Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.88
      1  1.88  pgoyette /*	$NetBSD: if_tap.c,v 1.88 2016/08/08 09:42:33 pgoyette Exp $	*/
      2   1.1      cube 
      3   1.1      cube /*
      4  1.55        ad  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5   1.1      cube  *  All rights reserved.
      6   1.1      cube  *
      7   1.1      cube  *  Redistribution and use in source and binary forms, with or without
      8   1.1      cube  *  modification, are permitted provided that the following conditions
      9   1.1      cube  *  are met:
     10   1.1      cube  *  1. Redistributions of source code must retain the above copyright
     11   1.1      cube  *     notice, this list of conditions and the following disclaimer.
     12   1.1      cube  *  2. Redistributions in binary form must reproduce the above copyright
     13   1.1      cube  *     notice, this list of conditions and the following disclaimer in the
     14   1.1      cube  *     documentation and/or other materials provided with the distribution.
     15   1.6     perry  *
     16   1.1      cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17   1.1      cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.1      cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.1      cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.1      cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.1      cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.1      cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.1      cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.1      cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.1      cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.1      cube  *  POSSIBILITY OF SUCH DAMAGE.
     27   1.1      cube  */
     28   1.1      cube 
     29   1.1      cube /*
     30   1.1      cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31   1.1      cube  * device to the system, but can also be accessed by userland through a
     32   1.1      cube  * character device interface, which allows reading and injecting frames.
     33   1.1      cube  */
     34   1.1      cube 
     35   1.1      cube #include <sys/cdefs.h>
     36  1.88  pgoyette __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.88 2016/08/08 09:42:33 pgoyette Exp $");
     37   1.1      cube 
     38   1.2      cube #if defined(_KERNEL_OPT)
     39  1.63     pooka 
     40  1.54    plunky #include "opt_modular.h"
     41  1.54    plunky #include "opt_compat_netbsd.h"
     42   1.2      cube #endif
     43   1.1      cube 
     44   1.1      cube #include <sys/param.h>
     45   1.1      cube #include <sys/systm.h>
     46   1.1      cube #include <sys/kernel.h>
     47   1.1      cube #include <sys/malloc.h>
     48   1.1      cube #include <sys/conf.h>
     49  1.70      yamt #include <sys/cprng.h>
     50   1.1      cube #include <sys/device.h>
     51   1.1      cube #include <sys/file.h>
     52   1.1      cube #include <sys/filedesc.h>
     53   1.1      cube #include <sys/poll.h>
     54  1.54    plunky #include <sys/proc.h>
     55   1.1      cube #include <sys/select.h>
     56   1.1      cube #include <sys/sockio.h>
     57  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
     58   1.1      cube #include <sys/sysctl.h>
     59  1.54    plunky #endif
     60  1.17      elad #include <sys/kauth.h>
     61  1.34        ad #include <sys/mutex.h>
     62  1.42        ad #include <sys/intr.h>
     63  1.56  christos #include <sys/stat.h>
     64  1.85  christos #include <sys/device.h>
     65  1.85  christos #include <sys/module.h>
     66  1.85  christos #include <sys/atomic.h>
     67   1.1      cube 
     68   1.1      cube #include <net/if.h>
     69   1.1      cube #include <net/if_dl.h>
     70   1.1      cube #include <net/if_ether.h>
     71   1.1      cube #include <net/if_media.h>
     72   1.1      cube #include <net/if_tap.h>
     73   1.1      cube #include <net/bpf.h>
     74   1.1      cube 
     75  1.29  christos #include <compat/sys/sockio.h>
     76  1.29  christos 
     77  1.82  christos #include "ioconf.h"
     78  1.82  christos 
     79  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
     80   1.1      cube /*
     81   1.1      cube  * sysctl node management
     82   1.1      cube  *
     83   1.1      cube  * It's not really possible to use a SYSCTL_SETUP block with
     84  1.51        ad  * current module implementation, so it is easier to just define
     85   1.1      cube  * our own function.
     86   1.1      cube  *
     87   1.1      cube  * The handler function is a "helper" in Andrew Brown's sysctl
     88   1.1      cube  * framework terminology.  It is used as a gateway for sysctl
     89   1.1      cube  * requests over the nodes.
     90   1.1      cube  *
     91   1.1      cube  * tap_log allows the module to log creations of nodes and
     92   1.1      cube  * destroy them all at once using sysctl_teardown.
     93   1.1      cube  */
     94   1.1      cube static int tap_node;
     95   1.1      cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     96   1.2      cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     97  1.54    plunky #endif
     98   1.1      cube 
     99   1.1      cube /*
    100  1.68       chs  * Since we're an Ethernet device, we need the 2 following
    101  1.68       chs  * components: a struct ethercom and a struct ifmedia
    102  1.68       chs  * since we don't attach a PHY to ourselves.
    103  1.68       chs  * We could emulate one, but there's no real point.
    104   1.1      cube  */
    105   1.1      cube 
    106   1.1      cube struct tap_softc {
    107  1.40      cube 	device_t	sc_dev;
    108   1.1      cube 	struct ifmedia	sc_im;
    109   1.1      cube 	struct ethercom	sc_ec;
    110   1.1      cube 	int		sc_flags;
    111   1.1      cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    112   1.1      cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    113   1.1      cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    114   1.1      cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
    115   1.1      cube 	struct selinfo	sc_rsel;
    116   1.1      cube 	pid_t		sc_pgid; /* For async. IO */
    117  1.34        ad 	kmutex_t	sc_rdlock;
    118  1.74     skrll 	kmutex_t	sc_kqlock;
    119  1.42        ad 	void		*sc_sih;
    120  1.56  christos 	struct timespec sc_atime;
    121  1.56  christos 	struct timespec sc_mtime;
    122  1.56  christos 	struct timespec sc_btime;
    123   1.1      cube };
    124   1.1      cube 
    125   1.1      cube /* autoconf(9) glue */
    126   1.1      cube 
    127  1.40      cube static int	tap_match(device_t, cfdata_t, void *);
    128  1.40      cube static void	tap_attach(device_t, device_t, void *);
    129  1.40      cube static int	tap_detach(device_t, int);
    130   1.1      cube 
    131  1.40      cube CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    132   1.1      cube     tap_match, tap_attach, tap_detach, NULL);
    133   1.1      cube extern struct cfdriver tap_cd;
    134   1.1      cube 
    135   1.1      cube /* Real device access routines */
    136   1.1      cube static int	tap_dev_close(struct tap_softc *);
    137   1.1      cube static int	tap_dev_read(int, struct uio *, int);
    138   1.1      cube static int	tap_dev_write(int, struct uio *, int);
    139  1.26  christos static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    140  1.11  christos static int	tap_dev_poll(int, int, struct lwp *);
    141   1.1      cube static int	tap_dev_kqfilter(int, struct knote *);
    142   1.1      cube 
    143   1.1      cube /* Fileops access routines */
    144  1.41        ad static int	tap_fops_close(file_t *);
    145  1.41        ad static int	tap_fops_read(file_t *, off_t *, struct uio *,
    146  1.17      elad     kauth_cred_t, int);
    147  1.41        ad static int	tap_fops_write(file_t *, off_t *, struct uio *,
    148  1.17      elad     kauth_cred_t, int);
    149  1.41        ad static int	tap_fops_ioctl(file_t *, u_long, void *);
    150  1.41        ad static int	tap_fops_poll(file_t *, int);
    151  1.56  christos static int	tap_fops_stat(file_t *, struct stat *);
    152  1.41        ad static int	tap_fops_kqfilter(file_t *, struct knote *);
    153   1.1      cube 
    154   1.1      cube static const struct fileops tap_fileops = {
    155  1.55        ad 	.fo_read = tap_fops_read,
    156  1.55        ad 	.fo_write = tap_fops_write,
    157  1.55        ad 	.fo_ioctl = tap_fops_ioctl,
    158  1.55        ad 	.fo_fcntl = fnullop_fcntl,
    159  1.55        ad 	.fo_poll = tap_fops_poll,
    160  1.56  christos 	.fo_stat = tap_fops_stat,
    161  1.55        ad 	.fo_close = tap_fops_close,
    162  1.55        ad 	.fo_kqfilter = tap_fops_kqfilter,
    163  1.62       dsl 	.fo_restart = fnullop_restart,
    164   1.1      cube };
    165   1.1      cube 
    166   1.1      cube /* Helper for cloning open() */
    167  1.11  christos static int	tap_dev_cloner(struct lwp *);
    168   1.1      cube 
    169   1.1      cube /* Character device routines */
    170  1.11  christos static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    171  1.11  christos static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    172   1.1      cube static int	tap_cdev_read(dev_t, struct uio *, int);
    173   1.1      cube static int	tap_cdev_write(dev_t, struct uio *, int);
    174  1.26  christos static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    175  1.11  christos static int	tap_cdev_poll(dev_t, int, struct lwp *);
    176   1.1      cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    177   1.1      cube 
    178   1.1      cube const struct cdevsw tap_cdevsw = {
    179  1.73  dholland 	.d_open = tap_cdev_open,
    180  1.73  dholland 	.d_close = tap_cdev_close,
    181  1.73  dholland 	.d_read = tap_cdev_read,
    182  1.73  dholland 	.d_write = tap_cdev_write,
    183  1.73  dholland 	.d_ioctl = tap_cdev_ioctl,
    184  1.73  dholland 	.d_stop = nostop,
    185  1.73  dholland 	.d_tty = notty,
    186  1.73  dholland 	.d_poll = tap_cdev_poll,
    187  1.73  dholland 	.d_mmap = nommap,
    188  1.73  dholland 	.d_kqfilter = tap_cdev_kqfilter,
    189  1.77  dholland 	.d_discard = nodiscard,
    190  1.73  dholland 	.d_flag = D_OTHER
    191   1.1      cube };
    192   1.1      cube 
    193   1.1      cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    194   1.1      cube 
    195   1.1      cube /* kqueue-related routines */
    196   1.1      cube static void	tap_kqdetach(struct knote *);
    197   1.1      cube static int	tap_kqread(struct knote *, long);
    198   1.1      cube 
    199   1.1      cube /*
    200   1.1      cube  * Those are needed by the if_media interface.
    201   1.1      cube  */
    202   1.1      cube 
    203   1.1      cube static int	tap_mediachange(struct ifnet *);
    204   1.1      cube static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    205   1.1      cube 
    206   1.1      cube /*
    207   1.1      cube  * Those are needed by the ifnet interface, and would typically be
    208   1.1      cube  * there for any network interface driver.
    209   1.1      cube  * Some other routines are optional: watchdog and drain.
    210   1.1      cube  */
    211   1.1      cube 
    212   1.1      cube static void	tap_start(struct ifnet *);
    213   1.1      cube static void	tap_stop(struct ifnet *, int);
    214   1.1      cube static int	tap_init(struct ifnet *);
    215  1.26  christos static int	tap_ioctl(struct ifnet *, u_long, void *);
    216   1.1      cube 
    217  1.42        ad /* Internal functions */
    218  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    219   1.1      cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    220  1.54    plunky #endif
    221  1.42        ad static void	tap_softintr(void *);
    222   1.1      cube 
    223   1.1      cube /*
    224   1.1      cube  * tap is a clonable interface, although it is highly unrealistic for
    225   1.1      cube  * an Ethernet device.
    226   1.1      cube  *
    227   1.1      cube  * Here are the bits needed for a clonable interface.
    228   1.1      cube  */
    229   1.1      cube static int	tap_clone_create(struct if_clone *, int);
    230   1.1      cube static int	tap_clone_destroy(struct ifnet *);
    231   1.1      cube 
    232   1.1      cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    233   1.1      cube 					tap_clone_create,
    234   1.1      cube 					tap_clone_destroy);
    235   1.1      cube 
    236   1.1      cube /* Helper functionis shared by the two cloning code paths */
    237   1.1      cube static struct tap_softc *	tap_clone_creator(int);
    238  1.40      cube int	tap_clone_destroyer(device_t);
    239   1.1      cube 
    240  1.86  pgoyette #ifdef _MODULE
    241  1.86  pgoyette static struct sysctllog *tap_sysctl_clog;
    242  1.87  pgoyette 
    243  1.87  pgoyette devmajor_t tap_bmajor = -1, tap_cmajor = -1;
    244  1.87  pgoyette 
    245  1.86  pgoyette #endif
    246  1.86  pgoyette 
    247  1.85  christos static u_int tap_count;
    248  1.85  christos 
    249   1.1      cube void
    250  1.23  christos tapattach(int n)
    251   1.1      cube {
    252   1.1      cube 
    253  1.85  christos 	/*
    254  1.85  christos 	 * Nothing to do here, initialization is handled by the
    255  1.85  christos 	 * module initialization code in tapinit() below).
    256  1.85  christos 	 */
    257  1.85  christos }
    258   1.1      cube 
    259  1.85  christos static void
    260  1.85  christos tapinit(void)
    261  1.85  christos {
    262   1.1      cube 	if_clone_attach(&tap_cloners);
    263  1.86  pgoyette #ifdef _MODULE
    264  1.86  pgoyette 	sysctl_tap_setup(&tap_sysctl_clog);
    265  1.87  pgoyette 	devsw_attach("tap", NULL, &tap_bmajor, tap_cdevsw, &tap_cmajor);
    266  1.86  pgoyette #endif
    267   1.1      cube }
    268   1.1      cube 
    269  1.85  christos static int
    270  1.85  christos tapdetach(void)
    271  1.85  christos {
    272  1.85  christos 	int error = 0;
    273  1.85  christos 
    274  1.85  christos 	if (tap_count != 0)
    275  1.88  pgoyette 		return EBUSY;
    276  1.85  christos 
    277  1.88  pgoyette #ifdef _MODULE
    278  1.88  pgoyette 	error = devsw_detach(NULL, &tap_cdevsw);
    279  1.85  christos 	if (error == 0)
    280  1.88  pgoyette 		sysctl_teardown(&tap_sysctl_clog);
    281  1.88  pgoyette #endif
    282  1.87  pgoyette 	if (error == 0)
    283  1.85  christos 		if_clone_detach(&tap_cloners);
    284  1.85  christos 
    285  1.85  christos 	return error;
    286  1.85  christos }
    287  1.85  christos 
    288   1.1      cube /* Pretty much useless for a pseudo-device */
    289   1.1      cube static int
    290  1.40      cube tap_match(device_t parent, cfdata_t cfdata, void *arg)
    291   1.1      cube {
    292  1.40      cube 
    293   1.1      cube 	return (1);
    294   1.1      cube }
    295   1.1      cube 
    296   1.1      cube void
    297  1.40      cube tap_attach(device_t parent, device_t self, void *aux)
    298   1.1      cube {
    299  1.40      cube 	struct tap_softc *sc = device_private(self);
    300   1.1      cube 	struct ifnet *ifp;
    301  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    302  1.18    kardel 	const struct sysctlnode *node;
    303  1.54    plunky 	int error;
    304  1.54    plunky #endif
    305  1.38      matt 	uint8_t enaddr[ETHER_ADDR_LEN] =
    306   1.7      cube 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    307  1.14  christos 	char enaddrstr[3 * ETHER_ADDR_LEN];
    308   1.1      cube 
    309  1.40      cube 	sc->sc_dev = self;
    310  1.71      yamt 	sc->sc_sih = NULL;
    311  1.56  christos 	getnanotime(&sc->sc_btime);
    312  1.56  christos 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    313  1.80     ozaki 	sc->sc_flags = 0;
    314  1.80     ozaki 	selinit(&sc->sc_rsel);
    315  1.80     ozaki 
    316  1.80     ozaki 	/*
    317  1.80     ozaki 	 * Initialize the two locks for the device.
    318  1.80     ozaki 	 *
    319  1.80     ozaki 	 * We need a lock here because even though the tap device can be
    320  1.80     ozaki 	 * opened only once, the file descriptor might be passed to another
    321  1.80     ozaki 	 * process, say a fork(2)ed child.
    322  1.80     ozaki 	 *
    323  1.80     ozaki 	 * The Giant saves us from most of the hassle, but since the read
    324  1.80     ozaki 	 * operation can sleep, we don't want two processes to wake up at
    325  1.80     ozaki 	 * the same moment and both try and dequeue a single packet.
    326  1.80     ozaki 	 *
    327  1.80     ozaki 	 * The queue for event listeners (used by kqueue(9), see below) has
    328  1.80     ozaki 	 * to be protected too, so use a spin lock.
    329  1.80     ozaki 	 */
    330  1.80     ozaki 	mutex_init(&sc->sc_rdlock, MUTEX_DEFAULT, IPL_NONE);
    331  1.80     ozaki 	mutex_init(&sc->sc_kqlock, MUTEX_DEFAULT, IPL_VM);
    332  1.40      cube 
    333  1.48      hans 	if (!pmf_device_register(self, NULL, NULL))
    334  1.48      hans 		aprint_error_dev(self, "couldn't establish power handler\n");
    335  1.48      hans 
    336   1.1      cube 	/*
    337   1.1      cube 	 * In order to obtain unique initial Ethernet address on a host,
    338  1.70      yamt 	 * do some randomisation.  It's not meant for anything but avoiding
    339  1.70      yamt 	 * hard-coding an address.
    340   1.1      cube 	 */
    341  1.70      yamt 	cprng_fast(&enaddr[3], 3);
    342   1.1      cube 
    343  1.40      cube 	aprint_verbose_dev(self, "Ethernet address %s\n",
    344  1.14  christos 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    345   1.1      cube 
    346   1.1      cube 	/*
    347   1.1      cube 	 * Why 1000baseT? Why not? You can add more.
    348   1.1      cube 	 *
    349   1.1      cube 	 * Note that there are 3 steps: init, one or several additions to
    350   1.1      cube 	 * list of supported media, and in the end, the selection of one
    351   1.1      cube 	 * of them.
    352   1.1      cube 	 */
    353   1.1      cube 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    354   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    355   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    356   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    357   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    358   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    359   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    360   1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    361   1.1      cube 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    362   1.1      cube 
    363   1.1      cube 	/*
    364   1.1      cube 	 * One should note that an interface must do multicast in order
    365   1.1      cube 	 * to support IPv6.
    366   1.1      cube 	 */
    367   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    368  1.40      cube 	strcpy(ifp->if_xname, device_xname(self));
    369   1.1      cube 	ifp->if_softc	= sc;
    370   1.1      cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    371   1.1      cube 	ifp->if_ioctl	= tap_ioctl;
    372   1.1      cube 	ifp->if_start	= tap_start;
    373   1.1      cube 	ifp->if_stop	= tap_stop;
    374   1.1      cube 	ifp->if_init	= tap_init;
    375   1.1      cube 	IFQ_SET_READY(&ifp->if_snd);
    376   1.1      cube 
    377   1.1      cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    378   1.1      cube 
    379  1.81     ozaki 	/* Those steps are mandatory for an Ethernet driver. */
    380  1.81     ozaki 	if_initialize(ifp);
    381   1.1      cube 	ether_ifattach(ifp, enaddr);
    382  1.81     ozaki 	if_register(ifp);
    383   1.1      cube 
    384  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    385   1.1      cube 	/*
    386   1.1      cube 	 * Add a sysctl node for that interface.
    387   1.1      cube 	 *
    388   1.1      cube 	 * The pointer transmitted is not a string, but instead a pointer to
    389   1.1      cube 	 * the softc structure, which we can use to build the string value on
    390   1.1      cube 	 * the fly in the helper function of the node.  See the comments for
    391   1.1      cube 	 * tap_sysctl_handler for details.
    392  1.21      cube 	 *
    393  1.21      cube 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    394  1.21      cube 	 * component.  However, we can allocate a number ourselves, as we are
    395  1.21      cube 	 * the only consumer of the net.link.<iface> node.  In this case, the
    396  1.21      cube 	 * unit number is conveniently used to number the node.  CTL_CREATE
    397  1.21      cube 	 * would just work, too.
    398   1.1      cube 	 */
    399   1.1      cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    400   1.1      cube 	    &node, CTLFLAG_READWRITE,
    401  1.40      cube 	    CTLTYPE_STRING, device_xname(self), NULL,
    402  1.67       dsl 	    tap_sysctl_handler, 0, (void *)sc, 18,
    403  1.40      cube 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    404  1.15   thorpej 	    CTL_EOL)) != 0)
    405  1.40      cube 		aprint_error_dev(self, "sysctl_createv returned %d, ignoring\n",
    406  1.40      cube 		    error);
    407  1.54    plunky #endif
    408   1.1      cube }
    409   1.1      cube 
    410   1.1      cube /*
    411   1.1      cube  * When detaching, we do the inverse of what is done in the attach
    412   1.1      cube  * routine, in reversed order.
    413   1.1      cube  */
    414   1.1      cube static int
    415  1.40      cube tap_detach(device_t self, int flags)
    416   1.1      cube {
    417  1.40      cube 	struct tap_softc *sc = device_private(self);
    418   1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    419  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    420  1.54    plunky 	int error;
    421  1.54    plunky #endif
    422  1.54    plunky 	int s;
    423   1.1      cube 
    424   1.1      cube 	sc->sc_flags |= TAP_GOING;
    425   1.1      cube 	s = splnet();
    426   1.1      cube 	tap_stop(ifp, 1);
    427   1.1      cube 	if_down(ifp);
    428   1.1      cube 	splx(s);
    429   1.1      cube 
    430  1.71      yamt 	if (sc->sc_sih != NULL) {
    431  1.71      yamt 		softint_disestablish(sc->sc_sih);
    432  1.71      yamt 		sc->sc_sih = NULL;
    433  1.71      yamt 	}
    434  1.42        ad 
    435  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    436   1.1      cube 	/*
    437   1.1      cube 	 * Destroying a single leaf is a very straightforward operation using
    438   1.1      cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    439   1.1      cube 	 * CTL_EOL.
    440   1.1      cube 	 */
    441   1.3      cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    442  1.40      cube 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    443  1.40      cube 		aprint_error_dev(self,
    444  1.40      cube 		    "sysctl_destroyv returned %d, ignoring\n", error);
    445  1.54    plunky #endif
    446   1.1      cube 	ether_ifdetach(ifp);
    447   1.1      cube 	if_detach(ifp);
    448   1.1      cube 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    449  1.47     rmind 	seldestroy(&sc->sc_rsel);
    450  1.34        ad 	mutex_destroy(&sc->sc_rdlock);
    451  1.75   aymeric 	mutex_destroy(&sc->sc_kqlock);
    452   1.1      cube 
    453  1.49      hans 	pmf_device_deregister(self);
    454  1.49      hans 
    455   1.1      cube 	return (0);
    456   1.1      cube }
    457   1.1      cube 
    458   1.1      cube /*
    459   1.1      cube  * This function is called by the ifmedia layer to notify the driver
    460   1.1      cube  * that the user requested a media change.  A real driver would
    461   1.1      cube  * reconfigure the hardware.
    462   1.1      cube  */
    463   1.1      cube static int
    464  1.23  christos tap_mediachange(struct ifnet *ifp)
    465   1.1      cube {
    466   1.1      cube 	return (0);
    467   1.1      cube }
    468   1.1      cube 
    469   1.1      cube /*
    470   1.1      cube  * Here the user asks for the currently used media.
    471   1.1      cube  */
    472   1.1      cube static void
    473   1.1      cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    474   1.1      cube {
    475   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    476   1.1      cube 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    477   1.1      cube }
    478   1.1      cube 
    479   1.1      cube /*
    480   1.1      cube  * This is the function where we SEND packets.
    481   1.1      cube  *
    482   1.1      cube  * There is no 'receive' equivalent.  A typical driver will get
    483   1.1      cube  * interrupts from the hardware, and from there will inject new packets
    484   1.1      cube  * into the network stack.
    485   1.1      cube  *
    486   1.1      cube  * Once handled, a packet must be freed.  A real driver might not be able
    487   1.1      cube  * to fit all the pending packets into the hardware, and is allowed to
    488   1.1      cube  * return before having sent all the packets.  It should then use the
    489   1.1      cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    490   1.1      cube  *
    491   1.1      cube  * There are also other flags one should check, such as IFF_PAUSE.
    492   1.1      cube  *
    493   1.1      cube  * It is our duty to make packets available to BPF listeners.
    494   1.1      cube  *
    495   1.1      cube  * You should be aware that this function is called by the Ethernet layer
    496   1.1      cube  * at splnet().
    497   1.1      cube  *
    498   1.1      cube  * When the device is opened, we have to pass the packet(s) to the
    499   1.1      cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    500   1.1      cube  * the packets, and we send a signal to the processes waiting to read.
    501   1.1      cube  *
    502   1.1      cube  * wakeup(sc) is the counterpart to the tsleep call in
    503   1.1      cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    504   1.1      cube  * poll(2) (which includes select(2)) listeners.
    505   1.1      cube  */
    506   1.1      cube static void
    507   1.1      cube tap_start(struct ifnet *ifp)
    508   1.1      cube {
    509   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    510   1.1      cube 	struct mbuf *m0;
    511   1.1      cube 
    512   1.1      cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    513   1.1      cube 		/* Simply drop packets */
    514   1.1      cube 		for(;;) {
    515   1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    516   1.1      cube 			if (m0 == NULL)
    517   1.1      cube 				return;
    518   1.1      cube 
    519   1.1      cube 			ifp->if_opackets++;
    520  1.64     joerg 			bpf_mtap(ifp, m0);
    521   1.1      cube 
    522   1.1      cube 			m_freem(m0);
    523   1.1      cube 		}
    524   1.1      cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    525   1.1      cube 		ifp->if_flags |= IFF_OACTIVE;
    526   1.1      cube 		wakeup(sc);
    527  1.39     rmind 		selnotify(&sc->sc_rsel, 0, 1);
    528   1.1      cube 		if (sc->sc_flags & TAP_ASYNCIO)
    529  1.42        ad 			softint_schedule(sc->sc_sih);
    530  1.42        ad 	}
    531  1.42        ad }
    532  1.42        ad 
    533  1.42        ad static void
    534  1.42        ad tap_softintr(void *cookie)
    535  1.42        ad {
    536  1.42        ad 	struct tap_softc *sc;
    537  1.42        ad 	struct ifnet *ifp;
    538  1.42        ad 	int a, b;
    539  1.42        ad 
    540  1.42        ad 	sc = cookie;
    541  1.42        ad 
    542  1.42        ad 	if (sc->sc_flags & TAP_ASYNCIO) {
    543  1.42        ad 		ifp = &sc->sc_ec.ec_if;
    544  1.42        ad 		if (ifp->if_flags & IFF_RUNNING) {
    545  1.42        ad 			a = POLL_IN;
    546  1.42        ad 			b = POLLIN|POLLRDNORM;
    547  1.42        ad 		} else {
    548  1.42        ad 			a = POLL_HUP;
    549  1.42        ad 			b = 0;
    550  1.42        ad 		}
    551  1.42        ad 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    552   1.1      cube 	}
    553   1.1      cube }
    554   1.1      cube 
    555   1.1      cube /*
    556   1.1      cube  * A typical driver will only contain the following handlers for
    557   1.1      cube  * ioctl calls, except SIOCSIFPHYADDR.
    558   1.1      cube  * The latter is a hack I used to set the Ethernet address of the
    559   1.1      cube  * faked device.
    560   1.1      cube  *
    561   1.1      cube  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    562   1.1      cube  * called under splnet().
    563   1.1      cube  */
    564   1.1      cube static int
    565  1.26  christos tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    566   1.1      cube {
    567   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    568   1.1      cube 	struct ifreq *ifr = (struct ifreq *)data;
    569   1.1      cube 	int s, error;
    570   1.1      cube 
    571   1.1      cube 	s = splnet();
    572   1.1      cube 
    573   1.1      cube 	switch (cmd) {
    574  1.29  christos #ifdef OSIOCSIFMEDIA
    575  1.29  christos 	case OSIOCSIFMEDIA:
    576  1.29  christos #endif
    577   1.1      cube 	case SIOCSIFMEDIA:
    578   1.1      cube 	case SIOCGIFMEDIA:
    579   1.1      cube 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    580   1.1      cube 		break;
    581  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    582   1.1      cube 	case SIOCSIFPHYADDR:
    583   1.1      cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    584   1.1      cube 		break;
    585  1.54    plunky #endif
    586   1.1      cube 	default:
    587   1.1      cube 		error = ether_ioctl(ifp, cmd, data);
    588   1.1      cube 		if (error == ENETRESET)
    589   1.1      cube 			error = 0;
    590   1.1      cube 		break;
    591   1.1      cube 	}
    592   1.1      cube 
    593   1.1      cube 	splx(s);
    594   1.1      cube 
    595   1.1      cube 	return (error);
    596   1.1      cube }
    597   1.1      cube 
    598  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
    599   1.1      cube /*
    600  1.54    plunky  * Helper function to set Ethernet address.  This has been replaced by
    601  1.54    plunky  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    602   1.1      cube  */
    603   1.1      cube static int
    604  1.23  christos tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    605   1.1      cube {
    606  1.53    plunky 	const struct sockaddr *sa = &ifra->ifra_addr;
    607   1.1      cube 
    608  1.53    plunky 	if (sa->sa_family != AF_LINK)
    609   1.1      cube 		return (EINVAL);
    610   1.1      cube 
    611  1.53    plunky 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    612   1.1      cube 
    613   1.1      cube 	return (0);
    614   1.1      cube }
    615  1.54    plunky #endif
    616   1.1      cube 
    617   1.1      cube /*
    618   1.1      cube  * _init() would typically be called when an interface goes up,
    619   1.1      cube  * meaning it should configure itself into the state in which it
    620   1.1      cube  * can send packets.
    621   1.1      cube  */
    622   1.1      cube static int
    623   1.1      cube tap_init(struct ifnet *ifp)
    624   1.1      cube {
    625   1.1      cube 	ifp->if_flags |= IFF_RUNNING;
    626   1.1      cube 
    627   1.1      cube 	tap_start(ifp);
    628   1.1      cube 
    629   1.1      cube 	return (0);
    630   1.1      cube }
    631   1.1      cube 
    632   1.1      cube /*
    633   1.1      cube  * _stop() is called when an interface goes down.  It is our
    634   1.1      cube  * responsability to validate that state by clearing the
    635   1.1      cube  * IFF_RUNNING flag.
    636   1.1      cube  *
    637   1.1      cube  * We have to wake up all the sleeping processes to have the pending
    638   1.1      cube  * read requests cancelled.
    639   1.1      cube  */
    640   1.1      cube static void
    641  1.23  christos tap_stop(struct ifnet *ifp, int disable)
    642   1.1      cube {
    643   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    644   1.1      cube 
    645   1.1      cube 	ifp->if_flags &= ~IFF_RUNNING;
    646   1.1      cube 	wakeup(sc);
    647  1.39     rmind 	selnotify(&sc->sc_rsel, 0, 1);
    648   1.1      cube 	if (sc->sc_flags & TAP_ASYNCIO)
    649  1.42        ad 		softint_schedule(sc->sc_sih);
    650   1.1      cube }
    651   1.1      cube 
    652   1.1      cube /*
    653   1.1      cube  * The 'create' command of ifconfig can be used to create
    654   1.1      cube  * any numbered instance of a given device.  Thus we have to
    655   1.1      cube  * make sure we have enough room in cd_devs to create the
    656   1.1      cube  * user-specified instance.  config_attach_pseudo will do this
    657   1.1      cube  * for us.
    658   1.1      cube  */
    659   1.1      cube static int
    660  1.23  christos tap_clone_create(struct if_clone *ifc, int unit)
    661   1.1      cube {
    662   1.1      cube 	if (tap_clone_creator(unit) == NULL) {
    663   1.1      cube 		aprint_error("%s%d: unable to attach an instance\n",
    664   1.1      cube                     tap_cd.cd_name, unit);
    665   1.1      cube 		return (ENXIO);
    666   1.1      cube 	}
    667  1.85  christos 	atomic_inc_uint(&tap_count);
    668   1.1      cube 	return (0);
    669   1.1      cube }
    670   1.1      cube 
    671   1.1      cube /*
    672   1.1      cube  * tap(4) can be cloned by two ways:
    673   1.1      cube  *   using 'ifconfig tap0 create', which will use the network
    674   1.1      cube  *     interface cloning API, and call tap_clone_create above.
    675   1.1      cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    676   1.1      cube  *     See below for an explanation on how this part work.
    677   1.1      cube  */
    678   1.1      cube static struct tap_softc *
    679   1.1      cube tap_clone_creator(int unit)
    680   1.1      cube {
    681   1.1      cube 	struct cfdata *cf;
    682   1.1      cube 
    683   1.1      cube 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    684   1.1      cube 	cf->cf_name = tap_cd.cd_name;
    685   1.1      cube 	cf->cf_atname = tap_ca.ca_name;
    686  1.27  drochner 	if (unit == -1) {
    687  1.27  drochner 		/* let autoconf find the first free one */
    688  1.27  drochner 		cf->cf_unit = 0;
    689  1.27  drochner 		cf->cf_fstate = FSTATE_STAR;
    690  1.27  drochner 	} else {
    691  1.27  drochner 		cf->cf_unit = unit;
    692  1.58    plunky 		cf->cf_fstate = FSTATE_NOTFOUND;
    693  1.27  drochner 	}
    694   1.1      cube 
    695  1.40      cube 	return device_private(config_attach_pseudo(cf));
    696   1.1      cube }
    697   1.1      cube 
    698   1.1      cube /*
    699   1.1      cube  * The clean design of if_clone and autoconf(9) makes that part
    700   1.1      cube  * really straightforward.  The second argument of config_detach
    701   1.1      cube  * means neither QUIET nor FORCED.
    702   1.1      cube  */
    703   1.1      cube static int
    704   1.1      cube tap_clone_destroy(struct ifnet *ifp)
    705   1.1      cube {
    706  1.45    dyoung 	struct tap_softc *sc = ifp->if_softc;
    707  1.85  christos 	int error = tap_clone_destroyer(sc->sc_dev);
    708  1.45    dyoung 
    709  1.85  christos 	if (error == 0)
    710  1.85  christos 		atomic_inc_uint(&tap_count);
    711  1.85  christos 	return error;
    712   1.1      cube }
    713   1.1      cube 
    714  1.12      cube int
    715  1.40      cube tap_clone_destroyer(device_t dev)
    716   1.1      cube {
    717  1.40      cube 	cfdata_t cf = device_cfdata(dev);
    718   1.1      cube 	int error;
    719   1.1      cube 
    720   1.1      cube 	if ((error = config_detach(dev, 0)) != 0)
    721  1.40      cube 		aprint_error_dev(dev, "unable to detach instance\n");
    722   1.1      cube 	free(cf, M_DEVBUF);
    723   1.1      cube 
    724   1.1      cube 	return (error);
    725   1.1      cube }
    726   1.1      cube 
    727   1.1      cube /*
    728   1.1      cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    729   1.1      cube  * ways:
    730   1.1      cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    731   1.1      cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    732   1.1      cube  *     That interface is destroyed when the process that had it created exits.
    733   1.1      cube  *
    734   1.1      cube  * The first way is managed by the cdevsw structure, and you access interfaces
    735   1.1      cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    736   1.1      cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    737   1.1      cube  *
    738   1.1      cube  * The second way is the so-called "cloning" device.  It's a special minor
    739   1.1      cube  * number (chosen as the maximal number, to allow as much tap devices as
    740   1.1      cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    741   1.1      cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    742   1.1      cube  * tap_dev_cloner.
    743   1.1      cube  *
    744   1.1      cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    745   1.1      cube  * part of open() does nothing but noting that the interface is being used and
    746   1.1      cube  * hence ready to actually handle packets.
    747   1.1      cube  */
    748   1.1      cube 
    749   1.1      cube static int
    750  1.23  christos tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    751   1.1      cube {
    752   1.1      cube 	struct tap_softc *sc;
    753   1.1      cube 
    754   1.1      cube 	if (minor(dev) == TAP_CLONER)
    755  1.11  christos 		return tap_dev_cloner(l);
    756   1.1      cube 
    757  1.46    cegger 	sc = device_lookup_private(&tap_cd, minor(dev));
    758   1.1      cube 	if (sc == NULL)
    759   1.1      cube 		return (ENXIO);
    760   1.1      cube 
    761   1.1      cube 	/* The device can only be opened once */
    762   1.1      cube 	if (sc->sc_flags & TAP_INUSE)
    763   1.1      cube 		return (EBUSY);
    764   1.1      cube 	sc->sc_flags |= TAP_INUSE;
    765   1.1      cube 	return (0);
    766   1.1      cube }
    767   1.1      cube 
    768   1.1      cube /*
    769   1.1      cube  * There are several kinds of cloning devices, and the most simple is the one
    770   1.1      cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    771   1.1      cube  * with its own fileops structure (which maps to the various read, write,
    772   1.1      cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    773   1.1      cube  * then actually creates the new tap devices.
    774   1.1      cube  *
    775   1.1      cube  * Once those two steps are successful, we can re-wire the existing file
    776   1.1      cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    777  1.78      matt  * structure as needed (notably f_devunit gets filled with the fifth parameter
    778   1.1      cube  * passed, the unit of the tap device which will allows us identifying the
    779   1.1      cube  * device later), and returns EMOVEFD.
    780   1.1      cube  *
    781   1.1      cube  * That magic value is interpreted by sys_open() which then replaces the
    782   1.1      cube  * current file descriptor by the new one (through a magic member of struct
    783  1.13     pooka  * lwp, l_dupfd).
    784   1.1      cube  *
    785   1.1      cube  * The tap device is flagged as being busy since it otherwise could be
    786   1.1      cube  * externally accessed through the corresponding device node with the cdevsw
    787   1.1      cube  * interface.
    788   1.1      cube  */
    789   1.1      cube 
    790   1.1      cube static int
    791  1.11  christos tap_dev_cloner(struct lwp *l)
    792   1.1      cube {
    793   1.1      cube 	struct tap_softc *sc;
    794  1.41        ad 	file_t *fp;
    795   1.1      cube 	int error, fd;
    796   1.1      cube 
    797  1.41        ad 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    798   1.1      cube 		return (error);
    799   1.1      cube 
    800  1.27  drochner 	if ((sc = tap_clone_creator(-1)) == NULL) {
    801  1.41        ad 		fd_abort(curproc, fp, fd);
    802   1.1      cube 		return (ENXIO);
    803   1.1      cube 	}
    804   1.1      cube 
    805   1.1      cube 	sc->sc_flags |= TAP_INUSE;
    806   1.1      cube 
    807  1.41        ad 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    808  1.40      cube 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    809   1.1      cube }
    810   1.1      cube 
    811   1.1      cube /*
    812   1.1      cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    813   1.1      cube  * really the same whether we are in cdevsw or fileops mode, the close()
    814   1.1      cube  * function is slightly different in the two cases.
    815   1.1      cube  *
    816   1.1      cube  * As for the other, the core of it is shared in tap_dev_close.  What
    817   1.1      cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    818   1.1      cube  * needs another thing:  the interface is destroyed when the processes that
    819   1.1      cube  * created it closes it.
    820   1.1      cube  */
    821   1.1      cube static int
    822  1.23  christos tap_cdev_close(dev_t dev, int flags, int fmt,
    823  1.23  christos     struct lwp *l)
    824   1.1      cube {
    825   1.1      cube 	struct tap_softc *sc =
    826  1.46    cegger 	    device_lookup_private(&tap_cd, minor(dev));
    827   1.1      cube 
    828   1.1      cube 	if (sc == NULL)
    829   1.1      cube 		return (ENXIO);
    830   1.1      cube 
    831   1.1      cube 	return tap_dev_close(sc);
    832   1.1      cube }
    833   1.1      cube 
    834   1.1      cube /*
    835   1.1      cube  * It might happen that the administrator used ifconfig to externally destroy
    836   1.1      cube  * the interface.  In that case, tap_fops_close will be called while
    837   1.1      cube  * tap_detach is already happening.  If we called it again from here, we
    838   1.1      cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    839   1.1      cube  */
    840   1.1      cube static int
    841  1.41        ad tap_fops_close(file_t *fp)
    842   1.1      cube {
    843  1.78      matt 	int unit = fp->f_devunit;
    844   1.1      cube 	struct tap_softc *sc;
    845   1.1      cube 	int error;
    846   1.1      cube 
    847  1.46    cegger 	sc = device_lookup_private(&tap_cd, unit);
    848   1.1      cube 	if (sc == NULL)
    849   1.1      cube 		return (ENXIO);
    850   1.1      cube 
    851   1.1      cube 	/* tap_dev_close currently always succeeds, but it might not
    852   1.1      cube 	 * always be the case. */
    853  1.44        ad 	KERNEL_LOCK(1, NULL);
    854  1.44        ad 	if ((error = tap_dev_close(sc)) != 0) {
    855  1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    856   1.1      cube 		return (error);
    857  1.44        ad 	}
    858   1.1      cube 
    859   1.1      cube 	/* Destroy the device now that it is no longer useful,
    860   1.1      cube 	 * unless it's already being destroyed. */
    861  1.44        ad 	if ((sc->sc_flags & TAP_GOING) != 0) {
    862  1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
    863   1.1      cube 		return (0);
    864  1.44        ad 	}
    865   1.1      cube 
    866  1.44        ad 	error = tap_clone_destroyer(sc->sc_dev);
    867  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    868  1.44        ad 	return error;
    869   1.1      cube }
    870   1.1      cube 
    871   1.1      cube static int
    872   1.1      cube tap_dev_close(struct tap_softc *sc)
    873   1.1      cube {
    874   1.1      cube 	struct ifnet *ifp;
    875   1.1      cube 	int s;
    876   1.1      cube 
    877   1.1      cube 	s = splnet();
    878   1.1      cube 	/* Let tap_start handle packets again */
    879   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    880   1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    881   1.1      cube 
    882   1.1      cube 	/* Purge output queue */
    883   1.1      cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    884   1.1      cube 		struct mbuf *m;
    885   1.1      cube 
    886   1.1      cube 		for (;;) {
    887   1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    888   1.1      cube 			if (m == NULL)
    889   1.1      cube 				break;
    890   1.1      cube 
    891   1.1      cube 			ifp->if_opackets++;
    892  1.64     joerg 			bpf_mtap(ifp, m);
    893  1.60    plunky 			m_freem(m);
    894   1.1      cube 		}
    895   1.1      cube 	}
    896   1.1      cube 	splx(s);
    897   1.1      cube 
    898  1.71      yamt 	if (sc->sc_sih != NULL) {
    899  1.71      yamt 		softint_disestablish(sc->sc_sih);
    900  1.71      yamt 		sc->sc_sih = NULL;
    901  1.71      yamt 	}
    902   1.1      cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    903   1.1      cube 
    904   1.1      cube 	return (0);
    905   1.1      cube }
    906   1.1      cube 
    907   1.1      cube static int
    908   1.1      cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    909   1.1      cube {
    910   1.1      cube 	return tap_dev_read(minor(dev), uio, flags);
    911   1.1      cube }
    912   1.1      cube 
    913   1.1      cube static int
    914  1.41        ad tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    915  1.23  christos     kauth_cred_t cred, int flags)
    916   1.1      cube {
    917  1.44        ad 	int error;
    918  1.44        ad 
    919  1.44        ad 	KERNEL_LOCK(1, NULL);
    920  1.78      matt 	error = tap_dev_read(fp->f_devunit, uio, flags);
    921  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
    922  1.44        ad 	return error;
    923   1.1      cube }
    924   1.1      cube 
    925   1.1      cube static int
    926  1.23  christos tap_dev_read(int unit, struct uio *uio, int flags)
    927   1.1      cube {
    928  1.78      matt 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    929   1.1      cube 	struct ifnet *ifp;
    930   1.1      cube 	struct mbuf *m, *n;
    931   1.1      cube 	int error = 0, s;
    932   1.1      cube 
    933   1.1      cube 	if (sc == NULL)
    934   1.1      cube 		return (ENXIO);
    935   1.1      cube 
    936  1.56  christos 	getnanotime(&sc->sc_atime);
    937  1.56  christos 
    938   1.1      cube 	ifp = &sc->sc_ec.ec_if;
    939   1.1      cube 	if ((ifp->if_flags & IFF_UP) == 0)
    940   1.1      cube 		return (EHOSTDOWN);
    941   1.1      cube 
    942   1.1      cube 	/*
    943   1.1      cube 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    944   1.1      cube 	 */
    945  1.34        ad 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    946  1.34        ad 		if (!mutex_tryenter(&sc->sc_rdlock))
    947  1.34        ad 			return (EWOULDBLOCK);
    948  1.34        ad 	} else {
    949  1.34        ad 		mutex_enter(&sc->sc_rdlock);
    950  1.34        ad 	}
    951   1.1      cube 
    952   1.1      cube 	s = splnet();
    953   1.1      cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    954   1.1      cube 		ifp->if_flags &= ~IFF_OACTIVE;
    955   1.1      cube 		/*
    956   1.1      cube 		 * We must release the lock before sleeping, and re-acquire it
    957   1.1      cube 		 * after.
    958   1.1      cube 		 */
    959  1.34        ad 		mutex_exit(&sc->sc_rdlock);
    960   1.1      cube 		if (sc->sc_flags & TAP_NBIO)
    961   1.1      cube 			error = EWOULDBLOCK;
    962   1.1      cube 		else
    963   1.1      cube 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    964  1.52     pooka 		splx(s);
    965  1.52     pooka 
    966   1.1      cube 		if (error != 0)
    967   1.1      cube 			return (error);
    968   1.1      cube 		/* The device might have been downed */
    969   1.1      cube 		if ((ifp->if_flags & IFF_UP) == 0)
    970   1.1      cube 			return (EHOSTDOWN);
    971  1.34        ad 		if ((sc->sc_flags & TAP_NBIO)) {
    972  1.34        ad 			if (!mutex_tryenter(&sc->sc_rdlock))
    973  1.34        ad 				return (EWOULDBLOCK);
    974  1.34        ad 		} else {
    975  1.34        ad 			mutex_enter(&sc->sc_rdlock);
    976  1.34        ad 		}
    977   1.1      cube 		s = splnet();
    978   1.1      cube 	}
    979   1.1      cube 
    980   1.1      cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    981   1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    982   1.1      cube 	splx(s);
    983   1.1      cube 	if (m == NULL) {
    984   1.1      cube 		error = 0;
    985   1.1      cube 		goto out;
    986   1.1      cube 	}
    987   1.1      cube 
    988   1.1      cube 	ifp->if_opackets++;
    989  1.64     joerg 	bpf_mtap(ifp, m);
    990   1.1      cube 
    991   1.1      cube 	/*
    992   1.1      cube 	 * One read is one packet.
    993   1.1      cube 	 */
    994   1.1      cube 	do {
    995  1.26  christos 		error = uiomove(mtod(m, void *),
    996   1.1      cube 		    min(m->m_len, uio->uio_resid), uio);
    997   1.1      cube 		MFREE(m, n);
    998   1.1      cube 		m = n;
    999   1.1      cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
   1000   1.1      cube 
   1001   1.1      cube 	if (m != NULL)
   1002   1.1      cube 		m_freem(m);
   1003   1.1      cube 
   1004   1.1      cube out:
   1005  1.34        ad 	mutex_exit(&sc->sc_rdlock);
   1006   1.1      cube 	return (error);
   1007   1.1      cube }
   1008   1.1      cube 
   1009   1.1      cube static int
   1010  1.56  christos tap_fops_stat(file_t *fp, struct stat *st)
   1011  1.56  christos {
   1012  1.59  drochner 	int error = 0;
   1013  1.57  christos 	struct tap_softc *sc;
   1014  1.78      matt 	int unit = fp->f_devunit;
   1015  1.57  christos 
   1016  1.57  christos 	(void)memset(st, 0, sizeof(*st));
   1017  1.57  christos 
   1018  1.56  christos 	KERNEL_LOCK(1, NULL);
   1019  1.57  christos 	sc = device_lookup_private(&tap_cd, unit);
   1020  1.57  christos 	if (sc == NULL) {
   1021  1.57  christos 		error = ENXIO;
   1022  1.57  christos 		goto out;
   1023  1.57  christos 	}
   1024  1.56  christos 
   1025  1.56  christos 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
   1026  1.56  christos 	st->st_atimespec = sc->sc_atime;
   1027  1.56  christos 	st->st_mtimespec = sc->sc_mtime;
   1028  1.56  christos 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
   1029  1.57  christos 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1030  1.57  christos 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1031  1.57  christos out:
   1032  1.57  christos 	KERNEL_UNLOCK_ONE(NULL);
   1033  1.57  christos 	return error;
   1034  1.56  christos }
   1035  1.56  christos 
   1036  1.56  christos static int
   1037   1.1      cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1038   1.1      cube {
   1039   1.1      cube 	return tap_dev_write(minor(dev), uio, flags);
   1040   1.1      cube }
   1041   1.1      cube 
   1042   1.1      cube static int
   1043  1.41        ad tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1044  1.23  christos     kauth_cred_t cred, int flags)
   1045   1.1      cube {
   1046  1.44        ad 	int error;
   1047  1.44        ad 
   1048  1.44        ad 	KERNEL_LOCK(1, NULL);
   1049  1.78      matt 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1050  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1051  1.44        ad 	return error;
   1052   1.1      cube }
   1053   1.1      cube 
   1054   1.1      cube static int
   1055  1.23  christos tap_dev_write(int unit, struct uio *uio, int flags)
   1056   1.1      cube {
   1057   1.1      cube 	struct tap_softc *sc =
   1058  1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1059   1.1      cube 	struct ifnet *ifp;
   1060   1.1      cube 	struct mbuf *m, **mp;
   1061   1.1      cube 	int error = 0;
   1062   1.9    bouyer 	int s;
   1063   1.1      cube 
   1064   1.1      cube 	if (sc == NULL)
   1065   1.1      cube 		return (ENXIO);
   1066   1.1      cube 
   1067  1.56  christos 	getnanotime(&sc->sc_mtime);
   1068   1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1069   1.1      cube 
   1070   1.1      cube 	/* One write, one packet, that's the rule */
   1071   1.1      cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1072   1.1      cube 	if (m == NULL) {
   1073   1.1      cube 		ifp->if_ierrors++;
   1074   1.1      cube 		return (ENOBUFS);
   1075   1.1      cube 	}
   1076   1.1      cube 	m->m_pkthdr.len = uio->uio_resid;
   1077   1.1      cube 
   1078   1.1      cube 	mp = &m;
   1079   1.1      cube 	while (error == 0 && uio->uio_resid > 0) {
   1080   1.1      cube 		if (*mp != m) {
   1081   1.1      cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1082   1.1      cube 			if (*mp == NULL) {
   1083   1.1      cube 				error = ENOBUFS;
   1084   1.1      cube 				break;
   1085   1.1      cube 			}
   1086   1.1      cube 		}
   1087   1.1      cube 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1088  1.26  christos 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1089   1.1      cube 		mp = &(*mp)->m_next;
   1090   1.1      cube 	}
   1091   1.1      cube 	if (error) {
   1092   1.1      cube 		ifp->if_ierrors++;
   1093   1.1      cube 		m_freem(m);
   1094   1.1      cube 		return (error);
   1095   1.1      cube 	}
   1096   1.1      cube 
   1097   1.1      cube 	ifp->if_ipackets++;
   1098  1.84     ozaki 	m_set_rcvif(m, ifp);
   1099   1.1      cube 
   1100  1.64     joerg 	bpf_mtap(ifp, m);
   1101  1.69      yamt 	s = splnet();
   1102  1.83     ozaki 	if_input(ifp, m);
   1103   1.9    bouyer 	splx(s);
   1104   1.1      cube 
   1105   1.1      cube 	return (0);
   1106   1.1      cube }
   1107   1.1      cube 
   1108   1.1      cube static int
   1109  1.26  christos tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1110  1.11  christos     struct lwp *l)
   1111   1.1      cube {
   1112  1.11  christos 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1113   1.1      cube }
   1114   1.1      cube 
   1115   1.1      cube static int
   1116  1.41        ad tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1117   1.1      cube {
   1118  1.78      matt 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1119   1.1      cube }
   1120   1.1      cube 
   1121   1.1      cube static int
   1122  1.26  christos tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1123   1.1      cube {
   1124  1.66  christos 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1125   1.1      cube 
   1126   1.1      cube 	if (sc == NULL)
   1127  1.66  christos 		return ENXIO;
   1128   1.1      cube 
   1129   1.1      cube 	switch (cmd) {
   1130   1.1      cube 	case FIONREAD:
   1131   1.1      cube 		{
   1132   1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1133   1.1      cube 			struct mbuf *m;
   1134   1.1      cube 			int s;
   1135   1.1      cube 
   1136   1.1      cube 			s = splnet();
   1137   1.1      cube 			IFQ_POLL(&ifp->if_snd, m);
   1138   1.1      cube 
   1139   1.1      cube 			if (m == NULL)
   1140   1.1      cube 				*(int *)data = 0;
   1141   1.1      cube 			else
   1142   1.1      cube 				*(int *)data = m->m_pkthdr.len;
   1143   1.1      cube 			splx(s);
   1144  1.66  christos 			return 0;
   1145  1.66  christos 		}
   1146   1.1      cube 	case TIOCSPGRP:
   1147   1.1      cube 	case FIOSETOWN:
   1148  1.66  christos 		return fsetown(&sc->sc_pgid, cmd, data);
   1149   1.1      cube 	case TIOCGPGRP:
   1150   1.1      cube 	case FIOGETOWN:
   1151  1.66  christos 		return fgetown(sc->sc_pgid, cmd, data);
   1152   1.1      cube 	case FIOASYNC:
   1153  1.71      yamt 		if (*(int *)data) {
   1154  1.71      yamt 			if (sc->sc_sih == NULL) {
   1155  1.71      yamt 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1156  1.71      yamt 				    tap_softintr, sc);
   1157  1.71      yamt 				if (sc->sc_sih == NULL)
   1158  1.71      yamt 					return EBUSY; /* XXX */
   1159  1.71      yamt 			}
   1160   1.1      cube 			sc->sc_flags |= TAP_ASYNCIO;
   1161  1.71      yamt 		} else {
   1162   1.1      cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1163  1.71      yamt 			if (sc->sc_sih != NULL) {
   1164  1.71      yamt 				softint_disestablish(sc->sc_sih);
   1165  1.71      yamt 				sc->sc_sih = NULL;
   1166  1.71      yamt 			}
   1167  1.71      yamt 		}
   1168  1.66  christos 		return 0;
   1169   1.1      cube 	case FIONBIO:
   1170   1.1      cube 		if (*(int *)data)
   1171   1.1      cube 			sc->sc_flags |= TAP_NBIO;
   1172   1.1      cube 		else
   1173   1.1      cube 			sc->sc_flags &= ~TAP_NBIO;
   1174  1.66  christos 		return 0;
   1175  1.29  christos #ifdef OTAPGIFNAME
   1176  1.29  christos 	case OTAPGIFNAME:
   1177  1.29  christos #endif
   1178   1.1      cube 	case TAPGIFNAME:
   1179   1.1      cube 		{
   1180   1.1      cube 			struct ifreq *ifr = (struct ifreq *)data;
   1181   1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1182   1.1      cube 
   1183   1.1      cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1184  1.66  christos 			return 0;
   1185  1.66  christos 		}
   1186   1.1      cube 	default:
   1187  1.66  christos 		return ENOTTY;
   1188   1.1      cube 	}
   1189   1.1      cube }
   1190   1.1      cube 
   1191   1.1      cube static int
   1192  1.11  christos tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1193   1.1      cube {
   1194  1.11  christos 	return tap_dev_poll(minor(dev), events, l);
   1195   1.1      cube }
   1196   1.1      cube 
   1197   1.1      cube static int
   1198  1.41        ad tap_fops_poll(file_t *fp, int events)
   1199   1.1      cube {
   1200  1.78      matt 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1201   1.1      cube }
   1202   1.1      cube 
   1203   1.1      cube static int
   1204  1.11  christos tap_dev_poll(int unit, int events, struct lwp *l)
   1205   1.1      cube {
   1206   1.1      cube 	struct tap_softc *sc =
   1207  1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1208   1.1      cube 	int revents = 0;
   1209   1.1      cube 
   1210   1.1      cube 	if (sc == NULL)
   1211  1.28  christos 		return POLLERR;
   1212   1.1      cube 
   1213   1.1      cube 	if (events & (POLLIN|POLLRDNORM)) {
   1214   1.1      cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1215   1.1      cube 		struct mbuf *m;
   1216   1.1      cube 		int s;
   1217   1.1      cube 
   1218   1.1      cube 		s = splnet();
   1219   1.1      cube 		IFQ_POLL(&ifp->if_snd, m);
   1220   1.1      cube 
   1221   1.1      cube 		if (m != NULL)
   1222   1.1      cube 			revents |= events & (POLLIN|POLLRDNORM);
   1223   1.1      cube 		else {
   1224  1.74     skrll 			mutex_spin_enter(&sc->sc_kqlock);
   1225  1.11  christos 			selrecord(l, &sc->sc_rsel);
   1226  1.74     skrll 			mutex_spin_exit(&sc->sc_kqlock);
   1227   1.1      cube 		}
   1228  1.76      cube 		splx(s);
   1229   1.1      cube 	}
   1230   1.1      cube 	revents |= events & (POLLOUT|POLLWRNORM);
   1231   1.1      cube 
   1232   1.1      cube 	return (revents);
   1233   1.1      cube }
   1234   1.1      cube 
   1235   1.1      cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1236   1.1      cube 	tap_kqread };
   1237   1.1      cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1238   1.1      cube 	filt_seltrue };
   1239   1.1      cube 
   1240   1.1      cube static int
   1241   1.1      cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1242   1.1      cube {
   1243   1.1      cube 	return tap_dev_kqfilter(minor(dev), kn);
   1244   1.1      cube }
   1245   1.1      cube 
   1246   1.1      cube static int
   1247  1.41        ad tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1248   1.1      cube {
   1249  1.78      matt 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1250   1.1      cube }
   1251   1.1      cube 
   1252   1.1      cube static int
   1253   1.1      cube tap_dev_kqfilter(int unit, struct knote *kn)
   1254   1.1      cube {
   1255   1.1      cube 	struct tap_softc *sc =
   1256  1.46    cegger 	    device_lookup_private(&tap_cd, unit);
   1257   1.1      cube 
   1258   1.1      cube 	if (sc == NULL)
   1259   1.1      cube 		return (ENXIO);
   1260   1.1      cube 
   1261  1.44        ad 	KERNEL_LOCK(1, NULL);
   1262   1.1      cube 	switch(kn->kn_filter) {
   1263   1.1      cube 	case EVFILT_READ:
   1264   1.1      cube 		kn->kn_fop = &tap_read_filterops;
   1265   1.1      cube 		break;
   1266   1.1      cube 	case EVFILT_WRITE:
   1267   1.1      cube 		kn->kn_fop = &tap_seltrue_filterops;
   1268   1.1      cube 		break;
   1269   1.1      cube 	default:
   1270  1.44        ad 		KERNEL_UNLOCK_ONE(NULL);
   1271  1.35     pooka 		return (EINVAL);
   1272   1.1      cube 	}
   1273   1.1      cube 
   1274   1.1      cube 	kn->kn_hook = sc;
   1275  1.74     skrll 	mutex_spin_enter(&sc->sc_kqlock);
   1276   1.1      cube 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1277  1.74     skrll 	mutex_spin_exit(&sc->sc_kqlock);
   1278  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1279   1.1      cube 	return (0);
   1280   1.1      cube }
   1281   1.1      cube 
   1282   1.1      cube static void
   1283   1.1      cube tap_kqdetach(struct knote *kn)
   1284   1.1      cube {
   1285   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1286   1.1      cube 
   1287  1.44        ad 	KERNEL_LOCK(1, NULL);
   1288  1.74     skrll 	mutex_spin_enter(&sc->sc_kqlock);
   1289   1.1      cube 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1290  1.74     skrll 	mutex_spin_exit(&sc->sc_kqlock);
   1291  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1292   1.1      cube }
   1293   1.1      cube 
   1294   1.1      cube static int
   1295  1.23  christos tap_kqread(struct knote *kn, long hint)
   1296   1.1      cube {
   1297   1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1298   1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1299   1.1      cube 	struct mbuf *m;
   1300  1.44        ad 	int s, rv;
   1301   1.1      cube 
   1302  1.44        ad 	KERNEL_LOCK(1, NULL);
   1303   1.1      cube 	s = splnet();
   1304   1.1      cube 	IFQ_POLL(&ifp->if_snd, m);
   1305   1.1      cube 
   1306   1.1      cube 	if (m == NULL)
   1307   1.1      cube 		kn->kn_data = 0;
   1308   1.1      cube 	else
   1309   1.1      cube 		kn->kn_data = m->m_pkthdr.len;
   1310   1.1      cube 	splx(s);
   1311  1.44        ad 	rv = (kn->kn_data != 0 ? 1 : 0);
   1312  1.44        ad 	KERNEL_UNLOCK_ONE(NULL);
   1313  1.44        ad 	return rv;
   1314   1.1      cube }
   1315   1.1      cube 
   1316  1.54    plunky #if defined(COMPAT_40) || defined(MODULAR)
   1317   1.1      cube /*
   1318   1.1      cube  * sysctl management routines
   1319   1.1      cube  * You can set the address of an interface through:
   1320   1.1      cube  * net.link.tap.tap<number>
   1321   1.1      cube  *
   1322   1.1      cube  * Note the consistent use of tap_log in order to use
   1323   1.1      cube  * sysctl_teardown at unload time.
   1324   1.1      cube  *
   1325   1.1      cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1326   1.1      cube  * blocks register a function in a special section of the kernel
   1327   1.1      cube  * (called a link set) which is used at init_sysctl() time to cycle
   1328   1.1      cube  * through all those functions to create the kernel's sysctl tree.
   1329   1.1      cube  *
   1330  1.51        ad  * It is not possible to use link sets in a module, so the
   1331   1.1      cube  * easiest is to simply call our own setup routine at load time.
   1332   1.1      cube  *
   1333   1.1      cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1334   1.1      cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1335   1.1      cube  * whole kernel sysctl tree is built, it is not possible to add any
   1336   1.1      cube  * permanent node.
   1337   1.1      cube  *
   1338   1.1      cube  * It should be noted that we're not saving the sysctlnode pointer
   1339   1.1      cube  * we are returned when creating the "tap" node.  That structure
   1340   1.1      cube  * cannot be trusted once out of the calling function, as it might
   1341   1.1      cube  * get reused.  So we just save the MIB number, and always give the
   1342   1.1      cube  * full path starting from the root for later calls to sysctl_createv
   1343   1.1      cube  * and sysctl_destroyv.
   1344   1.1      cube  */
   1345   1.1      cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1346   1.1      cube {
   1347  1.10    atatat 	const struct sysctlnode *node;
   1348   1.1      cube 	int error = 0;
   1349   1.1      cube 
   1350   1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1351   1.1      cube 	    CTLFLAG_PERMANENT,
   1352   1.1      cube 	    CTLTYPE_NODE, "link", NULL,
   1353   1.1      cube 	    NULL, 0, NULL, 0,
   1354   1.3      cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1355   1.1      cube 		return;
   1356   1.1      cube 
   1357   1.1      cube 	/*
   1358   1.1      cube 	 * The first four parameters of sysctl_createv are for management.
   1359   1.1      cube 	 *
   1360   1.1      cube 	 * The four that follows, here starting with a '0' for the flags,
   1361   1.1      cube 	 * describe the node.
   1362   1.1      cube 	 *
   1363   1.1      cube 	 * The next series of four set its value, through various possible
   1364   1.1      cube 	 * means.
   1365   1.1      cube 	 *
   1366   1.1      cube 	 * Last but not least, the path to the node is described.  That path
   1367   1.1      cube 	 * is relative to the given root (third argument).  Here we're
   1368   1.1      cube 	 * starting from the root.
   1369   1.1      cube 	 */
   1370   1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1371   1.1      cube 	    CTLFLAG_PERMANENT,
   1372   1.1      cube 	    CTLTYPE_NODE, "tap", NULL,
   1373   1.1      cube 	    NULL, 0, NULL, 0,
   1374   1.3      cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1375   1.1      cube 		return;
   1376   1.1      cube 	tap_node = node->sysctl_num;
   1377   1.1      cube }
   1378   1.1      cube 
   1379   1.1      cube /*
   1380   1.1      cube  * The helper functions make Andrew Brown's interface really
   1381   1.1      cube  * shine.  It makes possible to create value on the fly whether
   1382   1.1      cube  * the sysctl value is read or written.
   1383   1.1      cube  *
   1384   1.1      cube  * As shown as an example in the man page, the first step is to
   1385   1.1      cube  * create a copy of the node to have sysctl_lookup work on it.
   1386   1.1      cube  *
   1387   1.1      cube  * Here, we have more work to do than just a copy, since we have
   1388   1.1      cube  * to create the string.  The first step is to collect the actual
   1389   1.1      cube  * value of the node, which is a convenient pointer to the softc
   1390   1.1      cube  * of the interface.  From there we create the string and use it
   1391   1.1      cube  * as the value, but only for the *copy* of the node.
   1392   1.1      cube  *
   1393   1.1      cube  * Then we let sysctl_lookup do the magic, which consists in
   1394   1.1      cube  * setting oldp and newp as required by the operation.  When the
   1395   1.1      cube  * value is read, that means that the string will be copied to
   1396   1.1      cube  * the user, and when it is written, the new value will be copied
   1397   1.1      cube  * over in the addr array.
   1398   1.1      cube  *
   1399   1.1      cube  * If newp is NULL, the user was reading the value, so we don't
   1400   1.1      cube  * have anything else to do.  If a new value was written, we
   1401   1.1      cube  * have to check it.
   1402   1.1      cube  *
   1403   1.1      cube  * If it is incorrect, we can return an error and leave 'node' as
   1404   1.1      cube  * it is:  since it is a copy of the actual node, the change will
   1405   1.1      cube  * be forgotten.
   1406   1.1      cube  *
   1407   1.1      cube  * Upon a correct input, we commit the change to the ifnet
   1408   1.1      cube  * structure of our interface.
   1409   1.1      cube  */
   1410   1.1      cube static int
   1411   1.1      cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1412   1.1      cube {
   1413   1.1      cube 	struct sysctlnode node;
   1414   1.1      cube 	struct tap_softc *sc;
   1415   1.1      cube 	struct ifnet *ifp;
   1416   1.1      cube 	int error;
   1417   1.1      cube 	size_t len;
   1418  1.14  christos 	char addr[3 * ETHER_ADDR_LEN];
   1419  1.32    dyoung 	uint8_t enaddr[ETHER_ADDR_LEN];
   1420   1.1      cube 
   1421   1.1      cube 	node = *rnode;
   1422   1.1      cube 	sc = node.sysctl_data;
   1423   1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1424  1.31    dyoung 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1425   1.1      cube 	node.sysctl_data = addr;
   1426   1.1      cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1427   1.1      cube 	if (error || newp == NULL)
   1428   1.1      cube 		return (error);
   1429   1.1      cube 
   1430   1.1      cube 	len = strlen(addr);
   1431   1.1      cube 	if (len < 11 || len > 17)
   1432   1.1      cube 		return (EINVAL);
   1433   1.1      cube 
   1434   1.1      cube 	/* Commit change */
   1435  1.65  christos 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1436   1.1      cube 		return (EINVAL);
   1437  1.50    dyoung 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1438   1.1      cube 	return (error);
   1439   1.1      cube }
   1440  1.54    plunky #endif
   1441  1.85  christos 
   1442  1.85  christos /*
   1443  1.85  christos  * Module infrastructure
   1444  1.85  christos  */
   1445  1.85  christos #include "if_module.h"
   1446  1.85  christos 
   1447  1.85  christos IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
   1448