if_tap.c revision 1.55 1 1.55 ad /* $NetBSD: if_tap.c,v 1.55 2009/04/04 10:12:51 ad Exp $ */
2 1.1 cube
3 1.1 cube /*
4 1.55 ad * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 1.1 cube * All rights reserved.
6 1.1 cube *
7 1.1 cube * Redistribution and use in source and binary forms, with or without
8 1.1 cube * modification, are permitted provided that the following conditions
9 1.1 cube * are met:
10 1.1 cube * 1. Redistributions of source code must retain the above copyright
11 1.1 cube * notice, this list of conditions and the following disclaimer.
12 1.1 cube * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cube * notice, this list of conditions and the following disclaimer in the
14 1.1 cube * documentation and/or other materials provided with the distribution.
15 1.6 perry *
16 1.1 cube * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.1 cube * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.1 cube * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.1 cube * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.1 cube * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.1 cube * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.1 cube * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.1 cube * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.1 cube * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.1 cube * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.1 cube * POSSIBILITY OF SUCH DAMAGE.
27 1.1 cube */
28 1.1 cube
29 1.1 cube /*
30 1.1 cube * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 1.1 cube * device to the system, but can also be accessed by userland through a
32 1.1 cube * character device interface, which allows reading and injecting frames.
33 1.1 cube */
34 1.1 cube
35 1.1 cube #include <sys/cdefs.h>
36 1.55 ad __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.55 2009/04/04 10:12:51 ad Exp $");
37 1.1 cube
38 1.2 cube #if defined(_KERNEL_OPT)
39 1.1 cube #include "bpfilter.h"
40 1.54 plunky #include "opt_modular.h"
41 1.54 plunky #include "opt_compat_netbsd.h"
42 1.2 cube #endif
43 1.1 cube
44 1.1 cube #include <sys/param.h>
45 1.1 cube #include <sys/systm.h>
46 1.1 cube #include <sys/kernel.h>
47 1.1 cube #include <sys/malloc.h>
48 1.1 cube #include <sys/conf.h>
49 1.1 cube #include <sys/device.h>
50 1.1 cube #include <sys/file.h>
51 1.1 cube #include <sys/filedesc.h>
52 1.1 cube #include <sys/ksyms.h>
53 1.1 cube #include <sys/poll.h>
54 1.54 plunky #include <sys/proc.h>
55 1.1 cube #include <sys/select.h>
56 1.1 cube #include <sys/sockio.h>
57 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
58 1.1 cube #include <sys/sysctl.h>
59 1.54 plunky #endif
60 1.17 elad #include <sys/kauth.h>
61 1.34 ad #include <sys/mutex.h>
62 1.37 ad #include <sys/simplelock.h>
63 1.42 ad #include <sys/intr.h>
64 1.1 cube
65 1.1 cube #include <net/if.h>
66 1.1 cube #include <net/if_dl.h>
67 1.1 cube #include <net/if_ether.h>
68 1.1 cube #include <net/if_media.h>
69 1.1 cube #include <net/if_tap.h>
70 1.1 cube #if NBPFILTER > 0
71 1.1 cube #include <net/bpf.h>
72 1.1 cube #endif
73 1.1 cube
74 1.29 christos #include <compat/sys/sockio.h>
75 1.29 christos
76 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
77 1.1 cube /*
78 1.1 cube * sysctl node management
79 1.1 cube *
80 1.1 cube * It's not really possible to use a SYSCTL_SETUP block with
81 1.51 ad * current module implementation, so it is easier to just define
82 1.1 cube * our own function.
83 1.1 cube *
84 1.1 cube * The handler function is a "helper" in Andrew Brown's sysctl
85 1.1 cube * framework terminology. It is used as a gateway for sysctl
86 1.1 cube * requests over the nodes.
87 1.1 cube *
88 1.1 cube * tap_log allows the module to log creations of nodes and
89 1.1 cube * destroy them all at once using sysctl_teardown.
90 1.1 cube */
91 1.1 cube static int tap_node;
92 1.1 cube static int tap_sysctl_handler(SYSCTLFN_PROTO);
93 1.2 cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
94 1.54 plunky #endif
95 1.1 cube
96 1.1 cube /*
97 1.1 cube * Since we're an Ethernet device, we need the 3 following
98 1.1 cube * components: a leading struct device, a struct ethercom,
99 1.1 cube * and also a struct ifmedia since we don't attach a PHY to
100 1.1 cube * ourselves. We could emulate one, but there's no real
101 1.1 cube * point.
102 1.1 cube */
103 1.1 cube
104 1.1 cube struct tap_softc {
105 1.40 cube device_t sc_dev;
106 1.1 cube struct ifmedia sc_im;
107 1.1 cube struct ethercom sc_ec;
108 1.1 cube int sc_flags;
109 1.1 cube #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
110 1.1 cube #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
111 1.1 cube #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
112 1.1 cube #define TAP_GOING 0x00000008 /* interface is being destroyed */
113 1.1 cube struct selinfo sc_rsel;
114 1.1 cube pid_t sc_pgid; /* For async. IO */
115 1.34 ad kmutex_t sc_rdlock;
116 1.1 cube struct simplelock sc_kqlock;
117 1.42 ad void *sc_sih;
118 1.1 cube };
119 1.1 cube
120 1.1 cube /* autoconf(9) glue */
121 1.1 cube
122 1.1 cube void tapattach(int);
123 1.1 cube
124 1.40 cube static int tap_match(device_t, cfdata_t, void *);
125 1.40 cube static void tap_attach(device_t, device_t, void *);
126 1.40 cube static int tap_detach(device_t, int);
127 1.1 cube
128 1.40 cube CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
129 1.1 cube tap_match, tap_attach, tap_detach, NULL);
130 1.1 cube extern struct cfdriver tap_cd;
131 1.1 cube
132 1.1 cube /* Real device access routines */
133 1.1 cube static int tap_dev_close(struct tap_softc *);
134 1.1 cube static int tap_dev_read(int, struct uio *, int);
135 1.1 cube static int tap_dev_write(int, struct uio *, int);
136 1.26 christos static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
137 1.11 christos static int tap_dev_poll(int, int, struct lwp *);
138 1.1 cube static int tap_dev_kqfilter(int, struct knote *);
139 1.1 cube
140 1.1 cube /* Fileops access routines */
141 1.41 ad static int tap_fops_close(file_t *);
142 1.41 ad static int tap_fops_read(file_t *, off_t *, struct uio *,
143 1.17 elad kauth_cred_t, int);
144 1.41 ad static int tap_fops_write(file_t *, off_t *, struct uio *,
145 1.17 elad kauth_cred_t, int);
146 1.41 ad static int tap_fops_ioctl(file_t *, u_long, void *);
147 1.41 ad static int tap_fops_poll(file_t *, int);
148 1.41 ad static int tap_fops_kqfilter(file_t *, struct knote *);
149 1.1 cube
150 1.1 cube static const struct fileops tap_fileops = {
151 1.55 ad .fo_read = tap_fops_read,
152 1.55 ad .fo_write = tap_fops_write,
153 1.55 ad .fo_ioctl = tap_fops_ioctl,
154 1.55 ad .fo_fcntl = fnullop_fcntl,
155 1.55 ad .fo_poll = tap_fops_poll,
156 1.55 ad .fo_stat = fbadop_stat,
157 1.55 ad .fo_close = tap_fops_close,
158 1.55 ad .fo_kqfilter = tap_fops_kqfilter,
159 1.55 ad .fo_drain = fnullop_drain,
160 1.1 cube };
161 1.1 cube
162 1.1 cube /* Helper for cloning open() */
163 1.11 christos static int tap_dev_cloner(struct lwp *);
164 1.1 cube
165 1.1 cube /* Character device routines */
166 1.11 christos static int tap_cdev_open(dev_t, int, int, struct lwp *);
167 1.11 christos static int tap_cdev_close(dev_t, int, int, struct lwp *);
168 1.1 cube static int tap_cdev_read(dev_t, struct uio *, int);
169 1.1 cube static int tap_cdev_write(dev_t, struct uio *, int);
170 1.26 christos static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
171 1.11 christos static int tap_cdev_poll(dev_t, int, struct lwp *);
172 1.1 cube static int tap_cdev_kqfilter(dev_t, struct knote *);
173 1.1 cube
174 1.1 cube const struct cdevsw tap_cdevsw = {
175 1.1 cube tap_cdev_open, tap_cdev_close,
176 1.1 cube tap_cdev_read, tap_cdev_write,
177 1.1 cube tap_cdev_ioctl, nostop, notty,
178 1.1 cube tap_cdev_poll, nommap,
179 1.1 cube tap_cdev_kqfilter,
180 1.20 christos D_OTHER,
181 1.1 cube };
182 1.1 cube
183 1.1 cube #define TAP_CLONER 0xfffff /* Maximal minor value */
184 1.1 cube
185 1.1 cube /* kqueue-related routines */
186 1.1 cube static void tap_kqdetach(struct knote *);
187 1.1 cube static int tap_kqread(struct knote *, long);
188 1.1 cube
189 1.1 cube /*
190 1.1 cube * Those are needed by the if_media interface.
191 1.1 cube */
192 1.1 cube
193 1.1 cube static int tap_mediachange(struct ifnet *);
194 1.1 cube static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
195 1.1 cube
196 1.1 cube /*
197 1.1 cube * Those are needed by the ifnet interface, and would typically be
198 1.1 cube * there for any network interface driver.
199 1.1 cube * Some other routines are optional: watchdog and drain.
200 1.1 cube */
201 1.1 cube
202 1.1 cube static void tap_start(struct ifnet *);
203 1.1 cube static void tap_stop(struct ifnet *, int);
204 1.1 cube static int tap_init(struct ifnet *);
205 1.26 christos static int tap_ioctl(struct ifnet *, u_long, void *);
206 1.1 cube
207 1.42 ad /* Internal functions */
208 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
209 1.1 cube static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
210 1.54 plunky #endif
211 1.42 ad static void tap_softintr(void *);
212 1.1 cube
213 1.1 cube /*
214 1.1 cube * tap is a clonable interface, although it is highly unrealistic for
215 1.1 cube * an Ethernet device.
216 1.1 cube *
217 1.1 cube * Here are the bits needed for a clonable interface.
218 1.1 cube */
219 1.1 cube static int tap_clone_create(struct if_clone *, int);
220 1.1 cube static int tap_clone_destroy(struct ifnet *);
221 1.1 cube
222 1.1 cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
223 1.1 cube tap_clone_create,
224 1.1 cube tap_clone_destroy);
225 1.1 cube
226 1.1 cube /* Helper functionis shared by the two cloning code paths */
227 1.1 cube static struct tap_softc * tap_clone_creator(int);
228 1.40 cube int tap_clone_destroyer(device_t);
229 1.1 cube
230 1.1 cube void
231 1.23 christos tapattach(int n)
232 1.1 cube {
233 1.1 cube int error;
234 1.1 cube
235 1.1 cube error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
236 1.1 cube if (error) {
237 1.1 cube aprint_error("%s: unable to register cfattach\n",
238 1.1 cube tap_cd.cd_name);
239 1.1 cube (void)config_cfdriver_detach(&tap_cd);
240 1.1 cube return;
241 1.1 cube }
242 1.1 cube
243 1.1 cube if_clone_attach(&tap_cloners);
244 1.1 cube }
245 1.1 cube
246 1.1 cube /* Pretty much useless for a pseudo-device */
247 1.1 cube static int
248 1.40 cube tap_match(device_t parent, cfdata_t cfdata, void *arg)
249 1.1 cube {
250 1.40 cube
251 1.1 cube return (1);
252 1.1 cube }
253 1.1 cube
254 1.1 cube void
255 1.40 cube tap_attach(device_t parent, device_t self, void *aux)
256 1.1 cube {
257 1.40 cube struct tap_softc *sc = device_private(self);
258 1.1 cube struct ifnet *ifp;
259 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
260 1.18 kardel const struct sysctlnode *node;
261 1.54 plunky int error;
262 1.54 plunky #endif
263 1.38 matt uint8_t enaddr[ETHER_ADDR_LEN] =
264 1.7 cube { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
265 1.14 christos char enaddrstr[3 * ETHER_ADDR_LEN];
266 1.18 kardel struct timeval tv;
267 1.1 cube uint32_t ui;
268 1.1 cube
269 1.40 cube sc->sc_dev = self;
270 1.42 ad sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
271 1.40 cube
272 1.48 hans if (!pmf_device_register(self, NULL, NULL))
273 1.48 hans aprint_error_dev(self, "couldn't establish power handler\n");
274 1.48 hans
275 1.1 cube /*
276 1.1 cube * In order to obtain unique initial Ethernet address on a host,
277 1.18 kardel * do some randomisation using the current uptime. It's not meant
278 1.18 kardel * for anything but avoiding hard-coding an address.
279 1.1 cube */
280 1.18 kardel getmicrouptime(&tv);
281 1.18 kardel ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
282 1.38 matt memcpy(enaddr+3, (uint8_t *)&ui, 3);
283 1.1 cube
284 1.40 cube aprint_verbose_dev(self, "Ethernet address %s\n",
285 1.14 christos ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
286 1.1 cube
287 1.1 cube /*
288 1.1 cube * Why 1000baseT? Why not? You can add more.
289 1.1 cube *
290 1.1 cube * Note that there are 3 steps: init, one or several additions to
291 1.1 cube * list of supported media, and in the end, the selection of one
292 1.1 cube * of them.
293 1.1 cube */
294 1.1 cube ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
295 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
296 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
297 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
298 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
299 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
300 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
301 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
302 1.1 cube ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
303 1.1 cube
304 1.1 cube /*
305 1.1 cube * One should note that an interface must do multicast in order
306 1.1 cube * to support IPv6.
307 1.1 cube */
308 1.1 cube ifp = &sc->sc_ec.ec_if;
309 1.40 cube strcpy(ifp->if_xname, device_xname(self));
310 1.1 cube ifp->if_softc = sc;
311 1.1 cube ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
312 1.1 cube ifp->if_ioctl = tap_ioctl;
313 1.1 cube ifp->if_start = tap_start;
314 1.1 cube ifp->if_stop = tap_stop;
315 1.1 cube ifp->if_init = tap_init;
316 1.1 cube IFQ_SET_READY(&ifp->if_snd);
317 1.1 cube
318 1.1 cube sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
319 1.1 cube
320 1.1 cube /* Those steps are mandatory for an Ethernet driver, the fisrt call
321 1.1 cube * being common to all network interface drivers. */
322 1.1 cube if_attach(ifp);
323 1.1 cube ether_ifattach(ifp, enaddr);
324 1.1 cube
325 1.1 cube sc->sc_flags = 0;
326 1.1 cube
327 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
328 1.1 cube /*
329 1.1 cube * Add a sysctl node for that interface.
330 1.1 cube *
331 1.1 cube * The pointer transmitted is not a string, but instead a pointer to
332 1.1 cube * the softc structure, which we can use to build the string value on
333 1.1 cube * the fly in the helper function of the node. See the comments for
334 1.1 cube * tap_sysctl_handler for details.
335 1.21 cube *
336 1.21 cube * Usually sysctl_createv is called with CTL_CREATE as the before-last
337 1.21 cube * component. However, we can allocate a number ourselves, as we are
338 1.21 cube * the only consumer of the net.link.<iface> node. In this case, the
339 1.21 cube * unit number is conveniently used to number the node. CTL_CREATE
340 1.21 cube * would just work, too.
341 1.1 cube */
342 1.1 cube if ((error = sysctl_createv(NULL, 0, NULL,
343 1.1 cube &node, CTLFLAG_READWRITE,
344 1.40 cube CTLTYPE_STRING, device_xname(self), NULL,
345 1.1 cube tap_sysctl_handler, 0, sc, 18,
346 1.40 cube CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
347 1.15 thorpej CTL_EOL)) != 0)
348 1.40 cube aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
349 1.40 cube error);
350 1.54 plunky #endif
351 1.1 cube
352 1.1 cube /*
353 1.1 cube * Initialize the two locks for the device.
354 1.1 cube *
355 1.1 cube * We need a lock here because even though the tap device can be
356 1.1 cube * opened only once, the file descriptor might be passed to another
357 1.1 cube * process, say a fork(2)ed child.
358 1.1 cube *
359 1.1 cube * The Giant saves us from most of the hassle, but since the read
360 1.1 cube * operation can sleep, we don't want two processes to wake up at
361 1.1 cube * the same moment and both try and dequeue a single packet.
362 1.1 cube *
363 1.1 cube * The queue for event listeners (used by kqueue(9), see below) has
364 1.1 cube * to be protected, too, but we don't need the same level of
365 1.1 cube * complexity for that lock, so a simple spinning lock is fine.
366 1.1 cube */
367 1.34 ad mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
368 1.1 cube simple_lock_init(&sc->sc_kqlock);
369 1.47 rmind
370 1.47 rmind selinit(&sc->sc_rsel);
371 1.1 cube }
372 1.1 cube
373 1.1 cube /*
374 1.1 cube * When detaching, we do the inverse of what is done in the attach
375 1.1 cube * routine, in reversed order.
376 1.1 cube */
377 1.1 cube static int
378 1.40 cube tap_detach(device_t self, int flags)
379 1.1 cube {
380 1.40 cube struct tap_softc *sc = device_private(self);
381 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
382 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
383 1.54 plunky int error;
384 1.54 plunky #endif
385 1.54 plunky int s;
386 1.1 cube
387 1.1 cube sc->sc_flags |= TAP_GOING;
388 1.1 cube s = splnet();
389 1.1 cube tap_stop(ifp, 1);
390 1.1 cube if_down(ifp);
391 1.1 cube splx(s);
392 1.1 cube
393 1.42 ad softint_disestablish(sc->sc_sih);
394 1.42 ad
395 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
396 1.1 cube /*
397 1.1 cube * Destroying a single leaf is a very straightforward operation using
398 1.1 cube * sysctl_destroyv. One should be sure to always end the path with
399 1.1 cube * CTL_EOL.
400 1.1 cube */
401 1.3 cube if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
402 1.40 cube device_unit(sc->sc_dev), CTL_EOL)) != 0)
403 1.40 cube aprint_error_dev(self,
404 1.40 cube "sysctl_destroyv returned %d, ignoring\n", error);
405 1.54 plunky #endif
406 1.1 cube ether_ifdetach(ifp);
407 1.1 cube if_detach(ifp);
408 1.1 cube ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
409 1.47 rmind seldestroy(&sc->sc_rsel);
410 1.34 ad mutex_destroy(&sc->sc_rdlock);
411 1.1 cube
412 1.49 hans pmf_device_deregister(self);
413 1.49 hans
414 1.1 cube return (0);
415 1.1 cube }
416 1.1 cube
417 1.1 cube /*
418 1.1 cube * This function is called by the ifmedia layer to notify the driver
419 1.1 cube * that the user requested a media change. A real driver would
420 1.1 cube * reconfigure the hardware.
421 1.1 cube */
422 1.1 cube static int
423 1.23 christos tap_mediachange(struct ifnet *ifp)
424 1.1 cube {
425 1.1 cube return (0);
426 1.1 cube }
427 1.1 cube
428 1.1 cube /*
429 1.1 cube * Here the user asks for the currently used media.
430 1.1 cube */
431 1.1 cube static void
432 1.1 cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
433 1.1 cube {
434 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
435 1.1 cube imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
436 1.1 cube }
437 1.1 cube
438 1.1 cube /*
439 1.1 cube * This is the function where we SEND packets.
440 1.1 cube *
441 1.1 cube * There is no 'receive' equivalent. A typical driver will get
442 1.1 cube * interrupts from the hardware, and from there will inject new packets
443 1.1 cube * into the network stack.
444 1.1 cube *
445 1.1 cube * Once handled, a packet must be freed. A real driver might not be able
446 1.1 cube * to fit all the pending packets into the hardware, and is allowed to
447 1.1 cube * return before having sent all the packets. It should then use the
448 1.1 cube * if_flags flag IFF_OACTIVE to notify the upper layer.
449 1.1 cube *
450 1.1 cube * There are also other flags one should check, such as IFF_PAUSE.
451 1.1 cube *
452 1.1 cube * It is our duty to make packets available to BPF listeners.
453 1.1 cube *
454 1.1 cube * You should be aware that this function is called by the Ethernet layer
455 1.1 cube * at splnet().
456 1.1 cube *
457 1.1 cube * When the device is opened, we have to pass the packet(s) to the
458 1.1 cube * userland. For that we stay in OACTIVE mode while the userland gets
459 1.1 cube * the packets, and we send a signal to the processes waiting to read.
460 1.1 cube *
461 1.1 cube * wakeup(sc) is the counterpart to the tsleep call in
462 1.1 cube * tap_dev_read, while selnotify() is used for kevent(2) and
463 1.1 cube * poll(2) (which includes select(2)) listeners.
464 1.1 cube */
465 1.1 cube static void
466 1.1 cube tap_start(struct ifnet *ifp)
467 1.1 cube {
468 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
469 1.1 cube struct mbuf *m0;
470 1.1 cube
471 1.1 cube if ((sc->sc_flags & TAP_INUSE) == 0) {
472 1.1 cube /* Simply drop packets */
473 1.1 cube for(;;) {
474 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m0);
475 1.1 cube if (m0 == NULL)
476 1.1 cube return;
477 1.1 cube
478 1.1 cube ifp->if_opackets++;
479 1.1 cube #if NBPFILTER > 0
480 1.1 cube if (ifp->if_bpf)
481 1.1 cube bpf_mtap(ifp->if_bpf, m0);
482 1.1 cube #endif
483 1.1 cube
484 1.1 cube m_freem(m0);
485 1.1 cube }
486 1.1 cube } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
487 1.1 cube ifp->if_flags |= IFF_OACTIVE;
488 1.1 cube wakeup(sc);
489 1.39 rmind selnotify(&sc->sc_rsel, 0, 1);
490 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
491 1.42 ad softint_schedule(sc->sc_sih);
492 1.42 ad }
493 1.42 ad }
494 1.42 ad
495 1.42 ad static void
496 1.42 ad tap_softintr(void *cookie)
497 1.42 ad {
498 1.42 ad struct tap_softc *sc;
499 1.42 ad struct ifnet *ifp;
500 1.42 ad int a, b;
501 1.42 ad
502 1.42 ad sc = cookie;
503 1.42 ad
504 1.42 ad if (sc->sc_flags & TAP_ASYNCIO) {
505 1.42 ad ifp = &sc->sc_ec.ec_if;
506 1.42 ad if (ifp->if_flags & IFF_RUNNING) {
507 1.42 ad a = POLL_IN;
508 1.42 ad b = POLLIN|POLLRDNORM;
509 1.42 ad } else {
510 1.42 ad a = POLL_HUP;
511 1.42 ad b = 0;
512 1.42 ad }
513 1.42 ad fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
514 1.1 cube }
515 1.1 cube }
516 1.1 cube
517 1.1 cube /*
518 1.1 cube * A typical driver will only contain the following handlers for
519 1.1 cube * ioctl calls, except SIOCSIFPHYADDR.
520 1.1 cube * The latter is a hack I used to set the Ethernet address of the
521 1.1 cube * faked device.
522 1.1 cube *
523 1.1 cube * Note that both ifmedia_ioctl() and ether_ioctl() have to be
524 1.1 cube * called under splnet().
525 1.1 cube */
526 1.1 cube static int
527 1.26 christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
528 1.1 cube {
529 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
530 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
531 1.1 cube int s, error;
532 1.1 cube
533 1.1 cube s = splnet();
534 1.1 cube
535 1.1 cube switch (cmd) {
536 1.29 christos #ifdef OSIOCSIFMEDIA
537 1.29 christos case OSIOCSIFMEDIA:
538 1.29 christos #endif
539 1.1 cube case SIOCSIFMEDIA:
540 1.1 cube case SIOCGIFMEDIA:
541 1.1 cube error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
542 1.1 cube break;
543 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
544 1.1 cube case SIOCSIFPHYADDR:
545 1.1 cube error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
546 1.1 cube break;
547 1.54 plunky #endif
548 1.1 cube default:
549 1.1 cube error = ether_ioctl(ifp, cmd, data);
550 1.1 cube if (error == ENETRESET)
551 1.1 cube error = 0;
552 1.1 cube break;
553 1.1 cube }
554 1.1 cube
555 1.1 cube splx(s);
556 1.1 cube
557 1.1 cube return (error);
558 1.1 cube }
559 1.1 cube
560 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
561 1.1 cube /*
562 1.54 plunky * Helper function to set Ethernet address. This has been replaced by
563 1.54 plunky * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
564 1.1 cube */
565 1.1 cube static int
566 1.23 christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
567 1.1 cube {
568 1.53 plunky const struct sockaddr *sa = &ifra->ifra_addr;
569 1.1 cube
570 1.53 plunky if (sa->sa_family != AF_LINK)
571 1.1 cube return (EINVAL);
572 1.1 cube
573 1.53 plunky if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
574 1.1 cube
575 1.1 cube return (0);
576 1.1 cube }
577 1.54 plunky #endif
578 1.1 cube
579 1.1 cube /*
580 1.1 cube * _init() would typically be called when an interface goes up,
581 1.1 cube * meaning it should configure itself into the state in which it
582 1.1 cube * can send packets.
583 1.1 cube */
584 1.1 cube static int
585 1.1 cube tap_init(struct ifnet *ifp)
586 1.1 cube {
587 1.1 cube ifp->if_flags |= IFF_RUNNING;
588 1.1 cube
589 1.1 cube tap_start(ifp);
590 1.1 cube
591 1.1 cube return (0);
592 1.1 cube }
593 1.1 cube
594 1.1 cube /*
595 1.1 cube * _stop() is called when an interface goes down. It is our
596 1.1 cube * responsability to validate that state by clearing the
597 1.1 cube * IFF_RUNNING flag.
598 1.1 cube *
599 1.1 cube * We have to wake up all the sleeping processes to have the pending
600 1.1 cube * read requests cancelled.
601 1.1 cube */
602 1.1 cube static void
603 1.23 christos tap_stop(struct ifnet *ifp, int disable)
604 1.1 cube {
605 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
606 1.1 cube
607 1.1 cube ifp->if_flags &= ~IFF_RUNNING;
608 1.1 cube wakeup(sc);
609 1.39 rmind selnotify(&sc->sc_rsel, 0, 1);
610 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
611 1.42 ad softint_schedule(sc->sc_sih);
612 1.1 cube }
613 1.1 cube
614 1.1 cube /*
615 1.1 cube * The 'create' command of ifconfig can be used to create
616 1.1 cube * any numbered instance of a given device. Thus we have to
617 1.1 cube * make sure we have enough room in cd_devs to create the
618 1.1 cube * user-specified instance. config_attach_pseudo will do this
619 1.1 cube * for us.
620 1.1 cube */
621 1.1 cube static int
622 1.23 christos tap_clone_create(struct if_clone *ifc, int unit)
623 1.1 cube {
624 1.1 cube if (tap_clone_creator(unit) == NULL) {
625 1.1 cube aprint_error("%s%d: unable to attach an instance\n",
626 1.1 cube tap_cd.cd_name, unit);
627 1.1 cube return (ENXIO);
628 1.1 cube }
629 1.1 cube
630 1.1 cube return (0);
631 1.1 cube }
632 1.1 cube
633 1.1 cube /*
634 1.1 cube * tap(4) can be cloned by two ways:
635 1.1 cube * using 'ifconfig tap0 create', which will use the network
636 1.1 cube * interface cloning API, and call tap_clone_create above.
637 1.1 cube * opening the cloning device node, whose minor number is TAP_CLONER.
638 1.1 cube * See below for an explanation on how this part work.
639 1.1 cube */
640 1.1 cube static struct tap_softc *
641 1.1 cube tap_clone_creator(int unit)
642 1.1 cube {
643 1.1 cube struct cfdata *cf;
644 1.1 cube
645 1.1 cube cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
646 1.1 cube cf->cf_name = tap_cd.cd_name;
647 1.1 cube cf->cf_atname = tap_ca.ca_name;
648 1.27 drochner if (unit == -1) {
649 1.27 drochner /* let autoconf find the first free one */
650 1.27 drochner cf->cf_unit = 0;
651 1.27 drochner cf->cf_fstate = FSTATE_STAR;
652 1.27 drochner } else {
653 1.27 drochner cf->cf_unit = unit;
654 1.45 dyoung cf->cf_fstate = FSTATE_FOUND;
655 1.27 drochner }
656 1.1 cube
657 1.40 cube return device_private(config_attach_pseudo(cf));
658 1.1 cube }
659 1.1 cube
660 1.1 cube /*
661 1.1 cube * The clean design of if_clone and autoconf(9) makes that part
662 1.1 cube * really straightforward. The second argument of config_detach
663 1.1 cube * means neither QUIET nor FORCED.
664 1.1 cube */
665 1.1 cube static int
666 1.1 cube tap_clone_destroy(struct ifnet *ifp)
667 1.1 cube {
668 1.45 dyoung struct tap_softc *sc = ifp->if_softc;
669 1.45 dyoung
670 1.45 dyoung return tap_clone_destroyer(sc->sc_dev);
671 1.1 cube }
672 1.1 cube
673 1.12 cube int
674 1.40 cube tap_clone_destroyer(device_t dev)
675 1.1 cube {
676 1.40 cube cfdata_t cf = device_cfdata(dev);
677 1.1 cube int error;
678 1.1 cube
679 1.1 cube if ((error = config_detach(dev, 0)) != 0)
680 1.40 cube aprint_error_dev(dev, "unable to detach instance\n");
681 1.1 cube free(cf, M_DEVBUF);
682 1.1 cube
683 1.1 cube return (error);
684 1.1 cube }
685 1.1 cube
686 1.1 cube /*
687 1.1 cube * tap(4) is a bit of an hybrid device. It can be used in two different
688 1.1 cube * ways:
689 1.1 cube * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
690 1.1 cube * 2. open /dev/tap, get a new interface created and read/write off it.
691 1.1 cube * That interface is destroyed when the process that had it created exits.
692 1.1 cube *
693 1.1 cube * The first way is managed by the cdevsw structure, and you access interfaces
694 1.1 cube * through a (major, minor) mapping: tap4 is obtained by the minor number
695 1.1 cube * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
696 1.1 cube *
697 1.1 cube * The second way is the so-called "cloning" device. It's a special minor
698 1.1 cube * number (chosen as the maximal number, to allow as much tap devices as
699 1.1 cube * possible). The user first opens the cloner (e.g., /dev/tap), and that
700 1.1 cube * call ends in tap_cdev_open. The actual place where it is handled is
701 1.1 cube * tap_dev_cloner.
702 1.1 cube *
703 1.1 cube * An tap device cannot be opened more than once at a time, so the cdevsw
704 1.1 cube * part of open() does nothing but noting that the interface is being used and
705 1.1 cube * hence ready to actually handle packets.
706 1.1 cube */
707 1.1 cube
708 1.1 cube static int
709 1.23 christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
710 1.1 cube {
711 1.1 cube struct tap_softc *sc;
712 1.1 cube
713 1.1 cube if (minor(dev) == TAP_CLONER)
714 1.11 christos return tap_dev_cloner(l);
715 1.1 cube
716 1.46 cegger sc = device_lookup_private(&tap_cd, minor(dev));
717 1.1 cube if (sc == NULL)
718 1.1 cube return (ENXIO);
719 1.1 cube
720 1.1 cube /* The device can only be opened once */
721 1.1 cube if (sc->sc_flags & TAP_INUSE)
722 1.1 cube return (EBUSY);
723 1.1 cube sc->sc_flags |= TAP_INUSE;
724 1.1 cube return (0);
725 1.1 cube }
726 1.1 cube
727 1.1 cube /*
728 1.1 cube * There are several kinds of cloning devices, and the most simple is the one
729 1.1 cube * tap(4) uses. What it does is change the file descriptor with a new one,
730 1.1 cube * with its own fileops structure (which maps to the various read, write,
731 1.1 cube * ioctl functions). It starts allocating a new file descriptor with falloc,
732 1.1 cube * then actually creates the new tap devices.
733 1.1 cube *
734 1.1 cube * Once those two steps are successful, we can re-wire the existing file
735 1.1 cube * descriptor to its new self. This is done with fdclone(): it fills the fp
736 1.1 cube * structure as needed (notably f_data gets filled with the fifth parameter
737 1.1 cube * passed, the unit of the tap device which will allows us identifying the
738 1.1 cube * device later), and returns EMOVEFD.
739 1.1 cube *
740 1.1 cube * That magic value is interpreted by sys_open() which then replaces the
741 1.1 cube * current file descriptor by the new one (through a magic member of struct
742 1.13 pooka * lwp, l_dupfd).
743 1.1 cube *
744 1.1 cube * The tap device is flagged as being busy since it otherwise could be
745 1.1 cube * externally accessed through the corresponding device node with the cdevsw
746 1.1 cube * interface.
747 1.1 cube */
748 1.1 cube
749 1.1 cube static int
750 1.11 christos tap_dev_cloner(struct lwp *l)
751 1.1 cube {
752 1.1 cube struct tap_softc *sc;
753 1.41 ad file_t *fp;
754 1.1 cube int error, fd;
755 1.1 cube
756 1.41 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
757 1.1 cube return (error);
758 1.1 cube
759 1.27 drochner if ((sc = tap_clone_creator(-1)) == NULL) {
760 1.41 ad fd_abort(curproc, fp, fd);
761 1.1 cube return (ENXIO);
762 1.1 cube }
763 1.1 cube
764 1.1 cube sc->sc_flags |= TAP_INUSE;
765 1.1 cube
766 1.41 ad return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
767 1.40 cube (void *)(intptr_t)device_unit(sc->sc_dev));
768 1.1 cube }
769 1.1 cube
770 1.1 cube /*
771 1.1 cube * While all other operations (read, write, ioctl, poll and kqfilter) are
772 1.1 cube * really the same whether we are in cdevsw or fileops mode, the close()
773 1.1 cube * function is slightly different in the two cases.
774 1.1 cube *
775 1.1 cube * As for the other, the core of it is shared in tap_dev_close. What
776 1.1 cube * it does is sufficient for the cdevsw interface, but the cloning interface
777 1.1 cube * needs another thing: the interface is destroyed when the processes that
778 1.1 cube * created it closes it.
779 1.1 cube */
780 1.1 cube static int
781 1.23 christos tap_cdev_close(dev_t dev, int flags, int fmt,
782 1.23 christos struct lwp *l)
783 1.1 cube {
784 1.1 cube struct tap_softc *sc =
785 1.46 cegger device_lookup_private(&tap_cd, minor(dev));
786 1.1 cube
787 1.1 cube if (sc == NULL)
788 1.1 cube return (ENXIO);
789 1.1 cube
790 1.1 cube return tap_dev_close(sc);
791 1.1 cube }
792 1.1 cube
793 1.1 cube /*
794 1.1 cube * It might happen that the administrator used ifconfig to externally destroy
795 1.1 cube * the interface. In that case, tap_fops_close will be called while
796 1.1 cube * tap_detach is already happening. If we called it again from here, we
797 1.1 cube * would dead lock. TAP_GOING ensures that this situation doesn't happen.
798 1.1 cube */
799 1.1 cube static int
800 1.41 ad tap_fops_close(file_t *fp)
801 1.1 cube {
802 1.1 cube int unit = (intptr_t)fp->f_data;
803 1.1 cube struct tap_softc *sc;
804 1.1 cube int error;
805 1.1 cube
806 1.46 cegger sc = device_lookup_private(&tap_cd, unit);
807 1.1 cube if (sc == NULL)
808 1.1 cube return (ENXIO);
809 1.1 cube
810 1.1 cube /* tap_dev_close currently always succeeds, but it might not
811 1.1 cube * always be the case. */
812 1.44 ad KERNEL_LOCK(1, NULL);
813 1.44 ad if ((error = tap_dev_close(sc)) != 0) {
814 1.44 ad KERNEL_UNLOCK_ONE(NULL);
815 1.1 cube return (error);
816 1.44 ad }
817 1.1 cube
818 1.1 cube /* Destroy the device now that it is no longer useful,
819 1.1 cube * unless it's already being destroyed. */
820 1.44 ad if ((sc->sc_flags & TAP_GOING) != 0) {
821 1.44 ad KERNEL_UNLOCK_ONE(NULL);
822 1.1 cube return (0);
823 1.44 ad }
824 1.1 cube
825 1.44 ad error = tap_clone_destroyer(sc->sc_dev);
826 1.44 ad KERNEL_UNLOCK_ONE(NULL);
827 1.44 ad return error;
828 1.1 cube }
829 1.1 cube
830 1.1 cube static int
831 1.1 cube tap_dev_close(struct tap_softc *sc)
832 1.1 cube {
833 1.1 cube struct ifnet *ifp;
834 1.1 cube int s;
835 1.1 cube
836 1.1 cube s = splnet();
837 1.1 cube /* Let tap_start handle packets again */
838 1.1 cube ifp = &sc->sc_ec.ec_if;
839 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
840 1.1 cube
841 1.1 cube /* Purge output queue */
842 1.1 cube if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
843 1.1 cube struct mbuf *m;
844 1.1 cube
845 1.1 cube for (;;) {
846 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
847 1.1 cube if (m == NULL)
848 1.1 cube break;
849 1.1 cube
850 1.1 cube ifp->if_opackets++;
851 1.1 cube #if NBPFILTER > 0
852 1.1 cube if (ifp->if_bpf)
853 1.1 cube bpf_mtap(ifp->if_bpf, m);
854 1.1 cube #endif
855 1.1 cube }
856 1.1 cube }
857 1.1 cube splx(s);
858 1.1 cube
859 1.1 cube sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
860 1.1 cube
861 1.1 cube return (0);
862 1.1 cube }
863 1.1 cube
864 1.1 cube static int
865 1.1 cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
866 1.1 cube {
867 1.1 cube return tap_dev_read(minor(dev), uio, flags);
868 1.1 cube }
869 1.1 cube
870 1.1 cube static int
871 1.41 ad tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
872 1.23 christos kauth_cred_t cred, int flags)
873 1.1 cube {
874 1.44 ad int error;
875 1.44 ad
876 1.44 ad KERNEL_LOCK(1, NULL);
877 1.44 ad error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
878 1.44 ad KERNEL_UNLOCK_ONE(NULL);
879 1.44 ad return error;
880 1.1 cube }
881 1.1 cube
882 1.1 cube static int
883 1.23 christos tap_dev_read(int unit, struct uio *uio, int flags)
884 1.1 cube {
885 1.1 cube struct tap_softc *sc =
886 1.46 cegger device_lookup_private(&tap_cd, unit);
887 1.1 cube struct ifnet *ifp;
888 1.1 cube struct mbuf *m, *n;
889 1.1 cube int error = 0, s;
890 1.1 cube
891 1.1 cube if (sc == NULL)
892 1.1 cube return (ENXIO);
893 1.1 cube
894 1.1 cube ifp = &sc->sc_ec.ec_if;
895 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
896 1.1 cube return (EHOSTDOWN);
897 1.1 cube
898 1.1 cube /*
899 1.1 cube * In the TAP_NBIO case, we have to make sure we won't be sleeping
900 1.1 cube */
901 1.34 ad if ((sc->sc_flags & TAP_NBIO) != 0) {
902 1.34 ad if (!mutex_tryenter(&sc->sc_rdlock))
903 1.34 ad return (EWOULDBLOCK);
904 1.34 ad } else {
905 1.34 ad mutex_enter(&sc->sc_rdlock);
906 1.34 ad }
907 1.1 cube
908 1.1 cube s = splnet();
909 1.1 cube if (IFQ_IS_EMPTY(&ifp->if_snd)) {
910 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
911 1.1 cube /*
912 1.1 cube * We must release the lock before sleeping, and re-acquire it
913 1.1 cube * after.
914 1.1 cube */
915 1.34 ad mutex_exit(&sc->sc_rdlock);
916 1.1 cube if (sc->sc_flags & TAP_NBIO)
917 1.1 cube error = EWOULDBLOCK;
918 1.1 cube else
919 1.1 cube error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
920 1.52 pooka splx(s);
921 1.52 pooka
922 1.1 cube if (error != 0)
923 1.1 cube return (error);
924 1.1 cube /* The device might have been downed */
925 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
926 1.1 cube return (EHOSTDOWN);
927 1.34 ad if ((sc->sc_flags & TAP_NBIO)) {
928 1.34 ad if (!mutex_tryenter(&sc->sc_rdlock))
929 1.34 ad return (EWOULDBLOCK);
930 1.34 ad } else {
931 1.34 ad mutex_enter(&sc->sc_rdlock);
932 1.34 ad }
933 1.1 cube s = splnet();
934 1.1 cube }
935 1.1 cube
936 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
937 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
938 1.1 cube splx(s);
939 1.1 cube if (m == NULL) {
940 1.1 cube error = 0;
941 1.1 cube goto out;
942 1.1 cube }
943 1.1 cube
944 1.1 cube ifp->if_opackets++;
945 1.1 cube #if NBPFILTER > 0
946 1.1 cube if (ifp->if_bpf)
947 1.1 cube bpf_mtap(ifp->if_bpf, m);
948 1.1 cube #endif
949 1.1 cube
950 1.1 cube /*
951 1.1 cube * One read is one packet.
952 1.1 cube */
953 1.1 cube do {
954 1.26 christos error = uiomove(mtod(m, void *),
955 1.1 cube min(m->m_len, uio->uio_resid), uio);
956 1.1 cube MFREE(m, n);
957 1.1 cube m = n;
958 1.1 cube } while (m != NULL && uio->uio_resid > 0 && error == 0);
959 1.1 cube
960 1.1 cube if (m != NULL)
961 1.1 cube m_freem(m);
962 1.1 cube
963 1.1 cube out:
964 1.34 ad mutex_exit(&sc->sc_rdlock);
965 1.1 cube return (error);
966 1.1 cube }
967 1.1 cube
968 1.1 cube static int
969 1.1 cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
970 1.1 cube {
971 1.1 cube return tap_dev_write(minor(dev), uio, flags);
972 1.1 cube }
973 1.1 cube
974 1.1 cube static int
975 1.41 ad tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
976 1.23 christos kauth_cred_t cred, int flags)
977 1.1 cube {
978 1.44 ad int error;
979 1.44 ad
980 1.44 ad KERNEL_LOCK(1, NULL);
981 1.44 ad error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
982 1.44 ad KERNEL_UNLOCK_ONE(NULL);
983 1.44 ad return error;
984 1.1 cube }
985 1.1 cube
986 1.1 cube static int
987 1.23 christos tap_dev_write(int unit, struct uio *uio, int flags)
988 1.1 cube {
989 1.1 cube struct tap_softc *sc =
990 1.46 cegger device_lookup_private(&tap_cd, unit);
991 1.1 cube struct ifnet *ifp;
992 1.1 cube struct mbuf *m, **mp;
993 1.1 cube int error = 0;
994 1.9 bouyer int s;
995 1.1 cube
996 1.1 cube if (sc == NULL)
997 1.1 cube return (ENXIO);
998 1.1 cube
999 1.1 cube ifp = &sc->sc_ec.ec_if;
1000 1.1 cube
1001 1.1 cube /* One write, one packet, that's the rule */
1002 1.1 cube MGETHDR(m, M_DONTWAIT, MT_DATA);
1003 1.1 cube if (m == NULL) {
1004 1.1 cube ifp->if_ierrors++;
1005 1.1 cube return (ENOBUFS);
1006 1.1 cube }
1007 1.1 cube m->m_pkthdr.len = uio->uio_resid;
1008 1.1 cube
1009 1.1 cube mp = &m;
1010 1.1 cube while (error == 0 && uio->uio_resid > 0) {
1011 1.1 cube if (*mp != m) {
1012 1.1 cube MGET(*mp, M_DONTWAIT, MT_DATA);
1013 1.1 cube if (*mp == NULL) {
1014 1.1 cube error = ENOBUFS;
1015 1.1 cube break;
1016 1.1 cube }
1017 1.1 cube }
1018 1.1 cube (*mp)->m_len = min(MHLEN, uio->uio_resid);
1019 1.26 christos error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1020 1.1 cube mp = &(*mp)->m_next;
1021 1.1 cube }
1022 1.1 cube if (error) {
1023 1.1 cube ifp->if_ierrors++;
1024 1.1 cube m_freem(m);
1025 1.1 cube return (error);
1026 1.1 cube }
1027 1.1 cube
1028 1.1 cube ifp->if_ipackets++;
1029 1.1 cube m->m_pkthdr.rcvif = ifp;
1030 1.1 cube
1031 1.1 cube #if NBPFILTER > 0
1032 1.1 cube if (ifp->if_bpf)
1033 1.1 cube bpf_mtap(ifp->if_bpf, m);
1034 1.1 cube #endif
1035 1.9 bouyer s =splnet();
1036 1.1 cube (*ifp->if_input)(ifp, m);
1037 1.9 bouyer splx(s);
1038 1.1 cube
1039 1.1 cube return (0);
1040 1.1 cube }
1041 1.1 cube
1042 1.1 cube static int
1043 1.26 christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1044 1.11 christos struct lwp *l)
1045 1.1 cube {
1046 1.11 christos return tap_dev_ioctl(minor(dev), cmd, data, l);
1047 1.1 cube }
1048 1.1 cube
1049 1.1 cube static int
1050 1.41 ad tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1051 1.1 cube {
1052 1.41 ad return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
1053 1.1 cube }
1054 1.1 cube
1055 1.1 cube static int
1056 1.26 christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1057 1.1 cube {
1058 1.1 cube struct tap_softc *sc =
1059 1.46 cegger device_lookup_private(&tap_cd, unit);
1060 1.1 cube int error = 0;
1061 1.1 cube
1062 1.1 cube if (sc == NULL)
1063 1.1 cube return (ENXIO);
1064 1.1 cube
1065 1.1 cube switch (cmd) {
1066 1.1 cube case FIONREAD:
1067 1.1 cube {
1068 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1069 1.1 cube struct mbuf *m;
1070 1.1 cube int s;
1071 1.1 cube
1072 1.1 cube s = splnet();
1073 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1074 1.1 cube
1075 1.1 cube if (m == NULL)
1076 1.1 cube *(int *)data = 0;
1077 1.1 cube else
1078 1.1 cube *(int *)data = m->m_pkthdr.len;
1079 1.1 cube splx(s);
1080 1.1 cube } break;
1081 1.1 cube case TIOCSPGRP:
1082 1.1 cube case FIOSETOWN:
1083 1.41 ad error = fsetown(&sc->sc_pgid, cmd, data);
1084 1.1 cube break;
1085 1.1 cube case TIOCGPGRP:
1086 1.1 cube case FIOGETOWN:
1087 1.41 ad error = fgetown(sc->sc_pgid, cmd, data);
1088 1.1 cube break;
1089 1.1 cube case FIOASYNC:
1090 1.1 cube if (*(int *)data)
1091 1.1 cube sc->sc_flags |= TAP_ASYNCIO;
1092 1.1 cube else
1093 1.1 cube sc->sc_flags &= ~TAP_ASYNCIO;
1094 1.1 cube break;
1095 1.1 cube case FIONBIO:
1096 1.1 cube if (*(int *)data)
1097 1.1 cube sc->sc_flags |= TAP_NBIO;
1098 1.1 cube else
1099 1.1 cube sc->sc_flags &= ~TAP_NBIO;
1100 1.1 cube break;
1101 1.29 christos #ifdef OTAPGIFNAME
1102 1.29 christos case OTAPGIFNAME:
1103 1.29 christos #endif
1104 1.1 cube case TAPGIFNAME:
1105 1.1 cube {
1106 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
1107 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1108 1.1 cube
1109 1.1 cube strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1110 1.1 cube } break;
1111 1.1 cube default:
1112 1.1 cube error = ENOTTY;
1113 1.1 cube break;
1114 1.1 cube }
1115 1.1 cube
1116 1.1 cube return (0);
1117 1.1 cube }
1118 1.1 cube
1119 1.1 cube static int
1120 1.11 christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1121 1.1 cube {
1122 1.11 christos return tap_dev_poll(minor(dev), events, l);
1123 1.1 cube }
1124 1.1 cube
1125 1.1 cube static int
1126 1.41 ad tap_fops_poll(file_t *fp, int events)
1127 1.1 cube {
1128 1.41 ad return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
1129 1.1 cube }
1130 1.1 cube
1131 1.1 cube static int
1132 1.11 christos tap_dev_poll(int unit, int events, struct lwp *l)
1133 1.1 cube {
1134 1.1 cube struct tap_softc *sc =
1135 1.46 cegger device_lookup_private(&tap_cd, unit);
1136 1.1 cube int revents = 0;
1137 1.1 cube
1138 1.1 cube if (sc == NULL)
1139 1.28 christos return POLLERR;
1140 1.1 cube
1141 1.1 cube if (events & (POLLIN|POLLRDNORM)) {
1142 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1143 1.1 cube struct mbuf *m;
1144 1.1 cube int s;
1145 1.1 cube
1146 1.1 cube s = splnet();
1147 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1148 1.1 cube splx(s);
1149 1.1 cube
1150 1.1 cube if (m != NULL)
1151 1.1 cube revents |= events & (POLLIN|POLLRDNORM);
1152 1.1 cube else {
1153 1.4 ragge simple_lock(&sc->sc_kqlock);
1154 1.11 christos selrecord(l, &sc->sc_rsel);
1155 1.1 cube simple_unlock(&sc->sc_kqlock);
1156 1.1 cube }
1157 1.1 cube }
1158 1.1 cube revents |= events & (POLLOUT|POLLWRNORM);
1159 1.1 cube
1160 1.1 cube return (revents);
1161 1.1 cube }
1162 1.1 cube
1163 1.1 cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1164 1.1 cube tap_kqread };
1165 1.1 cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1166 1.1 cube filt_seltrue };
1167 1.1 cube
1168 1.1 cube static int
1169 1.1 cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1170 1.1 cube {
1171 1.1 cube return tap_dev_kqfilter(minor(dev), kn);
1172 1.1 cube }
1173 1.1 cube
1174 1.1 cube static int
1175 1.41 ad tap_fops_kqfilter(file_t *fp, struct knote *kn)
1176 1.1 cube {
1177 1.1 cube return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
1178 1.1 cube }
1179 1.1 cube
1180 1.1 cube static int
1181 1.1 cube tap_dev_kqfilter(int unit, struct knote *kn)
1182 1.1 cube {
1183 1.1 cube struct tap_softc *sc =
1184 1.46 cegger device_lookup_private(&tap_cd, unit);
1185 1.1 cube
1186 1.1 cube if (sc == NULL)
1187 1.1 cube return (ENXIO);
1188 1.1 cube
1189 1.44 ad KERNEL_LOCK(1, NULL);
1190 1.1 cube switch(kn->kn_filter) {
1191 1.1 cube case EVFILT_READ:
1192 1.1 cube kn->kn_fop = &tap_read_filterops;
1193 1.1 cube break;
1194 1.1 cube case EVFILT_WRITE:
1195 1.1 cube kn->kn_fop = &tap_seltrue_filterops;
1196 1.1 cube break;
1197 1.1 cube default:
1198 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1199 1.35 pooka return (EINVAL);
1200 1.1 cube }
1201 1.1 cube
1202 1.1 cube kn->kn_hook = sc;
1203 1.4 ragge simple_lock(&sc->sc_kqlock);
1204 1.1 cube SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1205 1.1 cube simple_unlock(&sc->sc_kqlock);
1206 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1207 1.1 cube return (0);
1208 1.1 cube }
1209 1.1 cube
1210 1.1 cube static void
1211 1.1 cube tap_kqdetach(struct knote *kn)
1212 1.1 cube {
1213 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1214 1.1 cube
1215 1.44 ad KERNEL_LOCK(1, NULL);
1216 1.4 ragge simple_lock(&sc->sc_kqlock);
1217 1.1 cube SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1218 1.1 cube simple_unlock(&sc->sc_kqlock);
1219 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1220 1.1 cube }
1221 1.1 cube
1222 1.1 cube static int
1223 1.23 christos tap_kqread(struct knote *kn, long hint)
1224 1.1 cube {
1225 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1226 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1227 1.1 cube struct mbuf *m;
1228 1.44 ad int s, rv;
1229 1.1 cube
1230 1.44 ad KERNEL_LOCK(1, NULL);
1231 1.1 cube s = splnet();
1232 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1233 1.1 cube
1234 1.1 cube if (m == NULL)
1235 1.1 cube kn->kn_data = 0;
1236 1.1 cube else
1237 1.1 cube kn->kn_data = m->m_pkthdr.len;
1238 1.1 cube splx(s);
1239 1.44 ad rv = (kn->kn_data != 0 ? 1 : 0);
1240 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1241 1.44 ad return rv;
1242 1.1 cube }
1243 1.1 cube
1244 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
1245 1.1 cube /*
1246 1.1 cube * sysctl management routines
1247 1.1 cube * You can set the address of an interface through:
1248 1.1 cube * net.link.tap.tap<number>
1249 1.1 cube *
1250 1.1 cube * Note the consistent use of tap_log in order to use
1251 1.1 cube * sysctl_teardown at unload time.
1252 1.1 cube *
1253 1.1 cube * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1254 1.1 cube * blocks register a function in a special section of the kernel
1255 1.1 cube * (called a link set) which is used at init_sysctl() time to cycle
1256 1.1 cube * through all those functions to create the kernel's sysctl tree.
1257 1.1 cube *
1258 1.51 ad * It is not possible to use link sets in a module, so the
1259 1.1 cube * easiest is to simply call our own setup routine at load time.
1260 1.1 cube *
1261 1.1 cube * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1262 1.1 cube * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1263 1.1 cube * whole kernel sysctl tree is built, it is not possible to add any
1264 1.1 cube * permanent node.
1265 1.1 cube *
1266 1.1 cube * It should be noted that we're not saving the sysctlnode pointer
1267 1.1 cube * we are returned when creating the "tap" node. That structure
1268 1.1 cube * cannot be trusted once out of the calling function, as it might
1269 1.1 cube * get reused. So we just save the MIB number, and always give the
1270 1.1 cube * full path starting from the root for later calls to sysctl_createv
1271 1.1 cube * and sysctl_destroyv.
1272 1.1 cube */
1273 1.1 cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1274 1.1 cube {
1275 1.10 atatat const struct sysctlnode *node;
1276 1.1 cube int error = 0;
1277 1.1 cube
1278 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL,
1279 1.1 cube CTLFLAG_PERMANENT,
1280 1.1 cube CTLTYPE_NODE, "net", NULL,
1281 1.1 cube NULL, 0, NULL, 0,
1282 1.1 cube CTL_NET, CTL_EOL)) != 0)
1283 1.1 cube return;
1284 1.1 cube
1285 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL,
1286 1.1 cube CTLFLAG_PERMANENT,
1287 1.1 cube CTLTYPE_NODE, "link", NULL,
1288 1.1 cube NULL, 0, NULL, 0,
1289 1.3 cube CTL_NET, AF_LINK, CTL_EOL)) != 0)
1290 1.1 cube return;
1291 1.1 cube
1292 1.1 cube /*
1293 1.1 cube * The first four parameters of sysctl_createv are for management.
1294 1.1 cube *
1295 1.1 cube * The four that follows, here starting with a '0' for the flags,
1296 1.1 cube * describe the node.
1297 1.1 cube *
1298 1.1 cube * The next series of four set its value, through various possible
1299 1.1 cube * means.
1300 1.1 cube *
1301 1.1 cube * Last but not least, the path to the node is described. That path
1302 1.1 cube * is relative to the given root (third argument). Here we're
1303 1.1 cube * starting from the root.
1304 1.1 cube */
1305 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, &node,
1306 1.1 cube CTLFLAG_PERMANENT,
1307 1.1 cube CTLTYPE_NODE, "tap", NULL,
1308 1.1 cube NULL, 0, NULL, 0,
1309 1.3 cube CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1310 1.1 cube return;
1311 1.1 cube tap_node = node->sysctl_num;
1312 1.1 cube }
1313 1.1 cube
1314 1.1 cube /*
1315 1.1 cube * The helper functions make Andrew Brown's interface really
1316 1.1 cube * shine. It makes possible to create value on the fly whether
1317 1.1 cube * the sysctl value is read or written.
1318 1.1 cube *
1319 1.1 cube * As shown as an example in the man page, the first step is to
1320 1.1 cube * create a copy of the node to have sysctl_lookup work on it.
1321 1.1 cube *
1322 1.1 cube * Here, we have more work to do than just a copy, since we have
1323 1.1 cube * to create the string. The first step is to collect the actual
1324 1.1 cube * value of the node, which is a convenient pointer to the softc
1325 1.1 cube * of the interface. From there we create the string and use it
1326 1.1 cube * as the value, but only for the *copy* of the node.
1327 1.1 cube *
1328 1.1 cube * Then we let sysctl_lookup do the magic, which consists in
1329 1.1 cube * setting oldp and newp as required by the operation. When the
1330 1.1 cube * value is read, that means that the string will be copied to
1331 1.1 cube * the user, and when it is written, the new value will be copied
1332 1.1 cube * over in the addr array.
1333 1.1 cube *
1334 1.1 cube * If newp is NULL, the user was reading the value, so we don't
1335 1.1 cube * have anything else to do. If a new value was written, we
1336 1.1 cube * have to check it.
1337 1.1 cube *
1338 1.1 cube * If it is incorrect, we can return an error and leave 'node' as
1339 1.1 cube * it is: since it is a copy of the actual node, the change will
1340 1.1 cube * be forgotten.
1341 1.1 cube *
1342 1.1 cube * Upon a correct input, we commit the change to the ifnet
1343 1.1 cube * structure of our interface.
1344 1.1 cube */
1345 1.1 cube static int
1346 1.1 cube tap_sysctl_handler(SYSCTLFN_ARGS)
1347 1.1 cube {
1348 1.1 cube struct sysctlnode node;
1349 1.1 cube struct tap_softc *sc;
1350 1.1 cube struct ifnet *ifp;
1351 1.1 cube int error;
1352 1.1 cube size_t len;
1353 1.14 christos char addr[3 * ETHER_ADDR_LEN];
1354 1.32 dyoung uint8_t enaddr[ETHER_ADDR_LEN];
1355 1.1 cube
1356 1.1 cube node = *rnode;
1357 1.1 cube sc = node.sysctl_data;
1358 1.1 cube ifp = &sc->sc_ec.ec_if;
1359 1.31 dyoung (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1360 1.1 cube node.sysctl_data = addr;
1361 1.1 cube error = sysctl_lookup(SYSCTLFN_CALL(&node));
1362 1.1 cube if (error || newp == NULL)
1363 1.1 cube return (error);
1364 1.1 cube
1365 1.1 cube len = strlen(addr);
1366 1.1 cube if (len < 11 || len > 17)
1367 1.1 cube return (EINVAL);
1368 1.1 cube
1369 1.1 cube /* Commit change */
1370 1.36 dyoung if (ether_nonstatic_aton(enaddr, addr) != 0)
1371 1.1 cube return (EINVAL);
1372 1.50 dyoung if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1373 1.1 cube return (error);
1374 1.1 cube }
1375 1.54 plunky #endif
1376