Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.80
      1  1.80     ozaki /*	$NetBSD: if_tap.c,v 1.80 2014/11/07 09:26:08 ozaki-r Exp $	*/
      2   1.1      cube 
      3   1.1      cube /*
      4  1.55        ad  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5   1.1      cube  *  All rights reserved.
      6   1.1      cube  *
      7   1.1      cube  *  Redistribution and use in source and binary forms, with or without
      8   1.1      cube  *  modification, are permitted provided that the following conditions
      9   1.1      cube  *  are met:
     10   1.1      cube  *  1. Redistributions of source code must retain the above copyright
     11   1.1      cube  *     notice, this list of conditions and the following disclaimer.
     12   1.1      cube  *  2. Redistributions in binary form must reproduce the above copyright
     13   1.1      cube  *     notice, this list of conditions and the following disclaimer in the
     14   1.1      cube  *     documentation and/or other materials provided with the distribution.
     15   1.6     perry  *
     16   1.1      cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17   1.1      cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.1      cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.1      cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.1      cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.1      cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.1      cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.1      cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.1      cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.1      cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.1      cube  *  POSSIBILITY OF SUCH DAMAGE.
     27   1.1      cube  */
     28   1.1      cube 
     29   1.1      cube /*
     30   1.1      cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31   1.1      cube  * device to the system, but can also be accessed by userland through a
     32   1.1      cube  * character device interface, which allows reading and injecting frames.
     33   1.1      cube  */
     34   1.1      cube 
     35   1.1      cube #include <sys/cdefs.h>
     36  1.80     ozaki __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.80 2014/11/07 09:26:08 ozaki-r Exp $");
     37   1.1      cube 
     38   1.2      cube #if defined(_KERNEL_OPT)
     39  1.63     pooka 
     40  1.54    plunky #include "opt_modular.h"
     41  1.54    plunky #include "opt_compat_netbsd.h"
     42   1.2      cube #endif
     43   1.1      cube 
     44   1.1      cube #include <sys/param.h>
     45   1.1      cube #include <sys/systm.h>
     46   1.1      cube #include <sys/kernel.h>
     47   1.1      cube #include <sys/malloc.h>
     48   1.1      cube #include <sys/conf.h>
     49  1.70      yamt #include <sys/cprng.h>
     50   1.1      cube #include <sys/device.h>
     51   1.1      cube #include <sys/file.h>
     52   1.1      cube #include <sys/filedesc.h>
     53   1.1      cube #include <sys/poll.h>
     54  1.54    plunky #include <sys/proc.h>
     55   1.1      cube #include <sys/select.h>
     56   1.1      cube #include <sys/sockio.h>
     57  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
     58   1.1      cube #include <sys/sysctl.h>
     59  1.54    plunky #endif
     60  1.17      elad #include <sys/kauth.h>
     61  1.34        ad #include <sys/mutex.h>
     62  1.42        ad #include <sys/intr.h>
     63  1.56  christos #include <sys/stat.h>
     64   1.1      cube 
     65   1.1      cube #include <net/if.h>
     66   1.1      cube #include <net/if_dl.h>
     67   1.1      cube #include <net/if_ether.h>
     68   1.1      cube #include <net/if_media.h>
     69   1.1      cube #include <net/if_tap.h>
     70   1.1      cube #include <net/bpf.h>
     71   1.1      cube 
     72  1.29  christos #include <compat/sys/sockio.h>
     73  1.29  christos 
     74  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
     75   1.1      cube /*
     76   1.1      cube  * sysctl node management
     77   1.1      cube  *
     78   1.1      cube  * It's not really possible to use a SYSCTL_SETUP block with
     79  1.51        ad  * current module implementation, so it is easier to just define
     80   1.1      cube  * our own function.
     81   1.1      cube  *
     82   1.1      cube  * The handler function is a "helper" in Andrew Brown's sysctl
     83   1.1      cube  * framework terminology.  It is used as a gateway for sysctl
     84   1.1      cube  * requests over the nodes.
     85   1.1      cube  *
     86   1.1      cube  * tap_log allows the module to log creations of nodes and
     87   1.1      cube  * destroy them all at once using sysctl_teardown.
     88   1.1      cube  */
     89   1.1      cube static int tap_node;
     90   1.1      cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     91   1.2      cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     92  1.54    plunky #endif
     93   1.1      cube 
     94   1.1      cube /*
     95  1.68       chs  * Since we're an Ethernet device, we need the 2 following
     96  1.68       chs  * components: a struct ethercom and a struct ifmedia
     97  1.68       chs  * since we don't attach a PHY to ourselves.
     98  1.68       chs  * We could emulate one, but there's no real point.
     99   1.1      cube  */
    100   1.1      cube 
    101   1.1      cube struct tap_softc {
    102  1.40      cube 	device_t	sc_dev;
    103   1.1      cube 	struct ifmedia	sc_im;
    104   1.1      cube 	struct ethercom	sc_ec;
    105   1.1      cube 	int		sc_flags;
    106   1.1      cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    107   1.1      cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    108   1.1      cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    109   1.1      cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
    110   1.1      cube 	struct selinfo	sc_rsel;
    111   1.1      cube 	pid_t		sc_pgid; /* For async. IO */
    112  1.34        ad 	kmutex_t	sc_rdlock;
    113  1.74     skrll 	kmutex_t	sc_kqlock;
    114  1.42        ad 	void		*sc_sih;
    115  1.56  christos 	struct timespec sc_atime;
    116  1.56  christos 	struct timespec sc_mtime;
    117  1.56  christos 	struct timespec sc_btime;
    118   1.1      cube };
    119   1.1      cube 
    120   1.1      cube /* autoconf(9) glue */
    121   1.1      cube 
    122   1.1      cube void	tapattach(int);
    123   1.1      cube 
    124  1.40      cube static int	tap_match(device_t, cfdata_t, void *);
    125  1.40      cube static void	tap_attach(device_t, device_t, void *);
    126  1.40      cube static int	tap_detach(device_t, int);
    127   1.1      cube 
    128  1.40      cube CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    129   1.1      cube     tap_match, tap_attach, tap_detach, NULL);
    130   1.1      cube extern struct cfdriver tap_cd;
    131   1.1      cube 
    132   1.1      cube /* Real device access routines */
    133   1.1      cube static int	tap_dev_close(struct tap_softc *);
    134   1.1      cube static int	tap_dev_read(int, struct uio *, int);
    135   1.1      cube static int	tap_dev_write(int, struct uio *, int);
    136  1.26  christos static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    137  1.11  christos static int	tap_dev_poll(int, int, struct lwp *);
    138   1.1      cube static int	tap_dev_kqfilter(int, struct knote *);
    139   1.1      cube 
    140   1.1      cube /* Fileops access routines */
    141  1.41        ad static int	tap_fops_close(file_t *);
    142  1.41        ad static int	tap_fops_read(file_t *, off_t *, struct uio *,
    143  1.17      elad     kauth_cred_t, int);
    144  1.41        ad static int	tap_fops_write(file_t *, off_t *, struct uio *,
    145  1.17      elad     kauth_cred_t, int);
    146  1.41        ad static int	tap_fops_ioctl(file_t *, u_long, void *);
    147  1.41        ad static int	tap_fops_poll(file_t *, int);
    148  1.56  christos static int	tap_fops_stat(file_t *, struct stat *);
    149  1.41        ad static int	tap_fops_kqfilter(file_t *, struct knote *);
    150   1.1      cube 
    151   1.1      cube static const struct fileops tap_fileops = {
    152  1.55        ad 	.fo_read = tap_fops_read,
    153  1.55        ad 	.fo_write = tap_fops_write,
    154  1.55        ad 	.fo_ioctl = tap_fops_ioctl,
    155  1.55        ad 	.fo_fcntl = fnullop_fcntl,
    156  1.55        ad 	.fo_poll = tap_fops_poll,
    157  1.56  christos 	.fo_stat = tap_fops_stat,
    158  1.55        ad 	.fo_close = tap_fops_close,
    159  1.55        ad 	.fo_kqfilter = tap_fops_kqfilter,
    160  1.62       dsl 	.fo_restart = fnullop_restart,
    161   1.1      cube };
    162   1.1      cube 
    163   1.1      cube /* Helper for cloning open() */
    164  1.11  christos static int	tap_dev_cloner(struct lwp *);
    165   1.1      cube 
    166   1.1      cube /* Character device routines */
    167  1.11  christos static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    168  1.11  christos static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    169   1.1      cube static int	tap_cdev_read(dev_t, struct uio *, int);
    170   1.1      cube static int	tap_cdev_write(dev_t, struct uio *, int);
    171  1.26  christos static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    172  1.11  christos static int	tap_cdev_poll(dev_t, int, struct lwp *);
    173   1.1      cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    174   1.1      cube 
    175   1.1      cube const struct cdevsw tap_cdevsw = {
    176  1.73  dholland 	.d_open = tap_cdev_open,
    177  1.73  dholland 	.d_close = tap_cdev_close,
    178  1.73  dholland 	.d_read = tap_cdev_read,
    179  1.73  dholland 	.d_write = tap_cdev_write,
    180  1.73  dholland 	.d_ioctl = tap_cdev_ioctl,
    181  1.73  dholland 	.d_stop = nostop,
    182  1.73  dholland 	.d_tty = notty,
    183  1.73  dholland 	.d_poll = tap_cdev_poll,
    184  1.73  dholland 	.d_mmap = nommap,
    185  1.73  dholland 	.d_kqfilter = tap_cdev_kqfilter,
    186  1.77  dholland 	.d_discard = nodiscard,
    187  1.73  dholland 	.d_flag = D_OTHER
    188   1.1      cube };
    189   1.1      cube 
    190   1.1      cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    191   1.1      cube 
    192   1.1      cube /* kqueue-related routines */
    193   1.1      cube static void	tap_kqdetach(struct knote *);
    194   1.1      cube static int	tap_kqread(struct knote *, long);
    195   1.1      cube 
    196   1.1      cube /*
    197   1.1      cube  * Those are needed by the if_media interface.
    198   1.1      cube  */
    199   1.1      cube 
    200   1.1      cube static int	tap_mediachange(struct ifnet *);
    201   1.1      cube static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    202   1.1      cube 
    203   1.1      cube /*
    204   1.1      cube  * Those are needed by the ifnet interface, and would typically be
    205   1.1      cube  * there for any network interface driver.
    206   1.1      cube  * Some other routines are optional: watchdog and drain.
    207   1.1      cube  */
    208   1.1      cube 
    209   1.1      cube static void	tap_start(struct ifnet *);
    210   1.1      cube static void	tap_stop(struct ifnet *, int);
    211   1.1      cube static int	tap_init(struct ifnet *);
    212  1.26  christos static int	tap_ioctl(struct ifnet *, u_long, void *);
    213   1.1      cube 
    214  1.42        ad /* Internal functions */
    215  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    216   1.1      cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    217  1.54    plunky #endif
    218  1.42        ad static void	tap_softintr(void *);
    219   1.1      cube 
    220   1.1      cube /*
    221   1.1      cube  * tap is a clonable interface, although it is highly unrealistic for
    222   1.1      cube  * an Ethernet device.
    223   1.1      cube  *
    224   1.1      cube  * Here are the bits needed for a clonable interface.
    225   1.1      cube  */
    226   1.1      cube static int	tap_clone_create(struct if_clone *, int);
    227   1.1      cube static int	tap_clone_destroy(struct ifnet *);
    228   1.1      cube 
    229   1.1      cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    230   1.1      cube 					tap_clone_create,
    231   1.1      cube 					tap_clone_destroy);
    232   1.1      cube 
    233   1.1      cube /* Helper functionis shared by the two cloning code paths */
    234   1.1      cube static struct tap_softc *	tap_clone_creator(int);
    235  1.40      cube int	tap_clone_destroyer(device_t);
    236   1.1      cube 
    237   1.1      cube void
    238  1.23  christos tapattach(int n)
    239   1.1      cube {
    240   1.1      cube 	int error;
    241   1.1      cube 
    242   1.1      cube 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    243   1.1      cube 	if (error) {
    244   1.1      cube 		aprint_error("%s: unable to register cfattach\n",
    245   1.1      cube 		    tap_cd.cd_name);
    246   1.1      cube 		(void)config_cfdriver_detach(&tap_cd);
    247   1.1      cube 		return;
    248   1.1      cube 	}
    249   1.1      cube 
    250   1.1      cube 	if_clone_attach(&tap_cloners);
    251   1.1      cube }
    252   1.1      cube 
    253   1.1      cube /* Pretty much useless for a pseudo-device */
    254   1.1      cube static int
    255  1.40      cube tap_match(device_t parent, cfdata_t cfdata, void *arg)
    256   1.1      cube {
    257  1.40      cube 
    258   1.1      cube 	return (1);
    259   1.1      cube }
    260   1.1      cube 
    261   1.1      cube void
    262  1.40      cube tap_attach(device_t parent, device_t self, void *aux)
    263   1.1      cube {
    264  1.40      cube 	struct tap_softc *sc = device_private(self);
    265   1.1      cube 	struct ifnet *ifp;
    266  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    267  1.18    kardel 	const struct sysctlnode *node;
    268  1.54    plunky 	int error;
    269  1.54    plunky #endif
    270  1.38      matt 	uint8_t enaddr[ETHER_ADDR_LEN] =
    271   1.7      cube 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    272  1.14  christos 	char enaddrstr[3 * ETHER_ADDR_LEN];
    273   1.1      cube 
    274  1.40      cube 	sc->sc_dev = self;
    275  1.71      yamt 	sc->sc_sih = NULL;
    276  1.56  christos 	getnanotime(&sc->sc_btime);
    277  1.56  christos 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    278  1.80     ozaki 	sc->sc_flags = 0;
    279  1.80     ozaki 	selinit(&sc->sc_rsel);
    280  1.80     ozaki 
    281  1.80     ozaki 	/*
    282  1.80     ozaki 	 * Initialize the two locks for the device.
    283  1.80     ozaki 	 *
    284  1.80     ozaki 	 * We need a lock here because even though the tap device can be
    285  1.80     ozaki 	 * opened only once, the file descriptor might be passed to another
    286  1.80     ozaki 	 * process, say a fork(2)ed child.
    287  1.80     ozaki 	 *
    288  1.80     ozaki 	 * The Giant saves us from most of the hassle, but since the read
    289  1.80     ozaki 	 * operation can sleep, we don't want two processes to wake up at
    290  1.80     ozaki 	 * the same moment and both try and dequeue a single packet.
    291  1.80     ozaki 	 *
    292  1.80     ozaki 	 * The queue for event listeners (used by kqueue(9), see below) has
    293  1.80     ozaki 	 * to be protected too, so use a spin lock.
    294  1.80     ozaki 	 */
    295  1.80     ozaki 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    296  1.80     ozaki 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
    297  1.40      cube 
    298  1.48      hans 	if (!pmf_device_register(self, NULL, NULL))
    299  1.48      hans 		aprint_error_dev(self, "couldn't establish power handler\n");
    300  1.48      hans 
    301   1.1      cube 	/*
    302   1.1      cube 	 * In order to obtain unique initial Ethernet address on a host,
    303  1.70      yamt 	 * do some randomisation.  It's not meant for anything but avoiding
    304  1.70      yamt 	 * hard-coding an address.
    305   1.1      cube 	 */
    306  1.70      yamt 	cprng_fast(&enaddr[3], 3);
    307   1.1      cube 
    308  1.40      cube 	aprint_verbose_dev(self, "Ethernet address %s\n",
    309  1.14  christos 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    310   1.1      cube 
    311   1.1      cube 	/*
    312   1.1      cube 	 * Why 1000baseT? Why not? You can add more.
    313   1.1      cube 	 *
    314   1.1      cube 	 * Note that there are 3 steps: init, one or several additions to
    315   1.1      cube 	 * list of supported media, and in the end, the selection of one
    316   1.1      cube 	 * of them.
    317   1.1      cube 	 */
    318   1.1      cube 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    319   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    320   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    321   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    322   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    323   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    324   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    325   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    326   1.1      cube 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    327   1.1      cube 
    328   1.1      cube 	/*
    329   1.1      cube 	 * One should note that an interface must do multicast in order
    330   1.1      cube 	 * to support IPv6.
    331   1.1      cube 	 */
    332   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    333  1.40      cube 	strcpy(ifp->if_xname, device_xname(self));
    334   1.1      cube 	ifp->if_softc	= sc;
    335   1.1      cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    336   1.1      cube 	ifp->if_ioctl	= tap_ioctl;
    337   1.1      cube 	ifp->if_start	= tap_start;
    338   1.1      cube 	ifp->if_stop	= tap_stop;
    339   1.1      cube 	ifp->if_init	= tap_init;
    340   1.1      cube 	IFQ_SET_READY(&ifp->if_snd);
    341   1.1      cube 
    342   1.1      cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    343   1.1      cube 
    344   1.1      cube 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    345   1.1      cube 	 * being common to all network interface drivers. */
    346   1.1      cube 	if_attach(ifp);
    347   1.1      cube 	ether_ifattach(ifp, enaddr);
    348   1.1      cube 
    349  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    350   1.1      cube 	/*
    351   1.1      cube 	 * Add a sysctl node for that interface.
    352   1.1      cube 	 *
    353   1.1      cube 	 * The pointer transmitted is not a string, but instead a pointer to
    354   1.1      cube 	 * the softc structure, which we can use to build the string value on
    355   1.1      cube 	 * the fly in the helper function of the node.  See the comments for
    356   1.1      cube 	 * tap_sysctl_handler for details.
    357  1.21      cube 	 *
    358  1.21      cube 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    359  1.21      cube 	 * component.  However, we can allocate a number ourselves, as we are
    360  1.21      cube 	 * the only consumer of the net.link.<iface> node.  In this case, the
    361  1.21      cube 	 * unit number is conveniently used to number the node.  CTL_CREATE
    362  1.21      cube 	 * would just work, too.
    363   1.1      cube 	 */
    364   1.1      cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    365   1.1      cube 	    &node, CTLFLAG_READWRITE,
    366  1.40      cube 	    CTLTYPE_STRING, device_xname(self), NULL,
    367  1.67       dsl 	    tap_sysctl_handler, 0, (void *)sc, 18,
    368  1.40      cube 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    369  1.15   thorpej 	    CTL_EOL)) != 0)
    370  1.40      cube 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    371  1.40      cube 		    error);
    372  1.54    plunky #endif
    373   1.1      cube }
    374   1.1      cube 
    375   1.1      cube /*
    376   1.1      cube  * When detaching, we do the inverse of what is done in the attach
    377   1.1      cube  * routine, in reversed order.
    378   1.1      cube  */
    379   1.1      cube static int
    380  1.40      cube tap_detach(device_t self, int flags)
    381   1.1      cube {
    382  1.40      cube 	struct tap_softc *sc = device_private(self);
    383   1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    384  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    385  1.54    plunky 	int error;
    386  1.54    plunky #endif
    387  1.54    plunky 	int s;
    388   1.1      cube 
    389   1.1      cube 	sc->sc_flags |= TAP_GOING;
    390   1.1      cube 	s = splnet();
    391   1.1      cube 	tap_stop(ifp, 1);
    392   1.1      cube 	if_down(ifp);
    393   1.1      cube 	splx(s);
    394   1.1      cube 
    395  1.71      yamt 	if (sc->sc_sih != NULL) {
    396  1.71      yamt 		softint_disestablish(sc->sc_sih);
    397  1.71      yamt 		sc->sc_sih = NULL;
    398  1.71      yamt 	}
    399  1.42        ad 
    400  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    401   1.1      cube 	/*
    402   1.1      cube 	 * Destroying a single leaf is a very straightforward operation using
    403   1.1      cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    404   1.1      cube 	 * CTL_EOL.
    405   1.1      cube 	 */
    406   1.3      cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    407  1.40      cube 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    408  1.40      cube 		aprint_error_dev(self,
    409  1.40      cube 		    "sysctl_destroyv returned %d, ignoring\n", error);
    410  1.54    plunky #endif
    411   1.1      cube 	ether_ifdetach(ifp);
    412   1.1      cube 	if_detach(ifp);
    413   1.1      cube 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    414  1.47     rmind 	seldestroy(&sc->sc_rsel);
    415  1.34        ad 	mutex_destroy(&sc->sc_rdlock);
    416  1.75   aymeric 	mutex_destroy(&sc->sc_kqlock);
    417   1.1      cube 
    418  1.49      hans 	pmf_device_deregister(self);
    419  1.49      hans 
    420   1.1      cube 	return (0);
    421   1.1      cube }
    422   1.1      cube 
    423   1.1      cube /*
    424   1.1      cube  * This function is called by the ifmedia layer to notify the driver
    425   1.1      cube  * that the user requested a media change.  A real driver would
    426   1.1      cube  * reconfigure the hardware.
    427   1.1      cube  */
    428   1.1      cube static int
    429  1.23  christos tap_mediachange(struct ifnet *ifp)
    430   1.1      cube {
    431   1.1      cube 	return (0);
    432   1.1      cube }
    433   1.1      cube 
    434   1.1      cube /*
    435   1.1      cube  * Here the user asks for the currently used media.
    436   1.1      cube  */
    437   1.1      cube static void
    438   1.1      cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    439   1.1      cube {
    440   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    441   1.1      cube 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    442   1.1      cube }
    443   1.1      cube 
    444   1.1      cube /*
    445   1.1      cube  * This is the function where we SEND packets.
    446   1.1      cube  *
    447   1.1      cube  * There is no 'receive' equivalent.  A typical driver will get
    448   1.1      cube  * interrupts from the hardware, and from there will inject new packets
    449   1.1      cube  * into the network stack.
    450   1.1      cube  *
    451   1.1      cube  * Once handled, a packet must be freed.  A real driver might not be able
    452   1.1      cube  * to fit all the pending packets into the hardware, and is allowed to
    453   1.1      cube  * return before having sent all the packets.  It should then use the
    454   1.1      cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    455   1.1      cube  *
    456   1.1      cube  * There are also other flags one should check, such as IFF_PAUSE.
    457   1.1      cube  *
    458   1.1      cube  * It is our duty to make packets available to BPF listeners.
    459   1.1      cube  *
    460   1.1      cube  * You should be aware that this function is called by the Ethernet layer
    461   1.1      cube  * at splnet().
    462   1.1      cube  *
    463   1.1      cube  * When the device is opened, we have to pass the packet(s) to the
    464   1.1      cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    465   1.1      cube  * the packets, and we send a signal to the processes waiting to read.
    466   1.1      cube  *
    467   1.1      cube  * wakeup(sc) is the counterpart to the tsleep call in
    468   1.1      cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    469   1.1      cube  * poll(2) (which includes select(2)) listeners.
    470   1.1      cube  */
    471   1.1      cube static void
    472   1.1      cube tap_start(struct ifnet *ifp)
    473   1.1      cube {
    474   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    475   1.1      cube 	struct mbuf *m0;
    476   1.1      cube 
    477   1.1      cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    478   1.1      cube 		/* Simply drop packets */
    479   1.1      cube 		for(;;) {
    480   1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    481   1.1      cube 			if (m0 == NULL)
    482   1.1      cube 				return;
    483   1.1      cube 
    484   1.1      cube 			ifp->if_opackets++;
    485  1.64     joerg 			bpf_mtap(ifp, m0);
    486   1.1      cube 
    487   1.1      cube 			m_freem(m0);
    488   1.1      cube 		}
    489   1.1      cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    490   1.1      cube 		ifp->if_flags |= IFF_OACTIVE;
    491   1.1      cube 		wakeup(sc);
    492  1.39     rmind 		selnotify(&sc->sc_rsel, 0, 1);
    493   1.1      cube 		if (sc->sc_flags & TAP_ASYNCIO)
    494  1.42        ad 			softint_schedule(sc->sc_sih);
    495  1.42        ad 	}
    496  1.42        ad }
    497  1.42        ad 
    498  1.42        ad static void
    499  1.42        ad tap_softintr(void *cookie)
    500  1.42        ad {
    501  1.42        ad 	struct tap_softc *sc;
    502  1.42        ad 	struct ifnet *ifp;
    503  1.42        ad 	int a, b;
    504  1.42        ad 
    505  1.42        ad 	sc = cookie;
    506  1.42        ad 
    507  1.42        ad 	if (sc->sc_flags & TAP_ASYNCIO) {
    508  1.42        ad 		ifp = &sc->sc_ec.ec_if;
    509  1.42        ad 		if (ifp->if_flags & IFF_RUNNING) {
    510  1.42        ad 			a = POLL_IN;
    511  1.42        ad 			b = POLLIN|POLLRDNORM;
    512  1.42        ad 		} else {
    513  1.42        ad 			a = POLL_HUP;
    514  1.42        ad 			b = 0;
    515  1.42        ad 		}
    516  1.42        ad 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    517   1.1      cube 	}
    518   1.1      cube }
    519   1.1      cube 
    520   1.1      cube /*
    521   1.1      cube  * A typical driver will only contain the following handlers for
    522   1.1      cube  * ioctl calls, except SIOCSIFPHYADDR.
    523   1.1      cube  * The latter is a hack I used to set the Ethernet address of the
    524   1.1      cube  * faked device.
    525   1.1      cube  *
    526   1.1      cube  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    527   1.1      cube  * called under splnet().
    528   1.1      cube  */
    529   1.1      cube static int
    530  1.26  christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    531   1.1      cube {
    532   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    533   1.1      cube 	struct ifreq *ifr = (struct ifreq *)data;
    534   1.1      cube 	int s, error;
    535   1.1      cube 
    536   1.1      cube 	s = splnet();
    537   1.1      cube 
    538   1.1      cube 	switch (cmd) {
    539  1.29  christos #ifdef OSIOCSIFMEDIA
    540  1.29  christos 	case OSIOCSIFMEDIA:
    541  1.29  christos #endif
    542   1.1      cube 	case SIOCSIFMEDIA:
    543   1.1      cube 	case SIOCGIFMEDIA:
    544   1.1      cube 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    545   1.1      cube 		break;
    546  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    547   1.1      cube 	case SIOCSIFPHYADDR:
    548   1.1      cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    549   1.1      cube 		break;
    550  1.54    plunky #endif
    551   1.1      cube 	default:
    552   1.1      cube 		error = ether_ioctl(ifp, cmd, data);
    553   1.1      cube 		if (error == ENETRESET)
    554   1.1      cube 			error = 0;
    555   1.1      cube 		break;
    556   1.1      cube 	}
    557   1.1      cube 
    558   1.1      cube 	splx(s);
    559   1.1      cube 
    560   1.1      cube 	return (error);
    561   1.1      cube }
    562   1.1      cube 
    563  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    564   1.1      cube /*
    565  1.54    plunky  * Helper function to set Ethernet address.  This has been replaced by
    566  1.54    plunky  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    567   1.1      cube  */
    568   1.1      cube static int
    569  1.23  christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    570   1.1      cube {
    571  1.53    plunky 	const struct sockaddr *sa = &ifra->ifra_addr;
    572   1.1      cube 
    573  1.53    plunky 	if (sa->sa_family != AF_LINK)
    574   1.1      cube 		return (EINVAL);
    575   1.1      cube 
    576  1.53    plunky 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    577   1.1      cube 
    578   1.1      cube 	return (0);
    579   1.1      cube }
    580  1.54    plunky #endif
    581   1.1      cube 
    582   1.1      cube /*
    583   1.1      cube  * _init() would typically be called when an interface goes up,
    584   1.1      cube  * meaning it should configure itself into the state in which it
    585   1.1      cube  * can send packets.
    586   1.1      cube  */
    587   1.1      cube static int
    588   1.1      cube tap_init(struct ifnet *ifp)
    589   1.1      cube {
    590   1.1      cube 	ifp->if_flags |= IFF_RUNNING;
    591   1.1      cube 
    592   1.1      cube 	tap_start(ifp);
    593   1.1      cube 
    594   1.1      cube 	return (0);
    595   1.1      cube }
    596   1.1      cube 
    597   1.1      cube /*
    598   1.1      cube  * _stop() is called when an interface goes down.  It is our
    599   1.1      cube  * responsability to validate that state by clearing the
    600   1.1      cube  * IFF_RUNNING flag.
    601   1.1      cube  *
    602   1.1      cube  * We have to wake up all the sleeping processes to have the pending
    603   1.1      cube  * read requests cancelled.
    604   1.1      cube  */
    605   1.1      cube static void
    606  1.23  christos tap_stop(struct ifnet *ifp, int disable)
    607   1.1      cube {
    608   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    609   1.1      cube 
    610   1.1      cube 	ifp->if_flags &= ~IFF_RUNNING;
    611   1.1      cube 	wakeup(sc);
    612  1.39     rmind 	selnotify(&sc->sc_rsel, 0, 1);
    613   1.1      cube 	if (sc->sc_flags & TAP_ASYNCIO)
    614  1.42        ad 		softint_schedule(sc->sc_sih);
    615   1.1      cube }
    616   1.1      cube 
    617   1.1      cube /*
    618   1.1      cube  * The 'create' command of ifconfig can be used to create
    619   1.1      cube  * any numbered instance of a given device.  Thus we have to
    620   1.1      cube  * make sure we have enough room in cd_devs to create the
    621   1.1      cube  * user-specified instance.  config_attach_pseudo will do this
    622   1.1      cube  * for us.
    623   1.1      cube  */
    624   1.1      cube static int
    625  1.23  christos tap_clone_create(struct if_clone *ifc, int unit)
    626   1.1      cube {
    627   1.1      cube 	if (tap_clone_creator(unit) == NULL) {
    628   1.1      cube 		aprint_error("%s%d: unable to attach an instance\n",
    629   1.1      cube                     tap_cd.cd_name, unit);
    630   1.1      cube 		return (ENXIO);
    631   1.1      cube 	}
    632   1.1      cube 
    633   1.1      cube 	return (0);
    634   1.1      cube }
    635   1.1      cube 
    636   1.1      cube /*
    637   1.1      cube  * tap(4) can be cloned by two ways:
    638   1.1      cube  *   using 'ifconfig tap0 create', which will use the network
    639   1.1      cube  *     interface cloning API, and call tap_clone_create above.
    640   1.1      cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    641   1.1      cube  *     See below for an explanation on how this part work.
    642   1.1      cube  */
    643   1.1      cube static struct tap_softc *
    644   1.1      cube tap_clone_creator(int unit)
    645   1.1      cube {
    646   1.1      cube 	struct cfdata *cf;
    647   1.1      cube 
    648   1.1      cube 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    649   1.1      cube 	cf->cf_name = tap_cd.cd_name;
    650   1.1      cube 	cf->cf_atname = tap_ca.ca_name;
    651  1.27  drochner 	if (unit == -1) {
    652  1.27  drochner 		/* let autoconf find the first free one */
    653  1.27  drochner 		cf->cf_unit = 0;
    654  1.27  drochner 		cf->cf_fstate = FSTATE_STAR;
    655  1.27  drochner 	} else {
    656  1.27  drochner 		cf->cf_unit = unit;
    657  1.58    plunky 		cf->cf_fstate = FSTATE_NOTFOUND;
    658  1.27  drochner 	}
    659   1.1      cube 
    660  1.40      cube 	return device_private(config_attach_pseudo(cf));
    661   1.1      cube }
    662   1.1      cube 
    663   1.1      cube /*
    664   1.1      cube  * The clean design of if_clone and autoconf(9) makes that part
    665   1.1      cube  * really straightforward.  The second argument of config_detach
    666   1.1      cube  * means neither QUIET nor FORCED.
    667   1.1      cube  */
    668   1.1      cube static int
    669   1.1      cube tap_clone_destroy(struct ifnet *ifp)
    670   1.1      cube {
    671  1.45    dyoung 	struct tap_softc *sc = ifp->if_softc;
    672  1.45    dyoung 
    673  1.45    dyoung 	return tap_clone_destroyer(sc->sc_dev);
    674   1.1      cube }
    675   1.1      cube 
    676  1.12      cube int
    677  1.40      cube tap_clone_destroyer(device_t dev)
    678   1.1      cube {
    679  1.40      cube 	cfdata_t cf = device_cfdata(dev);
    680   1.1      cube 	int error;
    681   1.1      cube 
    682   1.1      cube 	if ((error = config_detach(dev, 0)) != 0)
    683  1.40      cube 		aprint_error_dev(dev, "unable to detach instance\n");
    684   1.1      cube 	free(cf, M_DEVBUF);
    685   1.1      cube 
    686   1.1      cube 	return (error);
    687   1.1      cube }
    688   1.1      cube 
    689   1.1      cube /*
    690   1.1      cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    691   1.1      cube  * ways:
    692   1.1      cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    693   1.1      cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    694   1.1      cube  *     That interface is destroyed when the process that had it created exits.
    695   1.1      cube  *
    696   1.1      cube  * The first way is managed by the cdevsw structure, and you access interfaces
    697   1.1      cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    698   1.1      cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    699   1.1      cube  *
    700   1.1      cube  * The second way is the so-called "cloning" device.  It's a special minor
    701   1.1      cube  * number (chosen as the maximal number, to allow as much tap devices as
    702   1.1      cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    703   1.1      cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    704   1.1      cube  * tap_dev_cloner.
    705   1.1      cube  *
    706   1.1      cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    707   1.1      cube  * part of open() does nothing but noting that the interface is being used and
    708   1.1      cube  * hence ready to actually handle packets.
    709   1.1      cube  */
    710   1.1      cube 
    711   1.1      cube static int
    712  1.23  christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    713   1.1      cube {
    714   1.1      cube 	struct tap_softc *sc;
    715   1.1      cube 
    716   1.1      cube 	if (minor(dev) == TAP_CLONER)
    717  1.11  christos 		return tap_dev_cloner(l);
    718   1.1      cube 
    719  1.46    cegger 	sc = device_lookup_private(&tap_cd, minor(dev));
    720   1.1      cube 	if (sc == NULL)
    721   1.1      cube 		return (ENXIO);
    722   1.1      cube 
    723   1.1      cube 	/* The device can only be opened once */
    724   1.1      cube 	if (sc->sc_flags & TAP_INUSE)
    725   1.1      cube 		return (EBUSY);
    726   1.1      cube 	sc->sc_flags |= TAP_INUSE;
    727   1.1      cube 	return (0);
    728   1.1      cube }
    729   1.1      cube 
    730   1.1      cube /*
    731   1.1      cube  * There are several kinds of cloning devices, and the most simple is the one
    732   1.1      cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    733   1.1      cube  * with its own fileops structure (which maps to the various read, write,
    734   1.1      cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    735   1.1      cube  * then actually creates the new tap devices.
    736   1.1      cube  *
    737   1.1      cube  * Once those two steps are successful, we can re-wire the existing file
    738   1.1      cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    739  1.78      matt  * structure as needed (notably f_devunit gets filled with the fifth parameter
    740   1.1      cube  * passed, the unit of the tap device which will allows us identifying the
    741   1.1      cube  * device later), and returns EMOVEFD.
    742   1.1      cube  *
    743   1.1      cube  * That magic value is interpreted by sys_open() which then replaces the
    744   1.1      cube  * current file descriptor by the new one (through a magic member of struct
    745  1.13     pooka  * lwp, l_dupfd).
    746   1.1      cube  *
    747   1.1      cube  * The tap device is flagged as being busy since it otherwise could be
    748   1.1      cube  * externally accessed through the corresponding device node with the cdevsw
    749   1.1      cube  * interface.
    750   1.1      cube  */
    751   1.1      cube 
    752   1.1      cube static int
    753  1.11  christos tap_dev_cloner(struct lwp *l)
    754   1.1      cube {
    755   1.1      cube 	struct tap_softc *sc;
    756  1.41        ad 	file_t *fp;
    757   1.1      cube 	int error, fd;
    758   1.1      cube 
    759  1.41        ad 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    760   1.1      cube 		return (error);
    761   1.1      cube 
    762  1.27  drochner 	if ((sc = tap_clone_creator(-1)) == NULL) {
    763  1.41        ad 		fd_abort(curproc, fp, fd);
    764   1.1      cube 		return (ENXIO);
    765   1.1      cube 	}
    766   1.1      cube 
    767   1.1      cube 	sc->sc_flags |= TAP_INUSE;
    768   1.1      cube 
    769  1.41        ad 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    770  1.40      cube 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    771   1.1      cube }
    772   1.1      cube 
    773   1.1      cube /*
    774   1.1      cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    775   1.1      cube  * really the same whether we are in cdevsw or fileops mode, the close()
    776   1.1      cube  * function is slightly different in the two cases.
    777   1.1      cube  *
    778   1.1      cube  * As for the other, the core of it is shared in tap_dev_close.  What
    779   1.1      cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    780   1.1      cube  * needs another thing:  the interface is destroyed when the processes that
    781   1.1      cube  * created it closes it.
    782   1.1      cube  */
    783   1.1      cube static int
    784  1.23  christos tap_cdev_close(dev_t dev, int flags, int fmt,
    785  1.23  christos     struct lwp *l)
    786   1.1      cube {
    787   1.1      cube 	struct tap_softc *sc =
    788  1.46    cegger 	    device_lookup_private(&tap_cd, minor(dev));
    789   1.1      cube 
    790   1.1      cube 	if (sc == NULL)
    791   1.1      cube 		return (ENXIO);
    792   1.1      cube 
    793   1.1      cube 	return tap_dev_close(sc);
    794   1.1      cube }
    795   1.1      cube 
    796   1.1      cube /*
    797   1.1      cube  * It might happen that the administrator used ifconfig to externally destroy
    798   1.1      cube  * the interface.  In that case, tap_fops_close will be called while
    799   1.1      cube  * tap_detach is already happening.  If we called it again from here, we
    800   1.1      cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    801   1.1      cube  */
    802   1.1      cube static int
    803  1.41        ad tap_fops_close(file_t *fp)
    804   1.1      cube {
    805  1.78      matt 	int unit = fp->f_devunit;
    806   1.1      cube 	struct tap_softc *sc;
    807   1.1      cube 	int error;
    808   1.1      cube 
    809  1.46    cegger 	sc = device_lookup_private(&tap_cd, unit);
    810   1.1      cube 	if (sc == NULL)
    811   1.1      cube 		return (ENXIO);
    812   1.1      cube 
    813   1.1      cube 	/* tap_dev_close currently always succeeds, but it might not
    814   1.1      cube 	 * always be the case. */
    815  1.44        ad 	KERNEL_LOCK(1, NULL);
    816  1.44        ad 	if ((error = tap_dev_close(sc)) != 0) {
    817  1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    818   1.1      cube 		return (error);
    819  1.44        ad 	}
    820   1.1      cube 
    821   1.1      cube 	/* Destroy the device now that it is no longer useful,
    822   1.1      cube 	 * unless it's already being destroyed. */
    823  1.44        ad 	if ((sc->sc_flags & TAP_GOING) != 0) {
    824  1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    825   1.1      cube 		return (0);
    826  1.44        ad 	}
    827   1.1      cube 
    828  1.44        ad 	error = tap_clone_destroyer(sc->sc_dev);
    829  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    830  1.44        ad 	return error;
    831   1.1      cube }
    832   1.1      cube 
    833   1.1      cube static int
    834   1.1      cube tap_dev_close(struct tap_softc *sc)
    835   1.1      cube {
    836   1.1      cube 	struct ifnet *ifp;
    837   1.1      cube 	int s;
    838   1.1      cube 
    839   1.1      cube 	s = splnet();
    840   1.1      cube 	/* Let tap_start handle packets again */
    841   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    842   1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    843   1.1      cube 
    844   1.1      cube 	/* Purge output queue */
    845   1.1      cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    846   1.1      cube 		struct mbuf *m;
    847   1.1      cube 
    848   1.1      cube 		for (;;) {
    849   1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    850   1.1      cube 			if (m == NULL)
    851   1.1      cube 				break;
    852   1.1      cube 
    853   1.1      cube 			ifp->if_opackets++;
    854  1.64     joerg 			bpf_mtap(ifp, m);
    855  1.60    plunky 			m_freem(m);
    856   1.1      cube 		}
    857   1.1      cube 	}
    858   1.1      cube 	splx(s);
    859   1.1      cube 
    860  1.71      yamt 	if (sc->sc_sih != NULL) {
    861  1.71      yamt 		softint_disestablish(sc->sc_sih);
    862  1.71      yamt 		sc->sc_sih = NULL;
    863  1.71      yamt 	}
    864   1.1      cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    865   1.1      cube 
    866   1.1      cube 	return (0);
    867   1.1      cube }
    868   1.1      cube 
    869   1.1      cube static int
    870   1.1      cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    871   1.1      cube {
    872   1.1      cube 	return tap_dev_read(minor(dev), uio, flags);
    873   1.1      cube }
    874   1.1      cube 
    875   1.1      cube static int
    876  1.41        ad tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    877  1.23  christos     kauth_cred_t cred, int flags)
    878   1.1      cube {
    879  1.44        ad 	int error;
    880  1.44        ad 
    881  1.44        ad 	KERNEL_LOCK(1, NULL);
    882  1.78      matt 	error = tap_dev_read(fp->f_devunit, uio, flags);
    883  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    884  1.44        ad 	return error;
    885   1.1      cube }
    886   1.1      cube 
    887   1.1      cube static int
    888  1.23  christos tap_dev_read(int unit, struct uio *uio, int flags)
    889   1.1      cube {
    890  1.78      matt 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    891   1.1      cube 	struct ifnet *ifp;
    892   1.1      cube 	struct mbuf *m, *n;
    893   1.1      cube 	int error = 0, s;
    894   1.1      cube 
    895   1.1      cube 	if (sc == NULL)
    896   1.1      cube 		return (ENXIO);
    897   1.1      cube 
    898  1.56  christos 	getnanotime(&sc->sc_atime);
    899  1.56  christos 
    900   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    901   1.1      cube 	if ((ifp->if_flags & IFF_UP) == 0)
    902   1.1      cube 		return (EHOSTDOWN);
    903   1.1      cube 
    904   1.1      cube 	/*
    905   1.1      cube 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    906   1.1      cube 	 */
    907  1.34        ad 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    908  1.34        ad 		if (!mutex_tryenter(&sc->sc_rdlock))
    909  1.34        ad 			return (EWOULDBLOCK);
    910  1.34        ad 	} else {
    911  1.34        ad 		mutex_enter(&sc->sc_rdlock);
    912  1.34        ad 	}
    913   1.1      cube 
    914   1.1      cube 	s = splnet();
    915   1.1      cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    916   1.1      cube 		ifp->if_flags &= ~IFF_OACTIVE;
    917   1.1      cube 		/*
    918   1.1      cube 		 * We must release the lock before sleeping, and re-acquire it
    919   1.1      cube 		 * after.
    920   1.1      cube 		 */
    921  1.34        ad 		mutex_exit(&sc->sc_rdlock);
    922   1.1      cube 		if (sc->sc_flags & TAP_NBIO)
    923   1.1      cube 			error = EWOULDBLOCK;
    924   1.1      cube 		else
    925   1.1      cube 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    926  1.52     pooka 		splx(s);
    927  1.52     pooka 
    928   1.1      cube 		if (error != 0)
    929   1.1      cube 			return (error);
    930   1.1      cube 		/* The device might have been downed */
    931   1.1      cube 		if ((ifp->if_flags & IFF_UP) == 0)
    932   1.1      cube 			return (EHOSTDOWN);
    933  1.34        ad 		if ((sc->sc_flags & TAP_NBIO)) {
    934  1.34        ad 			if (!mutex_tryenter(&sc->sc_rdlock))
    935  1.34        ad 				return (EWOULDBLOCK);
    936  1.34        ad 		} else {
    937  1.34        ad 			mutex_enter(&sc->sc_rdlock);
    938  1.34        ad 		}
    939   1.1      cube 		s = splnet();
    940   1.1      cube 	}
    941   1.1      cube 
    942   1.1      cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    943   1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    944   1.1      cube 	splx(s);
    945   1.1      cube 	if (m == NULL) {
    946   1.1      cube 		error = 0;
    947   1.1      cube 		goto out;
    948   1.1      cube 	}
    949   1.1      cube 
    950   1.1      cube 	ifp->if_opackets++;
    951  1.64     joerg 	bpf_mtap(ifp, m);
    952   1.1      cube 
    953   1.1      cube 	/*
    954   1.1      cube 	 * One read is one packet.
    955   1.1      cube 	 */
    956   1.1      cube 	do {
    957  1.26  christos 		error = uiomove(mtod(m, void *),
    958   1.1      cube 		    min(m->m_len, uio->uio_resid), uio);
    959   1.1      cube 		MFREE(m, n);
    960   1.1      cube 		m = n;
    961   1.1      cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    962   1.1      cube 
    963   1.1      cube 	if (m != NULL)
    964   1.1      cube 		m_freem(m);
    965   1.1      cube 
    966   1.1      cube out:
    967  1.34        ad 	mutex_exit(&sc->sc_rdlock);
    968   1.1      cube 	return (error);
    969   1.1      cube }
    970   1.1      cube 
    971   1.1      cube static int
    972  1.56  christos tap_fops_stat(file_t *fp, struct stat *st)
    973  1.56  christos {
    974  1.59  drochner 	int error = 0;
    975  1.57  christos 	struct tap_softc *sc;
    976  1.78      matt 	int unit = fp->f_devunit;
    977  1.57  christos 
    978  1.57  christos 	(void)memset(st, 0, sizeof(*st));
    979  1.57  christos 
    980  1.56  christos 	KERNEL_LOCK(1, NULL);
    981  1.57  christos 	sc = device_lookup_private(&tap_cd, unit);
    982  1.57  christos 	if (sc == NULL) {
    983  1.57  christos 		error = ENXIO;
    984  1.57  christos 		goto out;
    985  1.57  christos 	}
    986  1.56  christos 
    987  1.56  christos 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
    988  1.56  christos 	st->st_atimespec = sc->sc_atime;
    989  1.56  christos 	st->st_mtimespec = sc->sc_mtime;
    990  1.56  christos 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
    991  1.57  christos 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
    992  1.57  christos 	st->st_gid = kauth_cred_getegid(fp->f_cred);
    993  1.57  christos out:
    994  1.57  christos 	KERNEL_UNLOCK_ONE(NULL);
    995  1.57  christos 	return error;
    996  1.56  christos }
    997  1.56  christos 
    998  1.56  christos static int
    999   1.1      cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1000   1.1      cube {
   1001   1.1      cube 	return tap_dev_write(minor(dev), uio, flags);
   1002   1.1      cube }
   1003   1.1      cube 
   1004   1.1      cube static int
   1005  1.41        ad tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1006  1.23  christos     kauth_cred_t cred, int flags)
   1007   1.1      cube {
   1008  1.44        ad 	int error;
   1009  1.44        ad 
   1010  1.44        ad 	KERNEL_LOCK(1, NULL);
   1011  1.78      matt 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1012  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1013  1.44        ad 	return error;
   1014   1.1      cube }
   1015   1.1      cube 
   1016   1.1      cube static int
   1017  1.23  christos tap_dev_write(int unit, struct uio *uio, int flags)
   1018   1.1      cube {
   1019   1.1      cube 	struct tap_softc *sc =
   1020  1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1021   1.1      cube 	struct ifnet *ifp;
   1022   1.1      cube 	struct mbuf *m, **mp;
   1023   1.1      cube 	int error = 0;
   1024   1.9    bouyer 	int s;
   1025   1.1      cube 
   1026   1.1      cube 	if (sc == NULL)
   1027   1.1      cube 		return (ENXIO);
   1028   1.1      cube 
   1029  1.56  christos 	getnanotime(&sc->sc_mtime);
   1030   1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1031   1.1      cube 
   1032   1.1      cube 	/* One write, one packet, that's the rule */
   1033   1.1      cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1034   1.1      cube 	if (m == NULL) {
   1035   1.1      cube 		ifp->if_ierrors++;
   1036   1.1      cube 		return (ENOBUFS);
   1037   1.1      cube 	}
   1038   1.1      cube 	m->m_pkthdr.len = uio->uio_resid;
   1039   1.1      cube 
   1040   1.1      cube 	mp = &m;
   1041   1.1      cube 	while (error == 0 && uio->uio_resid > 0) {
   1042   1.1      cube 		if (*mp != m) {
   1043   1.1      cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1044   1.1      cube 			if (*mp == NULL) {
   1045   1.1      cube 				error = ENOBUFS;
   1046   1.1      cube 				break;
   1047   1.1      cube 			}
   1048   1.1      cube 		}
   1049   1.1      cube 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1050  1.26  christos 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1051   1.1      cube 		mp = &(*mp)->m_next;
   1052   1.1      cube 	}
   1053   1.1      cube 	if (error) {
   1054   1.1      cube 		ifp->if_ierrors++;
   1055   1.1      cube 		m_freem(m);
   1056   1.1      cube 		return (error);
   1057   1.1      cube 	}
   1058   1.1      cube 
   1059   1.1      cube 	ifp->if_ipackets++;
   1060   1.1      cube 	m->m_pkthdr.rcvif = ifp;
   1061   1.1      cube 
   1062  1.64     joerg 	bpf_mtap(ifp, m);
   1063  1.69      yamt 	s = splnet();
   1064   1.1      cube 	(*ifp->if_input)(ifp, m);
   1065   1.9    bouyer 	splx(s);
   1066   1.1      cube 
   1067   1.1      cube 	return (0);
   1068   1.1      cube }
   1069   1.1      cube 
   1070   1.1      cube static int
   1071  1.26  christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1072  1.11  christos     struct lwp *l)
   1073   1.1      cube {
   1074  1.11  christos 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1075   1.1      cube }
   1076   1.1      cube 
   1077   1.1      cube static int
   1078  1.41        ad tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1079   1.1      cube {
   1080  1.78      matt 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1081   1.1      cube }
   1082   1.1      cube 
   1083   1.1      cube static int
   1084  1.26  christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1085   1.1      cube {
   1086  1.66  christos 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1087   1.1      cube 
   1088   1.1      cube 	if (sc == NULL)
   1089  1.66  christos 		return ENXIO;
   1090   1.1      cube 
   1091   1.1      cube 	switch (cmd) {
   1092   1.1      cube 	case FIONREAD:
   1093   1.1      cube 		{
   1094   1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1095   1.1      cube 			struct mbuf *m;
   1096   1.1      cube 			int s;
   1097   1.1      cube 
   1098   1.1      cube 			s = splnet();
   1099   1.1      cube 			IFQ_POLL(&ifp->if_snd, m);
   1100   1.1      cube 
   1101   1.1      cube 			if (m == NULL)
   1102   1.1      cube 				*(int *)data = 0;
   1103   1.1      cube 			else
   1104   1.1      cube 				*(int *)data = m->m_pkthdr.len;
   1105   1.1      cube 			splx(s);
   1106  1.66  christos 			return 0;
   1107  1.66  christos 		}
   1108   1.1      cube 	case TIOCSPGRP:
   1109   1.1      cube 	case FIOSETOWN:
   1110  1.66  christos 		return fsetown(&sc->sc_pgid, cmd, data);
   1111   1.1      cube 	case TIOCGPGRP:
   1112   1.1      cube 	case FIOGETOWN:
   1113  1.66  christos 		return fgetown(sc->sc_pgid, cmd, data);
   1114   1.1      cube 	case FIOASYNC:
   1115  1.71      yamt 		if (*(int *)data) {
   1116  1.71      yamt 			if (sc->sc_sih == NULL) {
   1117  1.71      yamt 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1118  1.71      yamt 				    tap_softintr, sc);
   1119  1.71      yamt 				if (sc->sc_sih == NULL)
   1120  1.71      yamt 					return EBUSY; /* XXX */
   1121  1.71      yamt 			}
   1122   1.1      cube 			sc->sc_flags |= TAP_ASYNCIO;
   1123  1.71      yamt 		} else {
   1124   1.1      cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1125  1.71      yamt 			if (sc->sc_sih != NULL) {
   1126  1.71      yamt 				softint_disestablish(sc->sc_sih);
   1127  1.71      yamt 				sc->sc_sih = NULL;
   1128  1.71      yamt 			}
   1129  1.71      yamt 		}
   1130  1.66  christos 		return 0;
   1131   1.1      cube 	case FIONBIO:
   1132   1.1      cube 		if (*(int *)data)
   1133   1.1      cube 			sc->sc_flags |= TAP_NBIO;
   1134   1.1      cube 		else
   1135   1.1      cube 			sc->sc_flags &= ~TAP_NBIO;
   1136  1.66  christos 		return 0;
   1137  1.29  christos #ifdef OTAPGIFNAME
   1138  1.29  christos 	case OTAPGIFNAME:
   1139  1.29  christos #endif
   1140   1.1      cube 	case TAPGIFNAME:
   1141   1.1      cube 		{
   1142   1.1      cube 			struct ifreq *ifr = (struct ifreq *)data;
   1143   1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1144   1.1      cube 
   1145   1.1      cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1146  1.66  christos 			return 0;
   1147  1.66  christos 		}
   1148   1.1      cube 	default:
   1149  1.66  christos 		return ENOTTY;
   1150   1.1      cube 	}
   1151   1.1      cube }
   1152   1.1      cube 
   1153   1.1      cube static int
   1154  1.11  christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1155   1.1      cube {
   1156  1.11  christos 	return tap_dev_poll(minor(dev), events, l);
   1157   1.1      cube }
   1158   1.1      cube 
   1159   1.1      cube static int
   1160  1.41        ad tap_fops_poll(file_t *fp, int events)
   1161   1.1      cube {
   1162  1.78      matt 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1163   1.1      cube }
   1164   1.1      cube 
   1165   1.1      cube static int
   1166  1.11  christos tap_dev_poll(int unit, int events, struct lwp *l)
   1167   1.1      cube {
   1168   1.1      cube 	struct tap_softc *sc =
   1169  1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1170   1.1      cube 	int revents = 0;
   1171   1.1      cube 
   1172   1.1      cube 	if (sc == NULL)
   1173  1.28  christos 		return POLLERR;
   1174   1.1      cube 
   1175   1.1      cube 	if (events & (POLLIN|POLLRDNORM)) {
   1176   1.1      cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1177   1.1      cube 		struct mbuf *m;
   1178   1.1      cube 		int s;
   1179   1.1      cube 
   1180   1.1      cube 		s = splnet();
   1181   1.1      cube 		IFQ_POLL(&ifp->if_snd, m);
   1182   1.1      cube 
   1183   1.1      cube 		if (m != NULL)
   1184   1.1      cube 			revents |= events & (POLLIN|POLLRDNORM);
   1185   1.1      cube 		else {
   1186  1.74     skrll 			mutex_spin_enter(&sc->sc_kqlock);
   1187  1.11  christos 			selrecord(l, &sc->sc_rsel);
   1188  1.74     skrll 			mutex_spin_exit(&sc->sc_kqlock);
   1189   1.1      cube 		}
   1190  1.76      cube 		splx(s);
   1191   1.1      cube 	}
   1192   1.1      cube 	revents |= events & (POLLOUT|POLLWRNORM);
   1193   1.1      cube 
   1194   1.1      cube 	return (revents);
   1195   1.1      cube }
   1196   1.1      cube 
   1197   1.1      cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1198   1.1      cube 	tap_kqread };
   1199   1.1      cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1200   1.1      cube 	filt_seltrue };
   1201   1.1      cube 
   1202   1.1      cube static int
   1203   1.1      cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1204   1.1      cube {
   1205   1.1      cube 	return tap_dev_kqfilter(minor(dev), kn);
   1206   1.1      cube }
   1207   1.1      cube 
   1208   1.1      cube static int
   1209  1.41        ad tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1210   1.1      cube {
   1211  1.78      matt 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1212   1.1      cube }
   1213   1.1      cube 
   1214   1.1      cube static int
   1215   1.1      cube tap_dev_kqfilter(int unit, struct knote *kn)
   1216   1.1      cube {
   1217   1.1      cube 	struct tap_softc *sc =
   1218  1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1219   1.1      cube 
   1220   1.1      cube 	if (sc == NULL)
   1221   1.1      cube 		return (ENXIO);
   1222   1.1      cube 
   1223  1.44        ad 	KERNEL_LOCK(1, NULL);
   1224   1.1      cube 	switch(kn->kn_filter) {
   1225   1.1      cube 	case EVFILT_READ:
   1226   1.1      cube 		kn->kn_fop = &tap_read_filterops;
   1227   1.1      cube 		break;
   1228   1.1      cube 	case EVFILT_WRITE:
   1229   1.1      cube 		kn->kn_fop = &tap_seltrue_filterops;
   1230   1.1      cube 		break;
   1231   1.1      cube 	default:
   1232  1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
   1233  1.35     pooka 		return (EINVAL);
   1234   1.1      cube 	}
   1235   1.1      cube 
   1236   1.1      cube 	kn->kn_hook = sc;
   1237  1.74     skrll 	mutex_spin_enter(&sc->sc_kqlock);
   1238   1.1      cube 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1239  1.74     skrll 	mutex_spin_exit(&sc->sc_kqlock);
   1240  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1241   1.1      cube 	return (0);
   1242   1.1      cube }
   1243   1.1      cube 
   1244   1.1      cube static void
   1245   1.1      cube tap_kqdetach(struct knote *kn)
   1246   1.1      cube {
   1247   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1248   1.1      cube 
   1249  1.44        ad 	KERNEL_LOCK(1, NULL);
   1250  1.74     skrll 	mutex_spin_enter(&sc->sc_kqlock);
   1251   1.1      cube 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1252  1.74     skrll 	mutex_spin_exit(&sc->sc_kqlock);
   1253  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1254   1.1      cube }
   1255   1.1      cube 
   1256   1.1      cube static int
   1257  1.23  christos tap_kqread(struct knote *kn, long hint)
   1258   1.1      cube {
   1259   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1260   1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1261   1.1      cube 	struct mbuf *m;
   1262  1.44        ad 	int s, rv;
   1263   1.1      cube 
   1264  1.44        ad 	KERNEL_LOCK(1, NULL);
   1265   1.1      cube 	s = splnet();
   1266   1.1      cube 	IFQ_POLL(&ifp->if_snd, m);
   1267   1.1      cube 
   1268   1.1      cube 	if (m == NULL)
   1269   1.1      cube 		kn->kn_data = 0;
   1270   1.1      cube 	else
   1271   1.1      cube 		kn->kn_data = m->m_pkthdr.len;
   1272   1.1      cube 	splx(s);
   1273  1.44        ad 	rv = (kn->kn_data != 0 ? 1 : 0);
   1274  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1275  1.44        ad 	return rv;
   1276   1.1      cube }
   1277   1.1      cube 
   1278  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
   1279   1.1      cube /*
   1280   1.1      cube  * sysctl management routines
   1281   1.1      cube  * You can set the address of an interface through:
   1282   1.1      cube  * net.link.tap.tap<number>
   1283   1.1      cube  *
   1284   1.1      cube  * Note the consistent use of tap_log in order to use
   1285   1.1      cube  * sysctl_teardown at unload time.
   1286   1.1      cube  *
   1287   1.1      cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1288   1.1      cube  * blocks register a function in a special section of the kernel
   1289   1.1      cube  * (called a link set) which is used at init_sysctl() time to cycle
   1290   1.1      cube  * through all those functions to create the kernel's sysctl tree.
   1291   1.1      cube  *
   1292  1.51        ad  * It is not possible to use link sets in a module, so the
   1293   1.1      cube  * easiest is to simply call our own setup routine at load time.
   1294   1.1      cube  *
   1295   1.1      cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1296   1.1      cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1297   1.1      cube  * whole kernel sysctl tree is built, it is not possible to add any
   1298   1.1      cube  * permanent node.
   1299   1.1      cube  *
   1300   1.1      cube  * It should be noted that we're not saving the sysctlnode pointer
   1301   1.1      cube  * we are returned when creating the "tap" node.  That structure
   1302   1.1      cube  * cannot be trusted once out of the calling function, as it might
   1303   1.1      cube  * get reused.  So we just save the MIB number, and always give the
   1304   1.1      cube  * full path starting from the root for later calls to sysctl_createv
   1305   1.1      cube  * and sysctl_destroyv.
   1306   1.1      cube  */
   1307   1.1      cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1308   1.1      cube {
   1309  1.10    atatat 	const struct sysctlnode *node;
   1310   1.1      cube 	int error = 0;
   1311   1.1      cube 
   1312   1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1313   1.1      cube 	    CTLFLAG_PERMANENT,
   1314   1.1      cube 	    CTLTYPE_NODE, "link", NULL,
   1315   1.1      cube 	    NULL, 0, NULL, 0,
   1316   1.3      cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1317   1.1      cube 		return;
   1318   1.1      cube 
   1319   1.1      cube 	/*
   1320   1.1      cube 	 * The first four parameters of sysctl_createv are for management.
   1321   1.1      cube 	 *
   1322   1.1      cube 	 * The four that follows, here starting with a '0' for the flags,
   1323   1.1      cube 	 * describe the node.
   1324   1.1      cube 	 *
   1325   1.1      cube 	 * The next series of four set its value, through various possible
   1326   1.1      cube 	 * means.
   1327   1.1      cube 	 *
   1328   1.1      cube 	 * Last but not least, the path to the node is described.  That path
   1329   1.1      cube 	 * is relative to the given root (third argument).  Here we're
   1330   1.1      cube 	 * starting from the root.
   1331   1.1      cube 	 */
   1332   1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1333   1.1      cube 	    CTLFLAG_PERMANENT,
   1334   1.1      cube 	    CTLTYPE_NODE, "tap", NULL,
   1335   1.1      cube 	    NULL, 0, NULL, 0,
   1336   1.3      cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1337   1.1      cube 		return;
   1338   1.1      cube 	tap_node = node->sysctl_num;
   1339   1.1      cube }
   1340   1.1      cube 
   1341   1.1      cube /*
   1342   1.1      cube  * The helper functions make Andrew Brown's interface really
   1343   1.1      cube  * shine.  It makes possible to create value on the fly whether
   1344   1.1      cube  * the sysctl value is read or written.
   1345   1.1      cube  *
   1346   1.1      cube  * As shown as an example in the man page, the first step is to
   1347   1.1      cube  * create a copy of the node to have sysctl_lookup work on it.
   1348   1.1      cube  *
   1349   1.1      cube  * Here, we have more work to do than just a copy, since we have
   1350   1.1      cube  * to create the string.  The first step is to collect the actual
   1351   1.1      cube  * value of the node, which is a convenient pointer to the softc
   1352   1.1      cube  * of the interface.  From there we create the string and use it
   1353   1.1      cube  * as the value, but only for the *copy* of the node.
   1354   1.1      cube  *
   1355   1.1      cube  * Then we let sysctl_lookup do the magic, which consists in
   1356   1.1      cube  * setting oldp and newp as required by the operation.  When the
   1357   1.1      cube  * value is read, that means that the string will be copied to
   1358   1.1      cube  * the user, and when it is written, the new value will be copied
   1359   1.1      cube  * over in the addr array.
   1360   1.1      cube  *
   1361   1.1      cube  * If newp is NULL, the user was reading the value, so we don't
   1362   1.1      cube  * have anything else to do.  If a new value was written, we
   1363   1.1      cube  * have to check it.
   1364   1.1      cube  *
   1365   1.1      cube  * If it is incorrect, we can return an error and leave 'node' as
   1366   1.1      cube  * it is:  since it is a copy of the actual node, the change will
   1367   1.1      cube  * be forgotten.
   1368   1.1      cube  *
   1369   1.1      cube  * Upon a correct input, we commit the change to the ifnet
   1370   1.1      cube  * structure of our interface.
   1371   1.1      cube  */
   1372   1.1      cube static int
   1373   1.1      cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1374   1.1      cube {
   1375   1.1      cube 	struct sysctlnode node;
   1376   1.1      cube 	struct tap_softc *sc;
   1377   1.1      cube 	struct ifnet *ifp;
   1378   1.1      cube 	int error;
   1379   1.1      cube 	size_t len;
   1380  1.14  christos 	char addr[3 * ETHER_ADDR_LEN];
   1381  1.32    dyoung 	uint8_t enaddr[ETHER_ADDR_LEN];
   1382   1.1      cube 
   1383   1.1      cube 	node = *rnode;
   1384   1.1      cube 	sc = node.sysctl_data;
   1385   1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1386  1.31    dyoung 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1387   1.1      cube 	node.sysctl_data = addr;
   1388   1.1      cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1389   1.1      cube 	if (error || newp == NULL)
   1390   1.1      cube 		return (error);
   1391   1.1      cube 
   1392   1.1      cube 	len = strlen(addr);
   1393   1.1      cube 	if (len < 11 || len > 17)
   1394   1.1      cube 		return (EINVAL);
   1395   1.1      cube 
   1396   1.1      cube 	/* Commit change */
   1397  1.65  christos 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1398   1.1      cube 		return (EINVAL);
   1399  1.50    dyoung 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1400   1.1      cube 	return (error);
   1401   1.1      cube }
   1402  1.54    plunky #endif
   1403