Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.66.8.1
      1  1.66.8.1      yamt /*	$NetBSD: if_tap.c,v 1.66.8.1 2012/10/30 17:22:43 yamt Exp $	*/
      2       1.1      cube 
      3       1.1      cube /*
      4      1.55        ad  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5       1.1      cube  *  All rights reserved.
      6       1.1      cube  *
      7       1.1      cube  *  Redistribution and use in source and binary forms, with or without
      8       1.1      cube  *  modification, are permitted provided that the following conditions
      9       1.1      cube  *  are met:
     10       1.1      cube  *  1. Redistributions of source code must retain the above copyright
     11       1.1      cube  *     notice, this list of conditions and the following disclaimer.
     12       1.1      cube  *  2. Redistributions in binary form must reproduce the above copyright
     13       1.1      cube  *     notice, this list of conditions and the following disclaimer in the
     14       1.1      cube  *     documentation and/or other materials provided with the distribution.
     15       1.6     perry  *
     16       1.1      cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17       1.1      cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18       1.1      cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19       1.1      cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20       1.1      cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21       1.1      cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22       1.1      cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23       1.1      cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24       1.1      cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25       1.1      cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26       1.1      cube  *  POSSIBILITY OF SUCH DAMAGE.
     27       1.1      cube  */
     28       1.1      cube 
     29       1.1      cube /*
     30       1.1      cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31       1.1      cube  * device to the system, but can also be accessed by userland through a
     32       1.1      cube  * character device interface, which allows reading and injecting frames.
     33       1.1      cube  */
     34       1.1      cube 
     35       1.1      cube #include <sys/cdefs.h>
     36  1.66.8.1      yamt __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.66.8.1 2012/10/30 17:22:43 yamt Exp $");
     37       1.1      cube 
     38       1.2      cube #if defined(_KERNEL_OPT)
     39      1.63     pooka 
     40      1.54    plunky #include "opt_modular.h"
     41      1.54    plunky #include "opt_compat_netbsd.h"
     42       1.2      cube #endif
     43       1.1      cube 
     44       1.1      cube #include <sys/param.h>
     45       1.1      cube #include <sys/systm.h>
     46       1.1      cube #include <sys/kernel.h>
     47       1.1      cube #include <sys/malloc.h>
     48       1.1      cube #include <sys/conf.h>
     49       1.1      cube #include <sys/device.h>
     50       1.1      cube #include <sys/file.h>
     51       1.1      cube #include <sys/filedesc.h>
     52       1.1      cube #include <sys/ksyms.h>
     53       1.1      cube #include <sys/poll.h>
     54      1.54    plunky #include <sys/proc.h>
     55       1.1      cube #include <sys/select.h>
     56       1.1      cube #include <sys/sockio.h>
     57      1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
     58       1.1      cube #include <sys/sysctl.h>
     59      1.54    plunky #endif
     60      1.17      elad #include <sys/kauth.h>
     61      1.34        ad #include <sys/mutex.h>
     62      1.37        ad #include <sys/simplelock.h>
     63      1.42        ad #include <sys/intr.h>
     64      1.56  christos #include <sys/stat.h>
     65       1.1      cube 
     66       1.1      cube #include <net/if.h>
     67       1.1      cube #include <net/if_dl.h>
     68       1.1      cube #include <net/if_ether.h>
     69       1.1      cube #include <net/if_media.h>
     70       1.1      cube #include <net/if_tap.h>
     71       1.1      cube #include <net/bpf.h>
     72       1.1      cube 
     73      1.29  christos #include <compat/sys/sockio.h>
     74      1.29  christos 
     75      1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
     76       1.1      cube /*
     77       1.1      cube  * sysctl node management
     78       1.1      cube  *
     79       1.1      cube  * It's not really possible to use a SYSCTL_SETUP block with
     80      1.51        ad  * current module implementation, so it is easier to just define
     81       1.1      cube  * our own function.
     82       1.1      cube  *
     83       1.1      cube  * The handler function is a "helper" in Andrew Brown's sysctl
     84       1.1      cube  * framework terminology.  It is used as a gateway for sysctl
     85       1.1      cube  * requests over the nodes.
     86       1.1      cube  *
     87       1.1      cube  * tap_log allows the module to log creations of nodes and
     88       1.1      cube  * destroy them all at once using sysctl_teardown.
     89       1.1      cube  */
     90       1.1      cube static int tap_node;
     91       1.1      cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     92       1.2      cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     93      1.54    plunky #endif
     94       1.1      cube 
     95       1.1      cube /*
     96  1.66.8.1      yamt  * Since we're an Ethernet device, we need the 2 following
     97  1.66.8.1      yamt  * components: a struct ethercom and a struct ifmedia
     98  1.66.8.1      yamt  * since we don't attach a PHY to ourselves.
     99  1.66.8.1      yamt  * We could emulate one, but there's no real point.
    100       1.1      cube  */
    101       1.1      cube 
    102       1.1      cube struct tap_softc {
    103      1.40      cube 	device_t	sc_dev;
    104       1.1      cube 	struct ifmedia	sc_im;
    105       1.1      cube 	struct ethercom	sc_ec;
    106       1.1      cube 	int		sc_flags;
    107       1.1      cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    108       1.1      cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    109       1.1      cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    110       1.1      cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
    111       1.1      cube 	struct selinfo	sc_rsel;
    112       1.1      cube 	pid_t		sc_pgid; /* For async. IO */
    113      1.34        ad 	kmutex_t	sc_rdlock;
    114       1.1      cube 	struct simplelock	sc_kqlock;
    115      1.42        ad 	void		*sc_sih;
    116      1.56  christos 	struct timespec sc_atime;
    117      1.56  christos 	struct timespec sc_mtime;
    118      1.56  christos 	struct timespec sc_btime;
    119       1.1      cube };
    120       1.1      cube 
    121       1.1      cube /* autoconf(9) glue */
    122       1.1      cube 
    123       1.1      cube void	tapattach(int);
    124       1.1      cube 
    125      1.40      cube static int	tap_match(device_t, cfdata_t, void *);
    126      1.40      cube static void	tap_attach(device_t, device_t, void *);
    127      1.40      cube static int	tap_detach(device_t, int);
    128       1.1      cube 
    129      1.40      cube CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    130       1.1      cube     tap_match, tap_attach, tap_detach, NULL);
    131       1.1      cube extern struct cfdriver tap_cd;
    132       1.1      cube 
    133       1.1      cube /* Real device access routines */
    134       1.1      cube static int	tap_dev_close(struct tap_softc *);
    135       1.1      cube static int	tap_dev_read(int, struct uio *, int);
    136       1.1      cube static int	tap_dev_write(int, struct uio *, int);
    137      1.26  christos static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    138      1.11  christos static int	tap_dev_poll(int, int, struct lwp *);
    139       1.1      cube static int	tap_dev_kqfilter(int, struct knote *);
    140       1.1      cube 
    141       1.1      cube /* Fileops access routines */
    142      1.41        ad static int	tap_fops_close(file_t *);
    143      1.41        ad static int	tap_fops_read(file_t *, off_t *, struct uio *,
    144      1.17      elad     kauth_cred_t, int);
    145      1.41        ad static int	tap_fops_write(file_t *, off_t *, struct uio *,
    146      1.17      elad     kauth_cred_t, int);
    147      1.41        ad static int	tap_fops_ioctl(file_t *, u_long, void *);
    148      1.41        ad static int	tap_fops_poll(file_t *, int);
    149      1.56  christos static int	tap_fops_stat(file_t *, struct stat *);
    150      1.41        ad static int	tap_fops_kqfilter(file_t *, struct knote *);
    151       1.1      cube 
    152       1.1      cube static const struct fileops tap_fileops = {
    153      1.55        ad 	.fo_read = tap_fops_read,
    154      1.55        ad 	.fo_write = tap_fops_write,
    155      1.55        ad 	.fo_ioctl = tap_fops_ioctl,
    156      1.55        ad 	.fo_fcntl = fnullop_fcntl,
    157      1.55        ad 	.fo_poll = tap_fops_poll,
    158      1.56  christos 	.fo_stat = tap_fops_stat,
    159      1.55        ad 	.fo_close = tap_fops_close,
    160      1.55        ad 	.fo_kqfilter = tap_fops_kqfilter,
    161      1.62       dsl 	.fo_restart = fnullop_restart,
    162       1.1      cube };
    163       1.1      cube 
    164       1.1      cube /* Helper for cloning open() */
    165      1.11  christos static int	tap_dev_cloner(struct lwp *);
    166       1.1      cube 
    167       1.1      cube /* Character device routines */
    168      1.11  christos static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    169      1.11  christos static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    170       1.1      cube static int	tap_cdev_read(dev_t, struct uio *, int);
    171       1.1      cube static int	tap_cdev_write(dev_t, struct uio *, int);
    172      1.26  christos static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    173      1.11  christos static int	tap_cdev_poll(dev_t, int, struct lwp *);
    174       1.1      cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    175       1.1      cube 
    176       1.1      cube const struct cdevsw tap_cdevsw = {
    177       1.1      cube 	tap_cdev_open, tap_cdev_close,
    178       1.1      cube 	tap_cdev_read, tap_cdev_write,
    179       1.1      cube 	tap_cdev_ioctl, nostop, notty,
    180       1.1      cube 	tap_cdev_poll, nommap,
    181       1.1      cube 	tap_cdev_kqfilter,
    182      1.20  christos 	D_OTHER,
    183       1.1      cube };
    184       1.1      cube 
    185       1.1      cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    186       1.1      cube 
    187       1.1      cube /* kqueue-related routines */
    188       1.1      cube static void	tap_kqdetach(struct knote *);
    189       1.1      cube static int	tap_kqread(struct knote *, long);
    190       1.1      cube 
    191       1.1      cube /*
    192       1.1      cube  * Those are needed by the if_media interface.
    193       1.1      cube  */
    194       1.1      cube 
    195       1.1      cube static int	tap_mediachange(struct ifnet *);
    196       1.1      cube static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    197       1.1      cube 
    198       1.1      cube /*
    199       1.1      cube  * Those are needed by the ifnet interface, and would typically be
    200       1.1      cube  * there for any network interface driver.
    201       1.1      cube  * Some other routines are optional: watchdog and drain.
    202       1.1      cube  */
    203       1.1      cube 
    204       1.1      cube static void	tap_start(struct ifnet *);
    205       1.1      cube static void	tap_stop(struct ifnet *, int);
    206       1.1      cube static int	tap_init(struct ifnet *);
    207      1.26  christos static int	tap_ioctl(struct ifnet *, u_long, void *);
    208       1.1      cube 
    209      1.42        ad /* Internal functions */
    210      1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    211       1.1      cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    212      1.54    plunky #endif
    213      1.42        ad static void	tap_softintr(void *);
    214       1.1      cube 
    215       1.1      cube /*
    216       1.1      cube  * tap is a clonable interface, although it is highly unrealistic for
    217       1.1      cube  * an Ethernet device.
    218       1.1      cube  *
    219       1.1      cube  * Here are the bits needed for a clonable interface.
    220       1.1      cube  */
    221       1.1      cube static int	tap_clone_create(struct if_clone *, int);
    222       1.1      cube static int	tap_clone_destroy(struct ifnet *);
    223       1.1      cube 
    224       1.1      cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    225       1.1      cube 					tap_clone_create,
    226       1.1      cube 					tap_clone_destroy);
    227       1.1      cube 
    228       1.1      cube /* Helper functionis shared by the two cloning code paths */
    229       1.1      cube static struct tap_softc *	tap_clone_creator(int);
    230      1.40      cube int	tap_clone_destroyer(device_t);
    231       1.1      cube 
    232       1.1      cube void
    233      1.23  christos tapattach(int n)
    234       1.1      cube {
    235       1.1      cube 	int error;
    236       1.1      cube 
    237       1.1      cube 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    238       1.1      cube 	if (error) {
    239       1.1      cube 		aprint_error("%s: unable to register cfattach\n",
    240       1.1      cube 		    tap_cd.cd_name);
    241       1.1      cube 		(void)config_cfdriver_detach(&tap_cd);
    242       1.1      cube 		return;
    243       1.1      cube 	}
    244       1.1      cube 
    245       1.1      cube 	if_clone_attach(&tap_cloners);
    246       1.1      cube }
    247       1.1      cube 
    248       1.1      cube /* Pretty much useless for a pseudo-device */
    249       1.1      cube static int
    250      1.40      cube tap_match(device_t parent, cfdata_t cfdata, void *arg)
    251       1.1      cube {
    252      1.40      cube 
    253       1.1      cube 	return (1);
    254       1.1      cube }
    255       1.1      cube 
    256       1.1      cube void
    257      1.40      cube tap_attach(device_t parent, device_t self, void *aux)
    258       1.1      cube {
    259      1.40      cube 	struct tap_softc *sc = device_private(self);
    260       1.1      cube 	struct ifnet *ifp;
    261      1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    262      1.18    kardel 	const struct sysctlnode *node;
    263      1.54    plunky 	int error;
    264      1.54    plunky #endif
    265      1.38      matt 	uint8_t enaddr[ETHER_ADDR_LEN] =
    266       1.7      cube 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    267      1.14  christos 	char enaddrstr[3 * ETHER_ADDR_LEN];
    268      1.18    kardel 	struct timeval tv;
    269       1.1      cube 	uint32_t ui;
    270       1.1      cube 
    271      1.40      cube 	sc->sc_dev = self;
    272      1.42        ad 	sc->sc_sih = softint_establish(SOFTINT_CLOCK, tap_softintr, sc);
    273      1.56  christos 	getnanotime(&sc->sc_btime);
    274      1.56  christos 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    275      1.40      cube 
    276      1.48      hans 	if (!pmf_device_register(self, NULL, NULL))
    277      1.48      hans 		aprint_error_dev(self, "couldn't establish power handler\n");
    278      1.48      hans 
    279       1.1      cube 	/*
    280       1.1      cube 	 * In order to obtain unique initial Ethernet address on a host,
    281      1.18    kardel 	 * do some randomisation using the current uptime.  It's not meant
    282      1.18    kardel 	 * for anything but avoiding hard-coding an address.
    283       1.1      cube 	 */
    284      1.18    kardel 	getmicrouptime(&tv);
    285      1.18    kardel 	ui = (tv.tv_sec ^ tv.tv_usec) & 0xffffff;
    286      1.38      matt 	memcpy(enaddr+3, (uint8_t *)&ui, 3);
    287       1.1      cube 
    288      1.40      cube 	aprint_verbose_dev(self, "Ethernet address %s\n",
    289      1.14  christos 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    290       1.1      cube 
    291       1.1      cube 	/*
    292       1.1      cube 	 * Why 1000baseT? Why not? You can add more.
    293       1.1      cube 	 *
    294       1.1      cube 	 * Note that there are 3 steps: init, one or several additions to
    295       1.1      cube 	 * list of supported media, and in the end, the selection of one
    296       1.1      cube 	 * of them.
    297       1.1      cube 	 */
    298       1.1      cube 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    299       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    300       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    301       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    302       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    303       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    304       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    305       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    306       1.1      cube 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    307       1.1      cube 
    308       1.1      cube 	/*
    309       1.1      cube 	 * One should note that an interface must do multicast in order
    310       1.1      cube 	 * to support IPv6.
    311       1.1      cube 	 */
    312       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    313      1.40      cube 	strcpy(ifp->if_xname, device_xname(self));
    314       1.1      cube 	ifp->if_softc	= sc;
    315       1.1      cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    316       1.1      cube 	ifp->if_ioctl	= tap_ioctl;
    317       1.1      cube 	ifp->if_start	= tap_start;
    318       1.1      cube 	ifp->if_stop	= tap_stop;
    319       1.1      cube 	ifp->if_init	= tap_init;
    320       1.1      cube 	IFQ_SET_READY(&ifp->if_snd);
    321       1.1      cube 
    322       1.1      cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    323       1.1      cube 
    324       1.1      cube 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    325       1.1      cube 	 * being common to all network interface drivers. */
    326       1.1      cube 	if_attach(ifp);
    327       1.1      cube 	ether_ifattach(ifp, enaddr);
    328       1.1      cube 
    329       1.1      cube 	sc->sc_flags = 0;
    330       1.1      cube 
    331      1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    332       1.1      cube 	/*
    333       1.1      cube 	 * Add a sysctl node for that interface.
    334       1.1      cube 	 *
    335       1.1      cube 	 * The pointer transmitted is not a string, but instead a pointer to
    336       1.1      cube 	 * the softc structure, which we can use to build the string value on
    337       1.1      cube 	 * the fly in the helper function of the node.  See the comments for
    338       1.1      cube 	 * tap_sysctl_handler for details.
    339      1.21      cube 	 *
    340      1.21      cube 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    341      1.21      cube 	 * component.  However, we can allocate a number ourselves, as we are
    342      1.21      cube 	 * the only consumer of the net.link.<iface> node.  In this case, the
    343      1.21      cube 	 * unit number is conveniently used to number the node.  CTL_CREATE
    344      1.21      cube 	 * would just work, too.
    345       1.1      cube 	 */
    346       1.1      cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    347       1.1      cube 	    &node, CTLFLAG_READWRITE,
    348      1.40      cube 	    CTLTYPE_STRING, device_xname(self), NULL,
    349  1.66.8.1      yamt 	    tap_sysctl_handler, 0, (void *)sc, 18,
    350      1.40      cube 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    351      1.15   thorpej 	    CTL_EOL)) != 0)
    352      1.40      cube 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    353      1.40      cube 		    error);
    354      1.54    plunky #endif
    355       1.1      cube 
    356       1.1      cube 	/*
    357       1.1      cube 	 * Initialize the two locks for the device.
    358       1.1      cube 	 *
    359       1.1      cube 	 * We need a lock here because even though the tap device can be
    360       1.1      cube 	 * opened only once, the file descriptor might be passed to another
    361       1.1      cube 	 * process, say a fork(2)ed child.
    362       1.1      cube 	 *
    363       1.1      cube 	 * The Giant saves us from most of the hassle, but since the read
    364       1.1      cube 	 * operation can sleep, we don't want two processes to wake up at
    365       1.1      cube 	 * the same moment and both try and dequeue a single packet.
    366       1.1      cube 	 *
    367       1.1      cube 	 * The queue for event listeners (used by kqueue(9), see below) has
    368       1.1      cube 	 * to be protected, too, but we don't need the same level of
    369       1.1      cube 	 * complexity for that lock, so a simple spinning lock is fine.
    370       1.1      cube 	 */
    371      1.34        ad 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    372       1.1      cube 	simple_lock_init(&sc->sc_kqlock);
    373      1.47     rmind 
    374      1.47     rmind 	selinit(&sc->sc_rsel);
    375       1.1      cube }
    376       1.1      cube 
    377       1.1      cube /*
    378       1.1      cube  * When detaching, we do the inverse of what is done in the attach
    379       1.1      cube  * routine, in reversed order.
    380       1.1      cube  */
    381       1.1      cube static int
    382      1.40      cube tap_detach(device_t self, int flags)
    383       1.1      cube {
    384      1.40      cube 	struct tap_softc *sc = device_private(self);
    385       1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    386      1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    387      1.54    plunky 	int error;
    388      1.54    plunky #endif
    389      1.54    plunky 	int s;
    390       1.1      cube 
    391       1.1      cube 	sc->sc_flags |= TAP_GOING;
    392       1.1      cube 	s = splnet();
    393       1.1      cube 	tap_stop(ifp, 1);
    394       1.1      cube 	if_down(ifp);
    395       1.1      cube 	splx(s);
    396       1.1      cube 
    397      1.42        ad 	softint_disestablish(sc->sc_sih);
    398      1.42        ad 
    399      1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    400       1.1      cube 	/*
    401       1.1      cube 	 * Destroying a single leaf is a very straightforward operation using
    402       1.1      cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    403       1.1      cube 	 * CTL_EOL.
    404       1.1      cube 	 */
    405       1.3      cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    406      1.40      cube 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    407      1.40      cube 		aprint_error_dev(self,
    408      1.40      cube 		    "sysctl_destroyv returned %d, ignoring\n", error);
    409      1.54    plunky #endif
    410       1.1      cube 	ether_ifdetach(ifp);
    411       1.1      cube 	if_detach(ifp);
    412       1.1      cube 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    413      1.47     rmind 	seldestroy(&sc->sc_rsel);
    414      1.34        ad 	mutex_destroy(&sc->sc_rdlock);
    415       1.1      cube 
    416      1.49      hans 	pmf_device_deregister(self);
    417      1.49      hans 
    418       1.1      cube 	return (0);
    419       1.1      cube }
    420       1.1      cube 
    421       1.1      cube /*
    422       1.1      cube  * This function is called by the ifmedia layer to notify the driver
    423       1.1      cube  * that the user requested a media change.  A real driver would
    424       1.1      cube  * reconfigure the hardware.
    425       1.1      cube  */
    426       1.1      cube static int
    427      1.23  christos tap_mediachange(struct ifnet *ifp)
    428       1.1      cube {
    429       1.1      cube 	return (0);
    430       1.1      cube }
    431       1.1      cube 
    432       1.1      cube /*
    433       1.1      cube  * Here the user asks for the currently used media.
    434       1.1      cube  */
    435       1.1      cube static void
    436       1.1      cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    437       1.1      cube {
    438       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    439       1.1      cube 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    440       1.1      cube }
    441       1.1      cube 
    442       1.1      cube /*
    443       1.1      cube  * This is the function where we SEND packets.
    444       1.1      cube  *
    445       1.1      cube  * There is no 'receive' equivalent.  A typical driver will get
    446       1.1      cube  * interrupts from the hardware, and from there will inject new packets
    447       1.1      cube  * into the network stack.
    448       1.1      cube  *
    449       1.1      cube  * Once handled, a packet must be freed.  A real driver might not be able
    450       1.1      cube  * to fit all the pending packets into the hardware, and is allowed to
    451       1.1      cube  * return before having sent all the packets.  It should then use the
    452       1.1      cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    453       1.1      cube  *
    454       1.1      cube  * There are also other flags one should check, such as IFF_PAUSE.
    455       1.1      cube  *
    456       1.1      cube  * It is our duty to make packets available to BPF listeners.
    457       1.1      cube  *
    458       1.1      cube  * You should be aware that this function is called by the Ethernet layer
    459       1.1      cube  * at splnet().
    460       1.1      cube  *
    461       1.1      cube  * When the device is opened, we have to pass the packet(s) to the
    462       1.1      cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    463       1.1      cube  * the packets, and we send a signal to the processes waiting to read.
    464       1.1      cube  *
    465       1.1      cube  * wakeup(sc) is the counterpart to the tsleep call in
    466       1.1      cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    467       1.1      cube  * poll(2) (which includes select(2)) listeners.
    468       1.1      cube  */
    469       1.1      cube static void
    470       1.1      cube tap_start(struct ifnet *ifp)
    471       1.1      cube {
    472       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    473       1.1      cube 	struct mbuf *m0;
    474       1.1      cube 
    475       1.1      cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    476       1.1      cube 		/* Simply drop packets */
    477       1.1      cube 		for(;;) {
    478       1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    479       1.1      cube 			if (m0 == NULL)
    480       1.1      cube 				return;
    481       1.1      cube 
    482       1.1      cube 			ifp->if_opackets++;
    483      1.64     joerg 			bpf_mtap(ifp, m0);
    484       1.1      cube 
    485       1.1      cube 			m_freem(m0);
    486       1.1      cube 		}
    487       1.1      cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    488       1.1      cube 		ifp->if_flags |= IFF_OACTIVE;
    489       1.1      cube 		wakeup(sc);
    490      1.39     rmind 		selnotify(&sc->sc_rsel, 0, 1);
    491       1.1      cube 		if (sc->sc_flags & TAP_ASYNCIO)
    492      1.42        ad 			softint_schedule(sc->sc_sih);
    493      1.42        ad 	}
    494      1.42        ad }
    495      1.42        ad 
    496      1.42        ad static void
    497      1.42        ad tap_softintr(void *cookie)
    498      1.42        ad {
    499      1.42        ad 	struct tap_softc *sc;
    500      1.42        ad 	struct ifnet *ifp;
    501      1.42        ad 	int a, b;
    502      1.42        ad 
    503      1.42        ad 	sc = cookie;
    504      1.42        ad 
    505      1.42        ad 	if (sc->sc_flags & TAP_ASYNCIO) {
    506      1.42        ad 		ifp = &sc->sc_ec.ec_if;
    507      1.42        ad 		if (ifp->if_flags & IFF_RUNNING) {
    508      1.42        ad 			a = POLL_IN;
    509      1.42        ad 			b = POLLIN|POLLRDNORM;
    510      1.42        ad 		} else {
    511      1.42        ad 			a = POLL_HUP;
    512      1.42        ad 			b = 0;
    513      1.42        ad 		}
    514      1.42        ad 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    515       1.1      cube 	}
    516       1.1      cube }
    517       1.1      cube 
    518       1.1      cube /*
    519       1.1      cube  * A typical driver will only contain the following handlers for
    520       1.1      cube  * ioctl calls, except SIOCSIFPHYADDR.
    521       1.1      cube  * The latter is a hack I used to set the Ethernet address of the
    522       1.1      cube  * faked device.
    523       1.1      cube  *
    524       1.1      cube  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    525       1.1      cube  * called under splnet().
    526       1.1      cube  */
    527       1.1      cube static int
    528      1.26  christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    529       1.1      cube {
    530       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    531       1.1      cube 	struct ifreq *ifr = (struct ifreq *)data;
    532       1.1      cube 	int s, error;
    533       1.1      cube 
    534       1.1      cube 	s = splnet();
    535       1.1      cube 
    536       1.1      cube 	switch (cmd) {
    537      1.29  christos #ifdef OSIOCSIFMEDIA
    538      1.29  christos 	case OSIOCSIFMEDIA:
    539      1.29  christos #endif
    540       1.1      cube 	case SIOCSIFMEDIA:
    541       1.1      cube 	case SIOCGIFMEDIA:
    542       1.1      cube 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    543       1.1      cube 		break;
    544      1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    545       1.1      cube 	case SIOCSIFPHYADDR:
    546       1.1      cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    547       1.1      cube 		break;
    548      1.54    plunky #endif
    549       1.1      cube 	default:
    550       1.1      cube 		error = ether_ioctl(ifp, cmd, data);
    551       1.1      cube 		if (error == ENETRESET)
    552       1.1      cube 			error = 0;
    553       1.1      cube 		break;
    554       1.1      cube 	}
    555       1.1      cube 
    556       1.1      cube 	splx(s);
    557       1.1      cube 
    558       1.1      cube 	return (error);
    559       1.1      cube }
    560       1.1      cube 
    561      1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    562       1.1      cube /*
    563      1.54    plunky  * Helper function to set Ethernet address.  This has been replaced by
    564      1.54    plunky  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    565       1.1      cube  */
    566       1.1      cube static int
    567      1.23  christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    568       1.1      cube {
    569      1.53    plunky 	const struct sockaddr *sa = &ifra->ifra_addr;
    570       1.1      cube 
    571      1.53    plunky 	if (sa->sa_family != AF_LINK)
    572       1.1      cube 		return (EINVAL);
    573       1.1      cube 
    574      1.53    plunky 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    575       1.1      cube 
    576       1.1      cube 	return (0);
    577       1.1      cube }
    578      1.54    plunky #endif
    579       1.1      cube 
    580       1.1      cube /*
    581       1.1      cube  * _init() would typically be called when an interface goes up,
    582       1.1      cube  * meaning it should configure itself into the state in which it
    583       1.1      cube  * can send packets.
    584       1.1      cube  */
    585       1.1      cube static int
    586       1.1      cube tap_init(struct ifnet *ifp)
    587       1.1      cube {
    588       1.1      cube 	ifp->if_flags |= IFF_RUNNING;
    589       1.1      cube 
    590       1.1      cube 	tap_start(ifp);
    591       1.1      cube 
    592       1.1      cube 	return (0);
    593       1.1      cube }
    594       1.1      cube 
    595       1.1      cube /*
    596       1.1      cube  * _stop() is called when an interface goes down.  It is our
    597       1.1      cube  * responsability to validate that state by clearing the
    598       1.1      cube  * IFF_RUNNING flag.
    599       1.1      cube  *
    600       1.1      cube  * We have to wake up all the sleeping processes to have the pending
    601       1.1      cube  * read requests cancelled.
    602       1.1      cube  */
    603       1.1      cube static void
    604      1.23  christos tap_stop(struct ifnet *ifp, int disable)
    605       1.1      cube {
    606       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    607       1.1      cube 
    608       1.1      cube 	ifp->if_flags &= ~IFF_RUNNING;
    609       1.1      cube 	wakeup(sc);
    610      1.39     rmind 	selnotify(&sc->sc_rsel, 0, 1);
    611       1.1      cube 	if (sc->sc_flags & TAP_ASYNCIO)
    612      1.42        ad 		softint_schedule(sc->sc_sih);
    613       1.1      cube }
    614       1.1      cube 
    615       1.1      cube /*
    616       1.1      cube  * The 'create' command of ifconfig can be used to create
    617       1.1      cube  * any numbered instance of a given device.  Thus we have to
    618       1.1      cube  * make sure we have enough room in cd_devs to create the
    619       1.1      cube  * user-specified instance.  config_attach_pseudo will do this
    620       1.1      cube  * for us.
    621       1.1      cube  */
    622       1.1      cube static int
    623      1.23  christos tap_clone_create(struct if_clone *ifc, int unit)
    624       1.1      cube {
    625       1.1      cube 	if (tap_clone_creator(unit) == NULL) {
    626       1.1      cube 		aprint_error("%s%d: unable to attach an instance\n",
    627       1.1      cube                     tap_cd.cd_name, unit);
    628       1.1      cube 		return (ENXIO);
    629       1.1      cube 	}
    630       1.1      cube 
    631       1.1      cube 	return (0);
    632       1.1      cube }
    633       1.1      cube 
    634       1.1      cube /*
    635       1.1      cube  * tap(4) can be cloned by two ways:
    636       1.1      cube  *   using 'ifconfig tap0 create', which will use the network
    637       1.1      cube  *     interface cloning API, and call tap_clone_create above.
    638       1.1      cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    639       1.1      cube  *     See below for an explanation on how this part work.
    640       1.1      cube  */
    641       1.1      cube static struct tap_softc *
    642       1.1      cube tap_clone_creator(int unit)
    643       1.1      cube {
    644       1.1      cube 	struct cfdata *cf;
    645       1.1      cube 
    646       1.1      cube 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    647       1.1      cube 	cf->cf_name = tap_cd.cd_name;
    648       1.1      cube 	cf->cf_atname = tap_ca.ca_name;
    649      1.27  drochner 	if (unit == -1) {
    650      1.27  drochner 		/* let autoconf find the first free one */
    651      1.27  drochner 		cf->cf_unit = 0;
    652      1.27  drochner 		cf->cf_fstate = FSTATE_STAR;
    653      1.27  drochner 	} else {
    654      1.27  drochner 		cf->cf_unit = unit;
    655      1.58    plunky 		cf->cf_fstate = FSTATE_NOTFOUND;
    656      1.27  drochner 	}
    657       1.1      cube 
    658      1.40      cube 	return device_private(config_attach_pseudo(cf));
    659       1.1      cube }
    660       1.1      cube 
    661       1.1      cube /*
    662       1.1      cube  * The clean design of if_clone and autoconf(9) makes that part
    663       1.1      cube  * really straightforward.  The second argument of config_detach
    664       1.1      cube  * means neither QUIET nor FORCED.
    665       1.1      cube  */
    666       1.1      cube static int
    667       1.1      cube tap_clone_destroy(struct ifnet *ifp)
    668       1.1      cube {
    669      1.45    dyoung 	struct tap_softc *sc = ifp->if_softc;
    670      1.45    dyoung 
    671      1.45    dyoung 	return tap_clone_destroyer(sc->sc_dev);
    672       1.1      cube }
    673       1.1      cube 
    674      1.12      cube int
    675      1.40      cube tap_clone_destroyer(device_t dev)
    676       1.1      cube {
    677      1.40      cube 	cfdata_t cf = device_cfdata(dev);
    678       1.1      cube 	int error;
    679       1.1      cube 
    680       1.1      cube 	if ((error = config_detach(dev, 0)) != 0)
    681      1.40      cube 		aprint_error_dev(dev, "unable to detach instance\n");
    682       1.1      cube 	free(cf, M_DEVBUF);
    683       1.1      cube 
    684       1.1      cube 	return (error);
    685       1.1      cube }
    686       1.1      cube 
    687       1.1      cube /*
    688       1.1      cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    689       1.1      cube  * ways:
    690       1.1      cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    691       1.1      cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    692       1.1      cube  *     That interface is destroyed when the process that had it created exits.
    693       1.1      cube  *
    694       1.1      cube  * The first way is managed by the cdevsw structure, and you access interfaces
    695       1.1      cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    696       1.1      cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    697       1.1      cube  *
    698       1.1      cube  * The second way is the so-called "cloning" device.  It's a special minor
    699       1.1      cube  * number (chosen as the maximal number, to allow as much tap devices as
    700       1.1      cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    701       1.1      cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    702       1.1      cube  * tap_dev_cloner.
    703       1.1      cube  *
    704       1.1      cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    705       1.1      cube  * part of open() does nothing but noting that the interface is being used and
    706       1.1      cube  * hence ready to actually handle packets.
    707       1.1      cube  */
    708       1.1      cube 
    709       1.1      cube static int
    710      1.23  christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    711       1.1      cube {
    712       1.1      cube 	struct tap_softc *sc;
    713       1.1      cube 
    714       1.1      cube 	if (minor(dev) == TAP_CLONER)
    715      1.11  christos 		return tap_dev_cloner(l);
    716       1.1      cube 
    717      1.46    cegger 	sc = device_lookup_private(&tap_cd, minor(dev));
    718       1.1      cube 	if (sc == NULL)
    719       1.1      cube 		return (ENXIO);
    720       1.1      cube 
    721       1.1      cube 	/* The device can only be opened once */
    722       1.1      cube 	if (sc->sc_flags & TAP_INUSE)
    723       1.1      cube 		return (EBUSY);
    724       1.1      cube 	sc->sc_flags |= TAP_INUSE;
    725       1.1      cube 	return (0);
    726       1.1      cube }
    727       1.1      cube 
    728       1.1      cube /*
    729       1.1      cube  * There are several kinds of cloning devices, and the most simple is the one
    730       1.1      cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    731       1.1      cube  * with its own fileops structure (which maps to the various read, write,
    732       1.1      cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    733       1.1      cube  * then actually creates the new tap devices.
    734       1.1      cube  *
    735       1.1      cube  * Once those two steps are successful, we can re-wire the existing file
    736       1.1      cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    737       1.1      cube  * structure as needed (notably f_data gets filled with the fifth parameter
    738       1.1      cube  * passed, the unit of the tap device which will allows us identifying the
    739       1.1      cube  * device later), and returns EMOVEFD.
    740       1.1      cube  *
    741       1.1      cube  * That magic value is interpreted by sys_open() which then replaces the
    742       1.1      cube  * current file descriptor by the new one (through a magic member of struct
    743      1.13     pooka  * lwp, l_dupfd).
    744       1.1      cube  *
    745       1.1      cube  * The tap device is flagged as being busy since it otherwise could be
    746       1.1      cube  * externally accessed through the corresponding device node with the cdevsw
    747       1.1      cube  * interface.
    748       1.1      cube  */
    749       1.1      cube 
    750       1.1      cube static int
    751      1.11  christos tap_dev_cloner(struct lwp *l)
    752       1.1      cube {
    753       1.1      cube 	struct tap_softc *sc;
    754      1.41        ad 	file_t *fp;
    755       1.1      cube 	int error, fd;
    756       1.1      cube 
    757      1.41        ad 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    758       1.1      cube 		return (error);
    759       1.1      cube 
    760      1.27  drochner 	if ((sc = tap_clone_creator(-1)) == NULL) {
    761      1.41        ad 		fd_abort(curproc, fp, fd);
    762       1.1      cube 		return (ENXIO);
    763       1.1      cube 	}
    764       1.1      cube 
    765       1.1      cube 	sc->sc_flags |= TAP_INUSE;
    766       1.1      cube 
    767      1.41        ad 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    768      1.40      cube 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    769       1.1      cube }
    770       1.1      cube 
    771       1.1      cube /*
    772       1.1      cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    773       1.1      cube  * really the same whether we are in cdevsw or fileops mode, the close()
    774       1.1      cube  * function is slightly different in the two cases.
    775       1.1      cube  *
    776       1.1      cube  * As for the other, the core of it is shared in tap_dev_close.  What
    777       1.1      cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    778       1.1      cube  * needs another thing:  the interface is destroyed when the processes that
    779       1.1      cube  * created it closes it.
    780       1.1      cube  */
    781       1.1      cube static int
    782      1.23  christos tap_cdev_close(dev_t dev, int flags, int fmt,
    783      1.23  christos     struct lwp *l)
    784       1.1      cube {
    785       1.1      cube 	struct tap_softc *sc =
    786      1.46    cegger 	    device_lookup_private(&tap_cd, minor(dev));
    787       1.1      cube 
    788       1.1      cube 	if (sc == NULL)
    789       1.1      cube 		return (ENXIO);
    790       1.1      cube 
    791       1.1      cube 	return tap_dev_close(sc);
    792       1.1      cube }
    793       1.1      cube 
    794       1.1      cube /*
    795       1.1      cube  * It might happen that the administrator used ifconfig to externally destroy
    796       1.1      cube  * the interface.  In that case, tap_fops_close will be called while
    797       1.1      cube  * tap_detach is already happening.  If we called it again from here, we
    798       1.1      cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    799       1.1      cube  */
    800       1.1      cube static int
    801      1.41        ad tap_fops_close(file_t *fp)
    802       1.1      cube {
    803       1.1      cube 	int unit = (intptr_t)fp->f_data;
    804       1.1      cube 	struct tap_softc *sc;
    805       1.1      cube 	int error;
    806       1.1      cube 
    807      1.46    cegger 	sc = device_lookup_private(&tap_cd, unit);
    808       1.1      cube 	if (sc == NULL)
    809       1.1      cube 		return (ENXIO);
    810       1.1      cube 
    811       1.1      cube 	/* tap_dev_close currently always succeeds, but it might not
    812       1.1      cube 	 * always be the case. */
    813      1.44        ad 	KERNEL_LOCK(1, NULL);
    814      1.44        ad 	if ((error = tap_dev_close(sc)) != 0) {
    815      1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    816       1.1      cube 		return (error);
    817      1.44        ad 	}
    818       1.1      cube 
    819       1.1      cube 	/* Destroy the device now that it is no longer useful,
    820       1.1      cube 	 * unless it's already being destroyed. */
    821      1.44        ad 	if ((sc->sc_flags & TAP_GOING) != 0) {
    822      1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    823       1.1      cube 		return (0);
    824      1.44        ad 	}
    825       1.1      cube 
    826      1.44        ad 	error = tap_clone_destroyer(sc->sc_dev);
    827      1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    828      1.44        ad 	return error;
    829       1.1      cube }
    830       1.1      cube 
    831       1.1      cube static int
    832       1.1      cube tap_dev_close(struct tap_softc *sc)
    833       1.1      cube {
    834       1.1      cube 	struct ifnet *ifp;
    835       1.1      cube 	int s;
    836       1.1      cube 
    837       1.1      cube 	s = splnet();
    838       1.1      cube 	/* Let tap_start handle packets again */
    839       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    840       1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    841       1.1      cube 
    842       1.1      cube 	/* Purge output queue */
    843       1.1      cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    844       1.1      cube 		struct mbuf *m;
    845       1.1      cube 
    846       1.1      cube 		for (;;) {
    847       1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    848       1.1      cube 			if (m == NULL)
    849       1.1      cube 				break;
    850       1.1      cube 
    851       1.1      cube 			ifp->if_opackets++;
    852      1.64     joerg 			bpf_mtap(ifp, m);
    853      1.60    plunky 			m_freem(m);
    854       1.1      cube 		}
    855       1.1      cube 	}
    856       1.1      cube 	splx(s);
    857       1.1      cube 
    858       1.1      cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    859       1.1      cube 
    860       1.1      cube 	return (0);
    861       1.1      cube }
    862       1.1      cube 
    863       1.1      cube static int
    864       1.1      cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    865       1.1      cube {
    866       1.1      cube 	return tap_dev_read(minor(dev), uio, flags);
    867       1.1      cube }
    868       1.1      cube 
    869       1.1      cube static int
    870      1.41        ad tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    871      1.23  christos     kauth_cred_t cred, int flags)
    872       1.1      cube {
    873      1.44        ad 	int error;
    874      1.44        ad 
    875      1.44        ad 	KERNEL_LOCK(1, NULL);
    876      1.44        ad 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
    877      1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    878      1.44        ad 	return error;
    879       1.1      cube }
    880       1.1      cube 
    881       1.1      cube static int
    882      1.23  christos tap_dev_read(int unit, struct uio *uio, int flags)
    883       1.1      cube {
    884       1.1      cube 	struct tap_softc *sc =
    885      1.46    cegger 	    device_lookup_private(&tap_cd, unit);
    886       1.1      cube 	struct ifnet *ifp;
    887       1.1      cube 	struct mbuf *m, *n;
    888       1.1      cube 	int error = 0, s;
    889       1.1      cube 
    890       1.1      cube 	if (sc == NULL)
    891       1.1      cube 		return (ENXIO);
    892       1.1      cube 
    893      1.56  christos 	getnanotime(&sc->sc_atime);
    894      1.56  christos 
    895       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    896       1.1      cube 	if ((ifp->if_flags & IFF_UP) == 0)
    897       1.1      cube 		return (EHOSTDOWN);
    898       1.1      cube 
    899       1.1      cube 	/*
    900       1.1      cube 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    901       1.1      cube 	 */
    902      1.34        ad 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    903      1.34        ad 		if (!mutex_tryenter(&sc->sc_rdlock))
    904      1.34        ad 			return (EWOULDBLOCK);
    905      1.34        ad 	} else {
    906      1.34        ad 		mutex_enter(&sc->sc_rdlock);
    907      1.34        ad 	}
    908       1.1      cube 
    909       1.1      cube 	s = splnet();
    910       1.1      cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    911       1.1      cube 		ifp->if_flags &= ~IFF_OACTIVE;
    912       1.1      cube 		/*
    913       1.1      cube 		 * We must release the lock before sleeping, and re-acquire it
    914       1.1      cube 		 * after.
    915       1.1      cube 		 */
    916      1.34        ad 		mutex_exit(&sc->sc_rdlock);
    917       1.1      cube 		if (sc->sc_flags & TAP_NBIO)
    918       1.1      cube 			error = EWOULDBLOCK;
    919       1.1      cube 		else
    920       1.1      cube 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    921      1.52     pooka 		splx(s);
    922      1.52     pooka 
    923       1.1      cube 		if (error != 0)
    924       1.1      cube 			return (error);
    925       1.1      cube 		/* The device might have been downed */
    926       1.1      cube 		if ((ifp->if_flags & IFF_UP) == 0)
    927       1.1      cube 			return (EHOSTDOWN);
    928      1.34        ad 		if ((sc->sc_flags & TAP_NBIO)) {
    929      1.34        ad 			if (!mutex_tryenter(&sc->sc_rdlock))
    930      1.34        ad 				return (EWOULDBLOCK);
    931      1.34        ad 		} else {
    932      1.34        ad 			mutex_enter(&sc->sc_rdlock);
    933      1.34        ad 		}
    934       1.1      cube 		s = splnet();
    935       1.1      cube 	}
    936       1.1      cube 
    937       1.1      cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    938       1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    939       1.1      cube 	splx(s);
    940       1.1      cube 	if (m == NULL) {
    941       1.1      cube 		error = 0;
    942       1.1      cube 		goto out;
    943       1.1      cube 	}
    944       1.1      cube 
    945       1.1      cube 	ifp->if_opackets++;
    946      1.64     joerg 	bpf_mtap(ifp, m);
    947       1.1      cube 
    948       1.1      cube 	/*
    949       1.1      cube 	 * One read is one packet.
    950       1.1      cube 	 */
    951       1.1      cube 	do {
    952      1.26  christos 		error = uiomove(mtod(m, void *),
    953       1.1      cube 		    min(m->m_len, uio->uio_resid), uio);
    954       1.1      cube 		MFREE(m, n);
    955       1.1      cube 		m = n;
    956       1.1      cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    957       1.1      cube 
    958       1.1      cube 	if (m != NULL)
    959       1.1      cube 		m_freem(m);
    960       1.1      cube 
    961       1.1      cube out:
    962      1.34        ad 	mutex_exit(&sc->sc_rdlock);
    963       1.1      cube 	return (error);
    964       1.1      cube }
    965       1.1      cube 
    966       1.1      cube static int
    967      1.56  christos tap_fops_stat(file_t *fp, struct stat *st)
    968      1.56  christos {
    969      1.59  drochner 	int error = 0;
    970      1.57  christos 	struct tap_softc *sc;
    971      1.57  christos 	int unit = (uintptr_t)fp->f_data;
    972      1.57  christos 
    973      1.57  christos 	(void)memset(st, 0, sizeof(*st));
    974      1.57  christos 
    975      1.56  christos 	KERNEL_LOCK(1, NULL);
    976      1.57  christos 	sc = device_lookup_private(&tap_cd, unit);
    977      1.57  christos 	if (sc == NULL) {
    978      1.57  christos 		error = ENXIO;
    979      1.57  christos 		goto out;
    980      1.57  christos 	}
    981      1.56  christos 
    982      1.56  christos 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    983      1.56  christos 	st->st_atimespec = sc->sc_atime;
    984      1.56  christos 	st->st_mtimespec = sc->sc_mtime;
    985      1.56  christos 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    986      1.57  christos 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    987      1.57  christos 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    988      1.57  christos out:
    989      1.57  christos 	KERNEL_UNLOCK_ONE(NULL);
    990      1.57  christos 	return error;
    991      1.56  christos }
    992      1.56  christos 
    993      1.56  christos static int
    994       1.1      cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    995       1.1      cube {
    996       1.1      cube 	return tap_dev_write(minor(dev), uio, flags);
    997       1.1      cube }
    998       1.1      cube 
    999       1.1      cube static int
   1000      1.41        ad tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1001      1.23  christos     kauth_cred_t cred, int flags)
   1002       1.1      cube {
   1003      1.44        ad 	int error;
   1004      1.44        ad 
   1005      1.44        ad 	KERNEL_LOCK(1, NULL);
   1006      1.44        ad 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
   1007      1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1008      1.44        ad 	return error;
   1009       1.1      cube }
   1010       1.1      cube 
   1011       1.1      cube static int
   1012      1.23  christos tap_dev_write(int unit, struct uio *uio, int flags)
   1013       1.1      cube {
   1014       1.1      cube 	struct tap_softc *sc =
   1015      1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1016       1.1      cube 	struct ifnet *ifp;
   1017       1.1      cube 	struct mbuf *m, **mp;
   1018       1.1      cube 	int error = 0;
   1019       1.9    bouyer 	int s;
   1020       1.1      cube 
   1021       1.1      cube 	if (sc == NULL)
   1022       1.1      cube 		return (ENXIO);
   1023       1.1      cube 
   1024      1.56  christos 	getnanotime(&sc->sc_mtime);
   1025       1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1026       1.1      cube 
   1027       1.1      cube 	/* One write, one packet, that's the rule */
   1028       1.1      cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1029       1.1      cube 	if (m == NULL) {
   1030       1.1      cube 		ifp->if_ierrors++;
   1031       1.1      cube 		return (ENOBUFS);
   1032       1.1      cube 	}
   1033       1.1      cube 	m->m_pkthdr.len = uio->uio_resid;
   1034       1.1      cube 
   1035       1.1      cube 	mp = &m;
   1036       1.1      cube 	while (error == 0 && uio->uio_resid > 0) {
   1037       1.1      cube 		if (*mp != m) {
   1038       1.1      cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1039       1.1      cube 			if (*mp == NULL) {
   1040       1.1      cube 				error = ENOBUFS;
   1041       1.1      cube 				break;
   1042       1.1      cube 			}
   1043       1.1      cube 		}
   1044       1.1      cube 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1045      1.26  christos 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1046       1.1      cube 		mp = &(*mp)->m_next;
   1047       1.1      cube 	}
   1048       1.1      cube 	if (error) {
   1049       1.1      cube 		ifp->if_ierrors++;
   1050       1.1      cube 		m_freem(m);
   1051       1.1      cube 		return (error);
   1052       1.1      cube 	}
   1053       1.1      cube 
   1054       1.1      cube 	ifp->if_ipackets++;
   1055       1.1      cube 	m->m_pkthdr.rcvif = ifp;
   1056       1.1      cube 
   1057      1.64     joerg 	bpf_mtap(ifp, m);
   1058       1.9    bouyer 	s =splnet();
   1059       1.1      cube 	(*ifp->if_input)(ifp, m);
   1060       1.9    bouyer 	splx(s);
   1061       1.1      cube 
   1062       1.1      cube 	return (0);
   1063       1.1      cube }
   1064       1.1      cube 
   1065       1.1      cube static int
   1066      1.26  christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1067      1.11  christos     struct lwp *l)
   1068       1.1      cube {
   1069      1.11  christos 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1070       1.1      cube }
   1071       1.1      cube 
   1072       1.1      cube static int
   1073      1.41        ad tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1074       1.1      cube {
   1075      1.41        ad 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
   1076       1.1      cube }
   1077       1.1      cube 
   1078       1.1      cube static int
   1079      1.26  christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1080       1.1      cube {
   1081      1.66  christos 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1082       1.1      cube 
   1083       1.1      cube 	if (sc == NULL)
   1084      1.66  christos 		return ENXIO;
   1085       1.1      cube 
   1086       1.1      cube 	switch (cmd) {
   1087       1.1      cube 	case FIONREAD:
   1088       1.1      cube 		{
   1089       1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1090       1.1      cube 			struct mbuf *m;
   1091       1.1      cube 			int s;
   1092       1.1      cube 
   1093       1.1      cube 			s = splnet();
   1094       1.1      cube 			IFQ_POLL(&ifp->if_snd, m);
   1095       1.1      cube 
   1096       1.1      cube 			if (m == NULL)
   1097       1.1      cube 				*(int *)data = 0;
   1098       1.1      cube 			else
   1099       1.1      cube 				*(int *)data = m->m_pkthdr.len;
   1100       1.1      cube 			splx(s);
   1101      1.66  christos 			return 0;
   1102      1.66  christos 		}
   1103       1.1      cube 	case TIOCSPGRP:
   1104       1.1      cube 	case FIOSETOWN:
   1105      1.66  christos 		return fsetown(&sc->sc_pgid, cmd, data);
   1106       1.1      cube 	case TIOCGPGRP:
   1107       1.1      cube 	case FIOGETOWN:
   1108      1.66  christos 		return fgetown(sc->sc_pgid, cmd, data);
   1109       1.1      cube 	case FIOASYNC:
   1110       1.1      cube 		if (*(int *)data)
   1111       1.1      cube 			sc->sc_flags |= TAP_ASYNCIO;
   1112       1.1      cube 		else
   1113       1.1      cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1114      1.66  christos 		return 0;
   1115       1.1      cube 	case FIONBIO:
   1116       1.1      cube 		if (*(int *)data)
   1117       1.1      cube 			sc->sc_flags |= TAP_NBIO;
   1118       1.1      cube 		else
   1119       1.1      cube 			sc->sc_flags &= ~TAP_NBIO;
   1120      1.66  christos 		return 0;
   1121      1.29  christos #ifdef OTAPGIFNAME
   1122      1.29  christos 	case OTAPGIFNAME:
   1123      1.29  christos #endif
   1124       1.1      cube 	case TAPGIFNAME:
   1125       1.1      cube 		{
   1126       1.1      cube 			struct ifreq *ifr = (struct ifreq *)data;
   1127       1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1128       1.1      cube 
   1129       1.1      cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1130      1.66  christos 			return 0;
   1131      1.66  christos 		}
   1132       1.1      cube 	default:
   1133      1.66  christos 		return ENOTTY;
   1134       1.1      cube 	}
   1135       1.1      cube }
   1136       1.1      cube 
   1137       1.1      cube static int
   1138      1.11  christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1139       1.1      cube {
   1140      1.11  christos 	return tap_dev_poll(minor(dev), events, l);
   1141       1.1      cube }
   1142       1.1      cube 
   1143       1.1      cube static int
   1144      1.41        ad tap_fops_poll(file_t *fp, int events)
   1145       1.1      cube {
   1146      1.41        ad 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
   1147       1.1      cube }
   1148       1.1      cube 
   1149       1.1      cube static int
   1150      1.11  christos tap_dev_poll(int unit, int events, struct lwp *l)
   1151       1.1      cube {
   1152       1.1      cube 	struct tap_softc *sc =
   1153      1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1154       1.1      cube 	int revents = 0;
   1155       1.1      cube 
   1156       1.1      cube 	if (sc == NULL)
   1157      1.28  christos 		return POLLERR;
   1158       1.1      cube 
   1159       1.1      cube 	if (events & (POLLIN|POLLRDNORM)) {
   1160       1.1      cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1161       1.1      cube 		struct mbuf *m;
   1162       1.1      cube 		int s;
   1163       1.1      cube 
   1164       1.1      cube 		s = splnet();
   1165       1.1      cube 		IFQ_POLL(&ifp->if_snd, m);
   1166       1.1      cube 		splx(s);
   1167       1.1      cube 
   1168       1.1      cube 		if (m != NULL)
   1169       1.1      cube 			revents |= events & (POLLIN|POLLRDNORM);
   1170       1.1      cube 		else {
   1171       1.4     ragge 			simple_lock(&sc->sc_kqlock);
   1172      1.11  christos 			selrecord(l, &sc->sc_rsel);
   1173       1.1      cube 			simple_unlock(&sc->sc_kqlock);
   1174       1.1      cube 		}
   1175       1.1      cube 	}
   1176       1.1      cube 	revents |= events & (POLLOUT|POLLWRNORM);
   1177       1.1      cube 
   1178       1.1      cube 	return (revents);
   1179       1.1      cube }
   1180       1.1      cube 
   1181       1.1      cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1182       1.1      cube 	tap_kqread };
   1183       1.1      cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1184       1.1      cube 	filt_seltrue };
   1185       1.1      cube 
   1186       1.1      cube static int
   1187       1.1      cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1188       1.1      cube {
   1189       1.1      cube 	return tap_dev_kqfilter(minor(dev), kn);
   1190       1.1      cube }
   1191       1.1      cube 
   1192       1.1      cube static int
   1193      1.41        ad tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1194       1.1      cube {
   1195       1.1      cube 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1196       1.1      cube }
   1197       1.1      cube 
   1198       1.1      cube static int
   1199       1.1      cube tap_dev_kqfilter(int unit, struct knote *kn)
   1200       1.1      cube {
   1201       1.1      cube 	struct tap_softc *sc =
   1202      1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1203       1.1      cube 
   1204       1.1      cube 	if (sc == NULL)
   1205       1.1      cube 		return (ENXIO);
   1206       1.1      cube 
   1207      1.44        ad 	KERNEL_LOCK(1, NULL);
   1208       1.1      cube 	switch(kn->kn_filter) {
   1209       1.1      cube 	case EVFILT_READ:
   1210       1.1      cube 		kn->kn_fop = &tap_read_filterops;
   1211       1.1      cube 		break;
   1212       1.1      cube 	case EVFILT_WRITE:
   1213       1.1      cube 		kn->kn_fop = &tap_seltrue_filterops;
   1214       1.1      cube 		break;
   1215       1.1      cube 	default:
   1216      1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
   1217      1.35     pooka 		return (EINVAL);
   1218       1.1      cube 	}
   1219       1.1      cube 
   1220       1.1      cube 	kn->kn_hook = sc;
   1221       1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1222       1.1      cube 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1223       1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1224      1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1225       1.1      cube 	return (0);
   1226       1.1      cube }
   1227       1.1      cube 
   1228       1.1      cube static void
   1229       1.1      cube tap_kqdetach(struct knote *kn)
   1230       1.1      cube {
   1231       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1232       1.1      cube 
   1233      1.44        ad 	KERNEL_LOCK(1, NULL);
   1234       1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1235       1.1      cube 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1236       1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1237      1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1238       1.1      cube }
   1239       1.1      cube 
   1240       1.1      cube static int
   1241      1.23  christos tap_kqread(struct knote *kn, long hint)
   1242       1.1      cube {
   1243       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1244       1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1245       1.1      cube 	struct mbuf *m;
   1246      1.44        ad 	int s, rv;
   1247       1.1      cube 
   1248      1.44        ad 	KERNEL_LOCK(1, NULL);
   1249       1.1      cube 	s = splnet();
   1250       1.1      cube 	IFQ_POLL(&ifp->if_snd, m);
   1251       1.1      cube 
   1252       1.1      cube 	if (m == NULL)
   1253       1.1      cube 		kn->kn_data = 0;
   1254       1.1      cube 	else
   1255       1.1      cube 		kn->kn_data = m->m_pkthdr.len;
   1256       1.1      cube 	splx(s);
   1257      1.44        ad 	rv = (kn->kn_data != 0 ? 1 : 0);
   1258      1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1259      1.44        ad 	return rv;
   1260       1.1      cube }
   1261       1.1      cube 
   1262      1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
   1263       1.1      cube /*
   1264       1.1      cube  * sysctl management routines
   1265       1.1      cube  * You can set the address of an interface through:
   1266       1.1      cube  * net.link.tap.tap<number>
   1267       1.1      cube  *
   1268       1.1      cube  * Note the consistent use of tap_log in order to use
   1269       1.1      cube  * sysctl_teardown at unload time.
   1270       1.1      cube  *
   1271       1.1      cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1272       1.1      cube  * blocks register a function in a special section of the kernel
   1273       1.1      cube  * (called a link set) which is used at init_sysctl() time to cycle
   1274       1.1      cube  * through all those functions to create the kernel's sysctl tree.
   1275       1.1      cube  *
   1276      1.51        ad  * It is not possible to use link sets in a module, so the
   1277       1.1      cube  * easiest is to simply call our own setup routine at load time.
   1278       1.1      cube  *
   1279       1.1      cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1280       1.1      cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1281       1.1      cube  * whole kernel sysctl tree is built, it is not possible to add any
   1282       1.1      cube  * permanent node.
   1283       1.1      cube  *
   1284       1.1      cube  * It should be noted that we're not saving the sysctlnode pointer
   1285       1.1      cube  * we are returned when creating the "tap" node.  That structure
   1286       1.1      cube  * cannot be trusted once out of the calling function, as it might
   1287       1.1      cube  * get reused.  So we just save the MIB number, and always give the
   1288       1.1      cube  * full path starting from the root for later calls to sysctl_createv
   1289       1.1      cube  * and sysctl_destroyv.
   1290       1.1      cube  */
   1291       1.1      cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1292       1.1      cube {
   1293      1.10    atatat 	const struct sysctlnode *node;
   1294       1.1      cube 	int error = 0;
   1295       1.1      cube 
   1296       1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1297       1.1      cube 	    CTLFLAG_PERMANENT,
   1298       1.1      cube 	    CTLTYPE_NODE, "net", NULL,
   1299       1.1      cube 	    NULL, 0, NULL, 0,
   1300       1.1      cube 	    CTL_NET, CTL_EOL)) != 0)
   1301       1.1      cube 		return;
   1302       1.1      cube 
   1303       1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1304       1.1      cube 	    CTLFLAG_PERMANENT,
   1305       1.1      cube 	    CTLTYPE_NODE, "link", NULL,
   1306       1.1      cube 	    NULL, 0, NULL, 0,
   1307       1.3      cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1308       1.1      cube 		return;
   1309       1.1      cube 
   1310       1.1      cube 	/*
   1311       1.1      cube 	 * The first four parameters of sysctl_createv are for management.
   1312       1.1      cube 	 *
   1313       1.1      cube 	 * The four that follows, here starting with a '0' for the flags,
   1314       1.1      cube 	 * describe the node.
   1315       1.1      cube 	 *
   1316       1.1      cube 	 * The next series of four set its value, through various possible
   1317       1.1      cube 	 * means.
   1318       1.1      cube 	 *
   1319       1.1      cube 	 * Last but not least, the path to the node is described.  That path
   1320       1.1      cube 	 * is relative to the given root (third argument).  Here we're
   1321       1.1      cube 	 * starting from the root.
   1322       1.1      cube 	 */
   1323       1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1324       1.1      cube 	    CTLFLAG_PERMANENT,
   1325       1.1      cube 	    CTLTYPE_NODE, "tap", NULL,
   1326       1.1      cube 	    NULL, 0, NULL, 0,
   1327       1.3      cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1328       1.1      cube 		return;
   1329       1.1      cube 	tap_node = node->sysctl_num;
   1330       1.1      cube }
   1331       1.1      cube 
   1332       1.1      cube /*
   1333       1.1      cube  * The helper functions make Andrew Brown's interface really
   1334       1.1      cube  * shine.  It makes possible to create value on the fly whether
   1335       1.1      cube  * the sysctl value is read or written.
   1336       1.1      cube  *
   1337       1.1      cube  * As shown as an example in the man page, the first step is to
   1338       1.1      cube  * create a copy of the node to have sysctl_lookup work on it.
   1339       1.1      cube  *
   1340       1.1      cube  * Here, we have more work to do than just a copy, since we have
   1341       1.1      cube  * to create the string.  The first step is to collect the actual
   1342       1.1      cube  * value of the node, which is a convenient pointer to the softc
   1343       1.1      cube  * of the interface.  From there we create the string and use it
   1344       1.1      cube  * as the value, but only for the *copy* of the node.
   1345       1.1      cube  *
   1346       1.1      cube  * Then we let sysctl_lookup do the magic, which consists in
   1347       1.1      cube  * setting oldp and newp as required by the operation.  When the
   1348       1.1      cube  * value is read, that means that the string will be copied to
   1349       1.1      cube  * the user, and when it is written, the new value will be copied
   1350       1.1      cube  * over in the addr array.
   1351       1.1      cube  *
   1352       1.1      cube  * If newp is NULL, the user was reading the value, so we don't
   1353       1.1      cube  * have anything else to do.  If a new value was written, we
   1354       1.1      cube  * have to check it.
   1355       1.1      cube  *
   1356       1.1      cube  * If it is incorrect, we can return an error and leave 'node' as
   1357       1.1      cube  * it is:  since it is a copy of the actual node, the change will
   1358       1.1      cube  * be forgotten.
   1359       1.1      cube  *
   1360       1.1      cube  * Upon a correct input, we commit the change to the ifnet
   1361       1.1      cube  * structure of our interface.
   1362       1.1      cube  */
   1363       1.1      cube static int
   1364       1.1      cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1365       1.1      cube {
   1366       1.1      cube 	struct sysctlnode node;
   1367       1.1      cube 	struct tap_softc *sc;
   1368       1.1      cube 	struct ifnet *ifp;
   1369       1.1      cube 	int error;
   1370       1.1      cube 	size_t len;
   1371      1.14  christos 	char addr[3 * ETHER_ADDR_LEN];
   1372      1.32    dyoung 	uint8_t enaddr[ETHER_ADDR_LEN];
   1373       1.1      cube 
   1374       1.1      cube 	node = *rnode;
   1375       1.1      cube 	sc = node.sysctl_data;
   1376       1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1377      1.31    dyoung 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1378       1.1      cube 	node.sysctl_data = addr;
   1379       1.1      cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1380       1.1      cube 	if (error || newp == NULL)
   1381       1.1      cube 		return (error);
   1382       1.1      cube 
   1383       1.1      cube 	len = strlen(addr);
   1384       1.1      cube 	if (len < 11 || len > 17)
   1385       1.1      cube 		return (EINVAL);
   1386       1.1      cube 
   1387       1.1      cube 	/* Commit change */
   1388      1.65  christos 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1389       1.1      cube 		return (EINVAL);
   1390      1.50    dyoung 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1391       1.1      cube 	return (error);
   1392       1.1      cube }
   1393      1.54    plunky #endif
   1394