Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.6.2.2
      1  1.6.2.1      tron /*	$NetBSD: if_tap.c,v 1.6.2.2 2006/01/21 05:40:24 snj Exp $	*/
      2      1.1      cube 
      3      1.1      cube /*
      4      1.1      cube  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5      1.1      cube  *  All rights reserved.
      6      1.1      cube  *
      7      1.1      cube  *  This code is derived from software contributed to the NetBSD Foundation
      8      1.1      cube  *   by Quentin Garnier.
      9      1.6     perry  *
     10      1.1      cube  *  Redistribution and use in source and binary forms, with or without
     11      1.1      cube  *  modification, are permitted provided that the following conditions
     12      1.1      cube  *  are met:
     13      1.1      cube  *  1. Redistributions of source code must retain the above copyright
     14      1.1      cube  *     notice, this list of conditions and the following disclaimer.
     15      1.1      cube  *  2. Redistributions in binary form must reproduce the above copyright
     16      1.1      cube  *     notice, this list of conditions and the following disclaimer in the
     17      1.1      cube  *     documentation and/or other materials provided with the distribution.
     18      1.1      cube  *  3. All advertising materials mentioning features or use of this software
     19      1.1      cube  *     must display the following acknowledgement:
     20      1.1      cube  *         This product includes software developed by the NetBSD
     21      1.1      cube  *         Foundation, Inc. and its contributors.
     22      1.1      cube  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23      1.1      cube  *     contributors may be used to endorse or promote products derived
     24      1.1      cube  *     from this software without specific prior written permission.
     25      1.6     perry  *
     26      1.1      cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27      1.1      cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28      1.1      cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29      1.1      cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30      1.1      cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31      1.1      cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32      1.1      cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33      1.1      cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34      1.1      cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35      1.1      cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36      1.1      cube  *  POSSIBILITY OF SUCH DAMAGE.
     37      1.1      cube  */
     38      1.1      cube 
     39      1.1      cube /*
     40      1.1      cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41      1.1      cube  * device to the system, but can also be accessed by userland through a
     42      1.1      cube  * character device interface, which allows reading and injecting frames.
     43      1.1      cube  */
     44      1.1      cube 
     45      1.1      cube #include <sys/cdefs.h>
     46  1.6.2.1      tron __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.6.2.2 2006/01/21 05:40:24 snj Exp $");
     47      1.1      cube 
     48      1.2      cube #if defined(_KERNEL_OPT)
     49      1.1      cube #include "bpfilter.h"
     50      1.2      cube #endif
     51      1.1      cube 
     52      1.1      cube #include <sys/param.h>
     53      1.1      cube #include <sys/systm.h>
     54      1.1      cube #include <sys/kernel.h>
     55      1.1      cube #include <sys/malloc.h>
     56      1.1      cube #include <sys/conf.h>
     57      1.1      cube #include <sys/device.h>
     58      1.1      cube #include <sys/file.h>
     59      1.1      cube #include <sys/filedesc.h>
     60      1.1      cube #include <sys/ksyms.h>
     61      1.1      cube #include <sys/poll.h>
     62      1.1      cube #include <sys/select.h>
     63      1.1      cube #include <sys/sockio.h>
     64      1.1      cube #include <sys/sysctl.h>
     65      1.1      cube 
     66      1.1      cube #include <net/if.h>
     67      1.1      cube #include <net/if_dl.h>
     68      1.1      cube #include <net/if_ether.h>
     69      1.1      cube #include <net/if_media.h>
     70      1.1      cube #include <net/if_tap.h>
     71      1.1      cube #if NBPFILTER > 0
     72      1.1      cube #include <net/bpf.h>
     73      1.1      cube #endif
     74      1.1      cube 
     75      1.1      cube /*
     76      1.1      cube  * sysctl node management
     77      1.1      cube  *
     78      1.1      cube  * It's not really possible to use a SYSCTL_SETUP block with
     79      1.1      cube  * current LKM implementation, so it is easier to just define
     80      1.1      cube  * our own function.
     81      1.1      cube  *
     82      1.1      cube  * The handler function is a "helper" in Andrew Brown's sysctl
     83      1.1      cube  * framework terminology.  It is used as a gateway for sysctl
     84      1.1      cube  * requests over the nodes.
     85      1.1      cube  *
     86      1.1      cube  * tap_log allows the module to log creations of nodes and
     87      1.1      cube  * destroy them all at once using sysctl_teardown.
     88      1.1      cube  */
     89      1.1      cube static int tap_node;
     90      1.1      cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     91      1.2      cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     92      1.1      cube 
     93      1.1      cube /*
     94      1.1      cube  * Since we're an Ethernet device, we need the 3 following
     95      1.1      cube  * components: a leading struct device, a struct ethercom,
     96      1.1      cube  * and also a struct ifmedia since we don't attach a PHY to
     97      1.1      cube  * ourselves. We could emulate one, but there's no real
     98      1.1      cube  * point.
     99      1.1      cube  */
    100      1.1      cube 
    101      1.1      cube struct tap_softc {
    102      1.1      cube 	struct device	sc_dev;
    103      1.1      cube 	struct ifmedia	sc_im;
    104      1.1      cube 	struct ethercom	sc_ec;
    105      1.1      cube 	int		sc_flags;
    106      1.1      cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    107      1.1      cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    108      1.1      cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    109      1.1      cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
    110      1.1      cube 	struct selinfo	sc_rsel;
    111      1.1      cube 	pid_t		sc_pgid; /* For async. IO */
    112      1.1      cube 	struct lock	sc_rdlock;
    113      1.1      cube 	struct simplelock	sc_kqlock;
    114      1.1      cube };
    115      1.1      cube 
    116      1.1      cube /* autoconf(9) glue */
    117      1.1      cube 
    118      1.1      cube void	tapattach(int);
    119      1.1      cube 
    120      1.1      cube static int	tap_match(struct device *, struct cfdata *, void *);
    121      1.1      cube static void	tap_attach(struct device *, struct device *, void *);
    122      1.1      cube static int	tap_detach(struct device*, int);
    123      1.1      cube 
    124      1.1      cube /* Ethernet address helper functions */
    125      1.1      cube 
    126      1.1      cube static char	*tap_ether_sprintf(char *, const u_char *);
    127      1.1      cube static int	tap_ether_aton(u_char *, char *);
    128      1.1      cube 
    129      1.1      cube CFATTACH_DECL(tap, sizeof(struct tap_softc),
    130      1.1      cube     tap_match, tap_attach, tap_detach, NULL);
    131      1.1      cube extern struct cfdriver tap_cd;
    132      1.1      cube 
    133      1.1      cube /* Real device access routines */
    134      1.1      cube static int	tap_dev_close(struct tap_softc *);
    135      1.1      cube static int	tap_dev_read(int, struct uio *, int);
    136      1.1      cube static int	tap_dev_write(int, struct uio *, int);
    137      1.1      cube static int	tap_dev_ioctl(int, u_long, caddr_t, struct proc *);
    138      1.1      cube static int	tap_dev_poll(int, int, struct proc *);
    139      1.1      cube static int	tap_dev_kqfilter(int, struct knote *);
    140      1.1      cube 
    141      1.1      cube /* Fileops access routines */
    142      1.1      cube static int	tap_fops_close(struct file *, struct proc *);
    143      1.1      cube static int	tap_fops_read(struct file *, off_t *, struct uio *,
    144      1.1      cube     struct ucred *, int);
    145      1.1      cube static int	tap_fops_write(struct file *, off_t *, struct uio *,
    146      1.1      cube     struct ucred *, int);
    147      1.1      cube static int	tap_fops_ioctl(struct file *, u_long, void *,
    148      1.1      cube     struct proc *);
    149      1.1      cube static int	tap_fops_poll(struct file *, int, struct proc *);
    150      1.1      cube static int	tap_fops_kqfilter(struct file *, struct knote *);
    151      1.1      cube 
    152      1.1      cube static const struct fileops tap_fileops = {
    153      1.1      cube 	tap_fops_read,
    154      1.1      cube 	tap_fops_write,
    155      1.1      cube 	tap_fops_ioctl,
    156      1.1      cube 	fnullop_fcntl,
    157      1.1      cube 	tap_fops_poll,
    158      1.1      cube 	fbadop_stat,
    159      1.1      cube 	tap_fops_close,
    160      1.1      cube 	tap_fops_kqfilter,
    161      1.1      cube };
    162      1.1      cube 
    163      1.1      cube /* Helper for cloning open() */
    164      1.1      cube static int	tap_dev_cloner(struct proc *);
    165      1.1      cube 
    166      1.1      cube /* Character device routines */
    167      1.1      cube static int	tap_cdev_open(dev_t, int, int, struct proc *);
    168      1.1      cube static int	tap_cdev_close(dev_t, int, int, struct proc *);
    169      1.1      cube static int	tap_cdev_read(dev_t, struct uio *, int);
    170      1.1      cube static int	tap_cdev_write(dev_t, struct uio *, int);
    171      1.1      cube static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct proc *);
    172      1.1      cube static int	tap_cdev_poll(dev_t, int, struct proc *);
    173      1.1      cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    174      1.1      cube 
    175      1.1      cube const struct cdevsw tap_cdevsw = {
    176      1.1      cube 	tap_cdev_open, tap_cdev_close,
    177      1.1      cube 	tap_cdev_read, tap_cdev_write,
    178      1.1      cube 	tap_cdev_ioctl, nostop, notty,
    179      1.1      cube 	tap_cdev_poll, nommap,
    180      1.1      cube 	tap_cdev_kqfilter,
    181      1.1      cube };
    182      1.1      cube 
    183      1.1      cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    184      1.1      cube 
    185      1.1      cube /* kqueue-related routines */
    186      1.1      cube static void	tap_kqdetach(struct knote *);
    187      1.1      cube static int	tap_kqread(struct knote *, long);
    188      1.1      cube 
    189      1.1      cube /*
    190      1.1      cube  * Those are needed by the if_media interface.
    191      1.1      cube  */
    192      1.1      cube 
    193      1.1      cube static int	tap_mediachange(struct ifnet *);
    194      1.1      cube static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    195      1.1      cube 
    196      1.1      cube /*
    197      1.1      cube  * Those are needed by the ifnet interface, and would typically be
    198      1.1      cube  * there for any network interface driver.
    199      1.1      cube  * Some other routines are optional: watchdog and drain.
    200      1.1      cube  */
    201      1.1      cube 
    202      1.1      cube static void	tap_start(struct ifnet *);
    203      1.1      cube static void	tap_stop(struct ifnet *, int);
    204      1.1      cube static int	tap_init(struct ifnet *);
    205      1.1      cube static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
    206      1.1      cube 
    207      1.1      cube /* This is an internal function to keep tap_ioctl readable */
    208      1.1      cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    209      1.1      cube 
    210      1.1      cube /*
    211      1.1      cube  * tap is a clonable interface, although it is highly unrealistic for
    212      1.1      cube  * an Ethernet device.
    213      1.1      cube  *
    214      1.1      cube  * Here are the bits needed for a clonable interface.
    215      1.1      cube  */
    216      1.1      cube static int	tap_clone_create(struct if_clone *, int);
    217      1.1      cube static int	tap_clone_destroy(struct ifnet *);
    218      1.1      cube 
    219      1.1      cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    220      1.1      cube 					tap_clone_create,
    221      1.1      cube 					tap_clone_destroy);
    222      1.1      cube 
    223      1.1      cube /* Helper functionis shared by the two cloning code paths */
    224      1.1      cube static struct tap_softc *	tap_clone_creator(int);
    225      1.1      cube static int	tap_clone_destroyer(struct device *);
    226      1.1      cube 
    227      1.1      cube void
    228      1.1      cube tapattach(int n)
    229      1.1      cube {
    230      1.1      cube 	int error;
    231      1.1      cube 
    232      1.1      cube 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    233      1.1      cube 	if (error) {
    234      1.1      cube 		aprint_error("%s: unable to register cfattach\n",
    235      1.1      cube 		    tap_cd.cd_name);
    236      1.1      cube 		(void)config_cfdriver_detach(&tap_cd);
    237      1.1      cube 		return;
    238      1.1      cube 	}
    239      1.1      cube 
    240      1.1      cube 	if_clone_attach(&tap_cloners);
    241      1.1      cube }
    242      1.1      cube 
    243      1.1      cube /* Pretty much useless for a pseudo-device */
    244      1.1      cube static int
    245      1.1      cube tap_match(struct device *self, struct cfdata *cfdata, void *arg)
    246      1.1      cube {
    247      1.1      cube 	return (1);
    248      1.1      cube }
    249      1.1      cube 
    250      1.1      cube void
    251      1.1      cube tap_attach(struct device *parent, struct device *self, void *aux)
    252      1.1      cube {
    253      1.1      cube 	struct tap_softc *sc = (struct tap_softc *)self;
    254      1.1      cube 	struct ifnet *ifp;
    255      1.1      cube 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    256  1.6.2.2       snj 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    257      1.1      cube 	char enaddrstr[18];
    258      1.1      cube 	uint32_t ui;
    259      1.1      cube 	int error;
    260      1.1      cube 	struct sysctlnode *node;
    261      1.1      cube 
    262      1.1      cube 	aprint_normal("%s: faking Ethernet device\n",
    263      1.1      cube 	    self->dv_xname);
    264      1.1      cube 
    265      1.1      cube 	/*
    266      1.1      cube 	 * In order to obtain unique initial Ethernet address on a host,
    267      1.1      cube 	 * do some randomisation using mono_time.  It's not meant for anything
    268      1.1      cube 	 * but avoiding hard-coding an address.
    269      1.1      cube 	 */
    270      1.1      cube 	ui = (mono_time.tv_sec ^ mono_time.tv_usec) & 0xffffff;
    271      1.1      cube 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    272      1.1      cube 
    273      1.1      cube 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    274      1.1      cube 	    tap_ether_sprintf(enaddrstr, enaddr));
    275      1.1      cube 
    276      1.1      cube 	/*
    277      1.1      cube 	 * Why 1000baseT? Why not? You can add more.
    278      1.1      cube 	 *
    279      1.1      cube 	 * Note that there are 3 steps: init, one or several additions to
    280      1.1      cube 	 * list of supported media, and in the end, the selection of one
    281      1.1      cube 	 * of them.
    282      1.1      cube 	 */
    283      1.1      cube 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    284      1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    285      1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    286      1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    287      1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    288      1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    289      1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    290      1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    291      1.1      cube 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    292      1.1      cube 
    293      1.1      cube 	/*
    294      1.1      cube 	 * One should note that an interface must do multicast in order
    295      1.1      cube 	 * to support IPv6.
    296      1.1      cube 	 */
    297      1.1      cube 	ifp = &sc->sc_ec.ec_if;
    298      1.1      cube 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    299      1.1      cube 	ifp->if_softc	= sc;
    300      1.1      cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    301      1.1      cube 	ifp->if_ioctl	= tap_ioctl;
    302      1.1      cube 	ifp->if_start	= tap_start;
    303      1.1      cube 	ifp->if_stop	= tap_stop;
    304      1.1      cube 	ifp->if_init	= tap_init;
    305      1.1      cube 	IFQ_SET_READY(&ifp->if_snd);
    306      1.1      cube 
    307      1.1      cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    308      1.1      cube 
    309      1.1      cube 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    310      1.1      cube 	 * being common to all network interface drivers. */
    311      1.1      cube 	if_attach(ifp);
    312      1.1      cube 	ether_ifattach(ifp, enaddr);
    313      1.1      cube 
    314      1.1      cube 	sc->sc_flags = 0;
    315      1.1      cube 
    316      1.1      cube 	/*
    317      1.1      cube 	 * Add a sysctl node for that interface.
    318      1.1      cube 	 *
    319      1.1      cube 	 * The pointer transmitted is not a string, but instead a pointer to
    320      1.1      cube 	 * the softc structure, which we can use to build the string value on
    321      1.1      cube 	 * the fly in the helper function of the node.  See the comments for
    322      1.1      cube 	 * tap_sysctl_handler for details.
    323      1.1      cube 	 */
    324      1.1      cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    325      1.1      cube 	    &node, CTLFLAG_READWRITE,
    326      1.1      cube 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    327      1.1      cube 	    tap_sysctl_handler, 0, sc, 18,
    328      1.3      cube 	    CTL_NET, AF_LINK, tap_node, sc->sc_dev.dv_unit, CTL_EOL)) != 0)
    329      1.1      cube 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    330      1.1      cube 		    sc->sc_dev.dv_xname, error);
    331      1.1      cube 
    332      1.1      cube 	/*
    333      1.1      cube 	 * Initialize the two locks for the device.
    334      1.1      cube 	 *
    335      1.1      cube 	 * We need a lock here because even though the tap device can be
    336      1.1      cube 	 * opened only once, the file descriptor might be passed to another
    337      1.1      cube 	 * process, say a fork(2)ed child.
    338      1.1      cube 	 *
    339      1.1      cube 	 * The Giant saves us from most of the hassle, but since the read
    340      1.1      cube 	 * operation can sleep, we don't want two processes to wake up at
    341      1.1      cube 	 * the same moment and both try and dequeue a single packet.
    342      1.1      cube 	 *
    343      1.1      cube 	 * The queue for event listeners (used by kqueue(9), see below) has
    344      1.1      cube 	 * to be protected, too, but we don't need the same level of
    345      1.1      cube 	 * complexity for that lock, so a simple spinning lock is fine.
    346      1.1      cube 	 */
    347      1.1      cube 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    348      1.1      cube 	simple_lock_init(&sc->sc_kqlock);
    349      1.1      cube }
    350      1.1      cube 
    351      1.1      cube /*
    352      1.1      cube  * When detaching, we do the inverse of what is done in the attach
    353      1.1      cube  * routine, in reversed order.
    354      1.1      cube  */
    355      1.1      cube static int
    356      1.1      cube tap_detach(struct device* self, int flags)
    357      1.1      cube {
    358      1.1      cube 	struct tap_softc *sc = (struct tap_softc *)self;
    359      1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    360      1.1      cube 	int error, s;
    361      1.1      cube 
    362      1.1      cube 	/*
    363      1.1      cube 	 * Some processes might be sleeping on "tap", so we have to make
    364      1.1      cube 	 * them release their hold on the device.
    365      1.1      cube 	 *
    366      1.1      cube 	 * The LK_DRAIN operation will wait for every locked process to
    367      1.1      cube 	 * release their hold.
    368      1.1      cube 	 */
    369      1.1      cube 	sc->sc_flags |= TAP_GOING;
    370      1.1      cube 	s = splnet();
    371      1.1      cube 	tap_stop(ifp, 1);
    372      1.1      cube 	if_down(ifp);
    373      1.1      cube 	splx(s);
    374      1.1      cube 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    375      1.1      cube 
    376      1.1      cube 	/*
    377      1.1      cube 	 * Destroying a single leaf is a very straightforward operation using
    378      1.1      cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    379      1.1      cube 	 * CTL_EOL.
    380      1.1      cube 	 */
    381      1.3      cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    382      1.1      cube 	    sc->sc_dev.dv_unit, CTL_EOL)) != 0)
    383      1.1      cube 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    384      1.1      cube 		    sc->sc_dev.dv_xname, error);
    385      1.1      cube 	ether_ifdetach(ifp);
    386      1.1      cube 	if_detach(ifp);
    387      1.1      cube 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    388      1.1      cube 
    389      1.1      cube 	return (0);
    390      1.1      cube }
    391      1.1      cube 
    392      1.1      cube /*
    393      1.1      cube  * This function is called by the ifmedia layer to notify the driver
    394      1.1      cube  * that the user requested a media change.  A real driver would
    395      1.1      cube  * reconfigure the hardware.
    396      1.1      cube  */
    397      1.1      cube static int
    398      1.1      cube tap_mediachange(struct ifnet *ifp)
    399      1.1      cube {
    400      1.1      cube 	return (0);
    401      1.1      cube }
    402      1.1      cube 
    403      1.1      cube /*
    404      1.1      cube  * Here the user asks for the currently used media.
    405      1.1      cube  */
    406      1.1      cube static void
    407      1.1      cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    408      1.1      cube {
    409      1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    410      1.1      cube 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    411      1.1      cube }
    412      1.1      cube 
    413      1.1      cube /*
    414      1.1      cube  * This is the function where we SEND packets.
    415      1.1      cube  *
    416      1.1      cube  * There is no 'receive' equivalent.  A typical driver will get
    417      1.1      cube  * interrupts from the hardware, and from there will inject new packets
    418      1.1      cube  * into the network stack.
    419      1.1      cube  *
    420      1.1      cube  * Once handled, a packet must be freed.  A real driver might not be able
    421      1.1      cube  * to fit all the pending packets into the hardware, and is allowed to
    422      1.1      cube  * return before having sent all the packets.  It should then use the
    423      1.1      cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    424      1.1      cube  *
    425      1.1      cube  * There are also other flags one should check, such as IFF_PAUSE.
    426      1.1      cube  *
    427      1.1      cube  * It is our duty to make packets available to BPF listeners.
    428      1.1      cube  *
    429      1.1      cube  * You should be aware that this function is called by the Ethernet layer
    430      1.1      cube  * at splnet().
    431      1.1      cube  *
    432      1.1      cube  * When the device is opened, we have to pass the packet(s) to the
    433      1.1      cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    434      1.1      cube  * the packets, and we send a signal to the processes waiting to read.
    435      1.1      cube  *
    436      1.1      cube  * wakeup(sc) is the counterpart to the tsleep call in
    437      1.1      cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    438      1.1      cube  * poll(2) (which includes select(2)) listeners.
    439      1.1      cube  */
    440      1.1      cube static void
    441      1.1      cube tap_start(struct ifnet *ifp)
    442      1.1      cube {
    443      1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    444      1.1      cube 	struct mbuf *m0;
    445      1.1      cube 
    446      1.1      cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    447      1.1      cube 		/* Simply drop packets */
    448      1.1      cube 		for(;;) {
    449      1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    450      1.1      cube 			if (m0 == NULL)
    451      1.1      cube 				return;
    452      1.1      cube 
    453      1.1      cube 			ifp->if_opackets++;
    454      1.1      cube #if NBPFILTER > 0
    455      1.1      cube 			if (ifp->if_bpf)
    456      1.1      cube 				bpf_mtap(ifp->if_bpf, m0);
    457      1.1      cube #endif
    458      1.1      cube 
    459      1.1      cube 			m_freem(m0);
    460      1.1      cube 		}
    461      1.1      cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    462      1.1      cube 		ifp->if_flags |= IFF_OACTIVE;
    463      1.1      cube 		wakeup(sc);
    464      1.1      cube 		selnotify(&sc->sc_rsel, 1);
    465      1.1      cube 		if (sc->sc_flags & TAP_ASYNCIO)
    466      1.1      cube 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    467      1.1      cube 			    POLLIN|POLLRDNORM, NULL);
    468      1.1      cube 	}
    469      1.1      cube }
    470      1.1      cube 
    471      1.1      cube /*
    472      1.1      cube  * A typical driver will only contain the following handlers for
    473      1.1      cube  * ioctl calls, except SIOCSIFPHYADDR.
    474      1.1      cube  * The latter is a hack I used to set the Ethernet address of the
    475      1.1      cube  * faked device.
    476      1.1      cube  *
    477      1.1      cube  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    478      1.1      cube  * called under splnet().
    479      1.1      cube  */
    480      1.1      cube static int
    481      1.1      cube tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    482      1.1      cube {
    483      1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    484      1.1      cube 	struct ifreq *ifr = (struct ifreq *)data;
    485      1.1      cube 	int s, error;
    486      1.1      cube 
    487      1.1      cube 	s = splnet();
    488      1.1      cube 
    489      1.1      cube 	switch (cmd) {
    490      1.1      cube 	case SIOCSIFMEDIA:
    491      1.1      cube 	case SIOCGIFMEDIA:
    492      1.1      cube 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    493      1.1      cube 		break;
    494      1.1      cube 	case SIOCSIFPHYADDR:
    495      1.1      cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    496      1.1      cube 		break;
    497      1.1      cube 	default:
    498      1.1      cube 		error = ether_ioctl(ifp, cmd, data);
    499      1.1      cube 		if (error == ENETRESET)
    500      1.1      cube 			error = 0;
    501      1.1      cube 		break;
    502      1.1      cube 	}
    503      1.1      cube 
    504      1.1      cube 	splx(s);
    505      1.1      cube 
    506      1.1      cube 	return (error);
    507      1.1      cube }
    508      1.1      cube 
    509      1.1      cube /*
    510      1.1      cube  * Helper function to set Ethernet address.  This shouldn't be done there,
    511      1.1      cube  * and should actually be available to all Ethernet drivers, real or not.
    512      1.1      cube  */
    513      1.1      cube static int
    514      1.1      cube tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    515      1.1      cube {
    516      1.1      cube 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    517      1.1      cube 
    518      1.1      cube 	if (sa->sa_family != AF_LINK)
    519      1.1      cube 		return (EINVAL);
    520      1.1      cube 
    521      1.1      cube 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    522      1.1      cube 
    523      1.1      cube 	return (0);
    524      1.1      cube }
    525      1.1      cube 
    526      1.1      cube /*
    527      1.1      cube  * _init() would typically be called when an interface goes up,
    528      1.1      cube  * meaning it should configure itself into the state in which it
    529      1.1      cube  * can send packets.
    530      1.1      cube  */
    531      1.1      cube static int
    532      1.1      cube tap_init(struct ifnet *ifp)
    533      1.1      cube {
    534      1.1      cube 	ifp->if_flags |= IFF_RUNNING;
    535      1.1      cube 
    536      1.1      cube 	tap_start(ifp);
    537      1.1      cube 
    538      1.1      cube 	return (0);
    539      1.1      cube }
    540      1.1      cube 
    541      1.1      cube /*
    542      1.1      cube  * _stop() is called when an interface goes down.  It is our
    543      1.1      cube  * responsability to validate that state by clearing the
    544      1.1      cube  * IFF_RUNNING flag.
    545      1.1      cube  *
    546      1.1      cube  * We have to wake up all the sleeping processes to have the pending
    547      1.1      cube  * read requests cancelled.
    548      1.1      cube  */
    549      1.1      cube static void
    550      1.1      cube tap_stop(struct ifnet *ifp, int disable)
    551      1.1      cube {
    552      1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    553      1.1      cube 
    554      1.1      cube 	ifp->if_flags &= ~IFF_RUNNING;
    555      1.1      cube 	wakeup(sc);
    556      1.1      cube 	selnotify(&sc->sc_rsel, 1);
    557      1.1      cube 	if (sc->sc_flags & TAP_ASYNCIO)
    558      1.1      cube 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    559      1.1      cube }
    560      1.1      cube 
    561      1.1      cube /*
    562      1.1      cube  * The 'create' command of ifconfig can be used to create
    563      1.1      cube  * any numbered instance of a given device.  Thus we have to
    564      1.1      cube  * make sure we have enough room in cd_devs to create the
    565      1.1      cube  * user-specified instance.  config_attach_pseudo will do this
    566      1.1      cube  * for us.
    567      1.1      cube  */
    568      1.1      cube static int
    569      1.1      cube tap_clone_create(struct if_clone *ifc, int unit)
    570      1.1      cube {
    571      1.1      cube 	if (tap_clone_creator(unit) == NULL) {
    572      1.1      cube 		aprint_error("%s%d: unable to attach an instance\n",
    573      1.1      cube                     tap_cd.cd_name, unit);
    574      1.1      cube 		return (ENXIO);
    575      1.1      cube 	}
    576      1.1      cube 
    577      1.1      cube 	return (0);
    578      1.1      cube }
    579      1.1      cube 
    580      1.1      cube /*
    581      1.1      cube  * tap(4) can be cloned by two ways:
    582      1.1      cube  *   using 'ifconfig tap0 create', which will use the network
    583      1.1      cube  *     interface cloning API, and call tap_clone_create above.
    584      1.1      cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    585      1.1      cube  *     See below for an explanation on how this part work.
    586      1.1      cube  *
    587      1.1      cube  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
    588      1.1      cube  * autoconf(9) choose a unit number for us.  This is what happens when
    589      1.1      cube  * the cloner is openend, while the ifcloner interface creates a device
    590      1.1      cube  * with a specific unit number.
    591      1.1      cube  */
    592      1.1      cube static struct tap_softc *
    593      1.1      cube tap_clone_creator(int unit)
    594      1.1      cube {
    595      1.1      cube 	struct cfdata *cf;
    596      1.1      cube 
    597      1.1      cube 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    598      1.1      cube 	cf->cf_name = tap_cd.cd_name;
    599      1.1      cube 	cf->cf_atname = tap_ca.ca_name;
    600      1.1      cube 	cf->cf_unit = unit;
    601      1.1      cube 	cf->cf_fstate = FSTATE_STAR;
    602      1.1      cube 
    603      1.1      cube 	return (struct tap_softc *)config_attach_pseudo(cf);
    604      1.1      cube }
    605      1.1      cube 
    606      1.1      cube /*
    607      1.1      cube  * The clean design of if_clone and autoconf(9) makes that part
    608      1.1      cube  * really straightforward.  The second argument of config_detach
    609      1.1      cube  * means neither QUIET nor FORCED.
    610      1.1      cube  */
    611      1.1      cube static int
    612      1.1      cube tap_clone_destroy(struct ifnet *ifp)
    613      1.1      cube {
    614      1.1      cube 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    615      1.1      cube }
    616      1.1      cube 
    617      1.1      cube static int
    618      1.1      cube tap_clone_destroyer(struct device *dev)
    619      1.1      cube {
    620      1.1      cube 	struct cfdata *cf = dev->dv_cfdata;
    621      1.1      cube 	int error;
    622      1.1      cube 
    623      1.1      cube 	if ((error = config_detach(dev, 0)) != 0)
    624      1.1      cube 		aprint_error("%s: unable to detach instance\n",
    625      1.1      cube 		    dev->dv_xname);
    626      1.1      cube 	free(cf, M_DEVBUF);
    627      1.1      cube 
    628      1.1      cube 	return (error);
    629      1.1      cube }
    630      1.1      cube 
    631      1.1      cube /*
    632      1.1      cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    633      1.1      cube  * ways:
    634      1.1      cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    635      1.1      cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    636      1.1      cube  *     That interface is destroyed when the process that had it created exits.
    637      1.1      cube  *
    638      1.1      cube  * The first way is managed by the cdevsw structure, and you access interfaces
    639      1.1      cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    640      1.1      cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    641      1.1      cube  *
    642      1.1      cube  * The second way is the so-called "cloning" device.  It's a special minor
    643      1.1      cube  * number (chosen as the maximal number, to allow as much tap devices as
    644      1.1      cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    645      1.1      cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    646      1.1      cube  * tap_dev_cloner.
    647      1.1      cube  *
    648      1.1      cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    649      1.1      cube  * part of open() does nothing but noting that the interface is being used and
    650      1.1      cube  * hence ready to actually handle packets.
    651      1.1      cube  */
    652      1.1      cube 
    653      1.1      cube static int
    654      1.1      cube tap_cdev_open(dev_t dev, int flags, int fmt, struct proc *p)
    655      1.1      cube {
    656      1.1      cube 	struct tap_softc *sc;
    657      1.1      cube 
    658      1.1      cube 	if (minor(dev) == TAP_CLONER)
    659      1.1      cube 		return tap_dev_cloner(p);
    660      1.1      cube 
    661      1.1      cube 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    662      1.1      cube 	if (sc == NULL)
    663      1.1      cube 		return (ENXIO);
    664      1.1      cube 
    665      1.1      cube 	/* The device can only be opened once */
    666      1.1      cube 	if (sc->sc_flags & TAP_INUSE)
    667      1.1      cube 		return (EBUSY);
    668      1.1      cube 	sc->sc_flags |= TAP_INUSE;
    669      1.1      cube 	return (0);
    670      1.1      cube }
    671      1.1      cube 
    672      1.1      cube /*
    673      1.1      cube  * There are several kinds of cloning devices, and the most simple is the one
    674      1.1      cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    675      1.1      cube  * with its own fileops structure (which maps to the various read, write,
    676      1.1      cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    677      1.1      cube  * then actually creates the new tap devices.
    678      1.1      cube  *
    679      1.1      cube  * Once those two steps are successful, we can re-wire the existing file
    680      1.1      cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    681      1.1      cube  * structure as needed (notably f_data gets filled with the fifth parameter
    682      1.1      cube  * passed, the unit of the tap device which will allows us identifying the
    683      1.1      cube  * device later), and returns EMOVEFD.
    684      1.1      cube  *
    685      1.1      cube  * That magic value is interpreted by sys_open() which then replaces the
    686      1.1      cube  * current file descriptor by the new one (through a magic member of struct
    687      1.1      cube  * proc, p_dupfd).
    688      1.1      cube  *
    689      1.1      cube  * The tap device is flagged as being busy since it otherwise could be
    690      1.1      cube  * externally accessed through the corresponding device node with the cdevsw
    691      1.1      cube  * interface.
    692      1.1      cube  */
    693      1.1      cube 
    694      1.1      cube static int
    695      1.1      cube tap_dev_cloner(struct proc *p)
    696      1.1      cube {
    697      1.1      cube 	struct tap_softc *sc;
    698      1.1      cube 	struct file *fp;
    699      1.1      cube 	int error, fd;
    700      1.1      cube 
    701      1.1      cube 	if ((error = falloc(p, &fp, &fd)) != 0)
    702      1.1      cube 		return (error);
    703      1.1      cube 
    704      1.1      cube 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
    705      1.1      cube 		FILE_UNUSE(fp, p);
    706      1.1      cube 		ffree(fp);
    707      1.1      cube 		return (ENXIO);
    708      1.1      cube 	}
    709      1.1      cube 
    710      1.1      cube 	sc->sc_flags |= TAP_INUSE;
    711      1.1      cube 
    712      1.5  christos 	return fdclone(p, fp, fd, FREAD|FWRITE, &tap_fileops,
    713      1.5  christos 	    (void *)(intptr_t)sc->sc_dev.dv_unit);
    714      1.1      cube }
    715      1.1      cube 
    716      1.1      cube /*
    717      1.1      cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    718      1.1      cube  * really the same whether we are in cdevsw or fileops mode, the close()
    719      1.1      cube  * function is slightly different in the two cases.
    720      1.1      cube  *
    721      1.1      cube  * As for the other, the core of it is shared in tap_dev_close.  What
    722      1.1      cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    723      1.1      cube  * needs another thing:  the interface is destroyed when the processes that
    724      1.1      cube  * created it closes it.
    725      1.1      cube  */
    726      1.1      cube static int
    727      1.1      cube tap_cdev_close(dev_t dev, int flags, int fmt, struct proc *p)
    728      1.1      cube {
    729      1.1      cube 	struct tap_softc *sc =
    730      1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    731      1.1      cube 
    732      1.1      cube 	if (sc == NULL)
    733      1.1      cube 		return (ENXIO);
    734      1.1      cube 
    735      1.1      cube 	return tap_dev_close(sc);
    736      1.1      cube }
    737      1.1      cube 
    738      1.1      cube /*
    739      1.1      cube  * It might happen that the administrator used ifconfig to externally destroy
    740      1.1      cube  * the interface.  In that case, tap_fops_close will be called while
    741      1.1      cube  * tap_detach is already happening.  If we called it again from here, we
    742      1.1      cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    743      1.1      cube  */
    744      1.1      cube static int
    745      1.1      cube tap_fops_close(struct file *fp, struct proc *p)
    746      1.1      cube {
    747      1.1      cube 	int unit = (intptr_t)fp->f_data;
    748      1.1      cube 	struct tap_softc *sc;
    749      1.1      cube 	int error;
    750      1.1      cube 
    751      1.1      cube 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    752      1.1      cube 	if (sc == NULL)
    753      1.1      cube 		return (ENXIO);
    754      1.1      cube 
    755      1.1      cube 	/* tap_dev_close currently always succeeds, but it might not
    756      1.1      cube 	 * always be the case. */
    757      1.1      cube 	if ((error = tap_dev_close(sc)) != 0)
    758      1.1      cube 		return (error);
    759      1.1      cube 
    760      1.1      cube 	/* Destroy the device now that it is no longer useful,
    761      1.1      cube 	 * unless it's already being destroyed. */
    762      1.1      cube 	if ((sc->sc_flags & TAP_GOING) != 0)
    763      1.1      cube 		return (0);
    764      1.1      cube 
    765      1.1      cube 	return tap_clone_destroyer((struct device *)sc);
    766      1.1      cube }
    767      1.1      cube 
    768      1.1      cube static int
    769      1.1      cube tap_dev_close(struct tap_softc *sc)
    770      1.1      cube {
    771      1.1      cube 	struct ifnet *ifp;
    772      1.1      cube 	int s;
    773      1.1      cube 
    774      1.1      cube 	s = splnet();
    775      1.1      cube 	/* Let tap_start handle packets again */
    776      1.1      cube 	ifp = &sc->sc_ec.ec_if;
    777      1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    778      1.1      cube 
    779      1.1      cube 	/* Purge output queue */
    780      1.1      cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    781      1.1      cube 		struct mbuf *m;
    782      1.1      cube 
    783      1.1      cube 		for (;;) {
    784      1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    785      1.1      cube 			if (m == NULL)
    786      1.1      cube 				break;
    787      1.1      cube 
    788      1.1      cube 			ifp->if_opackets++;
    789      1.1      cube #if NBPFILTER > 0
    790      1.1      cube 			if (ifp->if_bpf)
    791      1.1      cube 				bpf_mtap(ifp->if_bpf, m);
    792      1.1      cube #endif
    793      1.1      cube 		}
    794      1.1      cube 	}
    795      1.1      cube 	splx(s);
    796      1.1      cube 
    797      1.1      cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    798      1.1      cube 
    799      1.1      cube 	return (0);
    800      1.1      cube }
    801      1.1      cube 
    802      1.1      cube static int
    803      1.1      cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    804      1.1      cube {
    805      1.1      cube 	return tap_dev_read(minor(dev), uio, flags);
    806      1.1      cube }
    807      1.1      cube 
    808      1.1      cube static int
    809      1.1      cube tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    810      1.1      cube     struct ucred *cred, int flags)
    811      1.1      cube {
    812      1.1      cube 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    813      1.1      cube }
    814      1.1      cube 
    815      1.1      cube static int
    816      1.1      cube tap_dev_read(int unit, struct uio *uio, int flags)
    817      1.1      cube {
    818      1.1      cube 	struct tap_softc *sc =
    819      1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    820      1.1      cube 	struct ifnet *ifp;
    821      1.1      cube 	struct mbuf *m, *n;
    822      1.1      cube 	int error = 0, s;
    823      1.1      cube 
    824      1.1      cube 	if (sc == NULL)
    825      1.1      cube 		return (ENXIO);
    826      1.1      cube 
    827      1.1      cube 	ifp = &sc->sc_ec.ec_if;
    828      1.1      cube 	if ((ifp->if_flags & IFF_UP) == 0)
    829      1.1      cube 		return (EHOSTDOWN);
    830      1.1      cube 
    831      1.1      cube 	/*
    832      1.1      cube 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    833      1.1      cube 	 */
    834      1.1      cube 	if ((sc->sc_flags & TAP_NBIO) &&
    835      1.1      cube 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    836      1.1      cube 		return (EWOULDBLOCK);
    837      1.1      cube 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    838      1.1      cube 	if (error != 0)
    839      1.1      cube 		return (error);
    840      1.1      cube 
    841      1.1      cube 	s = splnet();
    842      1.1      cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    843      1.1      cube 		ifp->if_flags &= ~IFF_OACTIVE;
    844      1.1      cube 		splx(s);
    845      1.1      cube 		/*
    846      1.1      cube 		 * We must release the lock before sleeping, and re-acquire it
    847      1.1      cube 		 * after.
    848      1.1      cube 		 */
    849      1.1      cube 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    850      1.1      cube 		if (sc->sc_flags & TAP_NBIO)
    851      1.1      cube 			error = EWOULDBLOCK;
    852      1.1      cube 		else
    853      1.1      cube 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    854      1.1      cube 
    855      1.1      cube 		if (error != 0)
    856      1.1      cube 			return (error);
    857      1.1      cube 		/* The device might have been downed */
    858      1.1      cube 		if ((ifp->if_flags & IFF_UP) == 0)
    859      1.1      cube 			return (EHOSTDOWN);
    860      1.1      cube 		if ((sc->sc_flags & TAP_NBIO) &&
    861      1.1      cube 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    862      1.1      cube 			return (EWOULDBLOCK);
    863      1.1      cube 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    864      1.1      cube 		if (error != 0)
    865      1.1      cube 			return (error);
    866      1.1      cube 		s = splnet();
    867      1.1      cube 	}
    868      1.1      cube 
    869      1.1      cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    870      1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    871      1.1      cube 	splx(s);
    872      1.1      cube 	if (m == NULL) {
    873      1.1      cube 		error = 0;
    874      1.1      cube 		goto out;
    875      1.1      cube 	}
    876      1.1      cube 
    877      1.1      cube 	ifp->if_opackets++;
    878      1.1      cube #if NBPFILTER > 0
    879      1.1      cube 	if (ifp->if_bpf)
    880      1.1      cube 		bpf_mtap(ifp->if_bpf, m);
    881      1.1      cube #endif
    882      1.1      cube 
    883      1.1      cube 	/*
    884      1.1      cube 	 * One read is one packet.
    885      1.1      cube 	 */
    886      1.1      cube 	do {
    887      1.1      cube 		error = uiomove(mtod(m, caddr_t),
    888      1.1      cube 		    min(m->m_len, uio->uio_resid), uio);
    889      1.1      cube 		MFREE(m, n);
    890      1.1      cube 		m = n;
    891      1.1      cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    892      1.1      cube 
    893      1.1      cube 	if (m != NULL)
    894      1.1      cube 		m_freem(m);
    895      1.1      cube 
    896      1.1      cube out:
    897      1.1      cube 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    898      1.1      cube 	return (error);
    899      1.1      cube }
    900      1.1      cube 
    901      1.1      cube static int
    902      1.1      cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    903      1.1      cube {
    904      1.1      cube 	return tap_dev_write(minor(dev), uio, flags);
    905      1.1      cube }
    906      1.1      cube 
    907      1.1      cube static int
    908      1.1      cube tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    909      1.1      cube     struct ucred *cred, int flags)
    910      1.1      cube {
    911      1.1      cube 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    912      1.1      cube }
    913      1.1      cube 
    914      1.1      cube static int
    915      1.1      cube tap_dev_write(int unit, struct uio *uio, int flags)
    916      1.1      cube {
    917      1.1      cube 	struct tap_softc *sc =
    918      1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    919      1.1      cube 	struct ifnet *ifp;
    920      1.1      cube 	struct mbuf *m, **mp;
    921      1.1      cube 	int error = 0;
    922  1.6.2.1      tron 	int s;
    923      1.1      cube 
    924      1.1      cube 	if (sc == NULL)
    925      1.1      cube 		return (ENXIO);
    926      1.1      cube 
    927      1.1      cube 	ifp = &sc->sc_ec.ec_if;
    928      1.1      cube 
    929      1.1      cube 	/* One write, one packet, that's the rule */
    930      1.1      cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    931      1.1      cube 	if (m == NULL) {
    932      1.1      cube 		ifp->if_ierrors++;
    933      1.1      cube 		return (ENOBUFS);
    934      1.1      cube 	}
    935      1.1      cube 	m->m_pkthdr.len = uio->uio_resid;
    936      1.1      cube 
    937      1.1      cube 	mp = &m;
    938      1.1      cube 	while (error == 0 && uio->uio_resid > 0) {
    939      1.1      cube 		if (*mp != m) {
    940      1.1      cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
    941      1.1      cube 			if (*mp == NULL) {
    942      1.1      cube 				error = ENOBUFS;
    943      1.1      cube 				break;
    944      1.1      cube 			}
    945      1.1      cube 		}
    946      1.1      cube 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    947      1.1      cube 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
    948      1.1      cube 		mp = &(*mp)->m_next;
    949      1.1      cube 	}
    950      1.1      cube 	if (error) {
    951      1.1      cube 		ifp->if_ierrors++;
    952      1.1      cube 		m_freem(m);
    953      1.1      cube 		return (error);
    954      1.1      cube 	}
    955      1.1      cube 
    956      1.1      cube 	ifp->if_ipackets++;
    957      1.1      cube 	m->m_pkthdr.rcvif = ifp;
    958      1.1      cube 
    959      1.1      cube #if NBPFILTER > 0
    960      1.1      cube 	if (ifp->if_bpf)
    961      1.1      cube 		bpf_mtap(ifp->if_bpf, m);
    962      1.1      cube #endif
    963  1.6.2.1      tron 	s =splnet();
    964      1.1      cube 	(*ifp->if_input)(ifp, m);
    965  1.6.2.1      tron 	splx(s);
    966      1.1      cube 
    967      1.1      cube 	return (0);
    968      1.1      cube }
    969      1.1      cube 
    970      1.1      cube static int
    971      1.1      cube tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
    972      1.1      cube     struct proc *p)
    973      1.1      cube {
    974      1.1      cube 	return tap_dev_ioctl(minor(dev), cmd, data, p);
    975      1.1      cube }
    976      1.1      cube 
    977      1.1      cube static int
    978      1.1      cube tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct proc *p)
    979      1.1      cube {
    980      1.1      cube 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, p);
    981      1.1      cube }
    982      1.1      cube 
    983      1.1      cube static int
    984      1.1      cube tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct proc *p)
    985      1.1      cube {
    986      1.1      cube 	struct tap_softc *sc =
    987      1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    988      1.1      cube 	int error = 0;
    989      1.1      cube 
    990      1.1      cube 	if (sc == NULL)
    991      1.1      cube 		return (ENXIO);
    992      1.1      cube 
    993      1.1      cube 	switch (cmd) {
    994      1.1      cube 	case FIONREAD:
    995      1.1      cube 		{
    996      1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
    997      1.1      cube 			struct mbuf *m;
    998      1.1      cube 			int s;
    999      1.1      cube 
   1000      1.1      cube 			s = splnet();
   1001      1.1      cube 			IFQ_POLL(&ifp->if_snd, m);
   1002      1.1      cube 
   1003      1.1      cube 			if (m == NULL)
   1004      1.1      cube 				*(int *)data = 0;
   1005      1.1      cube 			else
   1006      1.1      cube 				*(int *)data = m->m_pkthdr.len;
   1007      1.1      cube 			splx(s);
   1008      1.1      cube 		} break;
   1009      1.1      cube 	case TIOCSPGRP:
   1010      1.1      cube 	case FIOSETOWN:
   1011      1.1      cube 		error = fsetown(p, &sc->sc_pgid, cmd, data);
   1012      1.1      cube 		break;
   1013      1.1      cube 	case TIOCGPGRP:
   1014      1.1      cube 	case FIOGETOWN:
   1015      1.1      cube 		error = fgetown(p, sc->sc_pgid, cmd, data);
   1016      1.1      cube 		break;
   1017      1.1      cube 	case FIOASYNC:
   1018      1.1      cube 		if (*(int *)data)
   1019      1.1      cube 			sc->sc_flags |= TAP_ASYNCIO;
   1020      1.1      cube 		else
   1021      1.1      cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1022      1.1      cube 		break;
   1023      1.1      cube 	case FIONBIO:
   1024      1.1      cube 		if (*(int *)data)
   1025      1.1      cube 			sc->sc_flags |= TAP_NBIO;
   1026      1.1      cube 		else
   1027      1.1      cube 			sc->sc_flags &= ~TAP_NBIO;
   1028      1.1      cube 		break;
   1029      1.1      cube 	case TAPGIFNAME:
   1030      1.1      cube 		{
   1031      1.1      cube 			struct ifreq *ifr = (struct ifreq *)data;
   1032      1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1033      1.1      cube 
   1034      1.1      cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1035      1.1      cube 		} break;
   1036      1.1      cube 	default:
   1037      1.1      cube 		error = ENOTTY;
   1038      1.1      cube 		break;
   1039      1.1      cube 	}
   1040      1.1      cube 
   1041      1.1      cube 	return (0);
   1042      1.1      cube }
   1043      1.1      cube 
   1044      1.1      cube static int
   1045      1.1      cube tap_cdev_poll(dev_t dev, int events, struct proc *p)
   1046      1.1      cube {
   1047      1.1      cube 	return tap_dev_poll(minor(dev), events, p);
   1048      1.1      cube }
   1049      1.1      cube 
   1050      1.1      cube static int
   1051      1.1      cube tap_fops_poll(struct file *fp, int events, struct proc *p)
   1052      1.1      cube {
   1053      1.1      cube 	return tap_dev_poll((intptr_t)fp->f_data, events, p);
   1054      1.1      cube }
   1055      1.1      cube 
   1056      1.1      cube static int
   1057      1.1      cube tap_dev_poll(int unit, int events, struct proc *p)
   1058      1.1      cube {
   1059      1.1      cube 	struct tap_softc *sc =
   1060      1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1061      1.1      cube 	int revents = 0;
   1062      1.1      cube 
   1063      1.1      cube 	if (sc == NULL)
   1064      1.1      cube 		return (ENXIO);
   1065      1.1      cube 
   1066      1.1      cube 	if (events & (POLLIN|POLLRDNORM)) {
   1067      1.1      cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1068      1.1      cube 		struct mbuf *m;
   1069      1.1      cube 		int s;
   1070      1.1      cube 
   1071      1.1      cube 		s = splnet();
   1072      1.1      cube 		IFQ_POLL(&ifp->if_snd, m);
   1073      1.1      cube 		splx(s);
   1074      1.1      cube 
   1075      1.1      cube 		if (m != NULL)
   1076      1.1      cube 			revents |= events & (POLLIN|POLLRDNORM);
   1077      1.1      cube 		else {
   1078      1.4     ragge 			simple_lock(&sc->sc_kqlock);
   1079      1.1      cube 			selrecord(p, &sc->sc_rsel);
   1080      1.1      cube 			simple_unlock(&sc->sc_kqlock);
   1081      1.1      cube 		}
   1082      1.1      cube 	}
   1083      1.1      cube 	revents |= events & (POLLOUT|POLLWRNORM);
   1084      1.1      cube 
   1085      1.1      cube 	return (revents);
   1086      1.1      cube }
   1087      1.1      cube 
   1088      1.1      cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1089      1.1      cube 	tap_kqread };
   1090      1.1      cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1091      1.1      cube 	filt_seltrue };
   1092      1.1      cube 
   1093      1.1      cube static int
   1094      1.1      cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1095      1.1      cube {
   1096      1.1      cube 	return tap_dev_kqfilter(minor(dev), kn);
   1097      1.1      cube }
   1098      1.1      cube 
   1099      1.1      cube static int
   1100      1.1      cube tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1101      1.1      cube {
   1102      1.1      cube 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1103      1.1      cube }
   1104      1.1      cube 
   1105      1.1      cube static int
   1106      1.1      cube tap_dev_kqfilter(int unit, struct knote *kn)
   1107      1.1      cube {
   1108      1.1      cube 	struct tap_softc *sc =
   1109      1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1110      1.1      cube 
   1111      1.1      cube 	if (sc == NULL)
   1112      1.1      cube 		return (ENXIO);
   1113      1.1      cube 
   1114      1.1      cube 	switch(kn->kn_filter) {
   1115      1.1      cube 	case EVFILT_READ:
   1116      1.1      cube 		kn->kn_fop = &tap_read_filterops;
   1117      1.1      cube 		break;
   1118      1.1      cube 	case EVFILT_WRITE:
   1119      1.1      cube 		kn->kn_fop = &tap_seltrue_filterops;
   1120      1.1      cube 		break;
   1121      1.1      cube 	default:
   1122      1.1      cube 		return (1);
   1123      1.1      cube 	}
   1124      1.1      cube 
   1125      1.1      cube 	kn->kn_hook = sc;
   1126      1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1127      1.1      cube 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1128      1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1129      1.1      cube 	return (0);
   1130      1.1      cube }
   1131      1.1      cube 
   1132      1.1      cube static void
   1133      1.1      cube tap_kqdetach(struct knote *kn)
   1134      1.1      cube {
   1135      1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1136      1.1      cube 
   1137      1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1138      1.1      cube 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1139      1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1140      1.1      cube }
   1141      1.1      cube 
   1142      1.1      cube static int
   1143      1.1      cube tap_kqread(struct knote *kn, long hint)
   1144      1.1      cube {
   1145      1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1146      1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1147      1.1      cube 	struct mbuf *m;
   1148      1.1      cube 	int s;
   1149      1.1      cube 
   1150      1.1      cube 	s = splnet();
   1151      1.1      cube 	IFQ_POLL(&ifp->if_snd, m);
   1152      1.1      cube 
   1153      1.1      cube 	if (m == NULL)
   1154      1.1      cube 		kn->kn_data = 0;
   1155      1.1      cube 	else
   1156      1.1      cube 		kn->kn_data = m->m_pkthdr.len;
   1157      1.1      cube 	splx(s);
   1158      1.1      cube 	return (kn->kn_data != 0 ? 1 : 0);
   1159      1.1      cube }
   1160      1.1      cube 
   1161      1.1      cube /*
   1162      1.1      cube  * sysctl management routines
   1163      1.1      cube  * You can set the address of an interface through:
   1164      1.1      cube  * net.link.tap.tap<number>
   1165      1.1      cube  *
   1166      1.1      cube  * Note the consistent use of tap_log in order to use
   1167      1.1      cube  * sysctl_teardown at unload time.
   1168      1.1      cube  *
   1169      1.1      cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1170      1.1      cube  * blocks register a function in a special section of the kernel
   1171      1.1      cube  * (called a link set) which is used at init_sysctl() time to cycle
   1172      1.1      cube  * through all those functions to create the kernel's sysctl tree.
   1173      1.1      cube  *
   1174      1.1      cube  * It is not (currently) possible to use link sets in a LKM, so the
   1175      1.1      cube  * easiest is to simply call our own setup routine at load time.
   1176      1.1      cube  *
   1177      1.1      cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1178      1.1      cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1179      1.1      cube  * whole kernel sysctl tree is built, it is not possible to add any
   1180      1.1      cube  * permanent node.
   1181      1.1      cube  *
   1182      1.1      cube  * It should be noted that we're not saving the sysctlnode pointer
   1183      1.1      cube  * we are returned when creating the "tap" node.  That structure
   1184      1.1      cube  * cannot be trusted once out of the calling function, as it might
   1185      1.1      cube  * get reused.  So we just save the MIB number, and always give the
   1186      1.1      cube  * full path starting from the root for later calls to sysctl_createv
   1187      1.1      cube  * and sysctl_destroyv.
   1188      1.1      cube  */
   1189      1.1      cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1190      1.1      cube {
   1191      1.1      cube 	struct sysctlnode *node;
   1192      1.1      cube 	int error = 0;
   1193      1.1      cube 
   1194      1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1195      1.1      cube 	    CTLFLAG_PERMANENT,
   1196      1.1      cube 	    CTLTYPE_NODE, "net", NULL,
   1197      1.1      cube 	    NULL, 0, NULL, 0,
   1198      1.1      cube 	    CTL_NET, CTL_EOL)) != 0)
   1199      1.1      cube 		return;
   1200      1.1      cube 
   1201      1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1202      1.1      cube 	    CTLFLAG_PERMANENT,
   1203      1.1      cube 	    CTLTYPE_NODE, "link", NULL,
   1204      1.1      cube 	    NULL, 0, NULL, 0,
   1205      1.3      cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1206      1.1      cube 		return;
   1207      1.1      cube 
   1208      1.1      cube 	/*
   1209      1.1      cube 	 * The first four parameters of sysctl_createv are for management.
   1210      1.1      cube 	 *
   1211      1.1      cube 	 * The four that follows, here starting with a '0' for the flags,
   1212      1.1      cube 	 * describe the node.
   1213      1.1      cube 	 *
   1214      1.1      cube 	 * The next series of four set its value, through various possible
   1215      1.1      cube 	 * means.
   1216      1.1      cube 	 *
   1217      1.1      cube 	 * Last but not least, the path to the node is described.  That path
   1218      1.1      cube 	 * is relative to the given root (third argument).  Here we're
   1219      1.1      cube 	 * starting from the root.
   1220      1.1      cube 	 */
   1221      1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1222      1.1      cube 	    CTLFLAG_PERMANENT,
   1223      1.1      cube 	    CTLTYPE_NODE, "tap", NULL,
   1224      1.1      cube 	    NULL, 0, NULL, 0,
   1225      1.3      cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1226      1.1      cube 		return;
   1227      1.1      cube 	tap_node = node->sysctl_num;
   1228      1.1      cube }
   1229      1.1      cube 
   1230      1.1      cube /*
   1231      1.1      cube  * The helper functions make Andrew Brown's interface really
   1232      1.1      cube  * shine.  It makes possible to create value on the fly whether
   1233      1.1      cube  * the sysctl value is read or written.
   1234      1.1      cube  *
   1235      1.1      cube  * As shown as an example in the man page, the first step is to
   1236      1.1      cube  * create a copy of the node to have sysctl_lookup work on it.
   1237      1.1      cube  *
   1238      1.1      cube  * Here, we have more work to do than just a copy, since we have
   1239      1.1      cube  * to create the string.  The first step is to collect the actual
   1240      1.1      cube  * value of the node, which is a convenient pointer to the softc
   1241      1.1      cube  * of the interface.  From there we create the string and use it
   1242      1.1      cube  * as the value, but only for the *copy* of the node.
   1243      1.1      cube  *
   1244      1.1      cube  * Then we let sysctl_lookup do the magic, which consists in
   1245      1.1      cube  * setting oldp and newp as required by the operation.  When the
   1246      1.1      cube  * value is read, that means that the string will be copied to
   1247      1.1      cube  * the user, and when it is written, the new value will be copied
   1248      1.1      cube  * over in the addr array.
   1249      1.1      cube  *
   1250      1.1      cube  * If newp is NULL, the user was reading the value, so we don't
   1251      1.1      cube  * have anything else to do.  If a new value was written, we
   1252      1.1      cube  * have to check it.
   1253      1.1      cube  *
   1254      1.1      cube  * If it is incorrect, we can return an error and leave 'node' as
   1255      1.1      cube  * it is:  since it is a copy of the actual node, the change will
   1256      1.1      cube  * be forgotten.
   1257      1.1      cube  *
   1258      1.1      cube  * Upon a correct input, we commit the change to the ifnet
   1259      1.1      cube  * structure of our interface.
   1260      1.1      cube  */
   1261      1.1      cube static int
   1262      1.1      cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1263      1.1      cube {
   1264      1.1      cube 	struct sysctlnode node;
   1265      1.1      cube 	struct tap_softc *sc;
   1266      1.1      cube 	struct ifnet *ifp;
   1267      1.1      cube 	int error;
   1268      1.1      cube 	size_t len;
   1269      1.1      cube 	char addr[18];
   1270      1.1      cube 
   1271      1.1      cube 	node = *rnode;
   1272      1.1      cube 	sc = node.sysctl_data;
   1273      1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1274      1.1      cube 	(void)tap_ether_sprintf(addr, LLADDR(ifp->if_sadl));
   1275      1.1      cube 	node.sysctl_data = addr;
   1276      1.1      cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1277      1.1      cube 	if (error || newp == NULL)
   1278      1.1      cube 		return (error);
   1279      1.1      cube 
   1280      1.1      cube 	len = strlen(addr);
   1281      1.1      cube 	if (len < 11 || len > 17)
   1282      1.1      cube 		return (EINVAL);
   1283      1.1      cube 
   1284      1.1      cube 	/* Commit change */
   1285      1.1      cube 	if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1286      1.1      cube 		return (EINVAL);
   1287      1.1      cube 	return (error);
   1288      1.1      cube }
   1289      1.1      cube 
   1290      1.1      cube /*
   1291      1.1      cube  * ether_aton implementation, not using a static buffer.
   1292      1.1      cube  */
   1293      1.1      cube static int
   1294      1.1      cube tap_ether_aton(u_char *dest, char *str)
   1295      1.1      cube {
   1296      1.1      cube 	int i;
   1297      1.1      cube 	char *cp = str;
   1298      1.1      cube 	u_char val[6];
   1299      1.1      cube 
   1300      1.1      cube #define	set_value			\
   1301      1.1      cube 	if (*cp > '9' && *cp < 'a')	\
   1302      1.1      cube 		*cp -= 'A' - 10;	\
   1303      1.1      cube 	else if (*cp > '9')		\
   1304      1.1      cube 		*cp -= 'a' - 10;	\
   1305      1.1      cube 	else				\
   1306      1.1      cube 		*cp -= '0'
   1307      1.1      cube 
   1308      1.1      cube 	for (i = 0; i < 6; i++, cp++) {
   1309      1.1      cube 		if (!isxdigit(*cp))
   1310      1.1      cube 			return (1);
   1311      1.1      cube 		set_value;
   1312      1.1      cube 		val[i] = *cp++;
   1313      1.1      cube 		if (isxdigit(*cp)) {
   1314      1.1      cube 			set_value;
   1315      1.1      cube 			val[i] *= 16;
   1316      1.1      cube 			val[i] += *cp++;
   1317      1.1      cube 		}
   1318      1.1      cube 		if (*cp == ':' || i == 5)
   1319      1.1      cube 			continue;
   1320      1.1      cube 		else
   1321      1.1      cube 			return (1);
   1322      1.1      cube 	}
   1323      1.1      cube 	memcpy(dest, val, 6);
   1324      1.1      cube 	return (0);
   1325      1.1      cube }
   1326      1.1      cube 
   1327      1.1      cube /*
   1328      1.1      cube  * ether_sprintf made thread-safer.
   1329      1.1      cube  *
   1330      1.1      cube  * Copied over from sys/net/if_ethersubr.c, with a change to avoid the use
   1331      1.1      cube  * of a static buffer.
   1332      1.1      cube  */
   1333      1.1      cube 
   1334      1.1      cube /*
   1335      1.1      cube  * Copyright (c) 1982, 1989, 1993
   1336      1.1      cube  *      The Regents of the University of California.  All rights reserved.
   1337      1.1      cube  *
   1338      1.1      cube  * Redistribution and use in source and binary forms, with or without
   1339      1.1      cube  * modification, are permitted provided that the following conditions
   1340      1.1      cube  * are met:
   1341      1.1      cube  * 1. Redistributions of source code must retain the above copyright
   1342      1.1      cube  *    notice, this list of conditions and the following disclaimer.
   1343      1.1      cube  * 2. Redistributions in binary form must reproduce the above copyright
   1344      1.1      cube  *    notice, this list of conditions and the following disclaimer in the
   1345      1.1      cube  *    documentation and/or other materials provided with the distribution.
   1346      1.1      cube  * 3. Neither the name of the University nor the names of its contributors
   1347      1.1      cube  *    may be used to endorse or promote products derived from this software
   1348      1.1      cube  *    without specific prior written permission.
   1349      1.1      cube  *
   1350      1.1      cube  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   1351      1.1      cube  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   1352      1.1      cube  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   1353      1.1      cube  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   1354      1.1      cube  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   1355      1.1      cube  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   1356      1.1      cube  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   1357      1.1      cube  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   1358      1.1      cube  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   1359      1.1      cube  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   1360      1.1      cube  * SUCH DAMAGE.
   1361      1.1      cube  *
   1362      1.1      cube  *      @(#)if_ethersubr.c      8.2 (Berkeley) 4/4/96
   1363      1.1      cube  */
   1364      1.1      cube 
   1365      1.1      cube static char digits[] = "0123456789abcdef";
   1366      1.1      cube static char *
   1367      1.1      cube tap_ether_sprintf(char *dest, const u_char *ap)
   1368      1.1      cube {
   1369      1.1      cube 	char *cp = dest;
   1370      1.1      cube 	int i;
   1371      1.1      cube 
   1372      1.1      cube 	for (i = 0; i < 6; i++) {
   1373      1.1      cube 		*cp++ = digits[*ap >> 4];
   1374      1.1      cube 		*cp++ = digits[*ap++ & 0xf];
   1375      1.1      cube 		*cp++ = ':';
   1376      1.1      cube 	}
   1377      1.1      cube 	*--cp = 0;
   1378      1.1      cube 	return (dest);
   1379      1.1      cube }
   1380