Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.9
      1  1.9    bouyer /*	$NetBSD: if_tap.c,v 1.9 2005/06/10 10:28:17 bouyer Exp $	*/
      2  1.1      cube 
      3  1.1      cube /*
      4  1.1      cube  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5  1.1      cube  *  All rights reserved.
      6  1.1      cube  *
      7  1.1      cube  *  This code is derived from software contributed to the NetBSD Foundation
      8  1.1      cube  *   by Quentin Garnier.
      9  1.6     perry  *
     10  1.1      cube  *  Redistribution and use in source and binary forms, with or without
     11  1.1      cube  *  modification, are permitted provided that the following conditions
     12  1.1      cube  *  are met:
     13  1.1      cube  *  1. Redistributions of source code must retain the above copyright
     14  1.1      cube  *     notice, this list of conditions and the following disclaimer.
     15  1.1      cube  *  2. Redistributions in binary form must reproduce the above copyright
     16  1.1      cube  *     notice, this list of conditions and the following disclaimer in the
     17  1.1      cube  *     documentation and/or other materials provided with the distribution.
     18  1.1      cube  *  3. All advertising materials mentioning features or use of this software
     19  1.1      cube  *     must display the following acknowledgement:
     20  1.1      cube  *         This product includes software developed by the NetBSD
     21  1.1      cube  *         Foundation, Inc. and its contributors.
     22  1.1      cube  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23  1.1      cube  *     contributors may be used to endorse or promote products derived
     24  1.1      cube  *     from this software without specific prior written permission.
     25  1.6     perry  *
     26  1.1      cube  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  1.1      cube  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  1.1      cube  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  1.1      cube  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  1.1      cube  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  1.1      cube  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  1.1      cube  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  1.1      cube  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  1.1      cube  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  1.1      cube  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  1.1      cube  *  POSSIBILITY OF SUCH DAMAGE.
     37  1.1      cube  */
     38  1.1      cube 
     39  1.1      cube /*
     40  1.1      cube  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41  1.1      cube  * device to the system, but can also be accessed by userland through a
     42  1.1      cube  * character device interface, which allows reading and injecting frames.
     43  1.1      cube  */
     44  1.1      cube 
     45  1.1      cube #include <sys/cdefs.h>
     46  1.9    bouyer __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.9 2005/06/10 10:28:17 bouyer Exp $");
     47  1.1      cube 
     48  1.2      cube #if defined(_KERNEL_OPT)
     49  1.1      cube #include "bpfilter.h"
     50  1.2      cube #endif
     51  1.1      cube 
     52  1.1      cube #include <sys/param.h>
     53  1.1      cube #include <sys/systm.h>
     54  1.1      cube #include <sys/kernel.h>
     55  1.1      cube #include <sys/malloc.h>
     56  1.1      cube #include <sys/conf.h>
     57  1.1      cube #include <sys/device.h>
     58  1.1      cube #include <sys/file.h>
     59  1.1      cube #include <sys/filedesc.h>
     60  1.1      cube #include <sys/ksyms.h>
     61  1.1      cube #include <sys/poll.h>
     62  1.1      cube #include <sys/select.h>
     63  1.1      cube #include <sys/sockio.h>
     64  1.1      cube #include <sys/sysctl.h>
     65  1.1      cube 
     66  1.1      cube #include <net/if.h>
     67  1.1      cube #include <net/if_dl.h>
     68  1.1      cube #include <net/if_ether.h>
     69  1.1      cube #include <net/if_media.h>
     70  1.1      cube #include <net/if_tap.h>
     71  1.1      cube #if NBPFILTER > 0
     72  1.1      cube #include <net/bpf.h>
     73  1.1      cube #endif
     74  1.1      cube 
     75  1.1      cube /*
     76  1.1      cube  * sysctl node management
     77  1.1      cube  *
     78  1.1      cube  * It's not really possible to use a SYSCTL_SETUP block with
     79  1.1      cube  * current LKM implementation, so it is easier to just define
     80  1.1      cube  * our own function.
     81  1.1      cube  *
     82  1.1      cube  * The handler function is a "helper" in Andrew Brown's sysctl
     83  1.1      cube  * framework terminology.  It is used as a gateway for sysctl
     84  1.1      cube  * requests over the nodes.
     85  1.1      cube  *
     86  1.1      cube  * tap_log allows the module to log creations of nodes and
     87  1.1      cube  * destroy them all at once using sysctl_teardown.
     88  1.1      cube  */
     89  1.1      cube static int tap_node;
     90  1.1      cube static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     91  1.2      cube SYSCTL_SETUP_PROTO(sysctl_tap_setup);
     92  1.1      cube 
     93  1.1      cube /*
     94  1.1      cube  * Since we're an Ethernet device, we need the 3 following
     95  1.1      cube  * components: a leading struct device, a struct ethercom,
     96  1.1      cube  * and also a struct ifmedia since we don't attach a PHY to
     97  1.1      cube  * ourselves. We could emulate one, but there's no real
     98  1.1      cube  * point.
     99  1.1      cube  */
    100  1.1      cube 
    101  1.1      cube struct tap_softc {
    102  1.1      cube 	struct device	sc_dev;
    103  1.1      cube 	struct ifmedia	sc_im;
    104  1.1      cube 	struct ethercom	sc_ec;
    105  1.1      cube 	int		sc_flags;
    106  1.1      cube #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    107  1.1      cube #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    108  1.1      cube #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    109  1.1      cube #define TAP_GOING	0x00000008	/* interface is being destroyed */
    110  1.1      cube 	struct selinfo	sc_rsel;
    111  1.1      cube 	pid_t		sc_pgid; /* For async. IO */
    112  1.1      cube 	struct lock	sc_rdlock;
    113  1.1      cube 	struct simplelock	sc_kqlock;
    114  1.1      cube };
    115  1.1      cube 
    116  1.1      cube /* autoconf(9) glue */
    117  1.1      cube 
    118  1.1      cube void	tapattach(int);
    119  1.1      cube 
    120  1.1      cube static int	tap_match(struct device *, struct cfdata *, void *);
    121  1.1      cube static void	tap_attach(struct device *, struct device *, void *);
    122  1.1      cube static int	tap_detach(struct device*, int);
    123  1.1      cube 
    124  1.1      cube /* Ethernet address helper functions */
    125  1.1      cube 
    126  1.1      cube static char	*tap_ether_sprintf(char *, const u_char *);
    127  1.1      cube static int	tap_ether_aton(u_char *, char *);
    128  1.1      cube 
    129  1.1      cube CFATTACH_DECL(tap, sizeof(struct tap_softc),
    130  1.1      cube     tap_match, tap_attach, tap_detach, NULL);
    131  1.1      cube extern struct cfdriver tap_cd;
    132  1.1      cube 
    133  1.1      cube /* Real device access routines */
    134  1.1      cube static int	tap_dev_close(struct tap_softc *);
    135  1.1      cube static int	tap_dev_read(int, struct uio *, int);
    136  1.1      cube static int	tap_dev_write(int, struct uio *, int);
    137  1.1      cube static int	tap_dev_ioctl(int, u_long, caddr_t, struct proc *);
    138  1.1      cube static int	tap_dev_poll(int, int, struct proc *);
    139  1.1      cube static int	tap_dev_kqfilter(int, struct knote *);
    140  1.1      cube 
    141  1.1      cube /* Fileops access routines */
    142  1.1      cube static int	tap_fops_close(struct file *, struct proc *);
    143  1.1      cube static int	tap_fops_read(struct file *, off_t *, struct uio *,
    144  1.1      cube     struct ucred *, int);
    145  1.1      cube static int	tap_fops_write(struct file *, off_t *, struct uio *,
    146  1.1      cube     struct ucred *, int);
    147  1.1      cube static int	tap_fops_ioctl(struct file *, u_long, void *,
    148  1.1      cube     struct proc *);
    149  1.1      cube static int	tap_fops_poll(struct file *, int, struct proc *);
    150  1.1      cube static int	tap_fops_kqfilter(struct file *, struct knote *);
    151  1.1      cube 
    152  1.1      cube static const struct fileops tap_fileops = {
    153  1.1      cube 	tap_fops_read,
    154  1.1      cube 	tap_fops_write,
    155  1.1      cube 	tap_fops_ioctl,
    156  1.1      cube 	fnullop_fcntl,
    157  1.1      cube 	tap_fops_poll,
    158  1.1      cube 	fbadop_stat,
    159  1.1      cube 	tap_fops_close,
    160  1.1      cube 	tap_fops_kqfilter,
    161  1.1      cube };
    162  1.1      cube 
    163  1.1      cube /* Helper for cloning open() */
    164  1.1      cube static int	tap_dev_cloner(struct proc *);
    165  1.1      cube 
    166  1.1      cube /* Character device routines */
    167  1.1      cube static int	tap_cdev_open(dev_t, int, int, struct proc *);
    168  1.1      cube static int	tap_cdev_close(dev_t, int, int, struct proc *);
    169  1.1      cube static int	tap_cdev_read(dev_t, struct uio *, int);
    170  1.1      cube static int	tap_cdev_write(dev_t, struct uio *, int);
    171  1.1      cube static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct proc *);
    172  1.1      cube static int	tap_cdev_poll(dev_t, int, struct proc *);
    173  1.1      cube static int	tap_cdev_kqfilter(dev_t, struct knote *);
    174  1.1      cube 
    175  1.1      cube const struct cdevsw tap_cdevsw = {
    176  1.1      cube 	tap_cdev_open, tap_cdev_close,
    177  1.1      cube 	tap_cdev_read, tap_cdev_write,
    178  1.1      cube 	tap_cdev_ioctl, nostop, notty,
    179  1.1      cube 	tap_cdev_poll, nommap,
    180  1.1      cube 	tap_cdev_kqfilter,
    181  1.1      cube };
    182  1.1      cube 
    183  1.1      cube #define TAP_CLONER	0xfffff		/* Maximal minor value */
    184  1.1      cube 
    185  1.1      cube /* kqueue-related routines */
    186  1.1      cube static void	tap_kqdetach(struct knote *);
    187  1.1      cube static int	tap_kqread(struct knote *, long);
    188  1.1      cube 
    189  1.1      cube /*
    190  1.1      cube  * Those are needed by the if_media interface.
    191  1.1      cube  */
    192  1.1      cube 
    193  1.1      cube static int	tap_mediachange(struct ifnet *);
    194  1.1      cube static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    195  1.1      cube 
    196  1.1      cube /*
    197  1.1      cube  * Those are needed by the ifnet interface, and would typically be
    198  1.1      cube  * there for any network interface driver.
    199  1.1      cube  * Some other routines are optional: watchdog and drain.
    200  1.1      cube  */
    201  1.1      cube 
    202  1.1      cube static void	tap_start(struct ifnet *);
    203  1.1      cube static void	tap_stop(struct ifnet *, int);
    204  1.1      cube static int	tap_init(struct ifnet *);
    205  1.1      cube static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
    206  1.1      cube 
    207  1.1      cube /* This is an internal function to keep tap_ioctl readable */
    208  1.1      cube static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    209  1.1      cube 
    210  1.1      cube /*
    211  1.1      cube  * tap is a clonable interface, although it is highly unrealistic for
    212  1.1      cube  * an Ethernet device.
    213  1.1      cube  *
    214  1.1      cube  * Here are the bits needed for a clonable interface.
    215  1.1      cube  */
    216  1.1      cube static int	tap_clone_create(struct if_clone *, int);
    217  1.1      cube static int	tap_clone_destroy(struct ifnet *);
    218  1.1      cube 
    219  1.1      cube struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    220  1.1      cube 					tap_clone_create,
    221  1.1      cube 					tap_clone_destroy);
    222  1.1      cube 
    223  1.1      cube /* Helper functionis shared by the two cloning code paths */
    224  1.1      cube static struct tap_softc *	tap_clone_creator(int);
    225  1.1      cube static int	tap_clone_destroyer(struct device *);
    226  1.1      cube 
    227  1.1      cube void
    228  1.1      cube tapattach(int n)
    229  1.1      cube {
    230  1.1      cube 	int error;
    231  1.1      cube 
    232  1.1      cube 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    233  1.1      cube 	if (error) {
    234  1.1      cube 		aprint_error("%s: unable to register cfattach\n",
    235  1.1      cube 		    tap_cd.cd_name);
    236  1.1      cube 		(void)config_cfdriver_detach(&tap_cd);
    237  1.1      cube 		return;
    238  1.1      cube 	}
    239  1.1      cube 
    240  1.1      cube 	if_clone_attach(&tap_cloners);
    241  1.1      cube }
    242  1.1      cube 
    243  1.1      cube /* Pretty much useless for a pseudo-device */
    244  1.1      cube static int
    245  1.1      cube tap_match(struct device *self, struct cfdata *cfdata, void *arg)
    246  1.1      cube {
    247  1.1      cube 	return (1);
    248  1.1      cube }
    249  1.1      cube 
    250  1.1      cube void
    251  1.1      cube tap_attach(struct device *parent, struct device *self, void *aux)
    252  1.1      cube {
    253  1.1      cube 	struct tap_softc *sc = (struct tap_softc *)self;
    254  1.1      cube 	struct ifnet *ifp;
    255  1.1      cube 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    256  1.7      cube 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    257  1.1      cube 	char enaddrstr[18];
    258  1.1      cube 	uint32_t ui;
    259  1.1      cube 	int error;
    260  1.1      cube 	struct sysctlnode *node;
    261  1.1      cube 
    262  1.1      cube 	aprint_normal("%s: faking Ethernet device\n",
    263  1.1      cube 	    self->dv_xname);
    264  1.1      cube 
    265  1.1      cube 	/*
    266  1.1      cube 	 * In order to obtain unique initial Ethernet address on a host,
    267  1.1      cube 	 * do some randomisation using mono_time.  It's not meant for anything
    268  1.1      cube 	 * but avoiding hard-coding an address.
    269  1.1      cube 	 */
    270  1.1      cube 	ui = (mono_time.tv_sec ^ mono_time.tv_usec) & 0xffffff;
    271  1.1      cube 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    272  1.1      cube 
    273  1.1      cube 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    274  1.1      cube 	    tap_ether_sprintf(enaddrstr, enaddr));
    275  1.1      cube 
    276  1.1      cube 	/*
    277  1.1      cube 	 * Why 1000baseT? Why not? You can add more.
    278  1.1      cube 	 *
    279  1.1      cube 	 * Note that there are 3 steps: init, one or several additions to
    280  1.1      cube 	 * list of supported media, and in the end, the selection of one
    281  1.1      cube 	 * of them.
    282  1.1      cube 	 */
    283  1.1      cube 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    284  1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    285  1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    286  1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    287  1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    288  1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    289  1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    290  1.1      cube 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    291  1.1      cube 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    292  1.1      cube 
    293  1.1      cube 	/*
    294  1.1      cube 	 * One should note that an interface must do multicast in order
    295  1.1      cube 	 * to support IPv6.
    296  1.1      cube 	 */
    297  1.1      cube 	ifp = &sc->sc_ec.ec_if;
    298  1.1      cube 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    299  1.1      cube 	ifp->if_softc	= sc;
    300  1.1      cube 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    301  1.1      cube 	ifp->if_ioctl	= tap_ioctl;
    302  1.1      cube 	ifp->if_start	= tap_start;
    303  1.1      cube 	ifp->if_stop	= tap_stop;
    304  1.1      cube 	ifp->if_init	= tap_init;
    305  1.1      cube 	IFQ_SET_READY(&ifp->if_snd);
    306  1.1      cube 
    307  1.1      cube 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    308  1.1      cube 
    309  1.1      cube 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    310  1.1      cube 	 * being common to all network interface drivers. */
    311  1.1      cube 	if_attach(ifp);
    312  1.1      cube 	ether_ifattach(ifp, enaddr);
    313  1.1      cube 
    314  1.1      cube 	sc->sc_flags = 0;
    315  1.1      cube 
    316  1.1      cube 	/*
    317  1.1      cube 	 * Add a sysctl node for that interface.
    318  1.1      cube 	 *
    319  1.1      cube 	 * The pointer transmitted is not a string, but instead a pointer to
    320  1.1      cube 	 * the softc structure, which we can use to build the string value on
    321  1.1      cube 	 * the fly in the helper function of the node.  See the comments for
    322  1.1      cube 	 * tap_sysctl_handler for details.
    323  1.1      cube 	 */
    324  1.1      cube 	if ((error = sysctl_createv(NULL, 0, NULL,
    325  1.1      cube 	    &node, CTLFLAG_READWRITE,
    326  1.1      cube 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    327  1.1      cube 	    tap_sysctl_handler, 0, sc, 18,
    328  1.3      cube 	    CTL_NET, AF_LINK, tap_node, sc->sc_dev.dv_unit, CTL_EOL)) != 0)
    329  1.1      cube 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    330  1.1      cube 		    sc->sc_dev.dv_xname, error);
    331  1.1      cube 
    332  1.1      cube 	/*
    333  1.1      cube 	 * Initialize the two locks for the device.
    334  1.1      cube 	 *
    335  1.1      cube 	 * We need a lock here because even though the tap device can be
    336  1.1      cube 	 * opened only once, the file descriptor might be passed to another
    337  1.1      cube 	 * process, say a fork(2)ed child.
    338  1.1      cube 	 *
    339  1.1      cube 	 * The Giant saves us from most of the hassle, but since the read
    340  1.1      cube 	 * operation can sleep, we don't want two processes to wake up at
    341  1.1      cube 	 * the same moment and both try and dequeue a single packet.
    342  1.1      cube 	 *
    343  1.1      cube 	 * The queue for event listeners (used by kqueue(9), see below) has
    344  1.1      cube 	 * to be protected, too, but we don't need the same level of
    345  1.1      cube 	 * complexity for that lock, so a simple spinning lock is fine.
    346  1.1      cube 	 */
    347  1.1      cube 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    348  1.1      cube 	simple_lock_init(&sc->sc_kqlock);
    349  1.1      cube }
    350  1.1      cube 
    351  1.1      cube /*
    352  1.1      cube  * When detaching, we do the inverse of what is done in the attach
    353  1.1      cube  * routine, in reversed order.
    354  1.1      cube  */
    355  1.1      cube static int
    356  1.1      cube tap_detach(struct device* self, int flags)
    357  1.1      cube {
    358  1.1      cube 	struct tap_softc *sc = (struct tap_softc *)self;
    359  1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    360  1.1      cube 	int error, s;
    361  1.1      cube 
    362  1.1      cube 	/*
    363  1.1      cube 	 * Some processes might be sleeping on "tap", so we have to make
    364  1.1      cube 	 * them release their hold on the device.
    365  1.1      cube 	 *
    366  1.1      cube 	 * The LK_DRAIN operation will wait for every locked process to
    367  1.1      cube 	 * release their hold.
    368  1.1      cube 	 */
    369  1.1      cube 	sc->sc_flags |= TAP_GOING;
    370  1.1      cube 	s = splnet();
    371  1.1      cube 	tap_stop(ifp, 1);
    372  1.1      cube 	if_down(ifp);
    373  1.1      cube 	splx(s);
    374  1.1      cube 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    375  1.1      cube 
    376  1.1      cube 	/*
    377  1.1      cube 	 * Destroying a single leaf is a very straightforward operation using
    378  1.1      cube 	 * sysctl_destroyv.  One should be sure to always end the path with
    379  1.1      cube 	 * CTL_EOL.
    380  1.1      cube 	 */
    381  1.3      cube 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    382  1.1      cube 	    sc->sc_dev.dv_unit, CTL_EOL)) != 0)
    383  1.1      cube 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    384  1.1      cube 		    sc->sc_dev.dv_xname, error);
    385  1.1      cube 	ether_ifdetach(ifp);
    386  1.1      cube 	if_detach(ifp);
    387  1.1      cube 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    388  1.1      cube 
    389  1.1      cube 	return (0);
    390  1.1      cube }
    391  1.1      cube 
    392  1.1      cube /*
    393  1.1      cube  * This function is called by the ifmedia layer to notify the driver
    394  1.1      cube  * that the user requested a media change.  A real driver would
    395  1.1      cube  * reconfigure the hardware.
    396  1.1      cube  */
    397  1.1      cube static int
    398  1.1      cube tap_mediachange(struct ifnet *ifp)
    399  1.1      cube {
    400  1.1      cube 	return (0);
    401  1.1      cube }
    402  1.1      cube 
    403  1.1      cube /*
    404  1.1      cube  * Here the user asks for the currently used media.
    405  1.1      cube  */
    406  1.1      cube static void
    407  1.1      cube tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    408  1.1      cube {
    409  1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    410  1.1      cube 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    411  1.1      cube }
    412  1.1      cube 
    413  1.1      cube /*
    414  1.1      cube  * This is the function where we SEND packets.
    415  1.1      cube  *
    416  1.1      cube  * There is no 'receive' equivalent.  A typical driver will get
    417  1.1      cube  * interrupts from the hardware, and from there will inject new packets
    418  1.1      cube  * into the network stack.
    419  1.1      cube  *
    420  1.1      cube  * Once handled, a packet must be freed.  A real driver might not be able
    421  1.1      cube  * to fit all the pending packets into the hardware, and is allowed to
    422  1.1      cube  * return before having sent all the packets.  It should then use the
    423  1.1      cube  * if_flags flag IFF_OACTIVE to notify the upper layer.
    424  1.1      cube  *
    425  1.1      cube  * There are also other flags one should check, such as IFF_PAUSE.
    426  1.1      cube  *
    427  1.1      cube  * It is our duty to make packets available to BPF listeners.
    428  1.1      cube  *
    429  1.1      cube  * You should be aware that this function is called by the Ethernet layer
    430  1.1      cube  * at splnet().
    431  1.1      cube  *
    432  1.1      cube  * When the device is opened, we have to pass the packet(s) to the
    433  1.1      cube  * userland.  For that we stay in OACTIVE mode while the userland gets
    434  1.1      cube  * the packets, and we send a signal to the processes waiting to read.
    435  1.1      cube  *
    436  1.1      cube  * wakeup(sc) is the counterpart to the tsleep call in
    437  1.1      cube  * tap_dev_read, while selnotify() is used for kevent(2) and
    438  1.1      cube  * poll(2) (which includes select(2)) listeners.
    439  1.1      cube  */
    440  1.1      cube static void
    441  1.1      cube tap_start(struct ifnet *ifp)
    442  1.1      cube {
    443  1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    444  1.1      cube 	struct mbuf *m0;
    445  1.1      cube 
    446  1.1      cube 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    447  1.1      cube 		/* Simply drop packets */
    448  1.1      cube 		for(;;) {
    449  1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    450  1.1      cube 			if (m0 == NULL)
    451  1.1      cube 				return;
    452  1.1      cube 
    453  1.1      cube 			ifp->if_opackets++;
    454  1.1      cube #if NBPFILTER > 0
    455  1.1      cube 			if (ifp->if_bpf)
    456  1.1      cube 				bpf_mtap(ifp->if_bpf, m0);
    457  1.1      cube #endif
    458  1.1      cube 
    459  1.1      cube 			m_freem(m0);
    460  1.1      cube 		}
    461  1.1      cube 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    462  1.1      cube 		ifp->if_flags |= IFF_OACTIVE;
    463  1.1      cube 		wakeup(sc);
    464  1.1      cube 		selnotify(&sc->sc_rsel, 1);
    465  1.1      cube 		if (sc->sc_flags & TAP_ASYNCIO)
    466  1.1      cube 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    467  1.1      cube 			    POLLIN|POLLRDNORM, NULL);
    468  1.1      cube 	}
    469  1.1      cube }
    470  1.1      cube 
    471  1.1      cube /*
    472  1.1      cube  * A typical driver will only contain the following handlers for
    473  1.1      cube  * ioctl calls, except SIOCSIFPHYADDR.
    474  1.1      cube  * The latter is a hack I used to set the Ethernet address of the
    475  1.1      cube  * faked device.
    476  1.1      cube  *
    477  1.1      cube  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    478  1.1      cube  * called under splnet().
    479  1.1      cube  */
    480  1.1      cube static int
    481  1.1      cube tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    482  1.1      cube {
    483  1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    484  1.1      cube 	struct ifreq *ifr = (struct ifreq *)data;
    485  1.1      cube 	int s, error;
    486  1.1      cube 
    487  1.1      cube 	s = splnet();
    488  1.1      cube 
    489  1.1      cube 	switch (cmd) {
    490  1.1      cube 	case SIOCSIFMEDIA:
    491  1.1      cube 	case SIOCGIFMEDIA:
    492  1.1      cube 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    493  1.1      cube 		break;
    494  1.1      cube 	case SIOCSIFPHYADDR:
    495  1.1      cube 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    496  1.1      cube 		break;
    497  1.1      cube 	default:
    498  1.1      cube 		error = ether_ioctl(ifp, cmd, data);
    499  1.1      cube 		if (error == ENETRESET)
    500  1.1      cube 			error = 0;
    501  1.1      cube 		break;
    502  1.1      cube 	}
    503  1.1      cube 
    504  1.1      cube 	splx(s);
    505  1.1      cube 
    506  1.1      cube 	return (error);
    507  1.1      cube }
    508  1.1      cube 
    509  1.1      cube /*
    510  1.1      cube  * Helper function to set Ethernet address.  This shouldn't be done there,
    511  1.1      cube  * and should actually be available to all Ethernet drivers, real or not.
    512  1.1      cube  */
    513  1.1      cube static int
    514  1.1      cube tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    515  1.1      cube {
    516  1.1      cube 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    517  1.1      cube 
    518  1.1      cube 	if (sa->sa_family != AF_LINK)
    519  1.1      cube 		return (EINVAL);
    520  1.1      cube 
    521  1.1      cube 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    522  1.1      cube 
    523  1.1      cube 	return (0);
    524  1.1      cube }
    525  1.1      cube 
    526  1.1      cube /*
    527  1.1      cube  * _init() would typically be called when an interface goes up,
    528  1.1      cube  * meaning it should configure itself into the state in which it
    529  1.1      cube  * can send packets.
    530  1.1      cube  */
    531  1.1      cube static int
    532  1.1      cube tap_init(struct ifnet *ifp)
    533  1.1      cube {
    534  1.1      cube 	ifp->if_flags |= IFF_RUNNING;
    535  1.1      cube 
    536  1.1      cube 	tap_start(ifp);
    537  1.1      cube 
    538  1.1      cube 	return (0);
    539  1.1      cube }
    540  1.1      cube 
    541  1.1      cube /*
    542  1.1      cube  * _stop() is called when an interface goes down.  It is our
    543  1.1      cube  * responsability to validate that state by clearing the
    544  1.1      cube  * IFF_RUNNING flag.
    545  1.1      cube  *
    546  1.1      cube  * We have to wake up all the sleeping processes to have the pending
    547  1.1      cube  * read requests cancelled.
    548  1.1      cube  */
    549  1.1      cube static void
    550  1.1      cube tap_stop(struct ifnet *ifp, int disable)
    551  1.1      cube {
    552  1.1      cube 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    553  1.1      cube 
    554  1.1      cube 	ifp->if_flags &= ~IFF_RUNNING;
    555  1.1      cube 	wakeup(sc);
    556  1.1      cube 	selnotify(&sc->sc_rsel, 1);
    557  1.1      cube 	if (sc->sc_flags & TAP_ASYNCIO)
    558  1.1      cube 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    559  1.1      cube }
    560  1.1      cube 
    561  1.1      cube /*
    562  1.1      cube  * The 'create' command of ifconfig can be used to create
    563  1.1      cube  * any numbered instance of a given device.  Thus we have to
    564  1.1      cube  * make sure we have enough room in cd_devs to create the
    565  1.1      cube  * user-specified instance.  config_attach_pseudo will do this
    566  1.1      cube  * for us.
    567  1.1      cube  */
    568  1.1      cube static int
    569  1.1      cube tap_clone_create(struct if_clone *ifc, int unit)
    570  1.1      cube {
    571  1.1      cube 	if (tap_clone_creator(unit) == NULL) {
    572  1.1      cube 		aprint_error("%s%d: unable to attach an instance\n",
    573  1.1      cube                     tap_cd.cd_name, unit);
    574  1.1      cube 		return (ENXIO);
    575  1.1      cube 	}
    576  1.1      cube 
    577  1.1      cube 	return (0);
    578  1.1      cube }
    579  1.1      cube 
    580  1.1      cube /*
    581  1.1      cube  * tap(4) can be cloned by two ways:
    582  1.1      cube  *   using 'ifconfig tap0 create', which will use the network
    583  1.1      cube  *     interface cloning API, and call tap_clone_create above.
    584  1.1      cube  *   opening the cloning device node, whose minor number is TAP_CLONER.
    585  1.1      cube  *     See below for an explanation on how this part work.
    586  1.1      cube  *
    587  1.1      cube  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
    588  1.1      cube  * autoconf(9) choose a unit number for us.  This is what happens when
    589  1.1      cube  * the cloner is openend, while the ifcloner interface creates a device
    590  1.1      cube  * with a specific unit number.
    591  1.1      cube  */
    592  1.1      cube static struct tap_softc *
    593  1.1      cube tap_clone_creator(int unit)
    594  1.1      cube {
    595  1.1      cube 	struct cfdata *cf;
    596  1.1      cube 
    597  1.1      cube 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    598  1.1      cube 	cf->cf_name = tap_cd.cd_name;
    599  1.1      cube 	cf->cf_atname = tap_ca.ca_name;
    600  1.1      cube 	cf->cf_unit = unit;
    601  1.1      cube 	cf->cf_fstate = FSTATE_STAR;
    602  1.1      cube 
    603  1.1      cube 	return (struct tap_softc *)config_attach_pseudo(cf);
    604  1.1      cube }
    605  1.1      cube 
    606  1.1      cube /*
    607  1.1      cube  * The clean design of if_clone and autoconf(9) makes that part
    608  1.1      cube  * really straightforward.  The second argument of config_detach
    609  1.1      cube  * means neither QUIET nor FORCED.
    610  1.1      cube  */
    611  1.1      cube static int
    612  1.1      cube tap_clone_destroy(struct ifnet *ifp)
    613  1.1      cube {
    614  1.1      cube 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    615  1.1      cube }
    616  1.1      cube 
    617  1.1      cube static int
    618  1.1      cube tap_clone_destroyer(struct device *dev)
    619  1.1      cube {
    620  1.1      cube 	struct cfdata *cf = dev->dv_cfdata;
    621  1.1      cube 	int error;
    622  1.1      cube 
    623  1.1      cube 	if ((error = config_detach(dev, 0)) != 0)
    624  1.1      cube 		aprint_error("%s: unable to detach instance\n",
    625  1.1      cube 		    dev->dv_xname);
    626  1.1      cube 	free(cf, M_DEVBUF);
    627  1.1      cube 
    628  1.1      cube 	return (error);
    629  1.1      cube }
    630  1.1      cube 
    631  1.1      cube /*
    632  1.1      cube  * tap(4) is a bit of an hybrid device.  It can be used in two different
    633  1.1      cube  * ways:
    634  1.1      cube  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    635  1.1      cube  *  2. open /dev/tap, get a new interface created and read/write off it.
    636  1.1      cube  *     That interface is destroyed when the process that had it created exits.
    637  1.1      cube  *
    638  1.1      cube  * The first way is managed by the cdevsw structure, and you access interfaces
    639  1.1      cube  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    640  1.1      cube  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    641  1.1      cube  *
    642  1.1      cube  * The second way is the so-called "cloning" device.  It's a special minor
    643  1.1      cube  * number (chosen as the maximal number, to allow as much tap devices as
    644  1.1      cube  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    645  1.1      cube  * call ends in tap_cdev_open.  The actual place where it is handled is
    646  1.1      cube  * tap_dev_cloner.
    647  1.1      cube  *
    648  1.1      cube  * An tap device cannot be opened more than once at a time, so the cdevsw
    649  1.1      cube  * part of open() does nothing but noting that the interface is being used and
    650  1.1      cube  * hence ready to actually handle packets.
    651  1.1      cube  */
    652  1.1      cube 
    653  1.1      cube static int
    654  1.1      cube tap_cdev_open(dev_t dev, int flags, int fmt, struct proc *p)
    655  1.1      cube {
    656  1.1      cube 	struct tap_softc *sc;
    657  1.1      cube 
    658  1.1      cube 	if (minor(dev) == TAP_CLONER)
    659  1.1      cube 		return tap_dev_cloner(p);
    660  1.1      cube 
    661  1.1      cube 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    662  1.1      cube 	if (sc == NULL)
    663  1.1      cube 		return (ENXIO);
    664  1.1      cube 
    665  1.1      cube 	/* The device can only be opened once */
    666  1.1      cube 	if (sc->sc_flags & TAP_INUSE)
    667  1.1      cube 		return (EBUSY);
    668  1.1      cube 	sc->sc_flags |= TAP_INUSE;
    669  1.1      cube 	return (0);
    670  1.1      cube }
    671  1.1      cube 
    672  1.1      cube /*
    673  1.1      cube  * There are several kinds of cloning devices, and the most simple is the one
    674  1.1      cube  * tap(4) uses.  What it does is change the file descriptor with a new one,
    675  1.1      cube  * with its own fileops structure (which maps to the various read, write,
    676  1.1      cube  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    677  1.1      cube  * then actually creates the new tap devices.
    678  1.1      cube  *
    679  1.1      cube  * Once those two steps are successful, we can re-wire the existing file
    680  1.1      cube  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    681  1.1      cube  * structure as needed (notably f_data gets filled with the fifth parameter
    682  1.1      cube  * passed, the unit of the tap device which will allows us identifying the
    683  1.1      cube  * device later), and returns EMOVEFD.
    684  1.1      cube  *
    685  1.1      cube  * That magic value is interpreted by sys_open() which then replaces the
    686  1.1      cube  * current file descriptor by the new one (through a magic member of struct
    687  1.1      cube  * proc, p_dupfd).
    688  1.1      cube  *
    689  1.1      cube  * The tap device is flagged as being busy since it otherwise could be
    690  1.1      cube  * externally accessed through the corresponding device node with the cdevsw
    691  1.1      cube  * interface.
    692  1.1      cube  */
    693  1.1      cube 
    694  1.1      cube static int
    695  1.1      cube tap_dev_cloner(struct proc *p)
    696  1.1      cube {
    697  1.1      cube 	struct tap_softc *sc;
    698  1.1      cube 	struct file *fp;
    699  1.1      cube 	int error, fd;
    700  1.1      cube 
    701  1.1      cube 	if ((error = falloc(p, &fp, &fd)) != 0)
    702  1.1      cube 		return (error);
    703  1.1      cube 
    704  1.1      cube 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
    705  1.1      cube 		FILE_UNUSE(fp, p);
    706  1.1      cube 		ffree(fp);
    707  1.1      cube 		return (ENXIO);
    708  1.1      cube 	}
    709  1.1      cube 
    710  1.1      cube 	sc->sc_flags |= TAP_INUSE;
    711  1.1      cube 
    712  1.5  christos 	return fdclone(p, fp, fd, FREAD|FWRITE, &tap_fileops,
    713  1.5  christos 	    (void *)(intptr_t)sc->sc_dev.dv_unit);
    714  1.1      cube }
    715  1.1      cube 
    716  1.1      cube /*
    717  1.1      cube  * While all other operations (read, write, ioctl, poll and kqfilter) are
    718  1.1      cube  * really the same whether we are in cdevsw or fileops mode, the close()
    719  1.1      cube  * function is slightly different in the two cases.
    720  1.1      cube  *
    721  1.1      cube  * As for the other, the core of it is shared in tap_dev_close.  What
    722  1.1      cube  * it does is sufficient for the cdevsw interface, but the cloning interface
    723  1.1      cube  * needs another thing:  the interface is destroyed when the processes that
    724  1.1      cube  * created it closes it.
    725  1.1      cube  */
    726  1.1      cube static int
    727  1.1      cube tap_cdev_close(dev_t dev, int flags, int fmt, struct proc *p)
    728  1.1      cube {
    729  1.1      cube 	struct tap_softc *sc =
    730  1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    731  1.1      cube 
    732  1.1      cube 	if (sc == NULL)
    733  1.1      cube 		return (ENXIO);
    734  1.1      cube 
    735  1.1      cube 	return tap_dev_close(sc);
    736  1.1      cube }
    737  1.1      cube 
    738  1.1      cube /*
    739  1.1      cube  * It might happen that the administrator used ifconfig to externally destroy
    740  1.1      cube  * the interface.  In that case, tap_fops_close will be called while
    741  1.1      cube  * tap_detach is already happening.  If we called it again from here, we
    742  1.1      cube  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    743  1.1      cube  */
    744  1.1      cube static int
    745  1.1      cube tap_fops_close(struct file *fp, struct proc *p)
    746  1.1      cube {
    747  1.1      cube 	int unit = (intptr_t)fp->f_data;
    748  1.1      cube 	struct tap_softc *sc;
    749  1.1      cube 	int error;
    750  1.1      cube 
    751  1.1      cube 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    752  1.1      cube 	if (sc == NULL)
    753  1.1      cube 		return (ENXIO);
    754  1.1      cube 
    755  1.1      cube 	/* tap_dev_close currently always succeeds, but it might not
    756  1.1      cube 	 * always be the case. */
    757  1.1      cube 	if ((error = tap_dev_close(sc)) != 0)
    758  1.1      cube 		return (error);
    759  1.1      cube 
    760  1.1      cube 	/* Destroy the device now that it is no longer useful,
    761  1.1      cube 	 * unless it's already being destroyed. */
    762  1.1      cube 	if ((sc->sc_flags & TAP_GOING) != 0)
    763  1.1      cube 		return (0);
    764  1.1      cube 
    765  1.1      cube 	return tap_clone_destroyer((struct device *)sc);
    766  1.1      cube }
    767  1.1      cube 
    768  1.1      cube static int
    769  1.1      cube tap_dev_close(struct tap_softc *sc)
    770  1.1      cube {
    771  1.1      cube 	struct ifnet *ifp;
    772  1.1      cube 	int s;
    773  1.1      cube 
    774  1.1      cube 	s = splnet();
    775  1.1      cube 	/* Let tap_start handle packets again */
    776  1.1      cube 	ifp = &sc->sc_ec.ec_if;
    777  1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    778  1.1      cube 
    779  1.1      cube 	/* Purge output queue */
    780  1.1      cube 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    781  1.1      cube 		struct mbuf *m;
    782  1.1      cube 
    783  1.1      cube 		for (;;) {
    784  1.1      cube 			IFQ_DEQUEUE(&ifp->if_snd, m);
    785  1.1      cube 			if (m == NULL)
    786  1.1      cube 				break;
    787  1.1      cube 
    788  1.1      cube 			ifp->if_opackets++;
    789  1.1      cube #if NBPFILTER > 0
    790  1.1      cube 			if (ifp->if_bpf)
    791  1.1      cube 				bpf_mtap(ifp->if_bpf, m);
    792  1.1      cube #endif
    793  1.1      cube 		}
    794  1.1      cube 	}
    795  1.1      cube 	splx(s);
    796  1.1      cube 
    797  1.1      cube 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    798  1.1      cube 
    799  1.1      cube 	return (0);
    800  1.1      cube }
    801  1.1      cube 
    802  1.1      cube static int
    803  1.1      cube tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    804  1.1      cube {
    805  1.1      cube 	return tap_dev_read(minor(dev), uio, flags);
    806  1.1      cube }
    807  1.1      cube 
    808  1.1      cube static int
    809  1.1      cube tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    810  1.1      cube     struct ucred *cred, int flags)
    811  1.1      cube {
    812  1.1      cube 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    813  1.1      cube }
    814  1.1      cube 
    815  1.1      cube static int
    816  1.1      cube tap_dev_read(int unit, struct uio *uio, int flags)
    817  1.1      cube {
    818  1.1      cube 	struct tap_softc *sc =
    819  1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    820  1.1      cube 	struct ifnet *ifp;
    821  1.1      cube 	struct mbuf *m, *n;
    822  1.1      cube 	int error = 0, s;
    823  1.1      cube 
    824  1.1      cube 	if (sc == NULL)
    825  1.1      cube 		return (ENXIO);
    826  1.1      cube 
    827  1.1      cube 	ifp = &sc->sc_ec.ec_if;
    828  1.1      cube 	if ((ifp->if_flags & IFF_UP) == 0)
    829  1.1      cube 		return (EHOSTDOWN);
    830  1.1      cube 
    831  1.1      cube 	/*
    832  1.1      cube 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    833  1.1      cube 	 */
    834  1.1      cube 	if ((sc->sc_flags & TAP_NBIO) &&
    835  1.1      cube 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    836  1.1      cube 		return (EWOULDBLOCK);
    837  1.1      cube 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    838  1.1      cube 	if (error != 0)
    839  1.1      cube 		return (error);
    840  1.1      cube 
    841  1.1      cube 	s = splnet();
    842  1.1      cube 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    843  1.1      cube 		ifp->if_flags &= ~IFF_OACTIVE;
    844  1.1      cube 		splx(s);
    845  1.1      cube 		/*
    846  1.1      cube 		 * We must release the lock before sleeping, and re-acquire it
    847  1.1      cube 		 * after.
    848  1.1      cube 		 */
    849  1.1      cube 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    850  1.1      cube 		if (sc->sc_flags & TAP_NBIO)
    851  1.1      cube 			error = EWOULDBLOCK;
    852  1.1      cube 		else
    853  1.1      cube 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    854  1.1      cube 
    855  1.1      cube 		if (error != 0)
    856  1.1      cube 			return (error);
    857  1.1      cube 		/* The device might have been downed */
    858  1.1      cube 		if ((ifp->if_flags & IFF_UP) == 0)
    859  1.1      cube 			return (EHOSTDOWN);
    860  1.1      cube 		if ((sc->sc_flags & TAP_NBIO) &&
    861  1.1      cube 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    862  1.1      cube 			return (EWOULDBLOCK);
    863  1.1      cube 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    864  1.1      cube 		if (error != 0)
    865  1.1      cube 			return (error);
    866  1.1      cube 		s = splnet();
    867  1.1      cube 	}
    868  1.1      cube 
    869  1.1      cube 	IFQ_DEQUEUE(&ifp->if_snd, m);
    870  1.1      cube 	ifp->if_flags &= ~IFF_OACTIVE;
    871  1.1      cube 	splx(s);
    872  1.1      cube 	if (m == NULL) {
    873  1.1      cube 		error = 0;
    874  1.1      cube 		goto out;
    875  1.1      cube 	}
    876  1.1      cube 
    877  1.1      cube 	ifp->if_opackets++;
    878  1.1      cube #if NBPFILTER > 0
    879  1.1      cube 	if (ifp->if_bpf)
    880  1.1      cube 		bpf_mtap(ifp->if_bpf, m);
    881  1.1      cube #endif
    882  1.1      cube 
    883  1.1      cube 	/*
    884  1.1      cube 	 * One read is one packet.
    885  1.1      cube 	 */
    886  1.1      cube 	do {
    887  1.1      cube 		error = uiomove(mtod(m, caddr_t),
    888  1.1      cube 		    min(m->m_len, uio->uio_resid), uio);
    889  1.1      cube 		MFREE(m, n);
    890  1.1      cube 		m = n;
    891  1.1      cube 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    892  1.1      cube 
    893  1.1      cube 	if (m != NULL)
    894  1.1      cube 		m_freem(m);
    895  1.1      cube 
    896  1.1      cube out:
    897  1.1      cube 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    898  1.1      cube 	return (error);
    899  1.1      cube }
    900  1.1      cube 
    901  1.1      cube static int
    902  1.1      cube tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    903  1.1      cube {
    904  1.1      cube 	return tap_dev_write(minor(dev), uio, flags);
    905  1.1      cube }
    906  1.1      cube 
    907  1.1      cube static int
    908  1.1      cube tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    909  1.1      cube     struct ucred *cred, int flags)
    910  1.1      cube {
    911  1.1      cube 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    912  1.1      cube }
    913  1.1      cube 
    914  1.1      cube static int
    915  1.1      cube tap_dev_write(int unit, struct uio *uio, int flags)
    916  1.1      cube {
    917  1.1      cube 	struct tap_softc *sc =
    918  1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    919  1.1      cube 	struct ifnet *ifp;
    920  1.1      cube 	struct mbuf *m, **mp;
    921  1.1      cube 	int error = 0;
    922  1.9    bouyer 	int s;
    923  1.1      cube 
    924  1.1      cube 	if (sc == NULL)
    925  1.1      cube 		return (ENXIO);
    926  1.1      cube 
    927  1.1      cube 	ifp = &sc->sc_ec.ec_if;
    928  1.1      cube 
    929  1.1      cube 	/* One write, one packet, that's the rule */
    930  1.1      cube 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    931  1.1      cube 	if (m == NULL) {
    932  1.1      cube 		ifp->if_ierrors++;
    933  1.1      cube 		return (ENOBUFS);
    934  1.1      cube 	}
    935  1.1      cube 	m->m_pkthdr.len = uio->uio_resid;
    936  1.1      cube 
    937  1.1      cube 	mp = &m;
    938  1.1      cube 	while (error == 0 && uio->uio_resid > 0) {
    939  1.1      cube 		if (*mp != m) {
    940  1.1      cube 			MGET(*mp, M_DONTWAIT, MT_DATA);
    941  1.1      cube 			if (*mp == NULL) {
    942  1.1      cube 				error = ENOBUFS;
    943  1.1      cube 				break;
    944  1.1      cube 			}
    945  1.1      cube 		}
    946  1.1      cube 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    947  1.1      cube 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
    948  1.1      cube 		mp = &(*mp)->m_next;
    949  1.1      cube 	}
    950  1.1      cube 	if (error) {
    951  1.1      cube 		ifp->if_ierrors++;
    952  1.1      cube 		m_freem(m);
    953  1.1      cube 		return (error);
    954  1.1      cube 	}
    955  1.1      cube 
    956  1.1      cube 	ifp->if_ipackets++;
    957  1.1      cube 	m->m_pkthdr.rcvif = ifp;
    958  1.1      cube 
    959  1.1      cube #if NBPFILTER > 0
    960  1.1      cube 	if (ifp->if_bpf)
    961  1.1      cube 		bpf_mtap(ifp->if_bpf, m);
    962  1.1      cube #endif
    963  1.9    bouyer 	s =splnet();
    964  1.1      cube 	(*ifp->if_input)(ifp, m);
    965  1.9    bouyer 	splx(s);
    966  1.1      cube 
    967  1.1      cube 	return (0);
    968  1.1      cube }
    969  1.1      cube 
    970  1.1      cube static int
    971  1.1      cube tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
    972  1.1      cube     struct proc *p)
    973  1.1      cube {
    974  1.1      cube 	return tap_dev_ioctl(minor(dev), cmd, data, p);
    975  1.1      cube }
    976  1.1      cube 
    977  1.1      cube static int
    978  1.1      cube tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct proc *p)
    979  1.1      cube {
    980  1.1      cube 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, p);
    981  1.1      cube }
    982  1.1      cube 
    983  1.1      cube static int
    984  1.1      cube tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct proc *p)
    985  1.1      cube {
    986  1.1      cube 	struct tap_softc *sc =
    987  1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    988  1.1      cube 	int error = 0;
    989  1.1      cube 
    990  1.1      cube 	if (sc == NULL)
    991  1.1      cube 		return (ENXIO);
    992  1.1      cube 
    993  1.1      cube 	switch (cmd) {
    994  1.1      cube 	case FIONREAD:
    995  1.1      cube 		{
    996  1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
    997  1.1      cube 			struct mbuf *m;
    998  1.1      cube 			int s;
    999  1.1      cube 
   1000  1.1      cube 			s = splnet();
   1001  1.1      cube 			IFQ_POLL(&ifp->if_snd, m);
   1002  1.1      cube 
   1003  1.1      cube 			if (m == NULL)
   1004  1.1      cube 				*(int *)data = 0;
   1005  1.1      cube 			else
   1006  1.1      cube 				*(int *)data = m->m_pkthdr.len;
   1007  1.1      cube 			splx(s);
   1008  1.1      cube 		} break;
   1009  1.1      cube 	case TIOCSPGRP:
   1010  1.1      cube 	case FIOSETOWN:
   1011  1.1      cube 		error = fsetown(p, &sc->sc_pgid, cmd, data);
   1012  1.1      cube 		break;
   1013  1.1      cube 	case TIOCGPGRP:
   1014  1.1      cube 	case FIOGETOWN:
   1015  1.1      cube 		error = fgetown(p, sc->sc_pgid, cmd, data);
   1016  1.1      cube 		break;
   1017  1.1      cube 	case FIOASYNC:
   1018  1.1      cube 		if (*(int *)data)
   1019  1.1      cube 			sc->sc_flags |= TAP_ASYNCIO;
   1020  1.1      cube 		else
   1021  1.1      cube 			sc->sc_flags &= ~TAP_ASYNCIO;
   1022  1.1      cube 		break;
   1023  1.1      cube 	case FIONBIO:
   1024  1.1      cube 		if (*(int *)data)
   1025  1.1      cube 			sc->sc_flags |= TAP_NBIO;
   1026  1.1      cube 		else
   1027  1.1      cube 			sc->sc_flags &= ~TAP_NBIO;
   1028  1.1      cube 		break;
   1029  1.1      cube 	case TAPGIFNAME:
   1030  1.1      cube 		{
   1031  1.1      cube 			struct ifreq *ifr = (struct ifreq *)data;
   1032  1.1      cube 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1033  1.1      cube 
   1034  1.1      cube 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1035  1.1      cube 		} break;
   1036  1.1      cube 	default:
   1037  1.1      cube 		error = ENOTTY;
   1038  1.1      cube 		break;
   1039  1.1      cube 	}
   1040  1.1      cube 
   1041  1.1      cube 	return (0);
   1042  1.1      cube }
   1043  1.1      cube 
   1044  1.1      cube static int
   1045  1.1      cube tap_cdev_poll(dev_t dev, int events, struct proc *p)
   1046  1.1      cube {
   1047  1.1      cube 	return tap_dev_poll(minor(dev), events, p);
   1048  1.1      cube }
   1049  1.1      cube 
   1050  1.1      cube static int
   1051  1.1      cube tap_fops_poll(struct file *fp, int events, struct proc *p)
   1052  1.1      cube {
   1053  1.1      cube 	return tap_dev_poll((intptr_t)fp->f_data, events, p);
   1054  1.1      cube }
   1055  1.1      cube 
   1056  1.1      cube static int
   1057  1.1      cube tap_dev_poll(int unit, int events, struct proc *p)
   1058  1.1      cube {
   1059  1.1      cube 	struct tap_softc *sc =
   1060  1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1061  1.1      cube 	int revents = 0;
   1062  1.1      cube 
   1063  1.1      cube 	if (sc == NULL)
   1064  1.1      cube 		return (ENXIO);
   1065  1.1      cube 
   1066  1.1      cube 	if (events & (POLLIN|POLLRDNORM)) {
   1067  1.1      cube 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1068  1.1      cube 		struct mbuf *m;
   1069  1.1      cube 		int s;
   1070  1.1      cube 
   1071  1.1      cube 		s = splnet();
   1072  1.1      cube 		IFQ_POLL(&ifp->if_snd, m);
   1073  1.1      cube 		splx(s);
   1074  1.1      cube 
   1075  1.1      cube 		if (m != NULL)
   1076  1.1      cube 			revents |= events & (POLLIN|POLLRDNORM);
   1077  1.1      cube 		else {
   1078  1.4     ragge 			simple_lock(&sc->sc_kqlock);
   1079  1.1      cube 			selrecord(p, &sc->sc_rsel);
   1080  1.1      cube 			simple_unlock(&sc->sc_kqlock);
   1081  1.1      cube 		}
   1082  1.1      cube 	}
   1083  1.1      cube 	revents |= events & (POLLOUT|POLLWRNORM);
   1084  1.1      cube 
   1085  1.1      cube 	return (revents);
   1086  1.1      cube }
   1087  1.1      cube 
   1088  1.1      cube static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1089  1.1      cube 	tap_kqread };
   1090  1.1      cube static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1091  1.1      cube 	filt_seltrue };
   1092  1.1      cube 
   1093  1.1      cube static int
   1094  1.1      cube tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1095  1.1      cube {
   1096  1.1      cube 	return tap_dev_kqfilter(minor(dev), kn);
   1097  1.1      cube }
   1098  1.1      cube 
   1099  1.1      cube static int
   1100  1.1      cube tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1101  1.1      cube {
   1102  1.1      cube 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1103  1.1      cube }
   1104  1.1      cube 
   1105  1.1      cube static int
   1106  1.1      cube tap_dev_kqfilter(int unit, struct knote *kn)
   1107  1.1      cube {
   1108  1.1      cube 	struct tap_softc *sc =
   1109  1.1      cube 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1110  1.1      cube 
   1111  1.1      cube 	if (sc == NULL)
   1112  1.1      cube 		return (ENXIO);
   1113  1.1      cube 
   1114  1.1      cube 	switch(kn->kn_filter) {
   1115  1.1      cube 	case EVFILT_READ:
   1116  1.1      cube 		kn->kn_fop = &tap_read_filterops;
   1117  1.1      cube 		break;
   1118  1.1      cube 	case EVFILT_WRITE:
   1119  1.1      cube 		kn->kn_fop = &tap_seltrue_filterops;
   1120  1.1      cube 		break;
   1121  1.1      cube 	default:
   1122  1.1      cube 		return (1);
   1123  1.1      cube 	}
   1124  1.1      cube 
   1125  1.1      cube 	kn->kn_hook = sc;
   1126  1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1127  1.1      cube 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1128  1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1129  1.1      cube 	return (0);
   1130  1.1      cube }
   1131  1.1      cube 
   1132  1.1      cube static void
   1133  1.1      cube tap_kqdetach(struct knote *kn)
   1134  1.1      cube {
   1135  1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1136  1.1      cube 
   1137  1.4     ragge 	simple_lock(&sc->sc_kqlock);
   1138  1.1      cube 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1139  1.1      cube 	simple_unlock(&sc->sc_kqlock);
   1140  1.1      cube }
   1141  1.1      cube 
   1142  1.1      cube static int
   1143  1.1      cube tap_kqread(struct knote *kn, long hint)
   1144  1.1      cube {
   1145  1.1      cube 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1146  1.1      cube 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1147  1.1      cube 	struct mbuf *m;
   1148  1.1      cube 	int s;
   1149  1.1      cube 
   1150  1.1      cube 	s = splnet();
   1151  1.1      cube 	IFQ_POLL(&ifp->if_snd, m);
   1152  1.1      cube 
   1153  1.1      cube 	if (m == NULL)
   1154  1.1      cube 		kn->kn_data = 0;
   1155  1.1      cube 	else
   1156  1.1      cube 		kn->kn_data = m->m_pkthdr.len;
   1157  1.1      cube 	splx(s);
   1158  1.1      cube 	return (kn->kn_data != 0 ? 1 : 0);
   1159  1.1      cube }
   1160  1.1      cube 
   1161  1.1      cube /*
   1162  1.1      cube  * sysctl management routines
   1163  1.1      cube  * You can set the address of an interface through:
   1164  1.1      cube  * net.link.tap.tap<number>
   1165  1.1      cube  *
   1166  1.1      cube  * Note the consistent use of tap_log in order to use
   1167  1.1      cube  * sysctl_teardown at unload time.
   1168  1.1      cube  *
   1169  1.1      cube  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1170  1.1      cube  * blocks register a function in a special section of the kernel
   1171  1.1      cube  * (called a link set) which is used at init_sysctl() time to cycle
   1172  1.1      cube  * through all those functions to create the kernel's sysctl tree.
   1173  1.1      cube  *
   1174  1.1      cube  * It is not (currently) possible to use link sets in a LKM, so the
   1175  1.1      cube  * easiest is to simply call our own setup routine at load time.
   1176  1.1      cube  *
   1177  1.1      cube  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1178  1.1      cube  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1179  1.1      cube  * whole kernel sysctl tree is built, it is not possible to add any
   1180  1.1      cube  * permanent node.
   1181  1.1      cube  *
   1182  1.1      cube  * It should be noted that we're not saving the sysctlnode pointer
   1183  1.1      cube  * we are returned when creating the "tap" node.  That structure
   1184  1.1      cube  * cannot be trusted once out of the calling function, as it might
   1185  1.1      cube  * get reused.  So we just save the MIB number, and always give the
   1186  1.1      cube  * full path starting from the root for later calls to sysctl_createv
   1187  1.1      cube  * and sysctl_destroyv.
   1188  1.1      cube  */
   1189  1.1      cube SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1190  1.1      cube {
   1191  1.1      cube 	struct sysctlnode *node;
   1192  1.1      cube 	int error = 0;
   1193  1.1      cube 
   1194  1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1195  1.1      cube 	    CTLFLAG_PERMANENT,
   1196  1.1      cube 	    CTLTYPE_NODE, "net", NULL,
   1197  1.1      cube 	    NULL, 0, NULL, 0,
   1198  1.1      cube 	    CTL_NET, CTL_EOL)) != 0)
   1199  1.1      cube 		return;
   1200  1.1      cube 
   1201  1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1202  1.1      cube 	    CTLFLAG_PERMANENT,
   1203  1.1      cube 	    CTLTYPE_NODE, "link", NULL,
   1204  1.1      cube 	    NULL, 0, NULL, 0,
   1205  1.3      cube 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1206  1.1      cube 		return;
   1207  1.1      cube 
   1208  1.1      cube 	/*
   1209  1.1      cube 	 * The first four parameters of sysctl_createv are for management.
   1210  1.1      cube 	 *
   1211  1.1      cube 	 * The four that follows, here starting with a '0' for the flags,
   1212  1.1      cube 	 * describe the node.
   1213  1.1      cube 	 *
   1214  1.1      cube 	 * The next series of four set its value, through various possible
   1215  1.1      cube 	 * means.
   1216  1.1      cube 	 *
   1217  1.1      cube 	 * Last but not least, the path to the node is described.  That path
   1218  1.1      cube 	 * is relative to the given root (third argument).  Here we're
   1219  1.1      cube 	 * starting from the root.
   1220  1.1      cube 	 */
   1221  1.1      cube 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1222  1.1      cube 	    CTLFLAG_PERMANENT,
   1223  1.1      cube 	    CTLTYPE_NODE, "tap", NULL,
   1224  1.1      cube 	    NULL, 0, NULL, 0,
   1225  1.3      cube 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1226  1.1      cube 		return;
   1227  1.1      cube 	tap_node = node->sysctl_num;
   1228  1.1      cube }
   1229  1.1      cube 
   1230  1.1      cube /*
   1231  1.1      cube  * The helper functions make Andrew Brown's interface really
   1232  1.1      cube  * shine.  It makes possible to create value on the fly whether
   1233  1.1      cube  * the sysctl value is read or written.
   1234  1.1      cube  *
   1235  1.1      cube  * As shown as an example in the man page, the first step is to
   1236  1.1      cube  * create a copy of the node to have sysctl_lookup work on it.
   1237  1.1      cube  *
   1238  1.1      cube  * Here, we have more work to do than just a copy, since we have
   1239  1.1      cube  * to create the string.  The first step is to collect the actual
   1240  1.1      cube  * value of the node, which is a convenient pointer to the softc
   1241  1.1      cube  * of the interface.  From there we create the string and use it
   1242  1.1      cube  * as the value, but only for the *copy* of the node.
   1243  1.1      cube  *
   1244  1.1      cube  * Then we let sysctl_lookup do the magic, which consists in
   1245  1.1      cube  * setting oldp and newp as required by the operation.  When the
   1246  1.1      cube  * value is read, that means that the string will be copied to
   1247  1.1      cube  * the user, and when it is written, the new value will be copied
   1248  1.1      cube  * over in the addr array.
   1249  1.1      cube  *
   1250  1.1      cube  * If newp is NULL, the user was reading the value, so we don't
   1251  1.1      cube  * have anything else to do.  If a new value was written, we
   1252  1.1      cube  * have to check it.
   1253  1.1      cube  *
   1254  1.1      cube  * If it is incorrect, we can return an error and leave 'node' as
   1255  1.1      cube  * it is:  since it is a copy of the actual node, the change will
   1256  1.1      cube  * be forgotten.
   1257  1.1      cube  *
   1258  1.1      cube  * Upon a correct input, we commit the change to the ifnet
   1259  1.1      cube  * structure of our interface.
   1260  1.1      cube  */
   1261  1.1      cube static int
   1262  1.1      cube tap_sysctl_handler(SYSCTLFN_ARGS)
   1263  1.1      cube {
   1264  1.1      cube 	struct sysctlnode node;
   1265  1.1      cube 	struct tap_softc *sc;
   1266  1.1      cube 	struct ifnet *ifp;
   1267  1.1      cube 	int error;
   1268  1.1      cube 	size_t len;
   1269  1.1      cube 	char addr[18];
   1270  1.1      cube 
   1271  1.1      cube 	node = *rnode;
   1272  1.1      cube 	sc = node.sysctl_data;
   1273  1.1      cube 	ifp = &sc->sc_ec.ec_if;
   1274  1.1      cube 	(void)tap_ether_sprintf(addr, LLADDR(ifp->if_sadl));
   1275  1.1      cube 	node.sysctl_data = addr;
   1276  1.1      cube 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1277  1.1      cube 	if (error || newp == NULL)
   1278  1.1      cube 		return (error);
   1279  1.1      cube 
   1280  1.1      cube 	len = strlen(addr);
   1281  1.1      cube 	if (len < 11 || len > 17)
   1282  1.1      cube 		return (EINVAL);
   1283  1.1      cube 
   1284  1.1      cube 	/* Commit change */
   1285  1.1      cube 	if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1286  1.1      cube 		return (EINVAL);
   1287  1.1      cube 	return (error);
   1288  1.1      cube }
   1289  1.1      cube 
   1290  1.1      cube /*
   1291  1.1      cube  * ether_aton implementation, not using a static buffer.
   1292  1.1      cube  */
   1293  1.1      cube static int
   1294  1.1      cube tap_ether_aton(u_char *dest, char *str)
   1295  1.1      cube {
   1296  1.1      cube 	int i;
   1297  1.1      cube 	char *cp = str;
   1298  1.1      cube 	u_char val[6];
   1299  1.1      cube 
   1300  1.1      cube #define	set_value			\
   1301  1.1      cube 	if (*cp > '9' && *cp < 'a')	\
   1302  1.1      cube 		*cp -= 'A' - 10;	\
   1303  1.1      cube 	else if (*cp > '9')		\
   1304  1.1      cube 		*cp -= 'a' - 10;	\
   1305  1.1      cube 	else				\
   1306  1.1      cube 		*cp -= '0'
   1307  1.1      cube 
   1308  1.1      cube 	for (i = 0; i < 6; i++, cp++) {
   1309  1.1      cube 		if (!isxdigit(*cp))
   1310  1.1      cube 			return (1);
   1311  1.1      cube 		set_value;
   1312  1.1      cube 		val[i] = *cp++;
   1313  1.1      cube 		if (isxdigit(*cp)) {
   1314  1.1      cube 			set_value;
   1315  1.1      cube 			val[i] *= 16;
   1316  1.1      cube 			val[i] += *cp++;
   1317  1.1      cube 		}
   1318  1.1      cube 		if (*cp == ':' || i == 5)
   1319  1.1      cube 			continue;
   1320  1.1      cube 		else
   1321  1.1      cube 			return (1);
   1322  1.1      cube 	}
   1323  1.1      cube 	memcpy(dest, val, 6);
   1324  1.1      cube 	return (0);
   1325  1.1      cube }
   1326  1.1      cube 
   1327  1.1      cube /*
   1328  1.1      cube  * ether_sprintf made thread-safer.
   1329  1.1      cube  *
   1330  1.1      cube  * Copied over from sys/net/if_ethersubr.c, with a change to avoid the use
   1331  1.1      cube  * of a static buffer.
   1332  1.1      cube  */
   1333  1.1      cube 
   1334  1.1      cube /*
   1335  1.1      cube  * Copyright (c) 1982, 1989, 1993
   1336  1.1      cube  *      The Regents of the University of California.  All rights reserved.
   1337  1.1      cube  *
   1338  1.1      cube  * Redistribution and use in source and binary forms, with or without
   1339  1.1      cube  * modification, are permitted provided that the following conditions
   1340  1.1      cube  * are met:
   1341  1.1      cube  * 1. Redistributions of source code must retain the above copyright
   1342  1.1      cube  *    notice, this list of conditions and the following disclaimer.
   1343  1.1      cube  * 2. Redistributions in binary form must reproduce the above copyright
   1344  1.1      cube  *    notice, this list of conditions and the following disclaimer in the
   1345  1.1      cube  *    documentation and/or other materials provided with the distribution.
   1346  1.1      cube  * 3. Neither the name of the University nor the names of its contributors
   1347  1.1      cube  *    may be used to endorse or promote products derived from this software
   1348  1.1      cube  *    without specific prior written permission.
   1349  1.1      cube  *
   1350  1.1      cube  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   1351  1.1      cube  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   1352  1.1      cube  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   1353  1.1      cube  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   1354  1.1      cube  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   1355  1.1      cube  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   1356  1.1      cube  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   1357  1.1      cube  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   1358  1.1      cube  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   1359  1.1      cube  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   1360  1.1      cube  * SUCH DAMAGE.
   1361  1.1      cube  *
   1362  1.1      cube  *      @(#)if_ethersubr.c      8.2 (Berkeley) 4/4/96
   1363  1.1      cube  */
   1364  1.1      cube 
   1365  1.1      cube static char *
   1366  1.1      cube tap_ether_sprintf(char *dest, const u_char *ap)
   1367  1.1      cube {
   1368  1.1      cube 	char *cp = dest;
   1369  1.1      cube 	int i;
   1370  1.1      cube 
   1371  1.1      cube 	for (i = 0; i < 6; i++) {
   1372  1.8  christos 		*cp++ = hexdigits[*ap >> 4];
   1373  1.8  christos 		*cp++ = hexdigits[*ap++ & 0xf];
   1374  1.1      cube 		*cp++ = ':';
   1375  1.1      cube 	}
   1376  1.1      cube 	*--cp = 0;
   1377  1.1      cube 	return (dest);
   1378  1.1      cube }
   1379