Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.73
      1  1.73  dholland /*	$NetBSD: if_tap.c,v 1.73 2014/03/16 05:20:30 dholland Exp $	*/
      2   1.1      cube 
      3   1.1      cube /*
      4  1.55        ad  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5   1.1      cube  *  All rights reserved.
      6   1.1      cube  *
      7   1.1      cube  *  Redistribution and use in source and binary forms, with or without
      8   1.1      cube  *  modification, are permitted provided that the following conditions
      9   1.1      cube  *  are met:
     10   1.1      cube  *  1. Redistributions of source code must retain the above copyright
     11   1.1      cube  *     notice, this list of conditions and the following disclaimer.
     12   1.1      cube  *  2. Redistributions in binary form must reproduce the above copyright
     13   1.1      cube  *     notice, this list of conditions and the following disclaimer in the
     14   1.1      cube  *     documentation and/or other materials provided with the distribution.
     15   1.6     perry  *
     16   1.1      cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17   1.1      cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.1      cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.1      cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.1      cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.1      cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.1      cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.1      cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.1      cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.1      cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.1      cube  *  POSSIBILITY OF SUCH DAMAGE.
     27   1.1      cube  */
     28   1.1      cube 
     29   1.1      cube /*
     30   1.1      cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31   1.1      cube  * device to the system, but can also be accessed by userland through a
     32   1.1      cube  * character device interface, which allows reading and injecting frames.
     33   1.1      cube  */
     34   1.1      cube 
     35   1.1      cube #include <sys/cdefs.h>
     36  1.73  dholland __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.73 2014/03/16 05:20:30 dholland Exp $");
     37   1.1      cube 
     38   1.2      cube #if defined(_KERNEL_OPT)
     39  1.63     pooka 
     40  1.54    plunky #include "opt_modular.h"
     41  1.54    plunky #include "opt_compat_netbsd.h"
     42   1.2      cube #endif
     43   1.1      cube 
     44   1.1      cube #include <sys/param.h>
     45   1.1      cube #include <sys/systm.h>
     46   1.1      cube #include <sys/kernel.h>
     47   1.1      cube #include <sys/malloc.h>
     48   1.1      cube #include <sys/conf.h>
     49  1.70      yamt #include <sys/cprng.h>
     50   1.1      cube #include <sys/device.h>
     51   1.1      cube #include <sys/file.h>
     52   1.1      cube #include <sys/filedesc.h>
     53   1.1      cube #include <sys/ksyms.h>
     54   1.1      cube #include <sys/poll.h>
     55  1.54    plunky #include <sys/proc.h>
     56   1.1      cube #include <sys/select.h>
     57   1.1      cube #include <sys/sockio.h>
     58  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
     59   1.1      cube #include <sys/sysctl.h>
     60  1.54    plunky #endif
     61  1.17      elad #include <sys/kauth.h>
     62  1.34        ad #include <sys/mutex.h>
     63  1.37        ad #include <sys/simplelock.h>
     64  1.42        ad #include <sys/intr.h>
     65  1.56  christos #include <sys/stat.h>
     66   1.1      cube 
     67   1.1      cube #include <net/if.h>
     68   1.1      cube #include <net/if_dl.h>
     69   1.1      cube #include <net/if_ether.h>
     70   1.1      cube #include <net/if_media.h>
     71   1.1      cube #include <net/if_tap.h>
     72   1.1      cube #include <net/bpf.h>
     73   1.1      cube 
     74  1.29  christos #include <compat/sys/sockio.h>
     75  1.29  christos 
     76  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
     77   1.1      cube /*
     78   1.1      cube  * sysctl node management
     79   1.1      cube  *
     80   1.1      cube  * It's not really possible to use a SYSCTL_SETUP block with
     81  1.51        ad  * current module implementation, so it is easier to just define
     82   1.1      cube  * our own function.
     83   1.1      cube  *
     84   1.1      cube  * The handler function is a "helper" in Andrew Brown's sysctl
     85   1.1      cube  * framework terminology.  It is used as a gateway for sysctl
     86   1.1      cube  * requests over the nodes.
     87   1.1      cube  *
     88   1.1      cube  * tap_log allows the module to log creations of nodes and
     89   1.1      cube  * destroy them all at once using sysctl_teardown.
     90   1.1      cube  */
     91   1.1      cube static int tap_node;
     92   1.1      cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     93   1.2      cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     94  1.54    plunky #endif
     95   1.1      cube 
     96   1.1      cube /*
     97  1.68       chs  * Since we're an Ethernet device, we need the 2 following
     98  1.68       chs  * components: a struct ethercom and a struct ifmedia
     99  1.68       chs  * since we don't attach a PHY to ourselves.
    100  1.68       chs  * We could emulate one, but there's no real point.
    101   1.1      cube  */
    102   1.1      cube 
    103   1.1      cube struct tap_softc {
    104  1.40      cube 	device_t	sc_dev;
    105   1.1      cube 	struct ifmedia	sc_im;
    106   1.1      cube 	struct ethercom	sc_ec;
    107   1.1      cube 	int		sc_flags;
    108   1.1      cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    109   1.1      cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    110   1.1      cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    111   1.1      cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
    112   1.1      cube 	struct selinfo	sc_rsel;
    113   1.1      cube 	pid_t		sc_pgid; /* For async. IO */
    114  1.34        ad 	kmutex_t	sc_rdlock;
    115   1.1      cube 	struct simplelock	sc_kqlock;
    116  1.42        ad 	void		*sc_sih;
    117  1.56  christos 	struct timespec sc_atime;
    118  1.56  christos 	struct timespec sc_mtime;
    119  1.56  christos 	struct timespec sc_btime;
    120   1.1      cube };
    121   1.1      cube 
    122   1.1      cube /* autoconf(9) glue */
    123   1.1      cube 
    124   1.1      cube void	tapattach(int);
    125   1.1      cube 
    126  1.40      cube static int	tap_match(device_t, cfdata_t, void *);
    127  1.40      cube static void	tap_attach(device_t, device_t, void *);
    128  1.40      cube static int	tap_detach(device_t, int);
    129   1.1      cube 
    130  1.40      cube CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    131   1.1      cube     tap_match, tap_attach, tap_detach, NULL);
    132   1.1      cube extern struct cfdriver tap_cd;
    133   1.1      cube 
    134   1.1      cube /* Real device access routines */
    135   1.1      cube static int	tap_dev_close(struct tap_softc *);
    136   1.1      cube static int	tap_dev_read(int, struct uio *, int);
    137   1.1      cube static int	tap_dev_write(int, struct uio *, int);
    138  1.26  christos static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    139  1.11  christos static int	tap_dev_poll(int, int, struct lwp *);
    140   1.1      cube static int	tap_dev_kqfilter(int, struct knote *);
    141   1.1      cube 
    142   1.1      cube /* Fileops access routines */
    143  1.41        ad static int	tap_fops_close(file_t *);
    144  1.41        ad static int	tap_fops_read(file_t *, off_t *, struct uio *,
    145  1.17      elad     kauth_cred_t, int);
    146  1.41        ad static int	tap_fops_write(file_t *, off_t *, struct uio *,
    147  1.17      elad     kauth_cred_t, int);
    148  1.41        ad static int	tap_fops_ioctl(file_t *, u_long, void *);
    149  1.41        ad static int	tap_fops_poll(file_t *, int);
    150  1.56  christos static int	tap_fops_stat(file_t *, struct stat *);
    151  1.41        ad static int	tap_fops_kqfilter(file_t *, struct knote *);
    152   1.1      cube 
    153   1.1      cube static const struct fileops tap_fileops = {
    154  1.55        ad 	.fo_read = tap_fops_read,
    155  1.55        ad 	.fo_write = tap_fops_write,
    156  1.55        ad 	.fo_ioctl = tap_fops_ioctl,
    157  1.55        ad 	.fo_fcntl = fnullop_fcntl,
    158  1.55        ad 	.fo_poll = tap_fops_poll,
    159  1.56  christos 	.fo_stat = tap_fops_stat,
    160  1.55        ad 	.fo_close = tap_fops_close,
    161  1.55        ad 	.fo_kqfilter = tap_fops_kqfilter,
    162  1.62       dsl 	.fo_restart = fnullop_restart,
    163   1.1      cube };
    164   1.1      cube 
    165   1.1      cube /* Helper for cloning open() */
    166  1.11  christos static int	tap_dev_cloner(struct lwp *);
    167   1.1      cube 
    168   1.1      cube /* Character device routines */
    169  1.11  christos static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    170  1.11  christos static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    171   1.1      cube static int	tap_cdev_read(dev_t, struct uio *, int);
    172   1.1      cube static int	tap_cdev_write(dev_t, struct uio *, int);
    173  1.26  christos static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    174  1.11  christos static int	tap_cdev_poll(dev_t, int, struct lwp *);
    175   1.1      cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    176   1.1      cube 
    177   1.1      cube const struct cdevsw tap_cdevsw = {
    178  1.73  dholland 	.d_open = tap_cdev_open,
    179  1.73  dholland 	.d_close = tap_cdev_close,
    180  1.73  dholland 	.d_read = tap_cdev_read,
    181  1.73  dholland 	.d_write = tap_cdev_write,
    182  1.73  dholland 	.d_ioctl = tap_cdev_ioctl,
    183  1.73  dholland 	.d_stop = nostop,
    184  1.73  dholland 	.d_tty = notty,
    185  1.73  dholland 	.d_poll = tap_cdev_poll,
    186  1.73  dholland 	.d_mmap = nommap,
    187  1.73  dholland 	.d_kqfilter = tap_cdev_kqfilter,
    188  1.73  dholland 	.d_flag = D_OTHER
    189   1.1      cube };
    190   1.1      cube 
    191   1.1      cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    192   1.1      cube 
    193   1.1      cube /* kqueue-related routines */
    194   1.1      cube static void	tap_kqdetach(struct knote *);
    195   1.1      cube static int	tap_kqread(struct knote *, long);
    196   1.1      cube 
    197   1.1      cube /*
    198   1.1      cube  * Those are needed by the if_media interface.
    199   1.1      cube  */
    200   1.1      cube 
    201   1.1      cube static int	tap_mediachange(struct ifnet *);
    202   1.1      cube static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    203   1.1      cube 
    204   1.1      cube /*
    205   1.1      cube  * Those are needed by the ifnet interface, and would typically be
    206   1.1      cube  * there for any network interface driver.
    207   1.1      cube  * Some other routines are optional: watchdog and drain.
    208   1.1      cube  */
    209   1.1      cube 
    210   1.1      cube static void	tap_start(struct ifnet *);
    211   1.1      cube static void	tap_stop(struct ifnet *, int);
    212   1.1      cube static int	tap_init(struct ifnet *);
    213  1.26  christos static int	tap_ioctl(struct ifnet *, u_long, void *);
    214   1.1      cube 
    215  1.42        ad /* Internal functions */
    216  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    217   1.1      cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    218  1.54    plunky #endif
    219  1.42        ad static void	tap_softintr(void *);
    220   1.1      cube 
    221   1.1      cube /*
    222   1.1      cube  * tap is a clonable interface, although it is highly unrealistic for
    223   1.1      cube  * an Ethernet device.
    224   1.1      cube  *
    225   1.1      cube  * Here are the bits needed for a clonable interface.
    226   1.1      cube  */
    227   1.1      cube static int	tap_clone_create(struct if_clone *, int);
    228   1.1      cube static int	tap_clone_destroy(struct ifnet *);
    229   1.1      cube 
    230   1.1      cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    231   1.1      cube 					tap_clone_create,
    232   1.1      cube 					tap_clone_destroy);
    233   1.1      cube 
    234   1.1      cube /* Helper functionis shared by the two cloning code paths */
    235   1.1      cube static struct tap_softc *	tap_clone_creator(int);
    236  1.40      cube int	tap_clone_destroyer(device_t);
    237   1.1      cube 
    238   1.1      cube void
    239  1.23  christos tapattach(int n)
    240   1.1      cube {
    241   1.1      cube 	int error;
    242   1.1      cube 
    243   1.1      cube 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    244   1.1      cube 	if (error) {
    245   1.1      cube 		aprint_error("%s: unable to register cfattach\n",
    246   1.1      cube 		    tap_cd.cd_name);
    247   1.1      cube 		(void)config_cfdriver_detach(&tap_cd);
    248   1.1      cube 		return;
    249   1.1      cube 	}
    250   1.1      cube 
    251   1.1      cube 	if_clone_attach(&tap_cloners);
    252   1.1      cube }
    253   1.1      cube 
    254   1.1      cube /* Pretty much useless for a pseudo-device */
    255   1.1      cube static int
    256  1.40      cube tap_match(device_t parent, cfdata_t cfdata, void *arg)
    257   1.1      cube {
    258  1.40      cube 
    259   1.1      cube 	return (1);
    260   1.1      cube }
    261   1.1      cube 
    262   1.1      cube void
    263  1.40      cube tap_attach(device_t parent, device_t self, void *aux)
    264   1.1      cube {
    265  1.40      cube 	struct tap_softc *sc = device_private(self);
    266   1.1      cube 	struct ifnet *ifp;
    267  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    268  1.18    kardel 	const struct sysctlnode *node;
    269  1.54    plunky 	int error;
    270  1.54    plunky #endif
    271  1.38      matt 	uint8_t enaddr[ETHER_ADDR_LEN] =
    272   1.7      cube 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    273  1.14  christos 	char enaddrstr[3 * ETHER_ADDR_LEN];
    274   1.1      cube 
    275  1.40      cube 	sc->sc_dev = self;
    276  1.71      yamt 	sc->sc_sih = NULL;
    277  1.56  christos 	getnanotime(&sc->sc_btime);
    278  1.56  christos 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    279  1.40      cube 
    280  1.48      hans 	if (!pmf_device_register(self, NULL, NULL))
    281  1.48      hans 		aprint_error_dev(self, "couldn't establish power handler\n");
    282  1.48      hans 
    283   1.1      cube 	/*
    284   1.1      cube 	 * In order to obtain unique initial Ethernet address on a host,
    285  1.70      yamt 	 * do some randomisation.  It's not meant for anything but avoiding
    286  1.70      yamt 	 * hard-coding an address.
    287   1.1      cube 	 */
    288  1.70      yamt 	cprng_fast(&enaddr[3], 3);
    289   1.1      cube 
    290  1.40      cube 	aprint_verbose_dev(self, "Ethernet address %s\n",
    291  1.14  christos 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    292   1.1      cube 
    293   1.1      cube 	/*
    294   1.1      cube 	 * Why 1000baseT? Why not? You can add more.
    295   1.1      cube 	 *
    296   1.1      cube 	 * Note that there are 3 steps: init, one or several additions to
    297   1.1      cube 	 * list of supported media, and in the end, the selection of one
    298   1.1      cube 	 * of them.
    299   1.1      cube 	 */
    300   1.1      cube 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    301   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    302   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    303   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    304   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    305   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    306   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    307   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    308   1.1      cube 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    309   1.1      cube 
    310   1.1      cube 	/*
    311   1.1      cube 	 * One should note that an interface must do multicast in order
    312   1.1      cube 	 * to support IPv6.
    313   1.1      cube 	 */
    314   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    315  1.40      cube 	strcpy(ifp->if_xname, device_xname(self));
    316   1.1      cube 	ifp->if_softc	= sc;
    317   1.1      cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    318   1.1      cube 	ifp->if_ioctl	= tap_ioctl;
    319   1.1      cube 	ifp->if_start	= tap_start;
    320   1.1      cube 	ifp->if_stop	= tap_stop;
    321   1.1      cube 	ifp->if_init	= tap_init;
    322   1.1      cube 	IFQ_SET_READY(&ifp->if_snd);
    323   1.1      cube 
    324   1.1      cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    325   1.1      cube 
    326   1.1      cube 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    327   1.1      cube 	 * being common to all network interface drivers. */
    328   1.1      cube 	if_attach(ifp);
    329   1.1      cube 	ether_ifattach(ifp, enaddr);
    330   1.1      cube 
    331   1.1      cube 	sc->sc_flags = 0;
    332   1.1      cube 
    333  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    334   1.1      cube 	/*
    335   1.1      cube 	 * Add a sysctl node for that interface.
    336   1.1      cube 	 *
    337   1.1      cube 	 * The pointer transmitted is not a string, but instead a pointer to
    338   1.1      cube 	 * the softc structure, which we can use to build the string value on
    339   1.1      cube 	 * the fly in the helper function of the node.  See the comments for
    340   1.1      cube 	 * tap_sysctl_handler for details.
    341  1.21      cube 	 *
    342  1.21      cube 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    343  1.21      cube 	 * component.  However, we can allocate a number ourselves, as we are
    344  1.21      cube 	 * the only consumer of the net.link.<iface> node.  In this case, the
    345  1.21      cube 	 * unit number is conveniently used to number the node.  CTL_CREATE
    346  1.21      cube 	 * would just work, too.
    347   1.1      cube 	 */
    348   1.1      cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    349   1.1      cube 	    &node, CTLFLAG_READWRITE,
    350  1.40      cube 	    CTLTYPE_STRING, device_xname(self), NULL,
    351  1.67       dsl 	    tap_sysctl_handler, 0, (void *)sc, 18,
    352  1.40      cube 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    353  1.15   thorpej 	    CTL_EOL)) != 0)
    354  1.40      cube 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    355  1.40      cube 		    error);
    356  1.54    plunky #endif
    357   1.1      cube 
    358   1.1      cube 	/*
    359   1.1      cube 	 * Initialize the two locks for the device.
    360   1.1      cube 	 *
    361   1.1      cube 	 * We need a lock here because even though the tap device can be
    362   1.1      cube 	 * opened only once, the file descriptor might be passed to another
    363   1.1      cube 	 * process, say a fork(2)ed child.
    364   1.1      cube 	 *
    365   1.1      cube 	 * The Giant saves us from most of the hassle, but since the read
    366   1.1      cube 	 * operation can sleep, we don't want two processes to wake up at
    367   1.1      cube 	 * the same moment and both try and dequeue a single packet.
    368   1.1      cube 	 *
    369   1.1      cube 	 * The queue for event listeners (used by kqueue(9), see below) has
    370   1.1      cube 	 * to be protected, too, but we don't need the same level of
    371   1.1      cube 	 * complexity for that lock, so a simple spinning lock is fine.
    372   1.1      cube 	 */
    373  1.34        ad 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    374   1.1      cube 	simple_lock_init(&sc->sc_kqlock);
    375  1.47     rmind 
    376  1.47     rmind 	selinit(&sc->sc_rsel);
    377   1.1      cube }
    378   1.1      cube 
    379   1.1      cube /*
    380   1.1      cube  * When detaching, we do the inverse of what is done in the attach
    381   1.1      cube  * routine, in reversed order.
    382   1.1      cube  */
    383   1.1      cube static int
    384  1.40      cube tap_detach(device_t self, int flags)
    385   1.1      cube {
    386  1.40      cube 	struct tap_softc *sc = device_private(self);
    387   1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    388  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    389  1.54    plunky 	int error;
    390  1.54    plunky #endif
    391  1.54    plunky 	int s;
    392   1.1      cube 
    393   1.1      cube 	sc->sc_flags |= TAP_GOING;
    394   1.1      cube 	s = splnet();
    395   1.1      cube 	tap_stop(ifp, 1);
    396   1.1      cube 	if_down(ifp);
    397   1.1      cube 	splx(s);
    398   1.1      cube 
    399  1.71      yamt 	if (sc->sc_sih != NULL) {
    400  1.71      yamt 		softint_disestablish(sc->sc_sih);
    401  1.71      yamt 		sc->sc_sih = NULL;
    402  1.71      yamt 	}
    403  1.42        ad 
    404  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    405   1.1      cube 	/*
    406   1.1      cube 	 * Destroying a single leaf is a very straightforward operation using
    407   1.1      cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    408   1.1      cube 	 * CTL_EOL.
    409   1.1      cube 	 */
    410   1.3      cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    411  1.40      cube 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    412  1.40      cube 		aprint_error_dev(self,
    413  1.40      cube 		    "sysctl_destroyv returned %d, ignoring\n", error);
    414  1.54    plunky #endif
    415   1.1      cube 	ether_ifdetach(ifp);
    416   1.1      cube 	if_detach(ifp);
    417   1.1      cube 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    418  1.47     rmind 	seldestroy(&sc->sc_rsel);
    419  1.34        ad 	mutex_destroy(&sc->sc_rdlock);
    420   1.1      cube 
    421  1.49      hans 	pmf_device_deregister(self);
    422  1.49      hans 
    423   1.1      cube 	return (0);
    424   1.1      cube }
    425   1.1      cube 
    426   1.1      cube /*
    427   1.1      cube  * This function is called by the ifmedia layer to notify the driver
    428   1.1      cube  * that the user requested a media change.  A real driver would
    429   1.1      cube  * reconfigure the hardware.
    430   1.1      cube  */
    431   1.1      cube static int
    432  1.23  christos tap_mediachange(struct ifnet *ifp)
    433   1.1      cube {
    434   1.1      cube 	return (0);
    435   1.1      cube }
    436   1.1      cube 
    437   1.1      cube /*
    438   1.1      cube  * Here the user asks for the currently used media.
    439   1.1      cube  */
    440   1.1      cube static void
    441   1.1      cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    442   1.1      cube {
    443   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    444   1.1      cube 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    445   1.1      cube }
    446   1.1      cube 
    447   1.1      cube /*
    448   1.1      cube  * This is the function where we SEND packets.
    449   1.1      cube  *
    450   1.1      cube  * There is no 'receive' equivalent.  A typical driver will get
    451   1.1      cube  * interrupts from the hardware, and from there will inject new packets
    452   1.1      cube  * into the network stack.
    453   1.1      cube  *
    454   1.1      cube  * Once handled, a packet must be freed.  A real driver might not be able
    455   1.1      cube  * to fit all the pending packets into the hardware, and is allowed to
    456   1.1      cube  * return before having sent all the packets.  It should then use the
    457   1.1      cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    458   1.1      cube  *
    459   1.1      cube  * There are also other flags one should check, such as IFF_PAUSE.
    460   1.1      cube  *
    461   1.1      cube  * It is our duty to make packets available to BPF listeners.
    462   1.1      cube  *
    463   1.1      cube  * You should be aware that this function is called by the Ethernet layer
    464   1.1      cube  * at splnet().
    465   1.1      cube  *
    466   1.1      cube  * When the device is opened, we have to pass the packet(s) to the
    467   1.1      cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    468   1.1      cube  * the packets, and we send a signal to the processes waiting to read.
    469   1.1      cube  *
    470   1.1      cube  * wakeup(sc) is the counterpart to the tsleep call in
    471   1.1      cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    472   1.1      cube  * poll(2) (which includes select(2)) listeners.
    473   1.1      cube  */
    474   1.1      cube static void
    475   1.1      cube tap_start(struct ifnet *ifp)
    476   1.1      cube {
    477   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    478   1.1      cube 	struct mbuf *m0;
    479   1.1      cube 
    480   1.1      cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    481   1.1      cube 		/* Simply drop packets */
    482   1.1      cube 		for(;;) {
    483   1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    484   1.1      cube 			if (m0 == NULL)
    485   1.1      cube 				return;
    486   1.1      cube 
    487   1.1      cube 			ifp->if_opackets++;
    488  1.64     joerg 			bpf_mtap(ifp, m0);
    489   1.1      cube 
    490   1.1      cube 			m_freem(m0);
    491   1.1      cube 		}
    492   1.1      cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    493   1.1      cube 		ifp->if_flags |= IFF_OACTIVE;
    494   1.1      cube 		wakeup(sc);
    495  1.39     rmind 		selnotify(&sc->sc_rsel, 0, 1);
    496   1.1      cube 		if (sc->sc_flags & TAP_ASYNCIO)
    497  1.42        ad 			softint_schedule(sc->sc_sih);
    498  1.42        ad 	}
    499  1.42        ad }
    500  1.42        ad 
    501  1.42        ad static void
    502  1.42        ad tap_softintr(void *cookie)
    503  1.42        ad {
    504  1.42        ad 	struct tap_softc *sc;
    505  1.42        ad 	struct ifnet *ifp;
    506  1.42        ad 	int a, b;
    507  1.42        ad 
    508  1.42        ad 	sc = cookie;
    509  1.42        ad 
    510  1.42        ad 	if (sc->sc_flags & TAP_ASYNCIO) {
    511  1.42        ad 		ifp = &sc->sc_ec.ec_if;
    512  1.42        ad 		if (ifp->if_flags & IFF_RUNNING) {
    513  1.42        ad 			a = POLL_IN;
    514  1.42        ad 			b = POLLIN|POLLRDNORM;
    515  1.42        ad 		} else {
    516  1.42        ad 			a = POLL_HUP;
    517  1.42        ad 			b = 0;
    518  1.42        ad 		}
    519  1.42        ad 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    520   1.1      cube 	}
    521   1.1      cube }
    522   1.1      cube 
    523   1.1      cube /*
    524   1.1      cube  * A typical driver will only contain the following handlers for
    525   1.1      cube  * ioctl calls, except SIOCSIFPHYADDR.
    526   1.1      cube  * The latter is a hack I used to set the Ethernet address of the
    527   1.1      cube  * faked device.
    528   1.1      cube  *
    529   1.1      cube  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    530   1.1      cube  * called under splnet().
    531   1.1      cube  */
    532   1.1      cube static int
    533  1.26  christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    534   1.1      cube {
    535   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    536   1.1      cube 	struct ifreq *ifr = (struct ifreq *)data;
    537   1.1      cube 	int s, error;
    538   1.1      cube 
    539   1.1      cube 	s = splnet();
    540   1.1      cube 
    541   1.1      cube 	switch (cmd) {
    542  1.29  christos #ifdef OSIOCSIFMEDIA
    543  1.29  christos 	case OSIOCSIFMEDIA:
    544  1.29  christos #endif
    545   1.1      cube 	case SIOCSIFMEDIA:
    546   1.1      cube 	case SIOCGIFMEDIA:
    547   1.1      cube 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    548   1.1      cube 		break;
    549  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    550   1.1      cube 	case SIOCSIFPHYADDR:
    551   1.1      cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    552   1.1      cube 		break;
    553  1.54    plunky #endif
    554   1.1      cube 	default:
    555   1.1      cube 		error = ether_ioctl(ifp, cmd, data);
    556   1.1      cube 		if (error == ENETRESET)
    557   1.1      cube 			error = 0;
    558   1.1      cube 		break;
    559   1.1      cube 	}
    560   1.1      cube 
    561   1.1      cube 	splx(s);
    562   1.1      cube 
    563   1.1      cube 	return (error);
    564   1.1      cube }
    565   1.1      cube 
    566  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    567   1.1      cube /*
    568  1.54    plunky  * Helper function to set Ethernet address.  This has been replaced by
    569  1.54    plunky  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    570   1.1      cube  */
    571   1.1      cube static int
    572  1.23  christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    573   1.1      cube {
    574  1.53    plunky 	const struct sockaddr *sa = &ifra->ifra_addr;
    575   1.1      cube 
    576  1.53    plunky 	if (sa->sa_family != AF_LINK)
    577   1.1      cube 		return (EINVAL);
    578   1.1      cube 
    579  1.53    plunky 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    580   1.1      cube 
    581   1.1      cube 	return (0);
    582   1.1      cube }
    583  1.54    plunky #endif
    584   1.1      cube 
    585   1.1      cube /*
    586   1.1      cube  * _init() would typically be called when an interface goes up,
    587   1.1      cube  * meaning it should configure itself into the state in which it
    588   1.1      cube  * can send packets.
    589   1.1      cube  */
    590   1.1      cube static int
    591   1.1      cube tap_init(struct ifnet *ifp)
    592   1.1      cube {
    593   1.1      cube 	ifp->if_flags |= IFF_RUNNING;
    594   1.1      cube 
    595   1.1      cube 	tap_start(ifp);
    596   1.1      cube 
    597   1.1      cube 	return (0);
    598   1.1      cube }
    599   1.1      cube 
    600   1.1      cube /*
    601   1.1      cube  * _stop() is called when an interface goes down.  It is our
    602   1.1      cube  * responsability to validate that state by clearing the
    603   1.1      cube  * IFF_RUNNING flag.
    604   1.1      cube  *
    605   1.1      cube  * We have to wake up all the sleeping processes to have the pending
    606   1.1      cube  * read requests cancelled.
    607   1.1      cube  */
    608   1.1      cube static void
    609  1.23  christos tap_stop(struct ifnet *ifp, int disable)
    610   1.1      cube {
    611   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    612   1.1      cube 
    613   1.1      cube 	ifp->if_flags &= ~IFF_RUNNING;
    614   1.1      cube 	wakeup(sc);
    615  1.39     rmind 	selnotify(&sc->sc_rsel, 0, 1);
    616   1.1      cube 	if (sc->sc_flags & TAP_ASYNCIO)
    617  1.42        ad 		softint_schedule(sc->sc_sih);
    618   1.1      cube }
    619   1.1      cube 
    620   1.1      cube /*
    621   1.1      cube  * The 'create' command of ifconfig can be used to create
    622   1.1      cube  * any numbered instance of a given device.  Thus we have to
    623   1.1      cube  * make sure we have enough room in cd_devs to create the
    624   1.1      cube  * user-specified instance.  config_attach_pseudo will do this
    625   1.1      cube  * for us.
    626   1.1      cube  */
    627   1.1      cube static int
    628  1.23  christos tap_clone_create(struct if_clone *ifc, int unit)
    629   1.1      cube {
    630   1.1      cube 	if (tap_clone_creator(unit) == NULL) {
    631   1.1      cube 		aprint_error("%s%d: unable to attach an instance\n",
    632   1.1      cube                     tap_cd.cd_name, unit);
    633   1.1      cube 		return (ENXIO);
    634   1.1      cube 	}
    635   1.1      cube 
    636   1.1      cube 	return (0);
    637   1.1      cube }
    638   1.1      cube 
    639   1.1      cube /*
    640   1.1      cube  * tap(4) can be cloned by two ways:
    641   1.1      cube  *   using 'ifconfig tap0 create', which will use the network
    642   1.1      cube  *     interface cloning API, and call tap_clone_create above.
    643   1.1      cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    644   1.1      cube  *     See below for an explanation on how this part work.
    645   1.1      cube  */
    646   1.1      cube static struct tap_softc *
    647   1.1      cube tap_clone_creator(int unit)
    648   1.1      cube {
    649   1.1      cube 	struct cfdata *cf;
    650   1.1      cube 
    651   1.1      cube 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    652   1.1      cube 	cf->cf_name = tap_cd.cd_name;
    653   1.1      cube 	cf->cf_atname = tap_ca.ca_name;
    654  1.27  drochner 	if (unit == -1) {
    655  1.27  drochner 		/* let autoconf find the first free one */
    656  1.27  drochner 		cf->cf_unit = 0;
    657  1.27  drochner 		cf->cf_fstate = FSTATE_STAR;
    658  1.27  drochner 	} else {
    659  1.27  drochner 		cf->cf_unit = unit;
    660  1.58    plunky 		cf->cf_fstate = FSTATE_NOTFOUND;
    661  1.27  drochner 	}
    662   1.1      cube 
    663  1.40      cube 	return device_private(config_attach_pseudo(cf));
    664   1.1      cube }
    665   1.1      cube 
    666   1.1      cube /*
    667   1.1      cube  * The clean design of if_clone and autoconf(9) makes that part
    668   1.1      cube  * really straightforward.  The second argument of config_detach
    669   1.1      cube  * means neither QUIET nor FORCED.
    670   1.1      cube  */
    671   1.1      cube static int
    672   1.1      cube tap_clone_destroy(struct ifnet *ifp)
    673   1.1      cube {
    674  1.45    dyoung 	struct tap_softc *sc = ifp->if_softc;
    675  1.45    dyoung 
    676  1.45    dyoung 	return tap_clone_destroyer(sc->sc_dev);
    677   1.1      cube }
    678   1.1      cube 
    679  1.12      cube int
    680  1.40      cube tap_clone_destroyer(device_t dev)
    681   1.1      cube {
    682  1.40      cube 	cfdata_t cf = device_cfdata(dev);
    683   1.1      cube 	int error;
    684   1.1      cube 
    685   1.1      cube 	if ((error = config_detach(dev, 0)) != 0)
    686  1.40      cube 		aprint_error_dev(dev, "unable to detach instance\n");
    687   1.1      cube 	free(cf, M_DEVBUF);
    688   1.1      cube 
    689   1.1      cube 	return (error);
    690   1.1      cube }
    691   1.1      cube 
    692   1.1      cube /*
    693   1.1      cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    694   1.1      cube  * ways:
    695   1.1      cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    696   1.1      cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    697   1.1      cube  *     That interface is destroyed when the process that had it created exits.
    698   1.1      cube  *
    699   1.1      cube  * The first way is managed by the cdevsw structure, and you access interfaces
    700   1.1      cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    701   1.1      cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    702   1.1      cube  *
    703   1.1      cube  * The second way is the so-called "cloning" device.  It's a special minor
    704   1.1      cube  * number (chosen as the maximal number, to allow as much tap devices as
    705   1.1      cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    706   1.1      cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    707   1.1      cube  * tap_dev_cloner.
    708   1.1      cube  *
    709   1.1      cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    710   1.1      cube  * part of open() does nothing but noting that the interface is being used and
    711   1.1      cube  * hence ready to actually handle packets.
    712   1.1      cube  */
    713   1.1      cube 
    714   1.1      cube static int
    715  1.23  christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    716   1.1      cube {
    717   1.1      cube 	struct tap_softc *sc;
    718   1.1      cube 
    719   1.1      cube 	if (minor(dev) == TAP_CLONER)
    720  1.11  christos 		return tap_dev_cloner(l);
    721   1.1      cube 
    722  1.46    cegger 	sc = device_lookup_private(&tap_cd, minor(dev));
    723   1.1      cube 	if (sc == NULL)
    724   1.1      cube 		return (ENXIO);
    725   1.1      cube 
    726   1.1      cube 	/* The device can only be opened once */
    727   1.1      cube 	if (sc->sc_flags & TAP_INUSE)
    728   1.1      cube 		return (EBUSY);
    729   1.1      cube 	sc->sc_flags |= TAP_INUSE;
    730   1.1      cube 	return (0);
    731   1.1      cube }
    732   1.1      cube 
    733   1.1      cube /*
    734   1.1      cube  * There are several kinds of cloning devices, and the most simple is the one
    735   1.1      cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    736   1.1      cube  * with its own fileops structure (which maps to the various read, write,
    737   1.1      cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    738   1.1      cube  * then actually creates the new tap devices.
    739   1.1      cube  *
    740   1.1      cube  * Once those two steps are successful, we can re-wire the existing file
    741   1.1      cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    742   1.1      cube  * structure as needed (notably f_data gets filled with the fifth parameter
    743   1.1      cube  * passed, the unit of the tap device which will allows us identifying the
    744   1.1      cube  * device later), and returns EMOVEFD.
    745   1.1      cube  *
    746   1.1      cube  * That magic value is interpreted by sys_open() which then replaces the
    747   1.1      cube  * current file descriptor by the new one (through a magic member of struct
    748  1.13     pooka  * lwp, l_dupfd).
    749   1.1      cube  *
    750   1.1      cube  * The tap device is flagged as being busy since it otherwise could be
    751   1.1      cube  * externally accessed through the corresponding device node with the cdevsw
    752   1.1      cube  * interface.
    753   1.1      cube  */
    754   1.1      cube 
    755   1.1      cube static int
    756  1.11  christos tap_dev_cloner(struct lwp *l)
    757   1.1      cube {
    758   1.1      cube 	struct tap_softc *sc;
    759  1.41        ad 	file_t *fp;
    760   1.1      cube 	int error, fd;
    761   1.1      cube 
    762  1.41        ad 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    763   1.1      cube 		return (error);
    764   1.1      cube 
    765  1.27  drochner 	if ((sc = tap_clone_creator(-1)) == NULL) {
    766  1.41        ad 		fd_abort(curproc, fp, fd);
    767   1.1      cube 		return (ENXIO);
    768   1.1      cube 	}
    769   1.1      cube 
    770   1.1      cube 	sc->sc_flags |= TAP_INUSE;
    771   1.1      cube 
    772  1.41        ad 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    773  1.40      cube 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    774   1.1      cube }
    775   1.1      cube 
    776   1.1      cube /*
    777   1.1      cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    778   1.1      cube  * really the same whether we are in cdevsw or fileops mode, the close()
    779   1.1      cube  * function is slightly different in the two cases.
    780   1.1      cube  *
    781   1.1      cube  * As for the other, the core of it is shared in tap_dev_close.  What
    782   1.1      cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    783   1.1      cube  * needs another thing:  the interface is destroyed when the processes that
    784   1.1      cube  * created it closes it.
    785   1.1      cube  */
    786   1.1      cube static int
    787  1.23  christos tap_cdev_close(dev_t dev, int flags, int fmt,
    788  1.23  christos     struct lwp *l)
    789   1.1      cube {
    790   1.1      cube 	struct tap_softc *sc =
    791  1.46    cegger 	    device_lookup_private(&tap_cd, minor(dev));
    792   1.1      cube 
    793   1.1      cube 	if (sc == NULL)
    794   1.1      cube 		return (ENXIO);
    795   1.1      cube 
    796   1.1      cube 	return tap_dev_close(sc);
    797   1.1      cube }
    798   1.1      cube 
    799   1.1      cube /*
    800   1.1      cube  * It might happen that the administrator used ifconfig to externally destroy
    801   1.1      cube  * the interface.  In that case, tap_fops_close will be called while
    802   1.1      cube  * tap_detach is already happening.  If we called it again from here, we
    803   1.1      cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    804   1.1      cube  */
    805   1.1      cube static int
    806  1.41        ad tap_fops_close(file_t *fp)
    807   1.1      cube {
    808   1.1      cube 	int unit = (intptr_t)fp->f_data;
    809   1.1      cube 	struct tap_softc *sc;
    810   1.1      cube 	int error;
    811   1.1      cube 
    812  1.46    cegger 	sc = device_lookup_private(&tap_cd, unit);
    813   1.1      cube 	if (sc == NULL)
    814   1.1      cube 		return (ENXIO);
    815   1.1      cube 
    816   1.1      cube 	/* tap_dev_close currently always succeeds, but it might not
    817   1.1      cube 	 * always be the case. */
    818  1.44        ad 	KERNEL_LOCK(1, NULL);
    819  1.44        ad 	if ((error = tap_dev_close(sc)) != 0) {
    820  1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    821   1.1      cube 		return (error);
    822  1.44        ad 	}
    823   1.1      cube 
    824   1.1      cube 	/* Destroy the device now that it is no longer useful,
    825   1.1      cube 	 * unless it's already being destroyed. */
    826  1.44        ad 	if ((sc->sc_flags & TAP_GOING) != 0) {
    827  1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    828   1.1      cube 		return (0);
    829  1.44        ad 	}
    830   1.1      cube 
    831  1.44        ad 	error = tap_clone_destroyer(sc->sc_dev);
    832  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    833  1.44        ad 	return error;
    834   1.1      cube }
    835   1.1      cube 
    836   1.1      cube static int
    837   1.1      cube tap_dev_close(struct tap_softc *sc)
    838   1.1      cube {
    839   1.1      cube 	struct ifnet *ifp;
    840   1.1      cube 	int s;
    841   1.1      cube 
    842   1.1      cube 	s = splnet();
    843   1.1      cube 	/* Let tap_start handle packets again */
    844   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    845   1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    846   1.1      cube 
    847   1.1      cube 	/* Purge output queue */
    848   1.1      cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    849   1.1      cube 		struct mbuf *m;
    850   1.1      cube 
    851   1.1      cube 		for (;;) {
    852   1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    853   1.1      cube 			if (m == NULL)
    854   1.1      cube 				break;
    855   1.1      cube 
    856   1.1      cube 			ifp->if_opackets++;
    857  1.64     joerg 			bpf_mtap(ifp, m);
    858  1.60    plunky 			m_freem(m);
    859   1.1      cube 		}
    860   1.1      cube 	}
    861   1.1      cube 	splx(s);
    862   1.1      cube 
    863  1.71      yamt 	if (sc->sc_sih != NULL) {
    864  1.71      yamt 		softint_disestablish(sc->sc_sih);
    865  1.71      yamt 		sc->sc_sih = NULL;
    866  1.71      yamt 	}
    867   1.1      cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    868   1.1      cube 
    869   1.1      cube 	return (0);
    870   1.1      cube }
    871   1.1      cube 
    872   1.1      cube static int
    873   1.1      cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    874   1.1      cube {
    875   1.1      cube 	return tap_dev_read(minor(dev), uio, flags);
    876   1.1      cube }
    877   1.1      cube 
    878   1.1      cube static int
    879  1.41        ad tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    880  1.23  christos     kauth_cred_t cred, int flags)
    881   1.1      cube {
    882  1.44        ad 	int error;
    883  1.44        ad 
    884  1.44        ad 	KERNEL_LOCK(1, NULL);
    885  1.44        ad 	error = tap_dev_read((intptr_t)fp->f_data, uio, flags);
    886  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    887  1.44        ad 	return error;
    888   1.1      cube }
    889   1.1      cube 
    890   1.1      cube static int
    891  1.23  christos tap_dev_read(int unit, struct uio *uio, int flags)
    892   1.1      cube {
    893   1.1      cube 	struct tap_softc *sc =
    894  1.46    cegger 	    device_lookup_private(&tap_cd, unit);
    895   1.1      cube 	struct ifnet *ifp;
    896   1.1      cube 	struct mbuf *m, *n;
    897   1.1      cube 	int error = 0, s;
    898   1.1      cube 
    899   1.1      cube 	if (sc == NULL)
    900   1.1      cube 		return (ENXIO);
    901   1.1      cube 
    902  1.56  christos 	getnanotime(&sc->sc_atime);
    903  1.56  christos 
    904   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    905   1.1      cube 	if ((ifp->if_flags & IFF_UP) == 0)
    906   1.1      cube 		return (EHOSTDOWN);
    907   1.1      cube 
    908   1.1      cube 	/*
    909   1.1      cube 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    910   1.1      cube 	 */
    911  1.34        ad 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    912  1.34        ad 		if (!mutex_tryenter(&sc->sc_rdlock))
    913  1.34        ad 			return (EWOULDBLOCK);
    914  1.34        ad 	} else {
    915  1.34        ad 		mutex_enter(&sc->sc_rdlock);
    916  1.34        ad 	}
    917   1.1      cube 
    918   1.1      cube 	s = splnet();
    919   1.1      cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    920   1.1      cube 		ifp->if_flags &= ~IFF_OACTIVE;
    921   1.1      cube 		/*
    922   1.1      cube 		 * We must release the lock before sleeping, and re-acquire it
    923   1.1      cube 		 * after.
    924   1.1      cube 		 */
    925  1.34        ad 		mutex_exit(&sc->sc_rdlock);
    926   1.1      cube 		if (sc->sc_flags & TAP_NBIO)
    927   1.1      cube 			error = EWOULDBLOCK;
    928   1.1      cube 		else
    929   1.1      cube 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    930  1.52     pooka 		splx(s);
    931  1.52     pooka 
    932   1.1      cube 		if (error != 0)
    933   1.1      cube 			return (error);
    934   1.1      cube 		/* The device might have been downed */
    935   1.1      cube 		if ((ifp->if_flags & IFF_UP) == 0)
    936   1.1      cube 			return (EHOSTDOWN);
    937  1.34        ad 		if ((sc->sc_flags & TAP_NBIO)) {
    938  1.34        ad 			if (!mutex_tryenter(&sc->sc_rdlock))
    939  1.34        ad 				return (EWOULDBLOCK);
    940  1.34        ad 		} else {
    941  1.34        ad 			mutex_enter(&sc->sc_rdlock);
    942  1.34        ad 		}
    943   1.1      cube 		s = splnet();
    944   1.1      cube 	}
    945   1.1      cube 
    946   1.1      cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    947   1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    948   1.1      cube 	splx(s);
    949   1.1      cube 	if (m == NULL) {
    950   1.1      cube 		error = 0;
    951   1.1      cube 		goto out;
    952   1.1      cube 	}
    953   1.1      cube 
    954   1.1      cube 	ifp->if_opackets++;
    955  1.64     joerg 	bpf_mtap(ifp, m);
    956   1.1      cube 
    957   1.1      cube 	/*
    958   1.1      cube 	 * One read is one packet.
    959   1.1      cube 	 */
    960   1.1      cube 	do {
    961  1.26  christos 		error = uiomove(mtod(m, void *),
    962   1.1      cube 		    min(m->m_len, uio->uio_resid), uio);
    963   1.1      cube 		MFREE(m, n);
    964   1.1      cube 		m = n;
    965   1.1      cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    966   1.1      cube 
    967   1.1      cube 	if (m != NULL)
    968   1.1      cube 		m_freem(m);
    969   1.1      cube 
    970   1.1      cube out:
    971  1.34        ad 	mutex_exit(&sc->sc_rdlock);
    972   1.1      cube 	return (error);
    973   1.1      cube }
    974   1.1      cube 
    975   1.1      cube static int
    976  1.56  christos tap_fops_stat(file_t *fp, struct stat *st)
    977  1.56  christos {
    978  1.59  drochner 	int error = 0;
    979  1.57  christos 	struct tap_softc *sc;
    980  1.57  christos 	int unit = (uintptr_t)fp->f_data;
    981  1.57  christos 
    982  1.57  christos 	(void)memset(st, 0, sizeof(*st));
    983  1.57  christos 
    984  1.56  christos 	KERNEL_LOCK(1, NULL);
    985  1.57  christos 	sc = device_lookup_private(&tap_cd, unit);
    986  1.57  christos 	if (sc == NULL) {
    987  1.57  christos 		error = ENXIO;
    988  1.57  christos 		goto out;
    989  1.57  christos 	}
    990  1.56  christos 
    991  1.56  christos 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    992  1.56  christos 	st->st_atimespec = sc->sc_atime;
    993  1.56  christos 	st->st_mtimespec = sc->sc_mtime;
    994  1.56  christos 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    995  1.57  christos 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    996  1.57  christos 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    997  1.57  christos out:
    998  1.57  christos 	KERNEL_UNLOCK_ONE(NULL);
    999  1.57  christos 	return error;
   1000  1.56  christos }
   1001  1.56  christos 
   1002  1.56  christos static int
   1003   1.1      cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1004   1.1      cube {
   1005   1.1      cube 	return tap_dev_write(minor(dev), uio, flags);
   1006   1.1      cube }
   1007   1.1      cube 
   1008   1.1      cube static int
   1009  1.41        ad tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1010  1.23  christos     kauth_cred_t cred, int flags)
   1011   1.1      cube {
   1012  1.44        ad 	int error;
   1013  1.44        ad 
   1014  1.44        ad 	KERNEL_LOCK(1, NULL);
   1015  1.44        ad 	error = tap_dev_write((intptr_t)fp->f_data, uio, flags);
   1016  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1017  1.44        ad 	return error;
   1018   1.1      cube }
   1019   1.1      cube 
   1020   1.1      cube static int
   1021  1.23  christos tap_dev_write(int unit, struct uio *uio, int flags)
   1022   1.1      cube {
   1023   1.1      cube 	struct tap_softc *sc =
   1024  1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1025   1.1      cube 	struct ifnet *ifp;
   1026   1.1      cube 	struct mbuf *m, **mp;
   1027   1.1      cube 	int error = 0;
   1028   1.9    bouyer 	int s;
   1029   1.1      cube 
   1030   1.1      cube 	if (sc == NULL)
   1031   1.1      cube 		return (ENXIO);
   1032   1.1      cube 
   1033  1.56  christos 	getnanotime(&sc->sc_mtime);
   1034   1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1035   1.1      cube 
   1036   1.1      cube 	/* One write, one packet, that's the rule */
   1037   1.1      cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1038   1.1      cube 	if (m == NULL) {
   1039   1.1      cube 		ifp->if_ierrors++;
   1040   1.1      cube 		return (ENOBUFS);
   1041   1.1      cube 	}
   1042   1.1      cube 	m->m_pkthdr.len = uio->uio_resid;
   1043   1.1      cube 
   1044   1.1      cube 	mp = &m;
   1045   1.1      cube 	while (error == 0 && uio->uio_resid > 0) {
   1046   1.1      cube 		if (*mp != m) {
   1047   1.1      cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1048   1.1      cube 			if (*mp == NULL) {
   1049   1.1      cube 				error = ENOBUFS;
   1050   1.1      cube 				break;
   1051   1.1      cube 			}
   1052   1.1      cube 		}
   1053   1.1      cube 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1054  1.26  christos 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1055   1.1      cube 		mp = &(*mp)->m_next;
   1056   1.1      cube 	}
   1057   1.1      cube 	if (error) {
   1058   1.1      cube 		ifp->if_ierrors++;
   1059   1.1      cube 		m_freem(m);
   1060   1.1      cube 		return (error);
   1061   1.1      cube 	}
   1062   1.1      cube 
   1063   1.1      cube 	ifp->if_ipackets++;
   1064   1.1      cube 	m->m_pkthdr.rcvif = ifp;
   1065   1.1      cube 
   1066  1.64     joerg 	bpf_mtap(ifp, m);
   1067  1.69      yamt 	s = splnet();
   1068   1.1      cube 	(*ifp->if_input)(ifp, m);
   1069   1.9    bouyer 	splx(s);
   1070   1.1      cube 
   1071   1.1      cube 	return (0);
   1072   1.1      cube }
   1073   1.1      cube 
   1074   1.1      cube static int
   1075  1.26  christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1076  1.11  christos     struct lwp *l)
   1077   1.1      cube {
   1078  1.11  christos 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1079   1.1      cube }
   1080   1.1      cube 
   1081   1.1      cube static int
   1082  1.41        ad tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1083   1.1      cube {
   1084  1.41        ad 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, data, curlwp);
   1085   1.1      cube }
   1086   1.1      cube 
   1087   1.1      cube static int
   1088  1.26  christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1089   1.1      cube {
   1090  1.66  christos 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1091   1.1      cube 
   1092   1.1      cube 	if (sc == NULL)
   1093  1.66  christos 		return ENXIO;
   1094   1.1      cube 
   1095   1.1      cube 	switch (cmd) {
   1096   1.1      cube 	case FIONREAD:
   1097   1.1      cube 		{
   1098   1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1099   1.1      cube 			struct mbuf *m;
   1100   1.1      cube 			int s;
   1101   1.1      cube 
   1102   1.1      cube 			s = splnet();
   1103   1.1      cube 			IFQ_POLL(&ifp->if_snd, m);
   1104   1.1      cube 
   1105   1.1      cube 			if (m == NULL)
   1106   1.1      cube 				*(int *)data = 0;
   1107   1.1      cube 			else
   1108   1.1      cube 				*(int *)data = m->m_pkthdr.len;
   1109   1.1      cube 			splx(s);
   1110  1.66  christos 			return 0;
   1111  1.66  christos 		}
   1112   1.1      cube 	case TIOCSPGRP:
   1113   1.1      cube 	case FIOSETOWN:
   1114  1.66  christos 		return fsetown(&sc->sc_pgid, cmd, data);
   1115   1.1      cube 	case TIOCGPGRP:
   1116   1.1      cube 	case FIOGETOWN:
   1117  1.66  christos 		return fgetown(sc->sc_pgid, cmd, data);
   1118   1.1      cube 	case FIOASYNC:
   1119  1.71      yamt 		if (*(int *)data) {
   1120  1.71      yamt 			if (sc->sc_sih == NULL) {
   1121  1.71      yamt 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1122  1.71      yamt 				    tap_softintr, sc);
   1123  1.71      yamt 				if (sc->sc_sih == NULL)
   1124  1.71      yamt 					return EBUSY; /* XXX */
   1125  1.71      yamt 			}
   1126   1.1      cube 			sc->sc_flags |= TAP_ASYNCIO;
   1127  1.71      yamt 		} else {
   1128   1.1      cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1129  1.71      yamt 			if (sc->sc_sih != NULL) {
   1130  1.71      yamt 				softint_disestablish(sc->sc_sih);
   1131  1.71      yamt 				sc->sc_sih = NULL;
   1132  1.71      yamt 			}
   1133  1.71      yamt 		}
   1134  1.66  christos 		return 0;
   1135   1.1      cube 	case FIONBIO:
   1136   1.1      cube 		if (*(int *)data)
   1137   1.1      cube 			sc->sc_flags |= TAP_NBIO;
   1138   1.1      cube 		else
   1139   1.1      cube 			sc->sc_flags &= ~TAP_NBIO;
   1140  1.66  christos 		return 0;
   1141  1.29  christos #ifdef OTAPGIFNAME
   1142  1.29  christos 	case OTAPGIFNAME:
   1143  1.29  christos #endif
   1144   1.1      cube 	case TAPGIFNAME:
   1145   1.1      cube 		{
   1146   1.1      cube 			struct ifreq *ifr = (struct ifreq *)data;
   1147   1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1148   1.1      cube 
   1149   1.1      cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1150  1.66  christos 			return 0;
   1151  1.66  christos 		}
   1152   1.1      cube 	default:
   1153  1.66  christos 		return ENOTTY;
   1154   1.1      cube 	}
   1155   1.1      cube }
   1156   1.1      cube 
   1157   1.1      cube static int
   1158  1.11  christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1159   1.1      cube {
   1160  1.11  christos 	return tap_dev_poll(minor(dev), events, l);
   1161   1.1      cube }
   1162   1.1      cube 
   1163   1.1      cube static int
   1164  1.41        ad tap_fops_poll(file_t *fp, int events)
   1165   1.1      cube {
   1166  1.41        ad 	return tap_dev_poll((intptr_t)fp->f_data, events, curlwp);
   1167   1.1      cube }
   1168   1.1      cube 
   1169   1.1      cube static int
   1170  1.11  christos tap_dev_poll(int unit, int events, struct lwp *l)
   1171   1.1      cube {
   1172   1.1      cube 	struct tap_softc *sc =
   1173  1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1174   1.1      cube 	int revents = 0;
   1175   1.1      cube 
   1176   1.1      cube 	if (sc == NULL)
   1177  1.28  christos 		return POLLERR;
   1178   1.1      cube 
   1179   1.1      cube 	if (events & (POLLIN|POLLRDNORM)) {
   1180   1.1      cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1181   1.1      cube 		struct mbuf *m;
   1182   1.1      cube 		int s;
   1183   1.1      cube 
   1184   1.1      cube 		s = splnet();
   1185   1.1      cube 		IFQ_POLL(&ifp->if_snd, m);
   1186   1.1      cube 		splx(s);
   1187   1.1      cube 
   1188   1.1      cube 		if (m != NULL)
   1189   1.1      cube 			revents |= events & (POLLIN|POLLRDNORM);
   1190   1.1      cube 		else {
   1191   1.4     ragge 			simple_lock(&sc->sc_kqlock);
   1192  1.11  christos 			selrecord(l, &sc->sc_rsel);
   1193   1.1      cube 			simple_unlock(&sc->sc_kqlock);
   1194   1.1      cube 		}
   1195   1.1      cube 	}
   1196   1.1      cube 	revents |= events & (POLLOUT|POLLWRNORM);
   1197   1.1      cube 
   1198   1.1      cube 	return (revents);
   1199   1.1      cube }
   1200   1.1      cube 
   1201   1.1      cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1202   1.1      cube 	tap_kqread };
   1203   1.1      cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1204   1.1      cube 	filt_seltrue };
   1205   1.1      cube 
   1206   1.1      cube static int
   1207   1.1      cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1208   1.1      cube {
   1209   1.1      cube 	return tap_dev_kqfilter(minor(dev), kn);
   1210   1.1      cube }
   1211   1.1      cube 
   1212   1.1      cube static int
   1213  1.41        ad tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1214   1.1      cube {
   1215   1.1      cube 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1216   1.1      cube }
   1217   1.1      cube 
   1218   1.1      cube static int
   1219   1.1      cube tap_dev_kqfilter(int unit, struct knote *kn)
   1220   1.1      cube {
   1221   1.1      cube 	struct tap_softc *sc =
   1222  1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1223   1.1      cube 
   1224   1.1      cube 	if (sc == NULL)
   1225   1.1      cube 		return (ENXIO);
   1226   1.1      cube 
   1227  1.44        ad 	KERNEL_LOCK(1, NULL);
   1228   1.1      cube 	switch(kn->kn_filter) {
   1229   1.1      cube 	case EVFILT_READ:
   1230   1.1      cube 		kn->kn_fop = &tap_read_filterops;
   1231   1.1      cube 		break;
   1232   1.1      cube 	case EVFILT_WRITE:
   1233   1.1      cube 		kn->kn_fop = &tap_seltrue_filterops;
   1234   1.1      cube 		break;
   1235   1.1      cube 	default:
   1236  1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
   1237  1.35     pooka 		return (EINVAL);
   1238   1.1      cube 	}
   1239   1.1      cube 
   1240   1.1      cube 	kn->kn_hook = sc;
   1241   1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1242   1.1      cube 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1243   1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1244  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1245   1.1      cube 	return (0);
   1246   1.1      cube }
   1247   1.1      cube 
   1248   1.1      cube static void
   1249   1.1      cube tap_kqdetach(struct knote *kn)
   1250   1.1      cube {
   1251   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1252   1.1      cube 
   1253  1.44        ad 	KERNEL_LOCK(1, NULL);
   1254   1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1255   1.1      cube 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1256   1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1257  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1258   1.1      cube }
   1259   1.1      cube 
   1260   1.1      cube static int
   1261  1.23  christos tap_kqread(struct knote *kn, long hint)
   1262   1.1      cube {
   1263   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1264   1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1265   1.1      cube 	struct mbuf *m;
   1266  1.44        ad 	int s, rv;
   1267   1.1      cube 
   1268  1.44        ad 	KERNEL_LOCK(1, NULL);
   1269   1.1      cube 	s = splnet();
   1270   1.1      cube 	IFQ_POLL(&ifp->if_snd, m);
   1271   1.1      cube 
   1272   1.1      cube 	if (m == NULL)
   1273   1.1      cube 		kn->kn_data = 0;
   1274   1.1      cube 	else
   1275   1.1      cube 		kn->kn_data = m->m_pkthdr.len;
   1276   1.1      cube 	splx(s);
   1277  1.44        ad 	rv = (kn->kn_data != 0 ? 1 : 0);
   1278  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1279  1.44        ad 	return rv;
   1280   1.1      cube }
   1281   1.1      cube 
   1282  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
   1283   1.1      cube /*
   1284   1.1      cube  * sysctl management routines
   1285   1.1      cube  * You can set the address of an interface through:
   1286   1.1      cube  * net.link.tap.tap<number>
   1287   1.1      cube  *
   1288   1.1      cube  * Note the consistent use of tap_log in order to use
   1289   1.1      cube  * sysctl_teardown at unload time.
   1290   1.1      cube  *
   1291   1.1      cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1292   1.1      cube  * blocks register a function in a special section of the kernel
   1293   1.1      cube  * (called a link set) which is used at init_sysctl() time to cycle
   1294   1.1      cube  * through all those functions to create the kernel's sysctl tree.
   1295   1.1      cube  *
   1296  1.51        ad  * It is not possible to use link sets in a module, so the
   1297   1.1      cube  * easiest is to simply call our own setup routine at load time.
   1298   1.1      cube  *
   1299   1.1      cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1300   1.1      cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1301   1.1      cube  * whole kernel sysctl tree is built, it is not possible to add any
   1302   1.1      cube  * permanent node.
   1303   1.1      cube  *
   1304   1.1      cube  * It should be noted that we're not saving the sysctlnode pointer
   1305   1.1      cube  * we are returned when creating the "tap" node.  That structure
   1306   1.1      cube  * cannot be trusted once out of the calling function, as it might
   1307   1.1      cube  * get reused.  So we just save the MIB number, and always give the
   1308   1.1      cube  * full path starting from the root for later calls to sysctl_createv
   1309   1.1      cube  * and sysctl_destroyv.
   1310   1.1      cube  */
   1311   1.1      cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1312   1.1      cube {
   1313  1.10    atatat 	const struct sysctlnode *node;
   1314   1.1      cube 	int error = 0;
   1315   1.1      cube 
   1316   1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1317   1.1      cube 	    CTLFLAG_PERMANENT,
   1318   1.1      cube 	    CTLTYPE_NODE, "link", NULL,
   1319   1.1      cube 	    NULL, 0, NULL, 0,
   1320   1.3      cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1321   1.1      cube 		return;
   1322   1.1      cube 
   1323   1.1      cube 	/*
   1324   1.1      cube 	 * The first four parameters of sysctl_createv are for management.
   1325   1.1      cube 	 *
   1326   1.1      cube 	 * The four that follows, here starting with a '0' for the flags,
   1327   1.1      cube 	 * describe the node.
   1328   1.1      cube 	 *
   1329   1.1      cube 	 * The next series of four set its value, through various possible
   1330   1.1      cube 	 * means.
   1331   1.1      cube 	 *
   1332   1.1      cube 	 * Last but not least, the path to the node is described.  That path
   1333   1.1      cube 	 * is relative to the given root (third argument).  Here we're
   1334   1.1      cube 	 * starting from the root.
   1335   1.1      cube 	 */
   1336   1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1337   1.1      cube 	    CTLFLAG_PERMANENT,
   1338   1.1      cube 	    CTLTYPE_NODE, "tap", NULL,
   1339   1.1      cube 	    NULL, 0, NULL, 0,
   1340   1.3      cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1341   1.1      cube 		return;
   1342   1.1      cube 	tap_node = node->sysctl_num;
   1343   1.1      cube }
   1344   1.1      cube 
   1345   1.1      cube /*
   1346   1.1      cube  * The helper functions make Andrew Brown's interface really
   1347   1.1      cube  * shine.  It makes possible to create value on the fly whether
   1348   1.1      cube  * the sysctl value is read or written.
   1349   1.1      cube  *
   1350   1.1      cube  * As shown as an example in the man page, the first step is to
   1351   1.1      cube  * create a copy of the node to have sysctl_lookup work on it.
   1352   1.1      cube  *
   1353   1.1      cube  * Here, we have more work to do than just a copy, since we have
   1354   1.1      cube  * to create the string.  The first step is to collect the actual
   1355   1.1      cube  * value of the node, which is a convenient pointer to the softc
   1356   1.1      cube  * of the interface.  From there we create the string and use it
   1357   1.1      cube  * as the value, but only for the *copy* of the node.
   1358   1.1      cube  *
   1359   1.1      cube  * Then we let sysctl_lookup do the magic, which consists in
   1360   1.1      cube  * setting oldp and newp as required by the operation.  When the
   1361   1.1      cube  * value is read, that means that the string will be copied to
   1362   1.1      cube  * the user, and when it is written, the new value will be copied
   1363   1.1      cube  * over in the addr array.
   1364   1.1      cube  *
   1365   1.1      cube  * If newp is NULL, the user was reading the value, so we don't
   1366   1.1      cube  * have anything else to do.  If a new value was written, we
   1367   1.1      cube  * have to check it.
   1368   1.1      cube  *
   1369   1.1      cube  * If it is incorrect, we can return an error and leave 'node' as
   1370   1.1      cube  * it is:  since it is a copy of the actual node, the change will
   1371   1.1      cube  * be forgotten.
   1372   1.1      cube  *
   1373   1.1      cube  * Upon a correct input, we commit the change to the ifnet
   1374   1.1      cube  * structure of our interface.
   1375   1.1      cube  */
   1376   1.1      cube static int
   1377   1.1      cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1378   1.1      cube {
   1379   1.1      cube 	struct sysctlnode node;
   1380   1.1      cube 	struct tap_softc *sc;
   1381   1.1      cube 	struct ifnet *ifp;
   1382   1.1      cube 	int error;
   1383   1.1      cube 	size_t len;
   1384  1.14  christos 	char addr[3 * ETHER_ADDR_LEN];
   1385  1.32    dyoung 	uint8_t enaddr[ETHER_ADDR_LEN];
   1386   1.1      cube 
   1387   1.1      cube 	node = *rnode;
   1388   1.1      cube 	sc = node.sysctl_data;
   1389   1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1390  1.31    dyoung 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1391   1.1      cube 	node.sysctl_data = addr;
   1392   1.1      cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1393   1.1      cube 	if (error || newp == NULL)
   1394   1.1      cube 		return (error);
   1395   1.1      cube 
   1396   1.1      cube 	len = strlen(addr);
   1397   1.1      cube 	if (len < 11 || len > 17)
   1398   1.1      cube 		return (EINVAL);
   1399   1.1      cube 
   1400   1.1      cube 	/* Commit change */
   1401  1.65  christos 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1402   1.1      cube 		return (EINVAL);
   1403  1.50    dyoung 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1404   1.1      cube 	return (error);
   1405   1.1      cube }
   1406  1.54    plunky #endif
   1407