Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.80.2.5
      1  1.80.2.5     skrll /*	$NetBSD: if_tap.c,v 1.80.2.5 2016/10/05 20:56:08 skrll Exp $	*/
      2       1.1      cube 
      3       1.1      cube /*
      4      1.55        ad  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5       1.1      cube  *  All rights reserved.
      6       1.1      cube  *
      7       1.1      cube  *  Redistribution and use in source and binary forms, with or without
      8       1.1      cube  *  modification, are permitted provided that the following conditions
      9       1.1      cube  *  are met:
     10       1.1      cube  *  1. Redistributions of source code must retain the above copyright
     11       1.1      cube  *     notice, this list of conditions and the following disclaimer.
     12       1.1      cube  *  2. Redistributions in binary form must reproduce the above copyright
     13       1.1      cube  *     notice, this list of conditions and the following disclaimer in the
     14       1.1      cube  *     documentation and/or other materials provided with the distribution.
     15       1.6     perry  *
     16       1.1      cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17       1.1      cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18       1.1      cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19       1.1      cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20       1.1      cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21       1.1      cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22       1.1      cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23       1.1      cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24       1.1      cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25       1.1      cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26       1.1      cube  *  POSSIBILITY OF SUCH DAMAGE.
     27       1.1      cube  */
     28       1.1      cube 
     29       1.1      cube /*
     30       1.1      cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31       1.1      cube  * device to the system, but can also be accessed by userland through a
     32       1.1      cube  * character device interface, which allows reading and injecting frames.
     33       1.1      cube  */
     34       1.1      cube 
     35       1.1      cube #include <sys/cdefs.h>
     36  1.80.2.5     skrll __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.80.2.5 2016/10/05 20:56:08 skrll Exp $");
     37       1.1      cube 
     38       1.2      cube #if defined(_KERNEL_OPT)
     39      1.63     pooka 
     40      1.54    plunky #include "opt_modular.h"
     41      1.54    plunky #include "opt_compat_netbsd.h"
     42       1.2      cube #endif
     43       1.1      cube 
     44       1.1      cube #include <sys/param.h>
     45       1.1      cube #include <sys/systm.h>
     46       1.1      cube #include <sys/kernel.h>
     47       1.1      cube #include <sys/malloc.h>
     48       1.1      cube #include <sys/conf.h>
     49      1.70      yamt #include <sys/cprng.h>
     50       1.1      cube #include <sys/device.h>
     51       1.1      cube #include <sys/file.h>
     52       1.1      cube #include <sys/filedesc.h>
     53       1.1      cube #include <sys/poll.h>
     54      1.54    plunky #include <sys/proc.h>
     55       1.1      cube #include <sys/select.h>
     56       1.1      cube #include <sys/sockio.h>
     57       1.1      cube #include <sys/sysctl.h>
     58      1.17      elad #include <sys/kauth.h>
     59      1.34        ad #include <sys/mutex.h>
     60      1.42        ad #include <sys/intr.h>
     61      1.56  christos #include <sys/stat.h>
     62  1.80.2.5     skrll #include <sys/device.h>
     63  1.80.2.5     skrll #include <sys/module.h>
     64  1.80.2.5     skrll #include <sys/atomic.h>
     65       1.1      cube 
     66       1.1      cube #include <net/if.h>
     67       1.1      cube #include <net/if_dl.h>
     68       1.1      cube #include <net/if_ether.h>
     69       1.1      cube #include <net/if_media.h>
     70       1.1      cube #include <net/if_tap.h>
     71       1.1      cube #include <net/bpf.h>
     72       1.1      cube 
     73      1.29  christos #include <compat/sys/sockio.h>
     74      1.29  christos 
     75  1.80.2.2     skrll #include "ioconf.h"
     76  1.80.2.2     skrll 
     77       1.1      cube /*
     78       1.1      cube  * sysctl node management
     79       1.1      cube  *
     80       1.1      cube  * It's not really possible to use a SYSCTL_SETUP block with
     81      1.51        ad  * current module implementation, so it is easier to just define
     82       1.1      cube  * our own function.
     83       1.1      cube  *
     84       1.1      cube  * The handler function is a "helper" in Andrew Brown's sysctl
     85       1.1      cube  * framework terminology.  It is used as a gateway for sysctl
     86       1.1      cube  * requests over the nodes.
     87       1.1      cube  *
     88       1.1      cube  * tap_log allows the module to log creations of nodes and
     89       1.1      cube  * destroy them all at once using sysctl_teardown.
     90       1.1      cube  */
     91  1.80.2.5     skrll static int	tap_node;
     92       1.1      cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     93  1.80.2.5     skrll static void	sysctl_tap_setup(struct sysctllog **);
     94       1.1      cube 
     95       1.1      cube /*
     96      1.68       chs  * Since we're an Ethernet device, we need the 2 following
     97      1.68       chs  * components: a struct ethercom and a struct ifmedia
     98      1.68       chs  * since we don't attach a PHY to ourselves.
     99      1.68       chs  * We could emulate one, but there's no real point.
    100       1.1      cube  */
    101       1.1      cube 
    102       1.1      cube struct tap_softc {
    103      1.40      cube 	device_t	sc_dev;
    104       1.1      cube 	struct ifmedia	sc_im;
    105       1.1      cube 	struct ethercom	sc_ec;
    106       1.1      cube 	int		sc_flags;
    107       1.1      cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    108       1.1      cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    109       1.1      cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    110       1.1      cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
    111       1.1      cube 	struct selinfo	sc_rsel;
    112       1.1      cube 	pid_t		sc_pgid; /* For async. IO */
    113      1.34        ad 	kmutex_t	sc_rdlock;
    114      1.74     skrll 	kmutex_t	sc_kqlock;
    115      1.42        ad 	void		*sc_sih;
    116      1.56  christos 	struct timespec sc_atime;
    117      1.56  christos 	struct timespec sc_mtime;
    118      1.56  christos 	struct timespec sc_btime;
    119       1.1      cube };
    120       1.1      cube 
    121       1.1      cube /* autoconf(9) glue */
    122       1.1      cube 
    123      1.40      cube static int	tap_match(device_t, cfdata_t, void *);
    124      1.40      cube static void	tap_attach(device_t, device_t, void *);
    125      1.40      cube static int	tap_detach(device_t, int);
    126       1.1      cube 
    127      1.40      cube CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    128       1.1      cube     tap_match, tap_attach, tap_detach, NULL);
    129       1.1      cube extern struct cfdriver tap_cd;
    130       1.1      cube 
    131       1.1      cube /* Real device access routines */
    132       1.1      cube static int	tap_dev_close(struct tap_softc *);
    133       1.1      cube static int	tap_dev_read(int, struct uio *, int);
    134       1.1      cube static int	tap_dev_write(int, struct uio *, int);
    135      1.26  christos static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    136      1.11  christos static int	tap_dev_poll(int, int, struct lwp *);
    137       1.1      cube static int	tap_dev_kqfilter(int, struct knote *);
    138       1.1      cube 
    139       1.1      cube /* Fileops access routines */
    140      1.41        ad static int	tap_fops_close(file_t *);
    141      1.41        ad static int	tap_fops_read(file_t *, off_t *, struct uio *,
    142      1.17      elad     kauth_cred_t, int);
    143      1.41        ad static int	tap_fops_write(file_t *, off_t *, struct uio *,
    144      1.17      elad     kauth_cred_t, int);
    145      1.41        ad static int	tap_fops_ioctl(file_t *, u_long, void *);
    146      1.41        ad static int	tap_fops_poll(file_t *, int);
    147      1.56  christos static int	tap_fops_stat(file_t *, struct stat *);
    148      1.41        ad static int	tap_fops_kqfilter(file_t *, struct knote *);
    149       1.1      cube 
    150       1.1      cube static const struct fileops tap_fileops = {
    151      1.55        ad 	.fo_read = tap_fops_read,
    152      1.55        ad 	.fo_write = tap_fops_write,
    153      1.55        ad 	.fo_ioctl = tap_fops_ioctl,
    154      1.55        ad 	.fo_fcntl = fnullop_fcntl,
    155      1.55        ad 	.fo_poll = tap_fops_poll,
    156      1.56  christos 	.fo_stat = tap_fops_stat,
    157      1.55        ad 	.fo_close = tap_fops_close,
    158      1.55        ad 	.fo_kqfilter = tap_fops_kqfilter,
    159      1.62       dsl 	.fo_restart = fnullop_restart,
    160       1.1      cube };
    161       1.1      cube 
    162       1.1      cube /* Helper for cloning open() */
    163      1.11  christos static int	tap_dev_cloner(struct lwp *);
    164       1.1      cube 
    165       1.1      cube /* Character device routines */
    166      1.11  christos static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    167      1.11  christos static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    168       1.1      cube static int	tap_cdev_read(dev_t, struct uio *, int);
    169       1.1      cube static int	tap_cdev_write(dev_t, struct uio *, int);
    170      1.26  christos static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    171      1.11  christos static int	tap_cdev_poll(dev_t, int, struct lwp *);
    172       1.1      cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    173       1.1      cube 
    174       1.1      cube const struct cdevsw tap_cdevsw = {
    175      1.73  dholland 	.d_open = tap_cdev_open,
    176      1.73  dholland 	.d_close = tap_cdev_close,
    177      1.73  dholland 	.d_read = tap_cdev_read,
    178      1.73  dholland 	.d_write = tap_cdev_write,
    179      1.73  dholland 	.d_ioctl = tap_cdev_ioctl,
    180      1.73  dholland 	.d_stop = nostop,
    181      1.73  dholland 	.d_tty = notty,
    182      1.73  dholland 	.d_poll = tap_cdev_poll,
    183      1.73  dholland 	.d_mmap = nommap,
    184      1.73  dholland 	.d_kqfilter = tap_cdev_kqfilter,
    185      1.77  dholland 	.d_discard = nodiscard,
    186      1.73  dholland 	.d_flag = D_OTHER
    187       1.1      cube };
    188       1.1      cube 
    189       1.1      cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    190       1.1      cube 
    191       1.1      cube /* kqueue-related routines */
    192       1.1      cube static void	tap_kqdetach(struct knote *);
    193       1.1      cube static int	tap_kqread(struct knote *, long);
    194       1.1      cube 
    195       1.1      cube /*
    196       1.1      cube  * Those are needed by the if_media interface.
    197       1.1      cube  */
    198       1.1      cube 
    199       1.1      cube static int	tap_mediachange(struct ifnet *);
    200       1.1      cube static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    201       1.1      cube 
    202       1.1      cube /*
    203       1.1      cube  * Those are needed by the ifnet interface, and would typically be
    204       1.1      cube  * there for any network interface driver.
    205       1.1      cube  * Some other routines are optional: watchdog and drain.
    206       1.1      cube  */
    207       1.1      cube 
    208       1.1      cube static void	tap_start(struct ifnet *);
    209       1.1      cube static void	tap_stop(struct ifnet *, int);
    210       1.1      cube static int	tap_init(struct ifnet *);
    211      1.26  christos static int	tap_ioctl(struct ifnet *, u_long, void *);
    212       1.1      cube 
    213      1.42        ad /* Internal functions */
    214       1.1      cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    215      1.42        ad static void	tap_softintr(void *);
    216       1.1      cube 
    217       1.1      cube /*
    218       1.1      cube  * tap is a clonable interface, although it is highly unrealistic for
    219       1.1      cube  * an Ethernet device.
    220       1.1      cube  *
    221       1.1      cube  * Here are the bits needed for a clonable interface.
    222       1.1      cube  */
    223       1.1      cube static int	tap_clone_create(struct if_clone *, int);
    224       1.1      cube static int	tap_clone_destroy(struct ifnet *);
    225       1.1      cube 
    226       1.1      cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    227       1.1      cube 					tap_clone_create,
    228       1.1      cube 					tap_clone_destroy);
    229       1.1      cube 
    230       1.1      cube /* Helper functionis shared by the two cloning code paths */
    231       1.1      cube static struct tap_softc *	tap_clone_creator(int);
    232      1.40      cube int	tap_clone_destroyer(device_t);
    233       1.1      cube 
    234  1.80.2.5     skrll static struct sysctllog *tap_sysctl_clog;
    235  1.80.2.5     skrll 
    236  1.80.2.5     skrll #ifdef _MODULE
    237  1.80.2.5     skrll devmajor_t tap_bmajor = -1, tap_cmajor = -1;
    238  1.80.2.5     skrll #endif
    239  1.80.2.5     skrll 
    240  1.80.2.5     skrll static u_int tap_count;
    241  1.80.2.5     skrll 
    242       1.1      cube void
    243      1.23  christos tapattach(int n)
    244       1.1      cube {
    245       1.1      cube 
    246  1.80.2.5     skrll 	/*
    247  1.80.2.5     skrll 	 * Nothing to do here, initialization is handled by the
    248  1.80.2.5     skrll 	 * module initialization code in tapinit() below).
    249  1.80.2.5     skrll 	 */
    250  1.80.2.5     skrll }
    251  1.80.2.5     skrll 
    252  1.80.2.5     skrll static void
    253  1.80.2.5     skrll tapinit(void)
    254  1.80.2.5     skrll {
    255  1.80.2.5     skrll         int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    256  1.80.2.5     skrll         if (error) {
    257  1.80.2.5     skrll                 aprint_error("%s: unable to register cfattach\n",
    258  1.80.2.5     skrll                     tap_cd.cd_name);
    259  1.80.2.5     skrll                 (void)config_cfdriver_detach(&tap_cd);
    260  1.80.2.5     skrll                 return;
    261  1.80.2.5     skrll         }
    262       1.1      cube 
    263       1.1      cube 	if_clone_attach(&tap_cloners);
    264  1.80.2.5     skrll 	sysctl_tap_setup(&tap_sysctl_clog);
    265  1.80.2.5     skrll #ifdef _MODULE
    266  1.80.2.5     skrll 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    267  1.80.2.5     skrll #endif
    268  1.80.2.5     skrll }
    269  1.80.2.5     skrll 
    270  1.80.2.5     skrll static int
    271  1.80.2.5     skrll tapdetach(void)
    272  1.80.2.5     skrll {
    273  1.80.2.5     skrll 	int error = 0;
    274  1.80.2.5     skrll 
    275  1.80.2.5     skrll 	if (tap_count != 0)
    276  1.80.2.5     skrll 		return EBUSY;
    277  1.80.2.5     skrll 
    278  1.80.2.5     skrll #ifdef _MODULE
    279  1.80.2.5     skrll 	if (error == 0)
    280  1.80.2.5     skrll 		error = devsw_detach(NULL, &tap_cdevsw);
    281  1.80.2.5     skrll #endif
    282  1.80.2.5     skrll 	if (error == 0)
    283  1.80.2.5     skrll 		sysctl_teardown(&tap_sysctl_clog);
    284  1.80.2.5     skrll 	if (error == 0)
    285  1.80.2.5     skrll 		if_clone_detach(&tap_cloners);
    286  1.80.2.5     skrll 
    287  1.80.2.5     skrll 	if (error == 0)
    288  1.80.2.5     skrll 		error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
    289  1.80.2.5     skrll 
    290  1.80.2.5     skrll 	return error;
    291       1.1      cube }
    292       1.1      cube 
    293       1.1      cube /* Pretty much useless for a pseudo-device */
    294       1.1      cube static int
    295      1.40      cube tap_match(device_t parent, cfdata_t cfdata, void *arg)
    296       1.1      cube {
    297      1.40      cube 
    298       1.1      cube 	return (1);
    299       1.1      cube }
    300       1.1      cube 
    301       1.1      cube void
    302      1.40      cube tap_attach(device_t parent, device_t self, void *aux)
    303       1.1      cube {
    304      1.40      cube 	struct tap_softc *sc = device_private(self);
    305       1.1      cube 	struct ifnet *ifp;
    306      1.18    kardel 	const struct sysctlnode *node;
    307      1.54    plunky 	int error;
    308      1.38      matt 	uint8_t enaddr[ETHER_ADDR_LEN] =
    309       1.7      cube 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    310      1.14  christos 	char enaddrstr[3 * ETHER_ADDR_LEN];
    311       1.1      cube 
    312      1.40      cube 	sc->sc_dev = self;
    313      1.71      yamt 	sc->sc_sih = NULL;
    314      1.56  christos 	getnanotime(&sc->sc_btime);
    315      1.56  christos 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    316      1.80     ozaki 	sc->sc_flags = 0;
    317      1.80     ozaki 	selinit(&sc->sc_rsel);
    318      1.80     ozaki 
    319      1.80     ozaki 	/*
    320      1.80     ozaki 	 * Initialize the two locks for the device.
    321      1.80     ozaki 	 *
    322      1.80     ozaki 	 * We need a lock here because even though the tap device can be
    323      1.80     ozaki 	 * opened only once, the file descriptor might be passed to another
    324      1.80     ozaki 	 * process, say a fork(2)ed child.
    325      1.80     ozaki 	 *
    326      1.80     ozaki 	 * The Giant saves us from most of the hassle, but since the read
    327      1.80     ozaki 	 * operation can sleep, we don't want two processes to wake up at
    328      1.80     ozaki 	 * the same moment and both try and dequeue a single packet.
    329      1.80     ozaki 	 *
    330      1.80     ozaki 	 * The queue for event listeners (used by kqueue(9), see below) has
    331      1.80     ozaki 	 * to be protected too, so use a spin lock.
    332      1.80     ozaki 	 */
    333      1.80     ozaki 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    334      1.80     ozaki 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
    335      1.40      cube 
    336      1.48      hans 	if (!pmf_device_register(self, NULL, NULL))
    337      1.48      hans 		aprint_error_dev(self, "couldn't establish power handler\n");
    338      1.48      hans 
    339       1.1      cube 	/*
    340       1.1      cube 	 * In order to obtain unique initial Ethernet address on a host,
    341      1.70      yamt 	 * do some randomisation.  It's not meant for anything but avoiding
    342      1.70      yamt 	 * hard-coding an address.
    343       1.1      cube 	 */
    344      1.70      yamt 	cprng_fast(&enaddr[3], 3);
    345       1.1      cube 
    346      1.40      cube 	aprint_verbose_dev(self, "Ethernet address %s\n",
    347      1.14  christos 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    348       1.1      cube 
    349       1.1      cube 	/*
    350       1.1      cube 	 * Why 1000baseT? Why not? You can add more.
    351       1.1      cube 	 *
    352       1.1      cube 	 * Note that there are 3 steps: init, one or several additions to
    353       1.1      cube 	 * list of supported media, and in the end, the selection of one
    354       1.1      cube 	 * of them.
    355       1.1      cube 	 */
    356       1.1      cube 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    357       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    358       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    359       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    360       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    361       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    362       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    363       1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    364       1.1      cube 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    365       1.1      cube 
    366       1.1      cube 	/*
    367       1.1      cube 	 * One should note that an interface must do multicast in order
    368       1.1      cube 	 * to support IPv6.
    369       1.1      cube 	 */
    370       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    371      1.40      cube 	strcpy(ifp->if_xname, device_xname(self));
    372       1.1      cube 	ifp->if_softc	= sc;
    373       1.1      cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    374       1.1      cube 	ifp->if_ioctl	= tap_ioctl;
    375       1.1      cube 	ifp->if_start	= tap_start;
    376       1.1      cube 	ifp->if_stop	= tap_stop;
    377       1.1      cube 	ifp->if_init	= tap_init;
    378       1.1      cube 	IFQ_SET_READY(&ifp->if_snd);
    379       1.1      cube 
    380       1.1      cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    381       1.1      cube 
    382  1.80.2.1     skrll 	/* Those steps are mandatory for an Ethernet driver. */
    383  1.80.2.1     skrll 	if_initialize(ifp);
    384       1.1      cube 	ether_ifattach(ifp, enaddr);
    385  1.80.2.1     skrll 	if_register(ifp);
    386       1.1      cube 
    387       1.1      cube 	/*
    388       1.1      cube 	 * Add a sysctl node for that interface.
    389       1.1      cube 	 *
    390       1.1      cube 	 * The pointer transmitted is not a string, but instead a pointer to
    391       1.1      cube 	 * the softc structure, which we can use to build the string value on
    392       1.1      cube 	 * the fly in the helper function of the node.  See the comments for
    393       1.1      cube 	 * tap_sysctl_handler for details.
    394      1.21      cube 	 *
    395      1.21      cube 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    396      1.21      cube 	 * component.  However, we can allocate a number ourselves, as we are
    397      1.21      cube 	 * the only consumer of the net.link.<iface> node.  In this case, the
    398      1.21      cube 	 * unit number is conveniently used to number the node.  CTL_CREATE
    399      1.21      cube 	 * would just work, too.
    400       1.1      cube 	 */
    401       1.1      cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    402       1.1      cube 	    &node, CTLFLAG_READWRITE,
    403      1.40      cube 	    CTLTYPE_STRING, device_xname(self), NULL,
    404      1.67       dsl 	    tap_sysctl_handler, 0, (void *)sc, 18,
    405      1.40      cube 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    406      1.15   thorpej 	    CTL_EOL)) != 0)
    407      1.40      cube 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    408      1.40      cube 		    error);
    409       1.1      cube }
    410       1.1      cube 
    411       1.1      cube /*
    412       1.1      cube  * When detaching, we do the inverse of what is done in the attach
    413       1.1      cube  * routine, in reversed order.
    414       1.1      cube  */
    415       1.1      cube static int
    416      1.40      cube tap_detach(device_t self, int flags)
    417       1.1      cube {
    418      1.40      cube 	struct tap_softc *sc = device_private(self);
    419       1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    420      1.54    plunky 	int error;
    421      1.54    plunky 	int s;
    422       1.1      cube 
    423       1.1      cube 	sc->sc_flags |= TAP_GOING;
    424       1.1      cube 	s = splnet();
    425       1.1      cube 	tap_stop(ifp, 1);
    426       1.1      cube 	if_down(ifp);
    427       1.1      cube 	splx(s);
    428       1.1      cube 
    429      1.71      yamt 	if (sc->sc_sih != NULL) {
    430      1.71      yamt 		softint_disestablish(sc->sc_sih);
    431      1.71      yamt 		sc->sc_sih = NULL;
    432      1.71      yamt 	}
    433      1.42        ad 
    434       1.1      cube 	/*
    435       1.1      cube 	 * Destroying a single leaf is a very straightforward operation using
    436       1.1      cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    437       1.1      cube 	 * CTL_EOL.
    438       1.1      cube 	 */
    439       1.3      cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    440      1.40      cube 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    441      1.40      cube 		aprint_error_dev(self,
    442      1.40      cube 		    "sysctl_destroyv returned %d, ignoring\n", error);
    443       1.1      cube 	ether_ifdetach(ifp);
    444       1.1      cube 	if_detach(ifp);
    445       1.1      cube 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    446      1.47     rmind 	seldestroy(&sc->sc_rsel);
    447      1.34        ad 	mutex_destroy(&sc->sc_rdlock);
    448      1.75   aymeric 	mutex_destroy(&sc->sc_kqlock);
    449       1.1      cube 
    450      1.49      hans 	pmf_device_deregister(self);
    451      1.49      hans 
    452       1.1      cube 	return (0);
    453       1.1      cube }
    454       1.1      cube 
    455       1.1      cube /*
    456       1.1      cube  * This function is called by the ifmedia layer to notify the driver
    457       1.1      cube  * that the user requested a media change.  A real driver would
    458       1.1      cube  * reconfigure the hardware.
    459       1.1      cube  */
    460       1.1      cube static int
    461      1.23  christos tap_mediachange(struct ifnet *ifp)
    462       1.1      cube {
    463       1.1      cube 	return (0);
    464       1.1      cube }
    465       1.1      cube 
    466       1.1      cube /*
    467       1.1      cube  * Here the user asks for the currently used media.
    468       1.1      cube  */
    469       1.1      cube static void
    470       1.1      cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    471       1.1      cube {
    472       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    473       1.1      cube 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    474       1.1      cube }
    475       1.1      cube 
    476       1.1      cube /*
    477       1.1      cube  * This is the function where we SEND packets.
    478       1.1      cube  *
    479       1.1      cube  * There is no 'receive' equivalent.  A typical driver will get
    480       1.1      cube  * interrupts from the hardware, and from there will inject new packets
    481       1.1      cube  * into the network stack.
    482       1.1      cube  *
    483       1.1      cube  * Once handled, a packet must be freed.  A real driver might not be able
    484       1.1      cube  * to fit all the pending packets into the hardware, and is allowed to
    485       1.1      cube  * return before having sent all the packets.  It should then use the
    486       1.1      cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    487       1.1      cube  *
    488       1.1      cube  * There are also other flags one should check, such as IFF_PAUSE.
    489       1.1      cube  *
    490       1.1      cube  * It is our duty to make packets available to BPF listeners.
    491       1.1      cube  *
    492       1.1      cube  * You should be aware that this function is called by the Ethernet layer
    493       1.1      cube  * at splnet().
    494       1.1      cube  *
    495       1.1      cube  * When the device is opened, we have to pass the packet(s) to the
    496       1.1      cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    497       1.1      cube  * the packets, and we send a signal to the processes waiting to read.
    498       1.1      cube  *
    499       1.1      cube  * wakeup(sc) is the counterpart to the tsleep call in
    500       1.1      cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    501       1.1      cube  * poll(2) (which includes select(2)) listeners.
    502       1.1      cube  */
    503       1.1      cube static void
    504       1.1      cube tap_start(struct ifnet *ifp)
    505       1.1      cube {
    506       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    507       1.1      cube 	struct mbuf *m0;
    508       1.1      cube 
    509       1.1      cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    510       1.1      cube 		/* Simply drop packets */
    511       1.1      cube 		for(;;) {
    512       1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    513       1.1      cube 			if (m0 == NULL)
    514       1.1      cube 				return;
    515       1.1      cube 
    516       1.1      cube 			ifp->if_opackets++;
    517      1.64     joerg 			bpf_mtap(ifp, m0);
    518       1.1      cube 
    519       1.1      cube 			m_freem(m0);
    520       1.1      cube 		}
    521       1.1      cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    522       1.1      cube 		ifp->if_flags |= IFF_OACTIVE;
    523       1.1      cube 		wakeup(sc);
    524      1.39     rmind 		selnotify(&sc->sc_rsel, 0, 1);
    525       1.1      cube 		if (sc->sc_flags & TAP_ASYNCIO)
    526      1.42        ad 			softint_schedule(sc->sc_sih);
    527      1.42        ad 	}
    528      1.42        ad }
    529      1.42        ad 
    530      1.42        ad static void
    531      1.42        ad tap_softintr(void *cookie)
    532      1.42        ad {
    533      1.42        ad 	struct tap_softc *sc;
    534      1.42        ad 	struct ifnet *ifp;
    535      1.42        ad 	int a, b;
    536      1.42        ad 
    537      1.42        ad 	sc = cookie;
    538      1.42        ad 
    539      1.42        ad 	if (sc->sc_flags & TAP_ASYNCIO) {
    540      1.42        ad 		ifp = &sc->sc_ec.ec_if;
    541      1.42        ad 		if (ifp->if_flags & IFF_RUNNING) {
    542      1.42        ad 			a = POLL_IN;
    543      1.42        ad 			b = POLLIN|POLLRDNORM;
    544      1.42        ad 		} else {
    545      1.42        ad 			a = POLL_HUP;
    546      1.42        ad 			b = 0;
    547      1.42        ad 		}
    548      1.42        ad 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    549       1.1      cube 	}
    550       1.1      cube }
    551       1.1      cube 
    552       1.1      cube /*
    553       1.1      cube  * A typical driver will only contain the following handlers for
    554       1.1      cube  * ioctl calls, except SIOCSIFPHYADDR.
    555       1.1      cube  * The latter is a hack I used to set the Ethernet address of the
    556       1.1      cube  * faked device.
    557       1.1      cube  *
    558       1.1      cube  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    559       1.1      cube  * called under splnet().
    560       1.1      cube  */
    561       1.1      cube static int
    562      1.26  christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    563       1.1      cube {
    564       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    565       1.1      cube 	struct ifreq *ifr = (struct ifreq *)data;
    566       1.1      cube 	int s, error;
    567       1.1      cube 
    568       1.1      cube 	s = splnet();
    569       1.1      cube 
    570       1.1      cube 	switch (cmd) {
    571      1.29  christos #ifdef OSIOCSIFMEDIA
    572      1.29  christos 	case OSIOCSIFMEDIA:
    573      1.29  christos #endif
    574       1.1      cube 	case SIOCSIFMEDIA:
    575       1.1      cube 	case SIOCGIFMEDIA:
    576       1.1      cube 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    577       1.1      cube 		break;
    578       1.1      cube 	case SIOCSIFPHYADDR:
    579       1.1      cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    580       1.1      cube 		break;
    581       1.1      cube 	default:
    582       1.1      cube 		error = ether_ioctl(ifp, cmd, data);
    583       1.1      cube 		if (error == ENETRESET)
    584       1.1      cube 			error = 0;
    585       1.1      cube 		break;
    586       1.1      cube 	}
    587       1.1      cube 
    588       1.1      cube 	splx(s);
    589       1.1      cube 
    590       1.1      cube 	return (error);
    591       1.1      cube }
    592       1.1      cube 
    593       1.1      cube /*
    594      1.54    plunky  * Helper function to set Ethernet address.  This has been replaced by
    595      1.54    plunky  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    596       1.1      cube  */
    597       1.1      cube static int
    598      1.23  christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    599       1.1      cube {
    600      1.53    plunky 	const struct sockaddr *sa = &ifra->ifra_addr;
    601       1.1      cube 
    602      1.53    plunky 	if (sa->sa_family != AF_LINK)
    603       1.1      cube 		return (EINVAL);
    604       1.1      cube 
    605      1.53    plunky 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    606       1.1      cube 
    607       1.1      cube 	return (0);
    608       1.1      cube }
    609       1.1      cube 
    610       1.1      cube /*
    611       1.1      cube  * _init() would typically be called when an interface goes up,
    612       1.1      cube  * meaning it should configure itself into the state in which it
    613       1.1      cube  * can send packets.
    614       1.1      cube  */
    615       1.1      cube static int
    616       1.1      cube tap_init(struct ifnet *ifp)
    617       1.1      cube {
    618       1.1      cube 	ifp->if_flags |= IFF_RUNNING;
    619       1.1      cube 
    620       1.1      cube 	tap_start(ifp);
    621       1.1      cube 
    622       1.1      cube 	return (0);
    623       1.1      cube }
    624       1.1      cube 
    625       1.1      cube /*
    626       1.1      cube  * _stop() is called when an interface goes down.  It is our
    627       1.1      cube  * responsability to validate that state by clearing the
    628       1.1      cube  * IFF_RUNNING flag.
    629       1.1      cube  *
    630       1.1      cube  * We have to wake up all the sleeping processes to have the pending
    631       1.1      cube  * read requests cancelled.
    632       1.1      cube  */
    633       1.1      cube static void
    634      1.23  christos tap_stop(struct ifnet *ifp, int disable)
    635       1.1      cube {
    636       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    637       1.1      cube 
    638       1.1      cube 	ifp->if_flags &= ~IFF_RUNNING;
    639       1.1      cube 	wakeup(sc);
    640      1.39     rmind 	selnotify(&sc->sc_rsel, 0, 1);
    641       1.1      cube 	if (sc->sc_flags & TAP_ASYNCIO)
    642      1.42        ad 		softint_schedule(sc->sc_sih);
    643       1.1      cube }
    644       1.1      cube 
    645       1.1      cube /*
    646       1.1      cube  * The 'create' command of ifconfig can be used to create
    647       1.1      cube  * any numbered instance of a given device.  Thus we have to
    648       1.1      cube  * make sure we have enough room in cd_devs to create the
    649       1.1      cube  * user-specified instance.  config_attach_pseudo will do this
    650       1.1      cube  * for us.
    651       1.1      cube  */
    652       1.1      cube static int
    653      1.23  christos tap_clone_create(struct if_clone *ifc, int unit)
    654       1.1      cube {
    655       1.1      cube 	if (tap_clone_creator(unit) == NULL) {
    656       1.1      cube 		aprint_error("%s%d: unable to attach an instance\n",
    657       1.1      cube                     tap_cd.cd_name, unit);
    658       1.1      cube 		return (ENXIO);
    659       1.1      cube 	}
    660  1.80.2.5     skrll 	atomic_inc_uint(&tap_count);
    661       1.1      cube 	return (0);
    662       1.1      cube }
    663       1.1      cube 
    664       1.1      cube /*
    665       1.1      cube  * tap(4) can be cloned by two ways:
    666       1.1      cube  *   using 'ifconfig tap0 create', which will use the network
    667       1.1      cube  *     interface cloning API, and call tap_clone_create above.
    668       1.1      cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    669       1.1      cube  *     See below for an explanation on how this part work.
    670       1.1      cube  */
    671       1.1      cube static struct tap_softc *
    672       1.1      cube tap_clone_creator(int unit)
    673       1.1      cube {
    674       1.1      cube 	struct cfdata *cf;
    675       1.1      cube 
    676       1.1      cube 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    677       1.1      cube 	cf->cf_name = tap_cd.cd_name;
    678       1.1      cube 	cf->cf_atname = tap_ca.ca_name;
    679      1.27  drochner 	if (unit == -1) {
    680      1.27  drochner 		/* let autoconf find the first free one */
    681      1.27  drochner 		cf->cf_unit = 0;
    682      1.27  drochner 		cf->cf_fstate = FSTATE_STAR;
    683      1.27  drochner 	} else {
    684      1.27  drochner 		cf->cf_unit = unit;
    685      1.58    plunky 		cf->cf_fstate = FSTATE_NOTFOUND;
    686      1.27  drochner 	}
    687       1.1      cube 
    688      1.40      cube 	return device_private(config_attach_pseudo(cf));
    689       1.1      cube }
    690       1.1      cube 
    691       1.1      cube /*
    692       1.1      cube  * The clean design of if_clone and autoconf(9) makes that part
    693       1.1      cube  * really straightforward.  The second argument of config_detach
    694       1.1      cube  * means neither QUIET nor FORCED.
    695       1.1      cube  */
    696       1.1      cube static int
    697       1.1      cube tap_clone_destroy(struct ifnet *ifp)
    698       1.1      cube {
    699      1.45    dyoung 	struct tap_softc *sc = ifp->if_softc;
    700  1.80.2.5     skrll 	int error = tap_clone_destroyer(sc->sc_dev);
    701      1.45    dyoung 
    702  1.80.2.5     skrll 	if (error == 0)
    703  1.80.2.5     skrll 		atomic_dec_uint(&tap_count);
    704  1.80.2.5     skrll 	return error;
    705       1.1      cube }
    706       1.1      cube 
    707      1.12      cube int
    708      1.40      cube tap_clone_destroyer(device_t dev)
    709       1.1      cube {
    710      1.40      cube 	cfdata_t cf = device_cfdata(dev);
    711       1.1      cube 	int error;
    712       1.1      cube 
    713       1.1      cube 	if ((error = config_detach(dev, 0)) != 0)
    714      1.40      cube 		aprint_error_dev(dev, "unable to detach instance\n");
    715       1.1      cube 	free(cf, M_DEVBUF);
    716       1.1      cube 
    717       1.1      cube 	return (error);
    718       1.1      cube }
    719       1.1      cube 
    720       1.1      cube /*
    721       1.1      cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    722       1.1      cube  * ways:
    723       1.1      cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    724       1.1      cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    725       1.1      cube  *     That interface is destroyed when the process that had it created exits.
    726       1.1      cube  *
    727       1.1      cube  * The first way is managed by the cdevsw structure, and you access interfaces
    728       1.1      cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    729       1.1      cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    730       1.1      cube  *
    731       1.1      cube  * The second way is the so-called "cloning" device.  It's a special minor
    732       1.1      cube  * number (chosen as the maximal number, to allow as much tap devices as
    733       1.1      cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    734       1.1      cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    735       1.1      cube  * tap_dev_cloner.
    736       1.1      cube  *
    737       1.1      cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    738       1.1      cube  * part of open() does nothing but noting that the interface is being used and
    739       1.1      cube  * hence ready to actually handle packets.
    740       1.1      cube  */
    741       1.1      cube 
    742       1.1      cube static int
    743      1.23  christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    744       1.1      cube {
    745       1.1      cube 	struct tap_softc *sc;
    746       1.1      cube 
    747       1.1      cube 	if (minor(dev) == TAP_CLONER)
    748      1.11  christos 		return tap_dev_cloner(l);
    749       1.1      cube 
    750      1.46    cegger 	sc = device_lookup_private(&tap_cd, minor(dev));
    751       1.1      cube 	if (sc == NULL)
    752       1.1      cube 		return (ENXIO);
    753       1.1      cube 
    754       1.1      cube 	/* The device can only be opened once */
    755       1.1      cube 	if (sc->sc_flags & TAP_INUSE)
    756       1.1      cube 		return (EBUSY);
    757       1.1      cube 	sc->sc_flags |= TAP_INUSE;
    758       1.1      cube 	return (0);
    759       1.1      cube }
    760       1.1      cube 
    761       1.1      cube /*
    762       1.1      cube  * There are several kinds of cloning devices, and the most simple is the one
    763       1.1      cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    764       1.1      cube  * with its own fileops structure (which maps to the various read, write,
    765       1.1      cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    766       1.1      cube  * then actually creates the new tap devices.
    767       1.1      cube  *
    768       1.1      cube  * Once those two steps are successful, we can re-wire the existing file
    769       1.1      cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    770      1.78      matt  * structure as needed (notably f_devunit gets filled with the fifth parameter
    771       1.1      cube  * passed, the unit of the tap device which will allows us identifying the
    772       1.1      cube  * device later), and returns EMOVEFD.
    773       1.1      cube  *
    774       1.1      cube  * That magic value is interpreted by sys_open() which then replaces the
    775       1.1      cube  * current file descriptor by the new one (through a magic member of struct
    776      1.13     pooka  * lwp, l_dupfd).
    777       1.1      cube  *
    778       1.1      cube  * The tap device is flagged as being busy since it otherwise could be
    779       1.1      cube  * externally accessed through the corresponding device node with the cdevsw
    780       1.1      cube  * interface.
    781       1.1      cube  */
    782       1.1      cube 
    783       1.1      cube static int
    784      1.11  christos tap_dev_cloner(struct lwp *l)
    785       1.1      cube {
    786       1.1      cube 	struct tap_softc *sc;
    787      1.41        ad 	file_t *fp;
    788       1.1      cube 	int error, fd;
    789       1.1      cube 
    790      1.41        ad 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    791       1.1      cube 		return (error);
    792       1.1      cube 
    793      1.27  drochner 	if ((sc = tap_clone_creator(-1)) == NULL) {
    794      1.41        ad 		fd_abort(curproc, fp, fd);
    795       1.1      cube 		return (ENXIO);
    796       1.1      cube 	}
    797       1.1      cube 
    798       1.1      cube 	sc->sc_flags |= TAP_INUSE;
    799       1.1      cube 
    800      1.41        ad 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    801      1.40      cube 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    802       1.1      cube }
    803       1.1      cube 
    804       1.1      cube /*
    805       1.1      cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    806       1.1      cube  * really the same whether we are in cdevsw or fileops mode, the close()
    807       1.1      cube  * function is slightly different in the two cases.
    808       1.1      cube  *
    809       1.1      cube  * As for the other, the core of it is shared in tap_dev_close.  What
    810       1.1      cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    811       1.1      cube  * needs another thing:  the interface is destroyed when the processes that
    812       1.1      cube  * created it closes it.
    813       1.1      cube  */
    814       1.1      cube static int
    815      1.23  christos tap_cdev_close(dev_t dev, int flags, int fmt,
    816      1.23  christos     struct lwp *l)
    817       1.1      cube {
    818       1.1      cube 	struct tap_softc *sc =
    819      1.46    cegger 	    device_lookup_private(&tap_cd, minor(dev));
    820       1.1      cube 
    821       1.1      cube 	if (sc == NULL)
    822       1.1      cube 		return (ENXIO);
    823       1.1      cube 
    824       1.1      cube 	return tap_dev_close(sc);
    825       1.1      cube }
    826       1.1      cube 
    827       1.1      cube /*
    828       1.1      cube  * It might happen that the administrator used ifconfig to externally destroy
    829       1.1      cube  * the interface.  In that case, tap_fops_close will be called while
    830       1.1      cube  * tap_detach is already happening.  If we called it again from here, we
    831       1.1      cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    832       1.1      cube  */
    833       1.1      cube static int
    834      1.41        ad tap_fops_close(file_t *fp)
    835       1.1      cube {
    836      1.78      matt 	int unit = fp->f_devunit;
    837       1.1      cube 	struct tap_softc *sc;
    838       1.1      cube 	int error;
    839       1.1      cube 
    840      1.46    cegger 	sc = device_lookup_private(&tap_cd, unit);
    841       1.1      cube 	if (sc == NULL)
    842       1.1      cube 		return (ENXIO);
    843       1.1      cube 
    844       1.1      cube 	/* tap_dev_close currently always succeeds, but it might not
    845       1.1      cube 	 * always be the case. */
    846      1.44        ad 	KERNEL_LOCK(1, NULL);
    847      1.44        ad 	if ((error = tap_dev_close(sc)) != 0) {
    848      1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    849       1.1      cube 		return (error);
    850      1.44        ad 	}
    851       1.1      cube 
    852       1.1      cube 	/* Destroy the device now that it is no longer useful,
    853       1.1      cube 	 * unless it's already being destroyed. */
    854      1.44        ad 	if ((sc->sc_flags & TAP_GOING) != 0) {
    855      1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    856       1.1      cube 		return (0);
    857      1.44        ad 	}
    858       1.1      cube 
    859      1.44        ad 	error = tap_clone_destroyer(sc->sc_dev);
    860      1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    861      1.44        ad 	return error;
    862       1.1      cube }
    863       1.1      cube 
    864       1.1      cube static int
    865       1.1      cube tap_dev_close(struct tap_softc *sc)
    866       1.1      cube {
    867       1.1      cube 	struct ifnet *ifp;
    868       1.1      cube 	int s;
    869       1.1      cube 
    870       1.1      cube 	s = splnet();
    871       1.1      cube 	/* Let tap_start handle packets again */
    872       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    873       1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    874       1.1      cube 
    875       1.1      cube 	/* Purge output queue */
    876       1.1      cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    877       1.1      cube 		struct mbuf *m;
    878       1.1      cube 
    879       1.1      cube 		for (;;) {
    880       1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    881       1.1      cube 			if (m == NULL)
    882       1.1      cube 				break;
    883       1.1      cube 
    884       1.1      cube 			ifp->if_opackets++;
    885      1.64     joerg 			bpf_mtap(ifp, m);
    886      1.60    plunky 			m_freem(m);
    887       1.1      cube 		}
    888       1.1      cube 	}
    889       1.1      cube 	splx(s);
    890       1.1      cube 
    891      1.71      yamt 	if (sc->sc_sih != NULL) {
    892      1.71      yamt 		softint_disestablish(sc->sc_sih);
    893      1.71      yamt 		sc->sc_sih = NULL;
    894      1.71      yamt 	}
    895       1.1      cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    896       1.1      cube 
    897       1.1      cube 	return (0);
    898       1.1      cube }
    899       1.1      cube 
    900       1.1      cube static int
    901       1.1      cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    902       1.1      cube {
    903       1.1      cube 	return tap_dev_read(minor(dev), uio, flags);
    904       1.1      cube }
    905       1.1      cube 
    906       1.1      cube static int
    907      1.41        ad tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    908      1.23  christos     kauth_cred_t cred, int flags)
    909       1.1      cube {
    910      1.44        ad 	int error;
    911      1.44        ad 
    912      1.44        ad 	KERNEL_LOCK(1, NULL);
    913      1.78      matt 	error = tap_dev_read(fp->f_devunit, uio, flags);
    914      1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    915      1.44        ad 	return error;
    916       1.1      cube }
    917       1.1      cube 
    918       1.1      cube static int
    919      1.23  christos tap_dev_read(int unit, struct uio *uio, int flags)
    920       1.1      cube {
    921      1.78      matt 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    922       1.1      cube 	struct ifnet *ifp;
    923       1.1      cube 	struct mbuf *m, *n;
    924       1.1      cube 	int error = 0, s;
    925       1.1      cube 
    926       1.1      cube 	if (sc == NULL)
    927       1.1      cube 		return (ENXIO);
    928       1.1      cube 
    929      1.56  christos 	getnanotime(&sc->sc_atime);
    930      1.56  christos 
    931       1.1      cube 	ifp = &sc->sc_ec.ec_if;
    932       1.1      cube 	if ((ifp->if_flags & IFF_UP) == 0)
    933       1.1      cube 		return (EHOSTDOWN);
    934       1.1      cube 
    935       1.1      cube 	/*
    936       1.1      cube 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    937       1.1      cube 	 */
    938      1.34        ad 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    939      1.34        ad 		if (!mutex_tryenter(&sc->sc_rdlock))
    940      1.34        ad 			return (EWOULDBLOCK);
    941      1.34        ad 	} else {
    942      1.34        ad 		mutex_enter(&sc->sc_rdlock);
    943      1.34        ad 	}
    944       1.1      cube 
    945       1.1      cube 	s = splnet();
    946       1.1      cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    947       1.1      cube 		ifp->if_flags &= ~IFF_OACTIVE;
    948       1.1      cube 		/*
    949       1.1      cube 		 * We must release the lock before sleeping, and re-acquire it
    950       1.1      cube 		 * after.
    951       1.1      cube 		 */
    952      1.34        ad 		mutex_exit(&sc->sc_rdlock);
    953       1.1      cube 		if (sc->sc_flags & TAP_NBIO)
    954       1.1      cube 			error = EWOULDBLOCK;
    955       1.1      cube 		else
    956       1.1      cube 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    957      1.52     pooka 		splx(s);
    958      1.52     pooka 
    959       1.1      cube 		if (error != 0)
    960       1.1      cube 			return (error);
    961       1.1      cube 		/* The device might have been downed */
    962       1.1      cube 		if ((ifp->if_flags & IFF_UP) == 0)
    963       1.1      cube 			return (EHOSTDOWN);
    964      1.34        ad 		if ((sc->sc_flags & TAP_NBIO)) {
    965      1.34        ad 			if (!mutex_tryenter(&sc->sc_rdlock))
    966      1.34        ad 				return (EWOULDBLOCK);
    967      1.34        ad 		} else {
    968      1.34        ad 			mutex_enter(&sc->sc_rdlock);
    969      1.34        ad 		}
    970       1.1      cube 		s = splnet();
    971       1.1      cube 	}
    972       1.1      cube 
    973       1.1      cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    974       1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    975       1.1      cube 	splx(s);
    976       1.1      cube 	if (m == NULL) {
    977       1.1      cube 		error = 0;
    978       1.1      cube 		goto out;
    979       1.1      cube 	}
    980       1.1      cube 
    981       1.1      cube 	ifp->if_opackets++;
    982      1.64     joerg 	bpf_mtap(ifp, m);
    983       1.1      cube 
    984       1.1      cube 	/*
    985       1.1      cube 	 * One read is one packet.
    986       1.1      cube 	 */
    987       1.1      cube 	do {
    988      1.26  christos 		error = uiomove(mtod(m, void *),
    989       1.1      cube 		    min(m->m_len, uio->uio_resid), uio);
    990  1.80.2.5     skrll 		m = n = m_free(m);
    991       1.1      cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    992       1.1      cube 
    993       1.1      cube 	if (m != NULL)
    994       1.1      cube 		m_freem(m);
    995       1.1      cube 
    996       1.1      cube out:
    997      1.34        ad 	mutex_exit(&sc->sc_rdlock);
    998       1.1      cube 	return (error);
    999       1.1      cube }
   1000       1.1      cube 
   1001       1.1      cube static int
   1002      1.56  christos tap_fops_stat(file_t *fp, struct stat *st)
   1003      1.56  christos {
   1004      1.59  drochner 	int error = 0;
   1005      1.57  christos 	struct tap_softc *sc;
   1006      1.78      matt 	int unit = fp->f_devunit;
   1007      1.57  christos 
   1008      1.57  christos 	(void)memset(st, 0, sizeof(*st));
   1009      1.57  christos 
   1010      1.56  christos 	KERNEL_LOCK(1, NULL);
   1011      1.57  christos 	sc = device_lookup_private(&tap_cd, unit);
   1012      1.57  christos 	if (sc == NULL) {
   1013      1.57  christos 		error = ENXIO;
   1014      1.57  christos 		goto out;
   1015      1.57  christos 	}
   1016      1.56  christos 
   1017      1.56  christos 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
   1018      1.56  christos 	st->st_atimespec = sc->sc_atime;
   1019      1.56  christos 	st->st_mtimespec = sc->sc_mtime;
   1020      1.56  christos 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
   1021      1.57  christos 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1022      1.57  christos 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1023      1.57  christos out:
   1024      1.57  christos 	KERNEL_UNLOCK_ONE(NULL);
   1025      1.57  christos 	return error;
   1026      1.56  christos }
   1027      1.56  christos 
   1028      1.56  christos static int
   1029       1.1      cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1030       1.1      cube {
   1031       1.1      cube 	return tap_dev_write(minor(dev), uio, flags);
   1032       1.1      cube }
   1033       1.1      cube 
   1034       1.1      cube static int
   1035      1.41        ad tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1036      1.23  christos     kauth_cred_t cred, int flags)
   1037       1.1      cube {
   1038      1.44        ad 	int error;
   1039      1.44        ad 
   1040      1.44        ad 	KERNEL_LOCK(1, NULL);
   1041      1.78      matt 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1042      1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1043      1.44        ad 	return error;
   1044       1.1      cube }
   1045       1.1      cube 
   1046       1.1      cube static int
   1047      1.23  christos tap_dev_write(int unit, struct uio *uio, int flags)
   1048       1.1      cube {
   1049       1.1      cube 	struct tap_softc *sc =
   1050      1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1051       1.1      cube 	struct ifnet *ifp;
   1052       1.1      cube 	struct mbuf *m, **mp;
   1053       1.1      cube 	int error = 0;
   1054       1.9    bouyer 	int s;
   1055       1.1      cube 
   1056       1.1      cube 	if (sc == NULL)
   1057       1.1      cube 		return (ENXIO);
   1058       1.1      cube 
   1059      1.56  christos 	getnanotime(&sc->sc_mtime);
   1060       1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1061       1.1      cube 
   1062       1.1      cube 	/* One write, one packet, that's the rule */
   1063       1.1      cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1064       1.1      cube 	if (m == NULL) {
   1065       1.1      cube 		ifp->if_ierrors++;
   1066       1.1      cube 		return (ENOBUFS);
   1067       1.1      cube 	}
   1068       1.1      cube 	m->m_pkthdr.len = uio->uio_resid;
   1069       1.1      cube 
   1070       1.1      cube 	mp = &m;
   1071       1.1      cube 	while (error == 0 && uio->uio_resid > 0) {
   1072       1.1      cube 		if (*mp != m) {
   1073       1.1      cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1074       1.1      cube 			if (*mp == NULL) {
   1075       1.1      cube 				error = ENOBUFS;
   1076       1.1      cube 				break;
   1077       1.1      cube 			}
   1078       1.1      cube 		}
   1079       1.1      cube 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1080      1.26  christos 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1081       1.1      cube 		mp = &(*mp)->m_next;
   1082       1.1      cube 	}
   1083       1.1      cube 	if (error) {
   1084       1.1      cube 		ifp->if_ierrors++;
   1085       1.1      cube 		m_freem(m);
   1086       1.1      cube 		return (error);
   1087       1.1      cube 	}
   1088       1.1      cube 
   1089       1.1      cube 	ifp->if_ipackets++;
   1090  1.80.2.4     skrll 	m_set_rcvif(m, ifp);
   1091       1.1      cube 
   1092      1.64     joerg 	bpf_mtap(ifp, m);
   1093      1.69      yamt 	s = splnet();
   1094  1.80.2.3     skrll 	if_input(ifp, m);
   1095       1.9    bouyer 	splx(s);
   1096       1.1      cube 
   1097       1.1      cube 	return (0);
   1098       1.1      cube }
   1099       1.1      cube 
   1100       1.1      cube static int
   1101      1.26  christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1102      1.11  christos     struct lwp *l)
   1103       1.1      cube {
   1104      1.11  christos 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1105       1.1      cube }
   1106       1.1      cube 
   1107       1.1      cube static int
   1108      1.41        ad tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1109       1.1      cube {
   1110      1.78      matt 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1111       1.1      cube }
   1112       1.1      cube 
   1113       1.1      cube static int
   1114      1.26  christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1115       1.1      cube {
   1116      1.66  christos 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1117       1.1      cube 
   1118       1.1      cube 	if (sc == NULL)
   1119      1.66  christos 		return ENXIO;
   1120       1.1      cube 
   1121       1.1      cube 	switch (cmd) {
   1122       1.1      cube 	case FIONREAD:
   1123       1.1      cube 		{
   1124       1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1125       1.1      cube 			struct mbuf *m;
   1126       1.1      cube 			int s;
   1127       1.1      cube 
   1128       1.1      cube 			s = splnet();
   1129       1.1      cube 			IFQ_POLL(&ifp->if_snd, m);
   1130       1.1      cube 
   1131       1.1      cube 			if (m == NULL)
   1132       1.1      cube 				*(int *)data = 0;
   1133       1.1      cube 			else
   1134       1.1      cube 				*(int *)data = m->m_pkthdr.len;
   1135       1.1      cube 			splx(s);
   1136      1.66  christos 			return 0;
   1137  1.80.2.2     skrll 		}
   1138       1.1      cube 	case TIOCSPGRP:
   1139       1.1      cube 	case FIOSETOWN:
   1140      1.66  christos 		return fsetown(&sc->sc_pgid, cmd, data);
   1141       1.1      cube 	case TIOCGPGRP:
   1142       1.1      cube 	case FIOGETOWN:
   1143      1.66  christos 		return fgetown(sc->sc_pgid, cmd, data);
   1144       1.1      cube 	case FIOASYNC:
   1145      1.71      yamt 		if (*(int *)data) {
   1146      1.71      yamt 			if (sc->sc_sih == NULL) {
   1147      1.71      yamt 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1148      1.71      yamt 				    tap_softintr, sc);
   1149      1.71      yamt 				if (sc->sc_sih == NULL)
   1150      1.71      yamt 					return EBUSY; /* XXX */
   1151      1.71      yamt 			}
   1152       1.1      cube 			sc->sc_flags |= TAP_ASYNCIO;
   1153      1.71      yamt 		} else {
   1154       1.1      cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1155      1.71      yamt 			if (sc->sc_sih != NULL) {
   1156      1.71      yamt 				softint_disestablish(sc->sc_sih);
   1157      1.71      yamt 				sc->sc_sih = NULL;
   1158      1.71      yamt 			}
   1159      1.71      yamt 		}
   1160      1.66  christos 		return 0;
   1161       1.1      cube 	case FIONBIO:
   1162       1.1      cube 		if (*(int *)data)
   1163       1.1      cube 			sc->sc_flags |= TAP_NBIO;
   1164       1.1      cube 		else
   1165       1.1      cube 			sc->sc_flags &= ~TAP_NBIO;
   1166      1.66  christos 		return 0;
   1167      1.29  christos #ifdef OTAPGIFNAME
   1168      1.29  christos 	case OTAPGIFNAME:
   1169      1.29  christos #endif
   1170       1.1      cube 	case TAPGIFNAME:
   1171       1.1      cube 		{
   1172       1.1      cube 			struct ifreq *ifr = (struct ifreq *)data;
   1173       1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1174       1.1      cube 
   1175       1.1      cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1176      1.66  christos 			return 0;
   1177      1.66  christos 		}
   1178       1.1      cube 	default:
   1179      1.66  christos 		return ENOTTY;
   1180       1.1      cube 	}
   1181       1.1      cube }
   1182       1.1      cube 
   1183       1.1      cube static int
   1184      1.11  christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1185       1.1      cube {
   1186      1.11  christos 	return tap_dev_poll(minor(dev), events, l);
   1187       1.1      cube }
   1188       1.1      cube 
   1189       1.1      cube static int
   1190      1.41        ad tap_fops_poll(file_t *fp, int events)
   1191       1.1      cube {
   1192      1.78      matt 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1193       1.1      cube }
   1194       1.1      cube 
   1195       1.1      cube static int
   1196      1.11  christos tap_dev_poll(int unit, int events, struct lwp *l)
   1197       1.1      cube {
   1198       1.1      cube 	struct tap_softc *sc =
   1199      1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1200       1.1      cube 	int revents = 0;
   1201       1.1      cube 
   1202       1.1      cube 	if (sc == NULL)
   1203      1.28  christos 		return POLLERR;
   1204       1.1      cube 
   1205       1.1      cube 	if (events & (POLLIN|POLLRDNORM)) {
   1206       1.1      cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1207       1.1      cube 		struct mbuf *m;
   1208       1.1      cube 		int s;
   1209       1.1      cube 
   1210       1.1      cube 		s = splnet();
   1211       1.1      cube 		IFQ_POLL(&ifp->if_snd, m);
   1212       1.1      cube 
   1213       1.1      cube 		if (m != NULL)
   1214       1.1      cube 			revents |= events & (POLLIN|POLLRDNORM);
   1215       1.1      cube 		else {
   1216      1.74     skrll 			mutex_spin_enter(&sc->sc_kqlock);
   1217      1.11  christos 			selrecord(l, &sc->sc_rsel);
   1218      1.74     skrll 			mutex_spin_exit(&sc->sc_kqlock);
   1219       1.1      cube 		}
   1220      1.76      cube 		splx(s);
   1221       1.1      cube 	}
   1222       1.1      cube 	revents |= events & (POLLOUT|POLLWRNORM);
   1223       1.1      cube 
   1224       1.1      cube 	return (revents);
   1225       1.1      cube }
   1226       1.1      cube 
   1227       1.1      cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1228       1.1      cube 	tap_kqread };
   1229       1.1      cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1230       1.1      cube 	filt_seltrue };
   1231       1.1      cube 
   1232       1.1      cube static int
   1233       1.1      cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1234       1.1      cube {
   1235       1.1      cube 	return tap_dev_kqfilter(minor(dev), kn);
   1236       1.1      cube }
   1237       1.1      cube 
   1238       1.1      cube static int
   1239      1.41        ad tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1240       1.1      cube {
   1241      1.78      matt 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1242       1.1      cube }
   1243       1.1      cube 
   1244       1.1      cube static int
   1245       1.1      cube tap_dev_kqfilter(int unit, struct knote *kn)
   1246       1.1      cube {
   1247       1.1      cube 	struct tap_softc *sc =
   1248      1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1249       1.1      cube 
   1250       1.1      cube 	if (sc == NULL)
   1251       1.1      cube 		return (ENXIO);
   1252       1.1      cube 
   1253      1.44        ad 	KERNEL_LOCK(1, NULL);
   1254       1.1      cube 	switch(kn->kn_filter) {
   1255       1.1      cube 	case EVFILT_READ:
   1256       1.1      cube 		kn->kn_fop = &tap_read_filterops;
   1257       1.1      cube 		break;
   1258       1.1      cube 	case EVFILT_WRITE:
   1259       1.1      cube 		kn->kn_fop = &tap_seltrue_filterops;
   1260       1.1      cube 		break;
   1261       1.1      cube 	default:
   1262      1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
   1263      1.35     pooka 		return (EINVAL);
   1264       1.1      cube 	}
   1265       1.1      cube 
   1266       1.1      cube 	kn->kn_hook = sc;
   1267      1.74     skrll 	mutex_spin_enter(&sc->sc_kqlock);
   1268       1.1      cube 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1269      1.74     skrll 	mutex_spin_exit(&sc->sc_kqlock);
   1270      1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1271       1.1      cube 	return (0);
   1272       1.1      cube }
   1273       1.1      cube 
   1274       1.1      cube static void
   1275       1.1      cube tap_kqdetach(struct knote *kn)
   1276       1.1      cube {
   1277       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1278       1.1      cube 
   1279      1.44        ad 	KERNEL_LOCK(1, NULL);
   1280      1.74     skrll 	mutex_spin_enter(&sc->sc_kqlock);
   1281       1.1      cube 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1282      1.74     skrll 	mutex_spin_exit(&sc->sc_kqlock);
   1283      1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1284       1.1      cube }
   1285       1.1      cube 
   1286       1.1      cube static int
   1287      1.23  christos tap_kqread(struct knote *kn, long hint)
   1288       1.1      cube {
   1289       1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1290       1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1291       1.1      cube 	struct mbuf *m;
   1292      1.44        ad 	int s, rv;
   1293       1.1      cube 
   1294      1.44        ad 	KERNEL_LOCK(1, NULL);
   1295       1.1      cube 	s = splnet();
   1296       1.1      cube 	IFQ_POLL(&ifp->if_snd, m);
   1297       1.1      cube 
   1298       1.1      cube 	if (m == NULL)
   1299       1.1      cube 		kn->kn_data = 0;
   1300       1.1      cube 	else
   1301       1.1      cube 		kn->kn_data = m->m_pkthdr.len;
   1302       1.1      cube 	splx(s);
   1303      1.44        ad 	rv = (kn->kn_data != 0 ? 1 : 0);
   1304      1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1305      1.44        ad 	return rv;
   1306       1.1      cube }
   1307       1.1      cube 
   1308       1.1      cube /*
   1309       1.1      cube  * sysctl management routines
   1310       1.1      cube  * You can set the address of an interface through:
   1311       1.1      cube  * net.link.tap.tap<number>
   1312       1.1      cube  *
   1313       1.1      cube  * Note the consistent use of tap_log in order to use
   1314       1.1      cube  * sysctl_teardown at unload time.
   1315       1.1      cube  *
   1316       1.1      cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1317       1.1      cube  * blocks register a function in a special section of the kernel
   1318       1.1      cube  * (called a link set) which is used at init_sysctl() time to cycle
   1319       1.1      cube  * through all those functions to create the kernel's sysctl tree.
   1320       1.1      cube  *
   1321      1.51        ad  * It is not possible to use link sets in a module, so the
   1322       1.1      cube  * easiest is to simply call our own setup routine at load time.
   1323       1.1      cube  *
   1324       1.1      cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1325       1.1      cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1326       1.1      cube  * whole kernel sysctl tree is built, it is not possible to add any
   1327       1.1      cube  * permanent node.
   1328       1.1      cube  *
   1329       1.1      cube  * It should be noted that we're not saving the sysctlnode pointer
   1330       1.1      cube  * we are returned when creating the "tap" node.  That structure
   1331       1.1      cube  * cannot be trusted once out of the calling function, as it might
   1332       1.1      cube  * get reused.  So we just save the MIB number, and always give the
   1333       1.1      cube  * full path starting from the root for later calls to sysctl_createv
   1334       1.1      cube  * and sysctl_destroyv.
   1335       1.1      cube  */
   1336  1.80.2.5     skrll static void
   1337  1.80.2.5     skrll sysctl_tap_setup(struct sysctllog **clog)
   1338       1.1      cube {
   1339      1.10    atatat 	const struct sysctlnode *node;
   1340       1.1      cube 	int error = 0;
   1341       1.1      cube 
   1342       1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1343       1.1      cube 	    CTLFLAG_PERMANENT,
   1344       1.1      cube 	    CTLTYPE_NODE, "link", NULL,
   1345       1.1      cube 	    NULL, 0, NULL, 0,
   1346       1.3      cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1347       1.1      cube 		return;
   1348       1.1      cube 
   1349       1.1      cube 	/*
   1350       1.1      cube 	 * The first four parameters of sysctl_createv are for management.
   1351       1.1      cube 	 *
   1352       1.1      cube 	 * The four that follows, here starting with a '0' for the flags,
   1353       1.1      cube 	 * describe the node.
   1354       1.1      cube 	 *
   1355       1.1      cube 	 * The next series of four set its value, through various possible
   1356       1.1      cube 	 * means.
   1357       1.1      cube 	 *
   1358       1.1      cube 	 * Last but not least, the path to the node is described.  That path
   1359       1.1      cube 	 * is relative to the given root (third argument).  Here we're
   1360       1.1      cube 	 * starting from the root.
   1361       1.1      cube 	 */
   1362       1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1363       1.1      cube 	    CTLFLAG_PERMANENT,
   1364       1.1      cube 	    CTLTYPE_NODE, "tap", NULL,
   1365       1.1      cube 	    NULL, 0, NULL, 0,
   1366       1.3      cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1367       1.1      cube 		return;
   1368       1.1      cube 	tap_node = node->sysctl_num;
   1369       1.1      cube }
   1370       1.1      cube 
   1371       1.1      cube /*
   1372       1.1      cube  * The helper functions make Andrew Brown's interface really
   1373       1.1      cube  * shine.  It makes possible to create value on the fly whether
   1374       1.1      cube  * the sysctl value is read or written.
   1375       1.1      cube  *
   1376       1.1      cube  * As shown as an example in the man page, the first step is to
   1377       1.1      cube  * create a copy of the node to have sysctl_lookup work on it.
   1378       1.1      cube  *
   1379       1.1      cube  * Here, we have more work to do than just a copy, since we have
   1380       1.1      cube  * to create the string.  The first step is to collect the actual
   1381       1.1      cube  * value of the node, which is a convenient pointer to the softc
   1382       1.1      cube  * of the interface.  From there we create the string and use it
   1383       1.1      cube  * as the value, but only for the *copy* of the node.
   1384       1.1      cube  *
   1385       1.1      cube  * Then we let sysctl_lookup do the magic, which consists in
   1386       1.1      cube  * setting oldp and newp as required by the operation.  When the
   1387       1.1      cube  * value is read, that means that the string will be copied to
   1388       1.1      cube  * the user, and when it is written, the new value will be copied
   1389       1.1      cube  * over in the addr array.
   1390       1.1      cube  *
   1391       1.1      cube  * If newp is NULL, the user was reading the value, so we don't
   1392       1.1      cube  * have anything else to do.  If a new value was written, we
   1393       1.1      cube  * have to check it.
   1394       1.1      cube  *
   1395       1.1      cube  * If it is incorrect, we can return an error and leave 'node' as
   1396       1.1      cube  * it is:  since it is a copy of the actual node, the change will
   1397       1.1      cube  * be forgotten.
   1398       1.1      cube  *
   1399       1.1      cube  * Upon a correct input, we commit the change to the ifnet
   1400       1.1      cube  * structure of our interface.
   1401       1.1      cube  */
   1402       1.1      cube static int
   1403       1.1      cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1404       1.1      cube {
   1405       1.1      cube 	struct sysctlnode node;
   1406       1.1      cube 	struct tap_softc *sc;
   1407       1.1      cube 	struct ifnet *ifp;
   1408       1.1      cube 	int error;
   1409       1.1      cube 	size_t len;
   1410      1.14  christos 	char addr[3 * ETHER_ADDR_LEN];
   1411      1.32    dyoung 	uint8_t enaddr[ETHER_ADDR_LEN];
   1412       1.1      cube 
   1413       1.1      cube 	node = *rnode;
   1414       1.1      cube 	sc = node.sysctl_data;
   1415       1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1416      1.31    dyoung 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1417       1.1      cube 	node.sysctl_data = addr;
   1418       1.1      cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1419       1.1      cube 	if (error || newp == NULL)
   1420       1.1      cube 		return (error);
   1421       1.1      cube 
   1422       1.1      cube 	len = strlen(addr);
   1423       1.1      cube 	if (len < 11 || len > 17)
   1424       1.1      cube 		return (EINVAL);
   1425       1.1      cube 
   1426       1.1      cube 	/* Commit change */
   1427      1.65  christos 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1428       1.1      cube 		return (EINVAL);
   1429      1.50    dyoung 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1430       1.1      cube 	return (error);
   1431       1.1      cube }
   1432  1.80.2.5     skrll 
   1433  1.80.2.5     skrll /*
   1434  1.80.2.5     skrll  * Module infrastructure
   1435  1.80.2.5     skrll  */
   1436  1.80.2.5     skrll #include "if_module.h"
   1437  1.80.2.5     skrll 
   1438  1.80.2.5     skrll IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
   1439