		kn->kn_data = m->m_pkthdr.len;
   1206       1.1      cube 	splx(s);
   1207  1.41.2.2      yamt 	rv = (kn->kn_data != 0 ? 1 : 0);
   1208  1.41.2.2      yamt 	KERNEL_UNLOCK_ONE(NULL);
   1209  1.41.2.2      yamt 	return rv;
   1210       1.1      cube }
   1211       1.1      cube 
   1212       1.1      cube /*
   1213       1.1      cube  * sysctl management routines
   1214       1.1      cube  * You can set the address of an interface through:
   1215       1.1      cube  * net.link.tap.tap<number>
   1216       1.1      cube  *
   1217       1.1      cube  * Note the consistent use of tap_log in order to use
   1218       1.1      cube  * sysctl_teardown at unload time.
   1219       1.1      cube  *
   1220       1.1      cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1221       1.1      cube  * blocks register a function in a special section of the kernel
   1222       1.1      cube  * (called a link set) which is used at init_sysctl() time to cycle
   1223       1.1      cube  * through all those functions to create the kernel's sysctl tree.
   1224       1.1      cube  *
   1225       1.1      cube  * It is not (currently) possible to use link sets in a LKM, so the
   1226       1.1      cube  * easiest is to simply call our own setup routine at load time.
   1227       1.1      cube  *
   1228       1.1      cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1229       1.1      cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1230       1.1      cube  * whole kernel sysctl tree is built, it is not possible to add any
   1231       1.1      cube  * permanent node.
   1232       1.1      cube  *
   1233       1.1      cube  * It should be noted that we're not saving the sysctlnode pointer
   1234       1.1      cube  * we are returned when creating the "tap" node.  That structure
   1235       1.1      cube  * cannot be trusted once out of the calling function, as it might
   1236       1.1      cube  * get reused.  So we just save the MIB number, and always give the
   1237       1.1      cube  * full path starting from the root for later calls to sysctl_createv
   1238       1.1      cube  * and sysctl_destroyv.
   1239       1.1      cube  */
   1240       1.1      cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1241       1.1      cube {
   1242      1.10    atatat 	const struct sysctlnode *node;
   1243       1.1      cube 	int error = 0;
   1244       1.1      cube 
   1245       1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1246       1.1      cube 	    CTLFLAG_PERMANENT,
   1247       1.1      cube 	    CTLTYPE_NODE, "net", NULL,
   1248       1.1      cube 	    NULL, 0, NULL, 0,
   1249       1.1      cube 	    CTL_NET, CTL_EOL)) != 0)
   1250       1.1      cube 		return;
   1251       1.1      cube 
   1252       1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1253       1.1      cube 	    CTLFLAG_PERMANENT,
   1254       1.1      cube 	    CTLTYPE_NODE, "link", NULL,
   1255       1.1      cube 	    NULL, 0, NULL, 0,
   1256       1.3      cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1257       1.1      cube 		return;
   1258       1.1      cube 
   1259       1.1      cube 	/*
   1260       1.1      cube 	 * The first four parameters of sysctl_createv are for management.
   1261       1.1      cube 	 *
   1262       1.1      cube 	 * The four that follows, here starting with a '0' for the flags,
   1263       1.1      cube 	 * describe the node.
   1264       1.1      cube 	 *
   1265       1.1      cube 	 * The next series of four set its value, through various possible
   1266       1.1      cube 	 * means.
   1267       1.1      cube 	 *
   1268       1.1      cube 	 * Last but not least, the path to the node is described.  That path
   1269       1.1      cube 	 * is relative to the given root (third argument).  Here we're
   1270       1.1      cube 	 * starting from the root.
   1271       1.1      cube 	 */
   1272       1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1273       1.1      cube 	    CTLFLAG_PERMANENT,
   1274       1.1      cube 	    CTLTYPE_NODE, "tap", NULL,
   1275       1.1      cube 	    NULL, 0, NULL, 0,
   1276       1.3      cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1277       1.1      cube 		return;
   1278       1.1      cube 	tap_node = node->sysctl_num;
   1279       1.1      cube }
   1280       1.1      cube 
   1281       1.1      cube /*
   1282       1.1      cube  * The helper functions make Andrew Brown's interface really
   1283       1.1      cube  * shine.  It makes possible to create value on the fly whether
   1284       1.1      cube  * the sysctl value is read or written.
   1285       1.1      cube  *
   1286       1.1      cube  * As shown as an example in the man page, the first step is to
   1287       1.1      cube  * create a copy of the node to have sysctl_lookup work on it.
   1288       1.1      cube  *
   1289       1.1      cube  * Here, we have more work to do than just a copy, since we have
   1290       1.1      cube  * to create the string.  The first step is to collect the actual
   1291       1.1      cube  * value of the node, which is a convenient pointer to the softc
   1292       1.1      cube  * of the interface.  From there we create the string and use it
   1293       1.1      cube  * as the value, but only for the *copy* of the node.
   1294       1.1      cube  *
   1295       1.1      cube  * Then we let sysctl_lookup do the magic, which consists in
   1296       1.1      cube  * setting oldp and newp as required by the operation.  When the
   1297       1.1      cube  * value is read, that means that the string will be copied to
   1298       1.1      cube  * the user, and when it is written, the new value will be copied
   1299       1.1      cube  * over in the addr array.
   1300       1.1      cube  *
   1301       1.1      cube  * If newp is NULL, the user was reading the value, so we don't
   1302       1.1      cube  * have anything else to do.  If a new value was written, we
   1303       1.1      cube  * have to check it.
   1304       1.1      cube  *
   1305       1.1      cube  * If it is incorrect, we can return an error and leave 'node' as
   1306       1.1      cube  * it is:  since it is a copy of the actual node, the change will
   1307       1.1      cube  * be forgotten.
   1308       1.1      cube  *
   1309       1.1      cube  * Upon a correct input, we commit the change to the ifnet
   1310       1.1      cube  * structure of our interface.
   1311       1.1      cube  */
   1312       1.1      cube static int
   1313       1.1      cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1314       1.1      cube {
   1315       1.1      cube 	struct sysctlnode node;
   1316       1.1      cube 	struct tap_softc *sc;
   1317       1.1      cube 	struct ifnet *ifp;
   1318       1.1      cube 	int error;
   1319       1.1      cube 	size_t len;
   1320      1.14  christos 	char addr[3 * ETHER_ADDR_LEN];
   1321      1.32    dyoung 	uint8_t enaddr[ETHER_ADDR_LEN];
   1322       1.1      cube 
   1323       1.1      cube 	node = *rnode;
   1324       1.1      cube 	sc = node.sysctl_data;
   1325       1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1326      1.31    dyoung 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1327       1.1      cube 	node.sysctl_data = addr;
   1328       1.1      cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1329       1.1      cube 	if (error || newp == NULL)
   1330       1.1      cube 		return (error);
   1331       1.1      cube 
   1332       1.1      cube 	len = strlen(addr);
   1333       1.1      cube 	if (len < 11 || len > 17)
   1334       1.1      cube 		return (EINVAL);
   1335       1.1      cube 
   1336       1.1      cube 	/* Commit change */
   1337      1.36    dyoung 	if (ether_nonstatic_aton(enaddr, addr) != 0)
   1338       1.1      cube 		return (EINVAL);
   1339      1.36    dyoung 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN);
   1340       1.1      cube 	return (error);
   1341       1.1      cube }
   1342