if_tap.c revision 1.85 1 1.85 christos /* $NetBSD: if_tap.c,v 1.85 2016/08/07 17:38:34 christos Exp $ */
2 1.1 cube
3 1.1 cube /*
4 1.55 ad * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 1.1 cube * All rights reserved.
6 1.1 cube *
7 1.1 cube * Redistribution and use in source and binary forms, with or without
8 1.1 cube * modification, are permitted provided that the following conditions
9 1.1 cube * are met:
10 1.1 cube * 1. Redistributions of source code must retain the above copyright
11 1.1 cube * notice, this list of conditions and the following disclaimer.
12 1.1 cube * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 cube * notice, this list of conditions and the following disclaimer in the
14 1.1 cube * documentation and/or other materials provided with the distribution.
15 1.6 perry *
16 1.1 cube * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 1.1 cube * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 1.1 cube * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 1.1 cube * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 1.1 cube * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 1.1 cube * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 1.1 cube * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 1.1 cube * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 1.1 cube * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 1.1 cube * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.1 cube * POSSIBILITY OF SUCH DAMAGE.
27 1.1 cube */
28 1.1 cube
29 1.1 cube /*
30 1.1 cube * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 1.1 cube * device to the system, but can also be accessed by userland through a
32 1.1 cube * character device interface, which allows reading and injecting frames.
33 1.1 cube */
34 1.1 cube
35 1.1 cube #include <sys/cdefs.h>
36 1.85 christos __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.85 2016/08/07 17:38:34 christos Exp $");
37 1.1 cube
38 1.2 cube #if defined(_KERNEL_OPT)
39 1.63 pooka
40 1.54 plunky #include "opt_modular.h"
41 1.54 plunky #include "opt_compat_netbsd.h"
42 1.2 cube #endif
43 1.1 cube
44 1.1 cube #include <sys/param.h>
45 1.1 cube #include <sys/systm.h>
46 1.1 cube #include <sys/kernel.h>
47 1.1 cube #include <sys/malloc.h>
48 1.1 cube #include <sys/conf.h>
49 1.70 yamt #include <sys/cprng.h>
50 1.1 cube #include <sys/device.h>
51 1.1 cube #include <sys/file.h>
52 1.1 cube #include <sys/filedesc.h>
53 1.1 cube #include <sys/poll.h>
54 1.54 plunky #include <sys/proc.h>
55 1.1 cube #include <sys/select.h>
56 1.1 cube #include <sys/sockio.h>
57 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
58 1.1 cube #include <sys/sysctl.h>
59 1.54 plunky #endif
60 1.17 elad #include <sys/kauth.h>
61 1.34 ad #include <sys/mutex.h>
62 1.42 ad #include <sys/intr.h>
63 1.56 christos #include <sys/stat.h>
64 1.85 christos #include <sys/device.h>
65 1.85 christos #include <sys/module.h>
66 1.85 christos #include <sys/atomic.h>
67 1.1 cube
68 1.1 cube #include <net/if.h>
69 1.1 cube #include <net/if_dl.h>
70 1.1 cube #include <net/if_ether.h>
71 1.1 cube #include <net/if_media.h>
72 1.1 cube #include <net/if_tap.h>
73 1.1 cube #include <net/bpf.h>
74 1.1 cube
75 1.29 christos #include <compat/sys/sockio.h>
76 1.29 christos
77 1.82 christos #include "ioconf.h"
78 1.82 christos
79 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
80 1.1 cube /*
81 1.1 cube * sysctl node management
82 1.1 cube *
83 1.1 cube * It's not really possible to use a SYSCTL_SETUP block with
84 1.51 ad * current module implementation, so it is easier to just define
85 1.1 cube * our own function.
86 1.1 cube *
87 1.1 cube * The handler function is a "helper" in Andrew Brown's sysctl
88 1.1 cube * framework terminology. It is used as a gateway for sysctl
89 1.1 cube * requests over the nodes.
90 1.1 cube *
91 1.1 cube * tap_log allows the module to log creations of nodes and
92 1.1 cube * destroy them all at once using sysctl_teardown.
93 1.1 cube */
94 1.1 cube static int tap_node;
95 1.1 cube static int tap_sysctl_handler(SYSCTLFN_PROTO);
96 1.2 cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
97 1.54 plunky #endif
98 1.1 cube
99 1.1 cube /*
100 1.68 chs * Since we're an Ethernet device, we need the 2 following
101 1.68 chs * components: a struct ethercom and a struct ifmedia
102 1.68 chs * since we don't attach a PHY to ourselves.
103 1.68 chs * We could emulate one, but there's no real point.
104 1.1 cube */
105 1.1 cube
106 1.1 cube struct tap_softc {
107 1.40 cube device_t sc_dev;
108 1.1 cube struct ifmedia sc_im;
109 1.1 cube struct ethercom sc_ec;
110 1.1 cube int sc_flags;
111 1.1 cube #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
112 1.1 cube #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
113 1.1 cube #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
114 1.1 cube #define TAP_GOING 0x00000008 /* interface is being destroyed */
115 1.1 cube struct selinfo sc_rsel;
116 1.1 cube pid_t sc_pgid; /* For async. IO */
117 1.34 ad kmutex_t sc_rdlock;
118 1.74 skrll kmutex_t sc_kqlock;
119 1.42 ad void *sc_sih;
120 1.56 christos struct timespec sc_atime;
121 1.56 christos struct timespec sc_mtime;
122 1.56 christos struct timespec sc_btime;
123 1.1 cube };
124 1.1 cube
125 1.1 cube /* autoconf(9) glue */
126 1.1 cube
127 1.40 cube static int tap_match(device_t, cfdata_t, void *);
128 1.40 cube static void tap_attach(device_t, device_t, void *);
129 1.40 cube static int tap_detach(device_t, int);
130 1.1 cube
131 1.40 cube CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
132 1.1 cube tap_match, tap_attach, tap_detach, NULL);
133 1.1 cube extern struct cfdriver tap_cd;
134 1.1 cube
135 1.1 cube /* Real device access routines */
136 1.1 cube static int tap_dev_close(struct tap_softc *);
137 1.1 cube static int tap_dev_read(int, struct uio *, int);
138 1.1 cube static int tap_dev_write(int, struct uio *, int);
139 1.26 christos static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
140 1.11 christos static int tap_dev_poll(int, int, struct lwp *);
141 1.1 cube static int tap_dev_kqfilter(int, struct knote *);
142 1.1 cube
143 1.1 cube /* Fileops access routines */
144 1.41 ad static int tap_fops_close(file_t *);
145 1.41 ad static int tap_fops_read(file_t *, off_t *, struct uio *,
146 1.17 elad kauth_cred_t, int);
147 1.41 ad static int tap_fops_write(file_t *, off_t *, struct uio *,
148 1.17 elad kauth_cred_t, int);
149 1.41 ad static int tap_fops_ioctl(file_t *, u_long, void *);
150 1.41 ad static int tap_fops_poll(file_t *, int);
151 1.56 christos static int tap_fops_stat(file_t *, struct stat *);
152 1.41 ad static int tap_fops_kqfilter(file_t *, struct knote *);
153 1.1 cube
154 1.1 cube static const struct fileops tap_fileops = {
155 1.55 ad .fo_read = tap_fops_read,
156 1.55 ad .fo_write = tap_fops_write,
157 1.55 ad .fo_ioctl = tap_fops_ioctl,
158 1.55 ad .fo_fcntl = fnullop_fcntl,
159 1.55 ad .fo_poll = tap_fops_poll,
160 1.56 christos .fo_stat = tap_fops_stat,
161 1.55 ad .fo_close = tap_fops_close,
162 1.55 ad .fo_kqfilter = tap_fops_kqfilter,
163 1.62 dsl .fo_restart = fnullop_restart,
164 1.1 cube };
165 1.1 cube
166 1.1 cube /* Helper for cloning open() */
167 1.11 christos static int tap_dev_cloner(struct lwp *);
168 1.1 cube
169 1.1 cube /* Character device routines */
170 1.11 christos static int tap_cdev_open(dev_t, int, int, struct lwp *);
171 1.11 christos static int tap_cdev_close(dev_t, int, int, struct lwp *);
172 1.1 cube static int tap_cdev_read(dev_t, struct uio *, int);
173 1.1 cube static int tap_cdev_write(dev_t, struct uio *, int);
174 1.26 christos static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
175 1.11 christos static int tap_cdev_poll(dev_t, int, struct lwp *);
176 1.1 cube static int tap_cdev_kqfilter(dev_t, struct knote *);
177 1.1 cube
178 1.1 cube const struct cdevsw tap_cdevsw = {
179 1.73 dholland .d_open = tap_cdev_open,
180 1.73 dholland .d_close = tap_cdev_close,
181 1.73 dholland .d_read = tap_cdev_read,
182 1.73 dholland .d_write = tap_cdev_write,
183 1.73 dholland .d_ioctl = tap_cdev_ioctl,
184 1.73 dholland .d_stop = nostop,
185 1.73 dholland .d_tty = notty,
186 1.73 dholland .d_poll = tap_cdev_poll,
187 1.73 dholland .d_mmap = nommap,
188 1.73 dholland .d_kqfilter = tap_cdev_kqfilter,
189 1.77 dholland .d_discard = nodiscard,
190 1.73 dholland .d_flag = D_OTHER
191 1.1 cube };
192 1.1 cube
193 1.1 cube #define TAP_CLONER 0xfffff /* Maximal minor value */
194 1.1 cube
195 1.1 cube /* kqueue-related routines */
196 1.1 cube static void tap_kqdetach(struct knote *);
197 1.1 cube static int tap_kqread(struct knote *, long);
198 1.1 cube
199 1.1 cube /*
200 1.1 cube * Those are needed by the if_media interface.
201 1.1 cube */
202 1.1 cube
203 1.1 cube static int tap_mediachange(struct ifnet *);
204 1.1 cube static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
205 1.1 cube
206 1.1 cube /*
207 1.1 cube * Those are needed by the ifnet interface, and would typically be
208 1.1 cube * there for any network interface driver.
209 1.1 cube * Some other routines are optional: watchdog and drain.
210 1.1 cube */
211 1.1 cube
212 1.1 cube static void tap_start(struct ifnet *);
213 1.1 cube static void tap_stop(struct ifnet *, int);
214 1.1 cube static int tap_init(struct ifnet *);
215 1.26 christos static int tap_ioctl(struct ifnet *, u_long, void *);
216 1.1 cube
217 1.42 ad /* Internal functions */
218 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
219 1.1 cube static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
220 1.54 plunky #endif
221 1.42 ad static void tap_softintr(void *);
222 1.1 cube
223 1.1 cube /*
224 1.1 cube * tap is a clonable interface, although it is highly unrealistic for
225 1.1 cube * an Ethernet device.
226 1.1 cube *
227 1.1 cube * Here are the bits needed for a clonable interface.
228 1.1 cube */
229 1.1 cube static int tap_clone_create(struct if_clone *, int);
230 1.1 cube static int tap_clone_destroy(struct ifnet *);
231 1.1 cube
232 1.1 cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
233 1.1 cube tap_clone_create,
234 1.1 cube tap_clone_destroy);
235 1.1 cube
236 1.1 cube /* Helper functionis shared by the two cloning code paths */
237 1.1 cube static struct tap_softc * tap_clone_creator(int);
238 1.40 cube int tap_clone_destroyer(device_t);
239 1.1 cube
240 1.85 christos static u_int tap_count;
241 1.85 christos
242 1.1 cube void
243 1.23 christos tapattach(int n)
244 1.1 cube {
245 1.1 cube
246 1.85 christos /*
247 1.85 christos * Nothing to do here, initialization is handled by the
248 1.85 christos * module initialization code in tapinit() below).
249 1.85 christos */
250 1.85 christos }
251 1.1 cube
252 1.85 christos static void
253 1.85 christos tapinit(void)
254 1.85 christos {
255 1.1 cube if_clone_attach(&tap_cloners);
256 1.1 cube }
257 1.1 cube
258 1.85 christos static int
259 1.85 christos tapdetach(void)
260 1.85 christos {
261 1.85 christos int error = 0;
262 1.85 christos
263 1.85 christos if (tap_count != 0)
264 1.85 christos error = EBUSY;
265 1.85 christos
266 1.85 christos if (error == 0)
267 1.85 christos if_clone_detach(&tap_cloners);
268 1.85 christos
269 1.85 christos return error;
270 1.85 christos }
271 1.85 christos
272 1.1 cube /* Pretty much useless for a pseudo-device */
273 1.1 cube static int
274 1.40 cube tap_match(device_t parent, cfdata_t cfdata, void *arg)
275 1.1 cube {
276 1.40 cube
277 1.1 cube return (1);
278 1.1 cube }
279 1.1 cube
280 1.1 cube void
281 1.40 cube tap_attach(device_t parent, device_t self, void *aux)
282 1.1 cube {
283 1.40 cube struct tap_softc *sc = device_private(self);
284 1.1 cube struct ifnet *ifp;
285 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
286 1.18 kardel const struct sysctlnode *node;
287 1.54 plunky int error;
288 1.54 plunky #endif
289 1.38 matt uint8_t enaddr[ETHER_ADDR_LEN] =
290 1.7 cube { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
291 1.14 christos char enaddrstr[3 * ETHER_ADDR_LEN];
292 1.1 cube
293 1.40 cube sc->sc_dev = self;
294 1.71 yamt sc->sc_sih = NULL;
295 1.56 christos getnanotime(&sc->sc_btime);
296 1.56 christos sc->sc_atime = sc->sc_mtime = sc->sc_btime;
297 1.80 ozaki sc->sc_flags = 0;
298 1.80 ozaki selinit(&sc->sc_rsel);
299 1.80 ozaki
300 1.80 ozaki /*
301 1.80 ozaki * Initialize the two locks for the device.
302 1.80 ozaki *
303 1.80 ozaki * We need a lock here because even though the tap device can be
304 1.80 ozaki * opened only once, the file descriptor might be passed to another
305 1.80 ozaki * process, say a fork(2)ed child.
306 1.80 ozaki *
307 1.80 ozaki * The Giant saves us from most of the hassle, but since the read
308 1.80 ozaki * operation can sleep, we don't want two processes to wake up at
309 1.80 ozaki * the same moment and both try and dequeue a single packet.
310 1.80 ozaki *
311 1.80 ozaki * The queue for event listeners (used by kqueue(9), see below) has
312 1.80 ozaki * to be protected too, so use a spin lock.
313 1.80 ozaki */
314 1.80 ozaki mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
315 1.80 ozaki mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
316 1.40 cube
317 1.48 hans if (!pmf_device_register(self, NULL, NULL))
318 1.48 hans aprint_error_dev(self, "couldn't establish power handler\n");
319 1.48 hans
320 1.1 cube /*
321 1.1 cube * In order to obtain unique initial Ethernet address on a host,
322 1.70 yamt * do some randomisation. It's not meant for anything but avoiding
323 1.70 yamt * hard-coding an address.
324 1.1 cube */
325 1.70 yamt cprng_fast(&enaddr[3], 3);
326 1.1 cube
327 1.40 cube aprint_verbose_dev(self, "Ethernet address %s\n",
328 1.14 christos ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
329 1.1 cube
330 1.1 cube /*
331 1.1 cube * Why 1000baseT? Why not? You can add more.
332 1.1 cube *
333 1.1 cube * Note that there are 3 steps: init, one or several additions to
334 1.1 cube * list of supported media, and in the end, the selection of one
335 1.1 cube * of them.
336 1.1 cube */
337 1.1 cube ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
338 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
339 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
340 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
341 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
342 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
343 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
344 1.1 cube ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
345 1.1 cube ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
346 1.1 cube
347 1.1 cube /*
348 1.1 cube * One should note that an interface must do multicast in order
349 1.1 cube * to support IPv6.
350 1.1 cube */
351 1.1 cube ifp = &sc->sc_ec.ec_if;
352 1.40 cube strcpy(ifp->if_xname, device_xname(self));
353 1.1 cube ifp->if_softc = sc;
354 1.1 cube ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
355 1.1 cube ifp->if_ioctl = tap_ioctl;
356 1.1 cube ifp->if_start = tap_start;
357 1.1 cube ifp->if_stop = tap_stop;
358 1.1 cube ifp->if_init = tap_init;
359 1.1 cube IFQ_SET_READY(&ifp->if_snd);
360 1.1 cube
361 1.1 cube sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
362 1.1 cube
363 1.81 ozaki /* Those steps are mandatory for an Ethernet driver. */
364 1.81 ozaki if_initialize(ifp);
365 1.1 cube ether_ifattach(ifp, enaddr);
366 1.81 ozaki if_register(ifp);
367 1.1 cube
368 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
369 1.1 cube /*
370 1.1 cube * Add a sysctl node for that interface.
371 1.1 cube *
372 1.1 cube * The pointer transmitted is not a string, but instead a pointer to
373 1.1 cube * the softc structure, which we can use to build the string value on
374 1.1 cube * the fly in the helper function of the node. See the comments for
375 1.1 cube * tap_sysctl_handler for details.
376 1.21 cube *
377 1.21 cube * Usually sysctl_createv is called with CTL_CREATE as the before-last
378 1.21 cube * component. However, we can allocate a number ourselves, as we are
379 1.21 cube * the only consumer of the net.link.<iface> node. In this case, the
380 1.21 cube * unit number is conveniently used to number the node. CTL_CREATE
381 1.21 cube * would just work, too.
382 1.1 cube */
383 1.1 cube if ((error = sysctl_createv(NULL, 0, NULL,
384 1.1 cube &node, CTLFLAG_READWRITE,
385 1.40 cube CTLTYPE_STRING, device_xname(self), NULL,
386 1.67 dsl tap_sysctl_handler, 0, (void *)sc, 18,
387 1.40 cube CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
388 1.15 thorpej CTL_EOL)) != 0)
389 1.40 cube aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
390 1.40 cube error);
391 1.54 plunky #endif
392 1.1 cube }
393 1.1 cube
394 1.1 cube /*
395 1.1 cube * When detaching, we do the inverse of what is done in the attach
396 1.1 cube * routine, in reversed order.
397 1.1 cube */
398 1.1 cube static int
399 1.40 cube tap_detach(device_t self, int flags)
400 1.1 cube {
401 1.40 cube struct tap_softc *sc = device_private(self);
402 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
403 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
404 1.54 plunky int error;
405 1.54 plunky #endif
406 1.54 plunky int s;
407 1.1 cube
408 1.1 cube sc->sc_flags |= TAP_GOING;
409 1.1 cube s = splnet();
410 1.1 cube tap_stop(ifp, 1);
411 1.1 cube if_down(ifp);
412 1.1 cube splx(s);
413 1.1 cube
414 1.71 yamt if (sc->sc_sih != NULL) {
415 1.71 yamt softint_disestablish(sc->sc_sih);
416 1.71 yamt sc->sc_sih = NULL;
417 1.71 yamt }
418 1.42 ad
419 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
420 1.1 cube /*
421 1.1 cube * Destroying a single leaf is a very straightforward operation using
422 1.1 cube * sysctl_destroyv. One should be sure to always end the path with
423 1.1 cube * CTL_EOL.
424 1.1 cube */
425 1.3 cube if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
426 1.40 cube device_unit(sc->sc_dev), CTL_EOL)) != 0)
427 1.40 cube aprint_error_dev(self,
428 1.40 cube "sysctl_destroyv returned %d, ignoring\n", error);
429 1.54 plunky #endif
430 1.1 cube ether_ifdetach(ifp);
431 1.1 cube if_detach(ifp);
432 1.1 cube ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
433 1.47 rmind seldestroy(&sc->sc_rsel);
434 1.34 ad mutex_destroy(&sc->sc_rdlock);
435 1.75 aymeric mutex_destroy(&sc->sc_kqlock);
436 1.1 cube
437 1.49 hans pmf_device_deregister(self);
438 1.49 hans
439 1.1 cube return (0);
440 1.1 cube }
441 1.1 cube
442 1.1 cube /*
443 1.1 cube * This function is called by the ifmedia layer to notify the driver
444 1.1 cube * that the user requested a media change. A real driver would
445 1.1 cube * reconfigure the hardware.
446 1.1 cube */
447 1.1 cube static int
448 1.23 christos tap_mediachange(struct ifnet *ifp)
449 1.1 cube {
450 1.1 cube return (0);
451 1.1 cube }
452 1.1 cube
453 1.1 cube /*
454 1.1 cube * Here the user asks for the currently used media.
455 1.1 cube */
456 1.1 cube static void
457 1.1 cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
458 1.1 cube {
459 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
460 1.1 cube imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
461 1.1 cube }
462 1.1 cube
463 1.1 cube /*
464 1.1 cube * This is the function where we SEND packets.
465 1.1 cube *
466 1.1 cube * There is no 'receive' equivalent. A typical driver will get
467 1.1 cube * interrupts from the hardware, and from there will inject new packets
468 1.1 cube * into the network stack.
469 1.1 cube *
470 1.1 cube * Once handled, a packet must be freed. A real driver might not be able
471 1.1 cube * to fit all the pending packets into the hardware, and is allowed to
472 1.1 cube * return before having sent all the packets. It should then use the
473 1.1 cube * if_flags flag IFF_OACTIVE to notify the upper layer.
474 1.1 cube *
475 1.1 cube * There are also other flags one should check, such as IFF_PAUSE.
476 1.1 cube *
477 1.1 cube * It is our duty to make packets available to BPF listeners.
478 1.1 cube *
479 1.1 cube * You should be aware that this function is called by the Ethernet layer
480 1.1 cube * at splnet().
481 1.1 cube *
482 1.1 cube * When the device is opened, we have to pass the packet(s) to the
483 1.1 cube * userland. For that we stay in OACTIVE mode while the userland gets
484 1.1 cube * the packets, and we send a signal to the processes waiting to read.
485 1.1 cube *
486 1.1 cube * wakeup(sc) is the counterpart to the tsleep call in
487 1.1 cube * tap_dev_read, while selnotify() is used for kevent(2) and
488 1.1 cube * poll(2) (which includes select(2)) listeners.
489 1.1 cube */
490 1.1 cube static void
491 1.1 cube tap_start(struct ifnet *ifp)
492 1.1 cube {
493 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
494 1.1 cube struct mbuf *m0;
495 1.1 cube
496 1.1 cube if ((sc->sc_flags & TAP_INUSE) == 0) {
497 1.1 cube /* Simply drop packets */
498 1.1 cube for(;;) {
499 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m0);
500 1.1 cube if (m0 == NULL)
501 1.1 cube return;
502 1.1 cube
503 1.1 cube ifp->if_opackets++;
504 1.64 joerg bpf_mtap(ifp, m0);
505 1.1 cube
506 1.1 cube m_freem(m0);
507 1.1 cube }
508 1.1 cube } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
509 1.1 cube ifp->if_flags |= IFF_OACTIVE;
510 1.1 cube wakeup(sc);
511 1.39 rmind selnotify(&sc->sc_rsel, 0, 1);
512 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
513 1.42 ad softint_schedule(sc->sc_sih);
514 1.42 ad }
515 1.42 ad }
516 1.42 ad
517 1.42 ad static void
518 1.42 ad tap_softintr(void *cookie)
519 1.42 ad {
520 1.42 ad struct tap_softc *sc;
521 1.42 ad struct ifnet *ifp;
522 1.42 ad int a, b;
523 1.42 ad
524 1.42 ad sc = cookie;
525 1.42 ad
526 1.42 ad if (sc->sc_flags & TAP_ASYNCIO) {
527 1.42 ad ifp = &sc->sc_ec.ec_if;
528 1.42 ad if (ifp->if_flags & IFF_RUNNING) {
529 1.42 ad a = POLL_IN;
530 1.42 ad b = POLLIN|POLLRDNORM;
531 1.42 ad } else {
532 1.42 ad a = POLL_HUP;
533 1.42 ad b = 0;
534 1.42 ad }
535 1.42 ad fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
536 1.1 cube }
537 1.1 cube }
538 1.1 cube
539 1.1 cube /*
540 1.1 cube * A typical driver will only contain the following handlers for
541 1.1 cube * ioctl calls, except SIOCSIFPHYADDR.
542 1.1 cube * The latter is a hack I used to set the Ethernet address of the
543 1.1 cube * faked device.
544 1.1 cube *
545 1.1 cube * Note that both ifmedia_ioctl() and ether_ioctl() have to be
546 1.1 cube * called under splnet().
547 1.1 cube */
548 1.1 cube static int
549 1.26 christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
550 1.1 cube {
551 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
552 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
553 1.1 cube int s, error;
554 1.1 cube
555 1.1 cube s = splnet();
556 1.1 cube
557 1.1 cube switch (cmd) {
558 1.29 christos #ifdef OSIOCSIFMEDIA
559 1.29 christos case OSIOCSIFMEDIA:
560 1.29 christos #endif
561 1.1 cube case SIOCSIFMEDIA:
562 1.1 cube case SIOCGIFMEDIA:
563 1.1 cube error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
564 1.1 cube break;
565 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
566 1.1 cube case SIOCSIFPHYADDR:
567 1.1 cube error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
568 1.1 cube break;
569 1.54 plunky #endif
570 1.1 cube default:
571 1.1 cube error = ether_ioctl(ifp, cmd, data);
572 1.1 cube if (error == ENETRESET)
573 1.1 cube error = 0;
574 1.1 cube break;
575 1.1 cube }
576 1.1 cube
577 1.1 cube splx(s);
578 1.1 cube
579 1.1 cube return (error);
580 1.1 cube }
581 1.1 cube
582 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
583 1.1 cube /*
584 1.54 plunky * Helper function to set Ethernet address. This has been replaced by
585 1.54 plunky * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
586 1.1 cube */
587 1.1 cube static int
588 1.23 christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
589 1.1 cube {
590 1.53 plunky const struct sockaddr *sa = &ifra->ifra_addr;
591 1.1 cube
592 1.53 plunky if (sa->sa_family != AF_LINK)
593 1.1 cube return (EINVAL);
594 1.1 cube
595 1.53 plunky if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
596 1.1 cube
597 1.1 cube return (0);
598 1.1 cube }
599 1.54 plunky #endif
600 1.1 cube
601 1.1 cube /*
602 1.1 cube * _init() would typically be called when an interface goes up,
603 1.1 cube * meaning it should configure itself into the state in which it
604 1.1 cube * can send packets.
605 1.1 cube */
606 1.1 cube static int
607 1.1 cube tap_init(struct ifnet *ifp)
608 1.1 cube {
609 1.1 cube ifp->if_flags |= IFF_RUNNING;
610 1.1 cube
611 1.1 cube tap_start(ifp);
612 1.1 cube
613 1.1 cube return (0);
614 1.1 cube }
615 1.1 cube
616 1.1 cube /*
617 1.1 cube * _stop() is called when an interface goes down. It is our
618 1.1 cube * responsability to validate that state by clearing the
619 1.1 cube * IFF_RUNNING flag.
620 1.1 cube *
621 1.1 cube * We have to wake up all the sleeping processes to have the pending
622 1.1 cube * read requests cancelled.
623 1.1 cube */
624 1.1 cube static void
625 1.23 christos tap_stop(struct ifnet *ifp, int disable)
626 1.1 cube {
627 1.1 cube struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
628 1.1 cube
629 1.1 cube ifp->if_flags &= ~IFF_RUNNING;
630 1.1 cube wakeup(sc);
631 1.39 rmind selnotify(&sc->sc_rsel, 0, 1);
632 1.1 cube if (sc->sc_flags & TAP_ASYNCIO)
633 1.42 ad softint_schedule(sc->sc_sih);
634 1.1 cube }
635 1.1 cube
636 1.1 cube /*
637 1.1 cube * The 'create' command of ifconfig can be used to create
638 1.1 cube * any numbered instance of a given device. Thus we have to
639 1.1 cube * make sure we have enough room in cd_devs to create the
640 1.1 cube * user-specified instance. config_attach_pseudo will do this
641 1.1 cube * for us.
642 1.1 cube */
643 1.1 cube static int
644 1.23 christos tap_clone_create(struct if_clone *ifc, int unit)
645 1.1 cube {
646 1.1 cube if (tap_clone_creator(unit) == NULL) {
647 1.1 cube aprint_error("%s%d: unable to attach an instance\n",
648 1.1 cube tap_cd.cd_name, unit);
649 1.1 cube return (ENXIO);
650 1.1 cube }
651 1.85 christos atomic_inc_uint(&tap_count);
652 1.1 cube return (0);
653 1.1 cube }
654 1.1 cube
655 1.1 cube /*
656 1.1 cube * tap(4) can be cloned by two ways:
657 1.1 cube * using 'ifconfig tap0 create', which will use the network
658 1.1 cube * interface cloning API, and call tap_clone_create above.
659 1.1 cube * opening the cloning device node, whose minor number is TAP_CLONER.
660 1.1 cube * See below for an explanation on how this part work.
661 1.1 cube */
662 1.1 cube static struct tap_softc *
663 1.1 cube tap_clone_creator(int unit)
664 1.1 cube {
665 1.1 cube struct cfdata *cf;
666 1.1 cube
667 1.1 cube cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
668 1.1 cube cf->cf_name = tap_cd.cd_name;
669 1.1 cube cf->cf_atname = tap_ca.ca_name;
670 1.27 drochner if (unit == -1) {
671 1.27 drochner /* let autoconf find the first free one */
672 1.27 drochner cf->cf_unit = 0;
673 1.27 drochner cf->cf_fstate = FSTATE_STAR;
674 1.27 drochner } else {
675 1.27 drochner cf->cf_unit = unit;
676 1.58 plunky cf->cf_fstate = FSTATE_NOTFOUND;
677 1.27 drochner }
678 1.1 cube
679 1.40 cube return device_private(config_attach_pseudo(cf));
680 1.1 cube }
681 1.1 cube
682 1.1 cube /*
683 1.1 cube * The clean design of if_clone and autoconf(9) makes that part
684 1.1 cube * really straightforward. The second argument of config_detach
685 1.1 cube * means neither QUIET nor FORCED.
686 1.1 cube */
687 1.1 cube static int
688 1.1 cube tap_clone_destroy(struct ifnet *ifp)
689 1.1 cube {
690 1.45 dyoung struct tap_softc *sc = ifp->if_softc;
691 1.85 christos int error = tap_clone_destroyer(sc->sc_dev);
692 1.45 dyoung
693 1.85 christos if (error == 0)
694 1.85 christos atomic_inc_uint(&tap_count);
695 1.85 christos return error;
696 1.1 cube }
697 1.1 cube
698 1.12 cube int
699 1.40 cube tap_clone_destroyer(device_t dev)
700 1.1 cube {
701 1.40 cube cfdata_t cf = device_cfdata(dev);
702 1.1 cube int error;
703 1.1 cube
704 1.1 cube if ((error = config_detach(dev, 0)) != 0)
705 1.40 cube aprint_error_dev(dev, "unable to detach instance\n");
706 1.1 cube free(cf, M_DEVBUF);
707 1.1 cube
708 1.1 cube return (error);
709 1.1 cube }
710 1.1 cube
711 1.1 cube /*
712 1.1 cube * tap(4) is a bit of an hybrid device. It can be used in two different
713 1.1 cube * ways:
714 1.1 cube * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
715 1.1 cube * 2. open /dev/tap, get a new interface created and read/write off it.
716 1.1 cube * That interface is destroyed when the process that had it created exits.
717 1.1 cube *
718 1.1 cube * The first way is managed by the cdevsw structure, and you access interfaces
719 1.1 cube * through a (major, minor) mapping: tap4 is obtained by the minor number
720 1.1 cube * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
721 1.1 cube *
722 1.1 cube * The second way is the so-called "cloning" device. It's a special minor
723 1.1 cube * number (chosen as the maximal number, to allow as much tap devices as
724 1.1 cube * possible). The user first opens the cloner (e.g., /dev/tap), and that
725 1.1 cube * call ends in tap_cdev_open. The actual place where it is handled is
726 1.1 cube * tap_dev_cloner.
727 1.1 cube *
728 1.1 cube * An tap device cannot be opened more than once at a time, so the cdevsw
729 1.1 cube * part of open() does nothing but noting that the interface is being used and
730 1.1 cube * hence ready to actually handle packets.
731 1.1 cube */
732 1.1 cube
733 1.1 cube static int
734 1.23 christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
735 1.1 cube {
736 1.1 cube struct tap_softc *sc;
737 1.1 cube
738 1.1 cube if (minor(dev) == TAP_CLONER)
739 1.11 christos return tap_dev_cloner(l);
740 1.1 cube
741 1.46 cegger sc = device_lookup_private(&tap_cd, minor(dev));
742 1.1 cube if (sc == NULL)
743 1.1 cube return (ENXIO);
744 1.1 cube
745 1.1 cube /* The device can only be opened once */
746 1.1 cube if (sc->sc_flags & TAP_INUSE)
747 1.1 cube return (EBUSY);
748 1.1 cube sc->sc_flags |= TAP_INUSE;
749 1.1 cube return (0);
750 1.1 cube }
751 1.1 cube
752 1.1 cube /*
753 1.1 cube * There are several kinds of cloning devices, and the most simple is the one
754 1.1 cube * tap(4) uses. What it does is change the file descriptor with a new one,
755 1.1 cube * with its own fileops structure (which maps to the various read, write,
756 1.1 cube * ioctl functions). It starts allocating a new file descriptor with falloc,
757 1.1 cube * then actually creates the new tap devices.
758 1.1 cube *
759 1.1 cube * Once those two steps are successful, we can re-wire the existing file
760 1.1 cube * descriptor to its new self. This is done with fdclone(): it fills the fp
761 1.78 matt * structure as needed (notably f_devunit gets filled with the fifth parameter
762 1.1 cube * passed, the unit of the tap device which will allows us identifying the
763 1.1 cube * device later), and returns EMOVEFD.
764 1.1 cube *
765 1.1 cube * That magic value is interpreted by sys_open() which then replaces the
766 1.1 cube * current file descriptor by the new one (through a magic member of struct
767 1.13 pooka * lwp, l_dupfd).
768 1.1 cube *
769 1.1 cube * The tap device is flagged as being busy since it otherwise could be
770 1.1 cube * externally accessed through the corresponding device node with the cdevsw
771 1.1 cube * interface.
772 1.1 cube */
773 1.1 cube
774 1.1 cube static int
775 1.11 christos tap_dev_cloner(struct lwp *l)
776 1.1 cube {
777 1.1 cube struct tap_softc *sc;
778 1.41 ad file_t *fp;
779 1.1 cube int error, fd;
780 1.1 cube
781 1.41 ad if ((error = fd_allocfile(&fp, &fd)) != 0)
782 1.1 cube return (error);
783 1.1 cube
784 1.27 drochner if ((sc = tap_clone_creator(-1)) == NULL) {
785 1.41 ad fd_abort(curproc, fp, fd);
786 1.1 cube return (ENXIO);
787 1.1 cube }
788 1.1 cube
789 1.1 cube sc->sc_flags |= TAP_INUSE;
790 1.1 cube
791 1.41 ad return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
792 1.40 cube (void *)(intptr_t)device_unit(sc->sc_dev));
793 1.1 cube }
794 1.1 cube
795 1.1 cube /*
796 1.1 cube * While all other operations (read, write, ioctl, poll and kqfilter) are
797 1.1 cube * really the same whether we are in cdevsw or fileops mode, the close()
798 1.1 cube * function is slightly different in the two cases.
799 1.1 cube *
800 1.1 cube * As for the other, the core of it is shared in tap_dev_close. What
801 1.1 cube * it does is sufficient for the cdevsw interface, but the cloning interface
802 1.1 cube * needs another thing: the interface is destroyed when the processes that
803 1.1 cube * created it closes it.
804 1.1 cube */
805 1.1 cube static int
806 1.23 christos tap_cdev_close(dev_t dev, int flags, int fmt,
807 1.23 christos struct lwp *l)
808 1.1 cube {
809 1.1 cube struct tap_softc *sc =
810 1.46 cegger device_lookup_private(&tap_cd, minor(dev));
811 1.1 cube
812 1.1 cube if (sc == NULL)
813 1.1 cube return (ENXIO);
814 1.1 cube
815 1.1 cube return tap_dev_close(sc);
816 1.1 cube }
817 1.1 cube
818 1.1 cube /*
819 1.1 cube * It might happen that the administrator used ifconfig to externally destroy
820 1.1 cube * the interface. In that case, tap_fops_close will be called while
821 1.1 cube * tap_detach is already happening. If we called it again from here, we
822 1.1 cube * would dead lock. TAP_GOING ensures that this situation doesn't happen.
823 1.1 cube */
824 1.1 cube static int
825 1.41 ad tap_fops_close(file_t *fp)
826 1.1 cube {
827 1.78 matt int unit = fp->f_devunit;
828 1.1 cube struct tap_softc *sc;
829 1.1 cube int error;
830 1.1 cube
831 1.46 cegger sc = device_lookup_private(&tap_cd, unit);
832 1.1 cube if (sc == NULL)
833 1.1 cube return (ENXIO);
834 1.1 cube
835 1.1 cube /* tap_dev_close currently always succeeds, but it might not
836 1.1 cube * always be the case. */
837 1.44 ad KERNEL_LOCK(1, NULL);
838 1.44 ad if ((error = tap_dev_close(sc)) != 0) {
839 1.44 ad KERNEL_UNLOCK_ONE(NULL);
840 1.1 cube return (error);
841 1.44 ad }
842 1.1 cube
843 1.1 cube /* Destroy the device now that it is no longer useful,
844 1.1 cube * unless it's already being destroyed. */
845 1.44 ad if ((sc->sc_flags & TAP_GOING) != 0) {
846 1.44 ad KERNEL_UNLOCK_ONE(NULL);
847 1.1 cube return (0);
848 1.44 ad }
849 1.1 cube
850 1.44 ad error = tap_clone_destroyer(sc->sc_dev);
851 1.44 ad KERNEL_UNLOCK_ONE(NULL);
852 1.44 ad return error;
853 1.1 cube }
854 1.1 cube
855 1.1 cube static int
856 1.1 cube tap_dev_close(struct tap_softc *sc)
857 1.1 cube {
858 1.1 cube struct ifnet *ifp;
859 1.1 cube int s;
860 1.1 cube
861 1.1 cube s = splnet();
862 1.1 cube /* Let tap_start handle packets again */
863 1.1 cube ifp = &sc->sc_ec.ec_if;
864 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
865 1.1 cube
866 1.1 cube /* Purge output queue */
867 1.1 cube if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
868 1.1 cube struct mbuf *m;
869 1.1 cube
870 1.1 cube for (;;) {
871 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
872 1.1 cube if (m == NULL)
873 1.1 cube break;
874 1.1 cube
875 1.1 cube ifp->if_opackets++;
876 1.64 joerg bpf_mtap(ifp, m);
877 1.60 plunky m_freem(m);
878 1.1 cube }
879 1.1 cube }
880 1.1 cube splx(s);
881 1.1 cube
882 1.71 yamt if (sc->sc_sih != NULL) {
883 1.71 yamt softint_disestablish(sc->sc_sih);
884 1.71 yamt sc->sc_sih = NULL;
885 1.71 yamt }
886 1.1 cube sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
887 1.1 cube
888 1.1 cube return (0);
889 1.1 cube }
890 1.1 cube
891 1.1 cube static int
892 1.1 cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
893 1.1 cube {
894 1.1 cube return tap_dev_read(minor(dev), uio, flags);
895 1.1 cube }
896 1.1 cube
897 1.1 cube static int
898 1.41 ad tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
899 1.23 christos kauth_cred_t cred, int flags)
900 1.1 cube {
901 1.44 ad int error;
902 1.44 ad
903 1.44 ad KERNEL_LOCK(1, NULL);
904 1.78 matt error = tap_dev_read(fp->f_devunit, uio, flags);
905 1.44 ad KERNEL_UNLOCK_ONE(NULL);
906 1.44 ad return error;
907 1.1 cube }
908 1.1 cube
909 1.1 cube static int
910 1.23 christos tap_dev_read(int unit, struct uio *uio, int flags)
911 1.1 cube {
912 1.78 matt struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
913 1.1 cube struct ifnet *ifp;
914 1.1 cube struct mbuf *m, *n;
915 1.1 cube int error = 0, s;
916 1.1 cube
917 1.1 cube if (sc == NULL)
918 1.1 cube return (ENXIO);
919 1.1 cube
920 1.56 christos getnanotime(&sc->sc_atime);
921 1.56 christos
922 1.1 cube ifp = &sc->sc_ec.ec_if;
923 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
924 1.1 cube return (EHOSTDOWN);
925 1.1 cube
926 1.1 cube /*
927 1.1 cube * In the TAP_NBIO case, we have to make sure we won't be sleeping
928 1.1 cube */
929 1.34 ad if ((sc->sc_flags & TAP_NBIO) != 0) {
930 1.34 ad if (!mutex_tryenter(&sc->sc_rdlock))
931 1.34 ad return (EWOULDBLOCK);
932 1.34 ad } else {
933 1.34 ad mutex_enter(&sc->sc_rdlock);
934 1.34 ad }
935 1.1 cube
936 1.1 cube s = splnet();
937 1.1 cube if (IFQ_IS_EMPTY(&ifp->if_snd)) {
938 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
939 1.1 cube /*
940 1.1 cube * We must release the lock before sleeping, and re-acquire it
941 1.1 cube * after.
942 1.1 cube */
943 1.34 ad mutex_exit(&sc->sc_rdlock);
944 1.1 cube if (sc->sc_flags & TAP_NBIO)
945 1.1 cube error = EWOULDBLOCK;
946 1.1 cube else
947 1.1 cube error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
948 1.52 pooka splx(s);
949 1.52 pooka
950 1.1 cube if (error != 0)
951 1.1 cube return (error);
952 1.1 cube /* The device might have been downed */
953 1.1 cube if ((ifp->if_flags & IFF_UP) == 0)
954 1.1 cube return (EHOSTDOWN);
955 1.34 ad if ((sc->sc_flags & TAP_NBIO)) {
956 1.34 ad if (!mutex_tryenter(&sc->sc_rdlock))
957 1.34 ad return (EWOULDBLOCK);
958 1.34 ad } else {
959 1.34 ad mutex_enter(&sc->sc_rdlock);
960 1.34 ad }
961 1.1 cube s = splnet();
962 1.1 cube }
963 1.1 cube
964 1.1 cube IFQ_DEQUEUE(&ifp->if_snd, m);
965 1.1 cube ifp->if_flags &= ~IFF_OACTIVE;
966 1.1 cube splx(s);
967 1.1 cube if (m == NULL) {
968 1.1 cube error = 0;
969 1.1 cube goto out;
970 1.1 cube }
971 1.1 cube
972 1.1 cube ifp->if_opackets++;
973 1.64 joerg bpf_mtap(ifp, m);
974 1.1 cube
975 1.1 cube /*
976 1.1 cube * One read is one packet.
977 1.1 cube */
978 1.1 cube do {
979 1.26 christos error = uiomove(mtod(m, void *),
980 1.1 cube min(m->m_len, uio->uio_resid), uio);
981 1.1 cube MFREE(m, n);
982 1.1 cube m = n;
983 1.1 cube } while (m != NULL && uio->uio_resid > 0 && error == 0);
984 1.1 cube
985 1.1 cube if (m != NULL)
986 1.1 cube m_freem(m);
987 1.1 cube
988 1.1 cube out:
989 1.34 ad mutex_exit(&sc->sc_rdlock);
990 1.1 cube return (error);
991 1.1 cube }
992 1.1 cube
993 1.1 cube static int
994 1.56 christos tap_fops_stat(file_t *fp, struct stat *st)
995 1.56 christos {
996 1.59 drochner int error = 0;
997 1.57 christos struct tap_softc *sc;
998 1.78 matt int unit = fp->f_devunit;
999 1.57 christos
1000 1.57 christos (void)memset(st, 0, sizeof(*st));
1001 1.57 christos
1002 1.56 christos KERNEL_LOCK(1, NULL);
1003 1.57 christos sc = device_lookup_private(&tap_cd, unit);
1004 1.57 christos if (sc == NULL) {
1005 1.57 christos error = ENXIO;
1006 1.57 christos goto out;
1007 1.57 christos }
1008 1.56 christos
1009 1.56 christos st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
1010 1.56 christos st->st_atimespec = sc->sc_atime;
1011 1.56 christos st->st_mtimespec = sc->sc_mtime;
1012 1.56 christos st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
1013 1.57 christos st->st_uid = kauth_cred_geteuid(fp->f_cred);
1014 1.57 christos st->st_gid = kauth_cred_getegid(fp->f_cred);
1015 1.57 christos out:
1016 1.57 christos KERNEL_UNLOCK_ONE(NULL);
1017 1.57 christos return error;
1018 1.56 christos }
1019 1.56 christos
1020 1.56 christos static int
1021 1.1 cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1022 1.1 cube {
1023 1.1 cube return tap_dev_write(minor(dev), uio, flags);
1024 1.1 cube }
1025 1.1 cube
1026 1.1 cube static int
1027 1.41 ad tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1028 1.23 christos kauth_cred_t cred, int flags)
1029 1.1 cube {
1030 1.44 ad int error;
1031 1.44 ad
1032 1.44 ad KERNEL_LOCK(1, NULL);
1033 1.78 matt error = tap_dev_write(fp->f_devunit, uio, flags);
1034 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1035 1.44 ad return error;
1036 1.1 cube }
1037 1.1 cube
1038 1.1 cube static int
1039 1.23 christos tap_dev_write(int unit, struct uio *uio, int flags)
1040 1.1 cube {
1041 1.1 cube struct tap_softc *sc =
1042 1.46 cegger device_lookup_private(&tap_cd, unit);
1043 1.1 cube struct ifnet *ifp;
1044 1.1 cube struct mbuf *m, **mp;
1045 1.1 cube int error = 0;
1046 1.9 bouyer int s;
1047 1.1 cube
1048 1.1 cube if (sc == NULL)
1049 1.1 cube return (ENXIO);
1050 1.1 cube
1051 1.56 christos getnanotime(&sc->sc_mtime);
1052 1.1 cube ifp = &sc->sc_ec.ec_if;
1053 1.1 cube
1054 1.1 cube /* One write, one packet, that's the rule */
1055 1.1 cube MGETHDR(m, M_DONTWAIT, MT_DATA);
1056 1.1 cube if (m == NULL) {
1057 1.1 cube ifp->if_ierrors++;
1058 1.1 cube return (ENOBUFS);
1059 1.1 cube }
1060 1.1 cube m->m_pkthdr.len = uio->uio_resid;
1061 1.1 cube
1062 1.1 cube mp = &m;
1063 1.1 cube while (error == 0 && uio->uio_resid > 0) {
1064 1.1 cube if (*mp != m) {
1065 1.1 cube MGET(*mp, M_DONTWAIT, MT_DATA);
1066 1.1 cube if (*mp == NULL) {
1067 1.1 cube error = ENOBUFS;
1068 1.1 cube break;
1069 1.1 cube }
1070 1.1 cube }
1071 1.1 cube (*mp)->m_len = min(MHLEN, uio->uio_resid);
1072 1.26 christos error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1073 1.1 cube mp = &(*mp)->m_next;
1074 1.1 cube }
1075 1.1 cube if (error) {
1076 1.1 cube ifp->if_ierrors++;
1077 1.1 cube m_freem(m);
1078 1.1 cube return (error);
1079 1.1 cube }
1080 1.1 cube
1081 1.1 cube ifp->if_ipackets++;
1082 1.84 ozaki m_set_rcvif(m, ifp);
1083 1.1 cube
1084 1.64 joerg bpf_mtap(ifp, m);
1085 1.69 yamt s = splnet();
1086 1.83 ozaki if_input(ifp, m);
1087 1.9 bouyer splx(s);
1088 1.1 cube
1089 1.1 cube return (0);
1090 1.1 cube }
1091 1.1 cube
1092 1.1 cube static int
1093 1.26 christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1094 1.11 christos struct lwp *l)
1095 1.1 cube {
1096 1.11 christos return tap_dev_ioctl(minor(dev), cmd, data, l);
1097 1.1 cube }
1098 1.1 cube
1099 1.1 cube static int
1100 1.41 ad tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1101 1.1 cube {
1102 1.78 matt return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1103 1.1 cube }
1104 1.1 cube
1105 1.1 cube static int
1106 1.26 christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1107 1.1 cube {
1108 1.66 christos struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1109 1.1 cube
1110 1.1 cube if (sc == NULL)
1111 1.66 christos return ENXIO;
1112 1.1 cube
1113 1.1 cube switch (cmd) {
1114 1.1 cube case FIONREAD:
1115 1.1 cube {
1116 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1117 1.1 cube struct mbuf *m;
1118 1.1 cube int s;
1119 1.1 cube
1120 1.1 cube s = splnet();
1121 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1122 1.1 cube
1123 1.1 cube if (m == NULL)
1124 1.1 cube *(int *)data = 0;
1125 1.1 cube else
1126 1.1 cube *(int *)data = m->m_pkthdr.len;
1127 1.1 cube splx(s);
1128 1.66 christos return 0;
1129 1.66 christos }
1130 1.1 cube case TIOCSPGRP:
1131 1.1 cube case FIOSETOWN:
1132 1.66 christos return fsetown(&sc->sc_pgid, cmd, data);
1133 1.1 cube case TIOCGPGRP:
1134 1.1 cube case FIOGETOWN:
1135 1.66 christos return fgetown(sc->sc_pgid, cmd, data);
1136 1.1 cube case FIOASYNC:
1137 1.71 yamt if (*(int *)data) {
1138 1.71 yamt if (sc->sc_sih == NULL) {
1139 1.71 yamt sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1140 1.71 yamt tap_softintr, sc);
1141 1.71 yamt if (sc->sc_sih == NULL)
1142 1.71 yamt return EBUSY; /* XXX */
1143 1.71 yamt }
1144 1.1 cube sc->sc_flags |= TAP_ASYNCIO;
1145 1.71 yamt } else {
1146 1.1 cube sc->sc_flags &= ~TAP_ASYNCIO;
1147 1.71 yamt if (sc->sc_sih != NULL) {
1148 1.71 yamt softint_disestablish(sc->sc_sih);
1149 1.71 yamt sc->sc_sih = NULL;
1150 1.71 yamt }
1151 1.71 yamt }
1152 1.66 christos return 0;
1153 1.1 cube case FIONBIO:
1154 1.1 cube if (*(int *)data)
1155 1.1 cube sc->sc_flags |= TAP_NBIO;
1156 1.1 cube else
1157 1.1 cube sc->sc_flags &= ~TAP_NBIO;
1158 1.66 christos return 0;
1159 1.29 christos #ifdef OTAPGIFNAME
1160 1.29 christos case OTAPGIFNAME:
1161 1.29 christos #endif
1162 1.1 cube case TAPGIFNAME:
1163 1.1 cube {
1164 1.1 cube struct ifreq *ifr = (struct ifreq *)data;
1165 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1166 1.1 cube
1167 1.1 cube strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1168 1.66 christos return 0;
1169 1.66 christos }
1170 1.1 cube default:
1171 1.66 christos return ENOTTY;
1172 1.1 cube }
1173 1.1 cube }
1174 1.1 cube
1175 1.1 cube static int
1176 1.11 christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1177 1.1 cube {
1178 1.11 christos return tap_dev_poll(minor(dev), events, l);
1179 1.1 cube }
1180 1.1 cube
1181 1.1 cube static int
1182 1.41 ad tap_fops_poll(file_t *fp, int events)
1183 1.1 cube {
1184 1.78 matt return tap_dev_poll(fp->f_devunit, events, curlwp);
1185 1.1 cube }
1186 1.1 cube
1187 1.1 cube static int
1188 1.11 christos tap_dev_poll(int unit, int events, struct lwp *l)
1189 1.1 cube {
1190 1.1 cube struct tap_softc *sc =
1191 1.46 cegger device_lookup_private(&tap_cd, unit);
1192 1.1 cube int revents = 0;
1193 1.1 cube
1194 1.1 cube if (sc == NULL)
1195 1.28 christos return POLLERR;
1196 1.1 cube
1197 1.1 cube if (events & (POLLIN|POLLRDNORM)) {
1198 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1199 1.1 cube struct mbuf *m;
1200 1.1 cube int s;
1201 1.1 cube
1202 1.1 cube s = splnet();
1203 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1204 1.1 cube
1205 1.1 cube if (m != NULL)
1206 1.1 cube revents |= events & (POLLIN|POLLRDNORM);
1207 1.1 cube else {
1208 1.74 skrll mutex_spin_enter(&sc->sc_kqlock);
1209 1.11 christos selrecord(l, &sc->sc_rsel);
1210 1.74 skrll mutex_spin_exit(&sc->sc_kqlock);
1211 1.1 cube }
1212 1.76 cube splx(s);
1213 1.1 cube }
1214 1.1 cube revents |= events & (POLLOUT|POLLWRNORM);
1215 1.1 cube
1216 1.1 cube return (revents);
1217 1.1 cube }
1218 1.1 cube
1219 1.1 cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1220 1.1 cube tap_kqread };
1221 1.1 cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1222 1.1 cube filt_seltrue };
1223 1.1 cube
1224 1.1 cube static int
1225 1.1 cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1226 1.1 cube {
1227 1.1 cube return tap_dev_kqfilter(minor(dev), kn);
1228 1.1 cube }
1229 1.1 cube
1230 1.1 cube static int
1231 1.41 ad tap_fops_kqfilter(file_t *fp, struct knote *kn)
1232 1.1 cube {
1233 1.78 matt return tap_dev_kqfilter(fp->f_devunit, kn);
1234 1.1 cube }
1235 1.1 cube
1236 1.1 cube static int
1237 1.1 cube tap_dev_kqfilter(int unit, struct knote *kn)
1238 1.1 cube {
1239 1.1 cube struct tap_softc *sc =
1240 1.46 cegger device_lookup_private(&tap_cd, unit);
1241 1.1 cube
1242 1.1 cube if (sc == NULL)
1243 1.1 cube return (ENXIO);
1244 1.1 cube
1245 1.44 ad KERNEL_LOCK(1, NULL);
1246 1.1 cube switch(kn->kn_filter) {
1247 1.1 cube case EVFILT_READ:
1248 1.1 cube kn->kn_fop = &tap_read_filterops;
1249 1.1 cube break;
1250 1.1 cube case EVFILT_WRITE:
1251 1.1 cube kn->kn_fop = &tap_seltrue_filterops;
1252 1.1 cube break;
1253 1.1 cube default:
1254 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1255 1.35 pooka return (EINVAL);
1256 1.1 cube }
1257 1.1 cube
1258 1.1 cube kn->kn_hook = sc;
1259 1.74 skrll mutex_spin_enter(&sc->sc_kqlock);
1260 1.1 cube SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1261 1.74 skrll mutex_spin_exit(&sc->sc_kqlock);
1262 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1263 1.1 cube return (0);
1264 1.1 cube }
1265 1.1 cube
1266 1.1 cube static void
1267 1.1 cube tap_kqdetach(struct knote *kn)
1268 1.1 cube {
1269 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1270 1.1 cube
1271 1.44 ad KERNEL_LOCK(1, NULL);
1272 1.74 skrll mutex_spin_enter(&sc->sc_kqlock);
1273 1.1 cube SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1274 1.74 skrll mutex_spin_exit(&sc->sc_kqlock);
1275 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1276 1.1 cube }
1277 1.1 cube
1278 1.1 cube static int
1279 1.23 christos tap_kqread(struct knote *kn, long hint)
1280 1.1 cube {
1281 1.1 cube struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1282 1.1 cube struct ifnet *ifp = &sc->sc_ec.ec_if;
1283 1.1 cube struct mbuf *m;
1284 1.44 ad int s, rv;
1285 1.1 cube
1286 1.44 ad KERNEL_LOCK(1, NULL);
1287 1.1 cube s = splnet();
1288 1.1 cube IFQ_POLL(&ifp->if_snd, m);
1289 1.1 cube
1290 1.1 cube if (m == NULL)
1291 1.1 cube kn->kn_data = 0;
1292 1.1 cube else
1293 1.1 cube kn->kn_data = m->m_pkthdr.len;
1294 1.1 cube splx(s);
1295 1.44 ad rv = (kn->kn_data != 0 ? 1 : 0);
1296 1.44 ad KERNEL_UNLOCK_ONE(NULL);
1297 1.44 ad return rv;
1298 1.1 cube }
1299 1.1 cube
1300 1.54 plunky #if defined(COMPAT_40) || defined(MODULAR)
1301 1.1 cube /*
1302 1.1 cube * sysctl management routines
1303 1.1 cube * You can set the address of an interface through:
1304 1.1 cube * net.link.tap.tap<number>
1305 1.1 cube *
1306 1.1 cube * Note the consistent use of tap_log in order to use
1307 1.1 cube * sysctl_teardown at unload time.
1308 1.1 cube *
1309 1.1 cube * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1310 1.1 cube * blocks register a function in a special section of the kernel
1311 1.1 cube * (called a link set) which is used at init_sysctl() time to cycle
1312 1.1 cube * through all those functions to create the kernel's sysctl tree.
1313 1.1 cube *
1314 1.51 ad * It is not possible to use link sets in a module, so the
1315 1.1 cube * easiest is to simply call our own setup routine at load time.
1316 1.1 cube *
1317 1.1 cube * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1318 1.1 cube * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1319 1.1 cube * whole kernel sysctl tree is built, it is not possible to add any
1320 1.1 cube * permanent node.
1321 1.1 cube *
1322 1.1 cube * It should be noted that we're not saving the sysctlnode pointer
1323 1.1 cube * we are returned when creating the "tap" node. That structure
1324 1.1 cube * cannot be trusted once out of the calling function, as it might
1325 1.1 cube * get reused. So we just save the MIB number, and always give the
1326 1.1 cube * full path starting from the root for later calls to sysctl_createv
1327 1.1 cube * and sysctl_destroyv.
1328 1.1 cube */
1329 1.1 cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
1330 1.1 cube {
1331 1.10 atatat const struct sysctlnode *node;
1332 1.1 cube int error = 0;
1333 1.1 cube
1334 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, NULL,
1335 1.1 cube CTLFLAG_PERMANENT,
1336 1.1 cube CTLTYPE_NODE, "link", NULL,
1337 1.1 cube NULL, 0, NULL, 0,
1338 1.3 cube CTL_NET, AF_LINK, CTL_EOL)) != 0)
1339 1.1 cube return;
1340 1.1 cube
1341 1.1 cube /*
1342 1.1 cube * The first four parameters of sysctl_createv are for management.
1343 1.1 cube *
1344 1.1 cube * The four that follows, here starting with a '0' for the flags,
1345 1.1 cube * describe the node.
1346 1.1 cube *
1347 1.1 cube * The next series of four set its value, through various possible
1348 1.1 cube * means.
1349 1.1 cube *
1350 1.1 cube * Last but not least, the path to the node is described. That path
1351 1.1 cube * is relative to the given root (third argument). Here we're
1352 1.1 cube * starting from the root.
1353 1.1 cube */
1354 1.1 cube if ((error = sysctl_createv(clog, 0, NULL, &node,
1355 1.1 cube CTLFLAG_PERMANENT,
1356 1.1 cube CTLTYPE_NODE, "tap", NULL,
1357 1.1 cube NULL, 0, NULL, 0,
1358 1.3 cube CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1359 1.1 cube return;
1360 1.1 cube tap_node = node->sysctl_num;
1361 1.1 cube }
1362 1.1 cube
1363 1.1 cube /*
1364 1.1 cube * The helper functions make Andrew Brown's interface really
1365 1.1 cube * shine. It makes possible to create value on the fly whether
1366 1.1 cube * the sysctl value is read or written.
1367 1.1 cube *
1368 1.1 cube * As shown as an example in the man page, the first step is to
1369 1.1 cube * create a copy of the node to have sysctl_lookup work on it.
1370 1.1 cube *
1371 1.1 cube * Here, we have more work to do than just a copy, since we have
1372 1.1 cube * to create the string. The first step is to collect the actual
1373 1.1 cube * value of the node, which is a convenient pointer to the softc
1374 1.1 cube * of the interface. From there we create the string and use it
1375 1.1 cube * as the value, but only for the *copy* of the node.
1376 1.1 cube *
1377 1.1 cube * Then we let sysctl_lookup do the magic, which consists in
1378 1.1 cube * setting oldp and newp as required by the operation. When the
1379 1.1 cube * value is read, that means that the string will be copied to
1380 1.1 cube * the user, and when it is written, the new value will be copied
1381 1.1 cube * over in the addr array.
1382 1.1 cube *
1383 1.1 cube * If newp is NULL, the user was reading the value, so we don't
1384 1.1 cube * have anything else to do. If a new value was written, we
1385 1.1 cube * have to check it.
1386 1.1 cube *
1387 1.1 cube * If it is incorrect, we can return an error and leave 'node' as
1388 1.1 cube * it is: since it is a copy of the actual node, the change will
1389 1.1 cube * be forgotten.
1390 1.1 cube *
1391 1.1 cube * Upon a correct input, we commit the change to the ifnet
1392 1.1 cube * structure of our interface.
1393 1.1 cube */
1394 1.1 cube static int
1395 1.1 cube tap_sysctl_handler(SYSCTLFN_ARGS)
1396 1.1 cube {
1397 1.1 cube struct sysctlnode node;
1398 1.1 cube struct tap_softc *sc;
1399 1.1 cube struct ifnet *ifp;
1400 1.1 cube int error;
1401 1.1 cube size_t len;
1402 1.14 christos char addr[3 * ETHER_ADDR_LEN];
1403 1.32 dyoung uint8_t enaddr[ETHER_ADDR_LEN];
1404 1.1 cube
1405 1.1 cube node = *rnode;
1406 1.1 cube sc = node.sysctl_data;
1407 1.1 cube ifp = &sc->sc_ec.ec_if;
1408 1.31 dyoung (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1409 1.1 cube node.sysctl_data = addr;
1410 1.1 cube error = sysctl_lookup(SYSCTLFN_CALL(&node));
1411 1.1 cube if (error || newp == NULL)
1412 1.1 cube return (error);
1413 1.1 cube
1414 1.1 cube len = strlen(addr);
1415 1.1 cube if (len < 11 || len > 17)
1416 1.1 cube return (EINVAL);
1417 1.1 cube
1418 1.1 cube /* Commit change */
1419 1.65 christos if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1420 1.1 cube return (EINVAL);
1421 1.50 dyoung if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1422 1.1 cube return (error);
1423 1.1 cube }
1424 1.54 plunky #endif
1425 1.85 christos
1426 1.85 christos /*
1427 1.85 christos * Module infrastructure
1428 1.85 christos */
1429 1.85 christos #include "if_module.h"
1430 1.85 christos
1431 1.85 christos IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
1432