Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.1
      1 /*	$NetBSD: if_tap.c,v 1.1 2005/01/08 22:27:54 cube Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  This code is derived from software contributed to the NetBSD Foundation
      8  *   by Quentin Garnier.
      9  *
     10  *  Redistribution and use in source and binary forms, with or without
     11  *  modification, are permitted provided that the following conditions
     12  *  are met:
     13  *  1. Redistributions of source code must retain the above copyright
     14  *     notice, this list of conditions and the following disclaimer.
     15  *  2. Redistributions in binary form must reproduce the above copyright
     16  *     notice, this list of conditions and the following disclaimer in the
     17  *     documentation and/or other materials provided with the distribution.
     18  *  3. All advertising materials mentioning features or use of this software
     19  *     must display the following acknowledgement:
     20  *         This product includes software developed by the NetBSD
     21  *         Foundation, Inc. and its contributors.
     22  *  4. Neither the name of The NetBSD Foundation nor the names of its
     23  *     contributors may be used to endorse or promote products derived
     24  *     from this software without specific prior written permission.
     25  *
     26  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  *  POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 
     39 /*
     40  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     41  * device to the system, but can also be accessed by userland through a
     42  * character device interface, which allows reading and injecting frames.
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.1 2005/01/08 22:27:54 cube Exp $");
     47 
     48 #include "bpfilter.h"
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/kernel.h>
     53 #include <sys/malloc.h>
     54 #include <sys/conf.h>
     55 #include <sys/device.h>
     56 #include <sys/file.h>
     57 #include <sys/filedesc.h>
     58 #include <sys/ksyms.h>
     59 #include <sys/poll.h>
     60 #include <sys/select.h>
     61 #include <sys/sockio.h>
     62 #include <sys/sysctl.h>
     63 
     64 #include <net/if.h>
     65 #include <net/if_dl.h>
     66 #include <net/if_ether.h>
     67 #include <net/if_media.h>
     68 #include <net/if_tap.h>
     69 #if NBPFILTER > 0
     70 #include <net/bpf.h>
     71 #endif
     72 
     73 /*
     74  * sysctl node management
     75  *
     76  * It's not really possible to use a SYSCTL_SETUP block with
     77  * current LKM implementation, so it is easier to just define
     78  * our own function.
     79  *
     80  * The handler function is a "helper" in Andrew Brown's sysctl
     81  * framework terminology.  It is used as a gateway for sysctl
     82  * requests over the nodes.
     83  *
     84  * tap_log allows the module to log creations of nodes and
     85  * destroy them all at once using sysctl_teardown.
     86  */
     87 static int tap_node;
     88 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     89 
     90 /*
     91  * Since we're an Ethernet device, we need the 3 following
     92  * components: a leading struct device, a struct ethercom,
     93  * and also a struct ifmedia since we don't attach a PHY to
     94  * ourselves. We could emulate one, but there's no real
     95  * point.
     96  */
     97 
     98 struct tap_softc {
     99 	struct device	sc_dev;
    100 	struct ifmedia	sc_im;
    101 	struct ethercom	sc_ec;
    102 	int		sc_flags;
    103 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    104 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    105 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    106 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    107 	struct selinfo	sc_rsel;
    108 	pid_t		sc_pgid; /* For async. IO */
    109 	struct lock	sc_rdlock;
    110 	struct simplelock	sc_kqlock;
    111 };
    112 
    113 /* autoconf(9) glue */
    114 
    115 void	tapattach(int);
    116 
    117 static int	tap_match(struct device *, struct cfdata *, void *);
    118 static void	tap_attach(struct device *, struct device *, void *);
    119 static int	tap_detach(struct device*, int);
    120 
    121 /* Ethernet address helper functions */
    122 
    123 static char	*tap_ether_sprintf(char *, const u_char *);
    124 static int	tap_ether_aton(u_char *, char *);
    125 
    126 CFATTACH_DECL(tap, sizeof(struct tap_softc),
    127     tap_match, tap_attach, tap_detach, NULL);
    128 extern struct cfdriver tap_cd;
    129 
    130 /* Real device access routines */
    131 static int	tap_dev_close(struct tap_softc *);
    132 static int	tap_dev_read(int, struct uio *, int);
    133 static int	tap_dev_write(int, struct uio *, int);
    134 static int	tap_dev_ioctl(int, u_long, caddr_t, struct proc *);
    135 static int	tap_dev_poll(int, int, struct proc *);
    136 static int	tap_dev_kqfilter(int, struct knote *);
    137 
    138 /* Fileops access routines */
    139 static int	tap_fops_close(struct file *, struct proc *);
    140 static int	tap_fops_read(struct file *, off_t *, struct uio *,
    141     struct ucred *, int);
    142 static int	tap_fops_write(struct file *, off_t *, struct uio *,
    143     struct ucred *, int);
    144 static int	tap_fops_ioctl(struct file *, u_long, void *,
    145     struct proc *);
    146 static int	tap_fops_poll(struct file *, int, struct proc *);
    147 static int	tap_fops_kqfilter(struct file *, struct knote *);
    148 
    149 static const struct fileops tap_fileops = {
    150 	tap_fops_read,
    151 	tap_fops_write,
    152 	tap_fops_ioctl,
    153 	fnullop_fcntl,
    154 	tap_fops_poll,
    155 	fbadop_stat,
    156 	tap_fops_close,
    157 	tap_fops_kqfilter,
    158 };
    159 
    160 /* Helper for cloning open() */
    161 static int	tap_dev_cloner(struct proc *);
    162 
    163 /* Character device routines */
    164 static int	tap_cdev_open(dev_t, int, int, struct proc *);
    165 static int	tap_cdev_close(dev_t, int, int, struct proc *);
    166 static int	tap_cdev_read(dev_t, struct uio *, int);
    167 static int	tap_cdev_write(dev_t, struct uio *, int);
    168 static int	tap_cdev_ioctl(dev_t, u_long, caddr_t, int, struct proc *);
    169 static int	tap_cdev_poll(dev_t, int, struct proc *);
    170 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    171 
    172 const struct cdevsw tap_cdevsw = {
    173 	tap_cdev_open, tap_cdev_close,
    174 	tap_cdev_read, tap_cdev_write,
    175 	tap_cdev_ioctl, nostop, notty,
    176 	tap_cdev_poll, nommap,
    177 	tap_cdev_kqfilter,
    178 };
    179 
    180 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    181 
    182 /* kqueue-related routines */
    183 static void	tap_kqdetach(struct knote *);
    184 static int	tap_kqread(struct knote *, long);
    185 
    186 /*
    187  * Those are needed by the if_media interface.
    188  */
    189 
    190 static int	tap_mediachange(struct ifnet *);
    191 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    192 
    193 /*
    194  * Those are needed by the ifnet interface, and would typically be
    195  * there for any network interface driver.
    196  * Some other routines are optional: watchdog and drain.
    197  */
    198 
    199 static void	tap_start(struct ifnet *);
    200 static void	tap_stop(struct ifnet *, int);
    201 static int	tap_init(struct ifnet *);
    202 static int	tap_ioctl(struct ifnet *, u_long, caddr_t);
    203 
    204 /* This is an internal function to keep tap_ioctl readable */
    205 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    206 
    207 /*
    208  * tap is a clonable interface, although it is highly unrealistic for
    209  * an Ethernet device.
    210  *
    211  * Here are the bits needed for a clonable interface.
    212  */
    213 static int	tap_clone_create(struct if_clone *, int);
    214 static int	tap_clone_destroy(struct ifnet *);
    215 
    216 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    217 					tap_clone_create,
    218 					tap_clone_destroy);
    219 
    220 /* Helper functionis shared by the two cloning code paths */
    221 static struct tap_softc *	tap_clone_creator(int);
    222 static int	tap_clone_destroyer(struct device *);
    223 
    224 void
    225 tapattach(int n)
    226 {
    227 	int error;
    228 
    229 	error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    230 	if (error) {
    231 		aprint_error("%s: unable to register cfattach\n",
    232 		    tap_cd.cd_name);
    233 		(void)config_cfdriver_detach(&tap_cd);
    234 		return;
    235 	}
    236 
    237 	if_clone_attach(&tap_cloners);
    238 }
    239 
    240 /* Pretty much useless for a pseudo-device */
    241 static int
    242 tap_match(struct device *self, struct cfdata *cfdata, void *arg)
    243 {
    244 	return (1);
    245 }
    246 
    247 void
    248 tap_attach(struct device *parent, struct device *self, void *aux)
    249 {
    250 	struct tap_softc *sc = (struct tap_softc *)self;
    251 	struct ifnet *ifp;
    252 	u_int8_t enaddr[ETHER_ADDR_LEN] =
    253 	    { 0xf0, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    254 	char enaddrstr[18];
    255 	uint32_t ui;
    256 	int error;
    257 	struct sysctlnode *node;
    258 
    259 	aprint_normal("%s: faking Ethernet device\n",
    260 	    self->dv_xname);
    261 
    262 	/*
    263 	 * In order to obtain unique initial Ethernet address on a host,
    264 	 * do some randomisation using mono_time.  It's not meant for anything
    265 	 * but avoiding hard-coding an address.
    266 	 */
    267 	ui = (mono_time.tv_sec ^ mono_time.tv_usec) & 0xffffff;
    268 	memcpy(enaddr+3, (u_int8_t *)&ui, 3);
    269 
    270 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    271 	    tap_ether_sprintf(enaddrstr, enaddr));
    272 
    273 	/*
    274 	 * Why 1000baseT? Why not? You can add more.
    275 	 *
    276 	 * Note that there are 3 steps: init, one or several additions to
    277 	 * list of supported media, and in the end, the selection of one
    278 	 * of them.
    279 	 */
    280 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    281 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    282 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    283 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    284 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    285 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    286 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    287 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    288 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    289 
    290 	/*
    291 	 * One should note that an interface must do multicast in order
    292 	 * to support IPv6.
    293 	 */
    294 	ifp = &sc->sc_ec.ec_if;
    295 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    296 	ifp->if_softc	= sc;
    297 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    298 	ifp->if_ioctl	= tap_ioctl;
    299 	ifp->if_start	= tap_start;
    300 	ifp->if_stop	= tap_stop;
    301 	ifp->if_init	= tap_init;
    302 	IFQ_SET_READY(&ifp->if_snd);
    303 
    304 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    305 
    306 	/* Those steps are mandatory for an Ethernet driver, the fisrt call
    307 	 * being common to all network interface drivers. */
    308 	if_attach(ifp);
    309 	ether_ifattach(ifp, enaddr);
    310 
    311 	sc->sc_flags = 0;
    312 
    313 	/*
    314 	 * Add a sysctl node for that interface.
    315 	 *
    316 	 * The pointer transmitted is not a string, but instead a pointer to
    317 	 * the softc structure, which we can use to build the string value on
    318 	 * the fly in the helper function of the node.  See the comments for
    319 	 * tap_sysctl_handler for details.
    320 	 */
    321 	if ((error = sysctl_createv(NULL, 0, NULL,
    322 	    &node, CTLFLAG_READWRITE,
    323 	    CTLTYPE_STRING, sc->sc_dev.dv_xname, NULL,
    324 	    tap_sysctl_handler, 0, sc, 18,
    325 	    CTL_NET, PF_LINK, tap_node, sc->sc_dev.dv_unit, CTL_EOL)) != 0)
    326 		aprint_error("%s: sysctl_createv returned %d, ignoring\n",
    327 		    sc->sc_dev.dv_xname, error);
    328 
    329 	/*
    330 	 * Initialize the two locks for the device.
    331 	 *
    332 	 * We need a lock here because even though the tap device can be
    333 	 * opened only once, the file descriptor might be passed to another
    334 	 * process, say a fork(2)ed child.
    335 	 *
    336 	 * The Giant saves us from most of the hassle, but since the read
    337 	 * operation can sleep, we don't want two processes to wake up at
    338 	 * the same moment and both try and dequeue a single packet.
    339 	 *
    340 	 * The queue for event listeners (used by kqueue(9), see below) has
    341 	 * to be protected, too, but we don't need the same level of
    342 	 * complexity for that lock, so a simple spinning lock is fine.
    343 	 */
    344 	lockinit(&sc->sc_rdlock, PSOCK|PCATCH, "tapl", 0, LK_SLEEPFAIL);
    345 	simple_lock_init(&sc->sc_kqlock);
    346 }
    347 
    348 /*
    349  * When detaching, we do the inverse of what is done in the attach
    350  * routine, in reversed order.
    351  */
    352 static int
    353 tap_detach(struct device* self, int flags)
    354 {
    355 	struct tap_softc *sc = (struct tap_softc *)self;
    356 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    357 	int error, s;
    358 
    359 	/*
    360 	 * Some processes might be sleeping on "tap", so we have to make
    361 	 * them release their hold on the device.
    362 	 *
    363 	 * The LK_DRAIN operation will wait for every locked process to
    364 	 * release their hold.
    365 	 */
    366 	sc->sc_flags |= TAP_GOING;
    367 	s = splnet();
    368 	tap_stop(ifp, 1);
    369 	if_down(ifp);
    370 	splx(s);
    371 	lockmgr(&sc->sc_rdlock, LK_DRAIN, NULL);
    372 
    373 	/*
    374 	 * Destroying a single leaf is a very straightforward operation using
    375 	 * sysctl_destroyv.  One should be sure to always end the path with
    376 	 * CTL_EOL.
    377 	 */
    378 	if ((error = sysctl_destroyv(NULL, CTL_NET, PF_LINK, tap_node,
    379 	    sc->sc_dev.dv_unit, CTL_EOL)) != 0)
    380 		aprint_error("%s: sysctl_destroyv returned %d, ignoring\n",
    381 		    sc->sc_dev.dv_xname, error);
    382 	ether_ifdetach(ifp);
    383 	if_detach(ifp);
    384 	ifmedia_delete_instance(&sc->sc_im, IFM_INST_ANY);
    385 
    386 	return (0);
    387 }
    388 
    389 /*
    390  * This function is called by the ifmedia layer to notify the driver
    391  * that the user requested a media change.  A real driver would
    392  * reconfigure the hardware.
    393  */
    394 static int
    395 tap_mediachange(struct ifnet *ifp)
    396 {
    397 	return (0);
    398 }
    399 
    400 /*
    401  * Here the user asks for the currently used media.
    402  */
    403 static void
    404 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    405 {
    406 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    407 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    408 }
    409 
    410 /*
    411  * This is the function where we SEND packets.
    412  *
    413  * There is no 'receive' equivalent.  A typical driver will get
    414  * interrupts from the hardware, and from there will inject new packets
    415  * into the network stack.
    416  *
    417  * Once handled, a packet must be freed.  A real driver might not be able
    418  * to fit all the pending packets into the hardware, and is allowed to
    419  * return before having sent all the packets.  It should then use the
    420  * if_flags flag IFF_OACTIVE to notify the upper layer.
    421  *
    422  * There are also other flags one should check, such as IFF_PAUSE.
    423  *
    424  * It is our duty to make packets available to BPF listeners.
    425  *
    426  * You should be aware that this function is called by the Ethernet layer
    427  * at splnet().
    428  *
    429  * When the device is opened, we have to pass the packet(s) to the
    430  * userland.  For that we stay in OACTIVE mode while the userland gets
    431  * the packets, and we send a signal to the processes waiting to read.
    432  *
    433  * wakeup(sc) is the counterpart to the tsleep call in
    434  * tap_dev_read, while selnotify() is used for kevent(2) and
    435  * poll(2) (which includes select(2)) listeners.
    436  */
    437 static void
    438 tap_start(struct ifnet *ifp)
    439 {
    440 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    441 	struct mbuf *m0;
    442 
    443 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    444 		/* Simply drop packets */
    445 		for(;;) {
    446 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    447 			if (m0 == NULL)
    448 				return;
    449 
    450 			ifp->if_opackets++;
    451 #if NBPFILTER > 0
    452 			if (ifp->if_bpf)
    453 				bpf_mtap(ifp->if_bpf, m0);
    454 #endif
    455 
    456 			m_freem(m0);
    457 		}
    458 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    459 		ifp->if_flags |= IFF_OACTIVE;
    460 		wakeup(sc);
    461 		selnotify(&sc->sc_rsel, 1);
    462 		if (sc->sc_flags & TAP_ASYNCIO)
    463 			fownsignal(sc->sc_pgid, SIGIO, POLL_IN,
    464 			    POLLIN|POLLRDNORM, NULL);
    465 	}
    466 }
    467 
    468 /*
    469  * A typical driver will only contain the following handlers for
    470  * ioctl calls, except SIOCSIFPHYADDR.
    471  * The latter is a hack I used to set the Ethernet address of the
    472  * faked device.
    473  *
    474  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    475  * called under splnet().
    476  */
    477 static int
    478 tap_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
    479 {
    480 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    481 	struct ifreq *ifr = (struct ifreq *)data;
    482 	int s, error;
    483 
    484 	s = splnet();
    485 
    486 	switch (cmd) {
    487 	case SIOCSIFMEDIA:
    488 	case SIOCGIFMEDIA:
    489 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    490 		break;
    491 	case SIOCSIFPHYADDR:
    492 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    493 		break;
    494 	default:
    495 		error = ether_ioctl(ifp, cmd, data);
    496 		if (error == ENETRESET)
    497 			error = 0;
    498 		break;
    499 	}
    500 
    501 	splx(s);
    502 
    503 	return (error);
    504 }
    505 
    506 /*
    507  * Helper function to set Ethernet address.  This shouldn't be done there,
    508  * and should actually be available to all Ethernet drivers, real or not.
    509  */
    510 static int
    511 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    512 {
    513 	struct sockaddr *sa = (struct sockaddr *)&ifra->ifra_addr;
    514 
    515 	if (sa->sa_family != AF_LINK)
    516 		return (EINVAL);
    517 
    518 	memcpy(LLADDR(ifp->if_sadl), sa->sa_data, ETHER_ADDR_LEN);
    519 
    520 	return (0);
    521 }
    522 
    523 /*
    524  * _init() would typically be called when an interface goes up,
    525  * meaning it should configure itself into the state in which it
    526  * can send packets.
    527  */
    528 static int
    529 tap_init(struct ifnet *ifp)
    530 {
    531 	ifp->if_flags |= IFF_RUNNING;
    532 
    533 	tap_start(ifp);
    534 
    535 	return (0);
    536 }
    537 
    538 /*
    539  * _stop() is called when an interface goes down.  It is our
    540  * responsability to validate that state by clearing the
    541  * IFF_RUNNING flag.
    542  *
    543  * We have to wake up all the sleeping processes to have the pending
    544  * read requests cancelled.
    545  */
    546 static void
    547 tap_stop(struct ifnet *ifp, int disable)
    548 {
    549 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    550 
    551 	ifp->if_flags &= ~IFF_RUNNING;
    552 	wakeup(sc);
    553 	selnotify(&sc->sc_rsel, 1);
    554 	if (sc->sc_flags & TAP_ASYNCIO)
    555 		fownsignal(sc->sc_pgid, SIGIO, POLL_HUP, 0, NULL);
    556 }
    557 
    558 /*
    559  * The 'create' command of ifconfig can be used to create
    560  * any numbered instance of a given device.  Thus we have to
    561  * make sure we have enough room in cd_devs to create the
    562  * user-specified instance.  config_attach_pseudo will do this
    563  * for us.
    564  */
    565 static int
    566 tap_clone_create(struct if_clone *ifc, int unit)
    567 {
    568 	if (tap_clone_creator(unit) == NULL) {
    569 		aprint_error("%s%d: unable to attach an instance\n",
    570                     tap_cd.cd_name, unit);
    571 		return (ENXIO);
    572 	}
    573 
    574 	return (0);
    575 }
    576 
    577 /*
    578  * tap(4) can be cloned by two ways:
    579  *   using 'ifconfig tap0 create', which will use the network
    580  *     interface cloning API, and call tap_clone_create above.
    581  *   opening the cloning device node, whose minor number is TAP_CLONER.
    582  *     See below for an explanation on how this part work.
    583  *
    584  * config_attach_pseudo can be called with unit = DVUNIT_ANY to have
    585  * autoconf(9) choose a unit number for us.  This is what happens when
    586  * the cloner is openend, while the ifcloner interface creates a device
    587  * with a specific unit number.
    588  */
    589 static struct tap_softc *
    590 tap_clone_creator(int unit)
    591 {
    592 	struct cfdata *cf;
    593 
    594 	cf = malloc(sizeof(*cf), M_DEVBUF, M_WAITOK);
    595 	cf->cf_name = tap_cd.cd_name;
    596 	cf->cf_atname = tap_ca.ca_name;
    597 	cf->cf_unit = unit;
    598 	cf->cf_fstate = FSTATE_STAR;
    599 
    600 	return (struct tap_softc *)config_attach_pseudo(cf);
    601 }
    602 
    603 /*
    604  * The clean design of if_clone and autoconf(9) makes that part
    605  * really straightforward.  The second argument of config_detach
    606  * means neither QUIET nor FORCED.
    607  */
    608 static int
    609 tap_clone_destroy(struct ifnet *ifp)
    610 {
    611 	return tap_clone_destroyer((struct device *)ifp->if_softc);
    612 }
    613 
    614 static int
    615 tap_clone_destroyer(struct device *dev)
    616 {
    617 	struct cfdata *cf = dev->dv_cfdata;
    618 	int error;
    619 
    620 	if ((error = config_detach(dev, 0)) != 0)
    621 		aprint_error("%s: unable to detach instance\n",
    622 		    dev->dv_xname);
    623 	free(cf, M_DEVBUF);
    624 
    625 	return (error);
    626 }
    627 
    628 /*
    629  * tap(4) is a bit of an hybrid device.  It can be used in two different
    630  * ways:
    631  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    632  *  2. open /dev/tap, get a new interface created and read/write off it.
    633  *     That interface is destroyed when the process that had it created exits.
    634  *
    635  * The first way is managed by the cdevsw structure, and you access interfaces
    636  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    637  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    638  *
    639  * The second way is the so-called "cloning" device.  It's a special minor
    640  * number (chosen as the maximal number, to allow as much tap devices as
    641  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    642  * call ends in tap_cdev_open.  The actual place where it is handled is
    643  * tap_dev_cloner.
    644  *
    645  * An tap device cannot be opened more than once at a time, so the cdevsw
    646  * part of open() does nothing but noting that the interface is being used and
    647  * hence ready to actually handle packets.
    648  */
    649 
    650 static int
    651 tap_cdev_open(dev_t dev, int flags, int fmt, struct proc *p)
    652 {
    653 	struct tap_softc *sc;
    654 
    655 	if (minor(dev) == TAP_CLONER)
    656 		return tap_dev_cloner(p);
    657 
    658 	sc = (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    659 	if (sc == NULL)
    660 		return (ENXIO);
    661 
    662 	/* The device can only be opened once */
    663 	if (sc->sc_flags & TAP_INUSE)
    664 		return (EBUSY);
    665 	sc->sc_flags |= TAP_INUSE;
    666 	return (0);
    667 }
    668 
    669 /*
    670  * There are several kinds of cloning devices, and the most simple is the one
    671  * tap(4) uses.  What it does is change the file descriptor with a new one,
    672  * with its own fileops structure (which maps to the various read, write,
    673  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    674  * then actually creates the new tap devices.
    675  *
    676  * Once those two steps are successful, we can re-wire the existing file
    677  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    678  * structure as needed (notably f_data gets filled with the fifth parameter
    679  * passed, the unit of the tap device which will allows us identifying the
    680  * device later), and returns EMOVEFD.
    681  *
    682  * That magic value is interpreted by sys_open() which then replaces the
    683  * current file descriptor by the new one (through a magic member of struct
    684  * proc, p_dupfd).
    685  *
    686  * The tap device is flagged as being busy since it otherwise could be
    687  * externally accessed through the corresponding device node with the cdevsw
    688  * interface.
    689  */
    690 
    691 static int
    692 tap_dev_cloner(struct proc *p)
    693 {
    694 	struct tap_softc *sc;
    695 	struct file *fp;
    696 	int error, fd;
    697 
    698 	if ((error = falloc(p, &fp, &fd)) != 0)
    699 		return (error);
    700 
    701 	if ((sc = tap_clone_creator(DVUNIT_ANY)) == NULL) {
    702 		FILE_UNUSE(fp, p);
    703 		ffree(fp);
    704 		return (ENXIO);
    705 	}
    706 
    707 	sc->sc_flags |= TAP_INUSE;
    708 
    709 	return fdclone(p, fp, fd, &tap_fileops, (void *)(intptr_t)sc->sc_dev.dv_unit);
    710 }
    711 
    712 /*
    713  * While all other operations (read, write, ioctl, poll and kqfilter) are
    714  * really the same whether we are in cdevsw or fileops mode, the close()
    715  * function is slightly different in the two cases.
    716  *
    717  * As for the other, the core of it is shared in tap_dev_close.  What
    718  * it does is sufficient for the cdevsw interface, but the cloning interface
    719  * needs another thing:  the interface is destroyed when the processes that
    720  * created it closes it.
    721  */
    722 static int
    723 tap_cdev_close(dev_t dev, int flags, int fmt, struct proc *p)
    724 {
    725 	struct tap_softc *sc =
    726 	    (struct tap_softc *)device_lookup(&tap_cd, minor(dev));
    727 
    728 	if (sc == NULL)
    729 		return (ENXIO);
    730 
    731 	return tap_dev_close(sc);
    732 }
    733 
    734 /*
    735  * It might happen that the administrator used ifconfig to externally destroy
    736  * the interface.  In that case, tap_fops_close will be called while
    737  * tap_detach is already happening.  If we called it again from here, we
    738  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    739  */
    740 static int
    741 tap_fops_close(struct file *fp, struct proc *p)
    742 {
    743 	int unit = (intptr_t)fp->f_data;
    744 	struct tap_softc *sc;
    745 	int error;
    746 
    747 	sc = (struct tap_softc *)device_lookup(&tap_cd, unit);
    748 	if (sc == NULL)
    749 		return (ENXIO);
    750 
    751 	/* tap_dev_close currently always succeeds, but it might not
    752 	 * always be the case. */
    753 	if ((error = tap_dev_close(sc)) != 0)
    754 		return (error);
    755 
    756 	/* Destroy the device now that it is no longer useful,
    757 	 * unless it's already being destroyed. */
    758 	if ((sc->sc_flags & TAP_GOING) != 0)
    759 		return (0);
    760 
    761 	return tap_clone_destroyer((struct device *)sc);
    762 }
    763 
    764 static int
    765 tap_dev_close(struct tap_softc *sc)
    766 {
    767 	struct ifnet *ifp;
    768 	int s;
    769 
    770 	s = splnet();
    771 	/* Let tap_start handle packets again */
    772 	ifp = &sc->sc_ec.ec_if;
    773 	ifp->if_flags &= ~IFF_OACTIVE;
    774 
    775 	/* Purge output queue */
    776 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    777 		struct mbuf *m;
    778 
    779 		for (;;) {
    780 			IFQ_DEQUEUE(&ifp->if_snd, m);
    781 			if (m == NULL)
    782 				break;
    783 
    784 			ifp->if_opackets++;
    785 #if NBPFILTER > 0
    786 			if (ifp->if_bpf)
    787 				bpf_mtap(ifp->if_bpf, m);
    788 #endif
    789 		}
    790 	}
    791 	splx(s);
    792 
    793 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    794 
    795 	return (0);
    796 }
    797 
    798 static int
    799 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    800 {
    801 	return tap_dev_read(minor(dev), uio, flags);
    802 }
    803 
    804 static int
    805 tap_fops_read(struct file *fp, off_t *offp, struct uio *uio,
    806     struct ucred *cred, int flags)
    807 {
    808 	return tap_dev_read((intptr_t)fp->f_data, uio, flags);
    809 }
    810 
    811 static int
    812 tap_dev_read(int unit, struct uio *uio, int flags)
    813 {
    814 	struct tap_softc *sc =
    815 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    816 	struct ifnet *ifp;
    817 	struct mbuf *m, *n;
    818 	int error = 0, s;
    819 
    820 	if (sc == NULL)
    821 		return (ENXIO);
    822 
    823 	ifp = &sc->sc_ec.ec_if;
    824 	if ((ifp->if_flags & IFF_UP) == 0)
    825 		return (EHOSTDOWN);
    826 
    827 	/*
    828 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    829 	 */
    830 	if ((sc->sc_flags & TAP_NBIO) &&
    831 	    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    832 		return (EWOULDBLOCK);
    833 	error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    834 	if (error != 0)
    835 		return (error);
    836 
    837 	s = splnet();
    838 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    839 		ifp->if_flags &= ~IFF_OACTIVE;
    840 		splx(s);
    841 		/*
    842 		 * We must release the lock before sleeping, and re-acquire it
    843 		 * after.
    844 		 */
    845 		(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    846 		if (sc->sc_flags & TAP_NBIO)
    847 			error = EWOULDBLOCK;
    848 		else
    849 			error = tsleep(sc, PSOCK|PCATCH, "tap", 0);
    850 
    851 		if (error != 0)
    852 			return (error);
    853 		/* The device might have been downed */
    854 		if ((ifp->if_flags & IFF_UP) == 0)
    855 			return (EHOSTDOWN);
    856 		if ((sc->sc_flags & TAP_NBIO) &&
    857 		    lockstatus(&sc->sc_rdlock) == LK_EXCLUSIVE)
    858 			return (EWOULDBLOCK);
    859 		error = lockmgr(&sc->sc_rdlock, LK_EXCLUSIVE, NULL);
    860 		if (error != 0)
    861 			return (error);
    862 		s = splnet();
    863 	}
    864 
    865 	IFQ_DEQUEUE(&ifp->if_snd, m);
    866 	ifp->if_flags &= ~IFF_OACTIVE;
    867 	splx(s);
    868 	if (m == NULL) {
    869 		error = 0;
    870 		goto out;
    871 	}
    872 
    873 	ifp->if_opackets++;
    874 #if NBPFILTER > 0
    875 	if (ifp->if_bpf)
    876 		bpf_mtap(ifp->if_bpf, m);
    877 #endif
    878 
    879 	/*
    880 	 * One read is one packet.
    881 	 */
    882 	do {
    883 		error = uiomove(mtod(m, caddr_t),
    884 		    min(m->m_len, uio->uio_resid), uio);
    885 		MFREE(m, n);
    886 		m = n;
    887 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    888 
    889 	if (m != NULL)
    890 		m_freem(m);
    891 
    892 out:
    893 	(void)lockmgr(&sc->sc_rdlock, LK_RELEASE, NULL);
    894 	return (error);
    895 }
    896 
    897 static int
    898 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
    899 {
    900 	return tap_dev_write(minor(dev), uio, flags);
    901 }
    902 
    903 static int
    904 tap_fops_write(struct file *fp, off_t *offp, struct uio *uio,
    905     struct ucred *cred, int flags)
    906 {
    907 	return tap_dev_write((intptr_t)fp->f_data, uio, flags);
    908 }
    909 
    910 static int
    911 tap_dev_write(int unit, struct uio *uio, int flags)
    912 {
    913 	struct tap_softc *sc =
    914 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    915 	struct ifnet *ifp;
    916 	struct mbuf *m, **mp;
    917 	int error = 0;
    918 
    919 	if (sc == NULL)
    920 		return (ENXIO);
    921 
    922 	ifp = &sc->sc_ec.ec_if;
    923 
    924 	/* One write, one packet, that's the rule */
    925 	MGETHDR(m, M_DONTWAIT, MT_DATA);
    926 	if (m == NULL) {
    927 		ifp->if_ierrors++;
    928 		return (ENOBUFS);
    929 	}
    930 	m->m_pkthdr.len = uio->uio_resid;
    931 
    932 	mp = &m;
    933 	while (error == 0 && uio->uio_resid > 0) {
    934 		if (*mp != m) {
    935 			MGET(*mp, M_DONTWAIT, MT_DATA);
    936 			if (*mp == NULL) {
    937 				error = ENOBUFS;
    938 				break;
    939 			}
    940 		}
    941 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
    942 		error = uiomove(mtod(*mp, caddr_t), (*mp)->m_len, uio);
    943 		mp = &(*mp)->m_next;
    944 	}
    945 	if (error) {
    946 		ifp->if_ierrors++;
    947 		m_freem(m);
    948 		return (error);
    949 	}
    950 
    951 	ifp->if_ipackets++;
    952 	m->m_pkthdr.rcvif = ifp;
    953 
    954 #if NBPFILTER > 0
    955 	if (ifp->if_bpf)
    956 		bpf_mtap(ifp->if_bpf, m);
    957 #endif
    958 	(*ifp->if_input)(ifp, m);
    959 
    960 	return (0);
    961 }
    962 
    963 static int
    964 tap_cdev_ioctl(dev_t dev, u_long cmd, caddr_t data, int flags,
    965     struct proc *p)
    966 {
    967 	return tap_dev_ioctl(minor(dev), cmd, data, p);
    968 }
    969 
    970 static int
    971 tap_fops_ioctl(struct file *fp, u_long cmd, void *data, struct proc *p)
    972 {
    973 	return tap_dev_ioctl((intptr_t)fp->f_data, cmd, (caddr_t)data, p);
    974 }
    975 
    976 static int
    977 tap_dev_ioctl(int unit, u_long cmd, caddr_t data, struct proc *p)
    978 {
    979 	struct tap_softc *sc =
    980 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
    981 	int error = 0;
    982 
    983 	if (sc == NULL)
    984 		return (ENXIO);
    985 
    986 	switch (cmd) {
    987 	case FIONREAD:
    988 		{
    989 			struct ifnet *ifp = &sc->sc_ec.ec_if;
    990 			struct mbuf *m;
    991 			int s;
    992 
    993 			s = splnet();
    994 			IFQ_POLL(&ifp->if_snd, m);
    995 
    996 			if (m == NULL)
    997 				*(int *)data = 0;
    998 			else
    999 				*(int *)data = m->m_pkthdr.len;
   1000 			splx(s);
   1001 		} break;
   1002 	case TIOCSPGRP:
   1003 	case FIOSETOWN:
   1004 		error = fsetown(p, &sc->sc_pgid, cmd, data);
   1005 		break;
   1006 	case TIOCGPGRP:
   1007 	case FIOGETOWN:
   1008 		error = fgetown(p, sc->sc_pgid, cmd, data);
   1009 		break;
   1010 	case FIOASYNC:
   1011 		if (*(int *)data)
   1012 			sc->sc_flags |= TAP_ASYNCIO;
   1013 		else
   1014 			sc->sc_flags &= ~TAP_ASYNCIO;
   1015 		break;
   1016 	case FIONBIO:
   1017 		if (*(int *)data)
   1018 			sc->sc_flags |= TAP_NBIO;
   1019 		else
   1020 			sc->sc_flags &= ~TAP_NBIO;
   1021 		break;
   1022 	case TAPGIFNAME:
   1023 		{
   1024 			struct ifreq *ifr = (struct ifreq *)data;
   1025 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1026 
   1027 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1028 		} break;
   1029 	default:
   1030 		error = ENOTTY;
   1031 		break;
   1032 	}
   1033 
   1034 	return (0);
   1035 }
   1036 
   1037 static int
   1038 tap_cdev_poll(dev_t dev, int events, struct proc *p)
   1039 {
   1040 	return tap_dev_poll(minor(dev), events, p);
   1041 }
   1042 
   1043 static int
   1044 tap_fops_poll(struct file *fp, int events, struct proc *p)
   1045 {
   1046 	return tap_dev_poll((intptr_t)fp->f_data, events, p);
   1047 }
   1048 
   1049 static int
   1050 tap_dev_poll(int unit, int events, struct proc *p)
   1051 {
   1052 	struct tap_softc *sc =
   1053 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1054 	int revents = 0;
   1055 
   1056 	if (sc == NULL)
   1057 		return (ENXIO);
   1058 
   1059 	if (events & (POLLIN|POLLRDNORM)) {
   1060 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1061 		struct mbuf *m;
   1062 		int s;
   1063 
   1064 		s = splnet();
   1065 		IFQ_POLL(&ifp->if_snd, m);
   1066 		splx(s);
   1067 
   1068 		if (m != NULL)
   1069 			revents |= events & (POLLIN|POLLRDNORM);
   1070 		else {
   1071 			(void)simple_lock(&sc->sc_kqlock);
   1072 			selrecord(p, &sc->sc_rsel);
   1073 			simple_unlock(&sc->sc_kqlock);
   1074 		}
   1075 	}
   1076 	revents |= events & (POLLOUT|POLLWRNORM);
   1077 
   1078 	return (revents);
   1079 }
   1080 
   1081 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1082 	tap_kqread };
   1083 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1084 	filt_seltrue };
   1085 
   1086 static int
   1087 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1088 {
   1089 	return tap_dev_kqfilter(minor(dev), kn);
   1090 }
   1091 
   1092 static int
   1093 tap_fops_kqfilter(struct file *fp, struct knote *kn)
   1094 {
   1095 	return tap_dev_kqfilter((intptr_t)fp->f_data, kn);
   1096 }
   1097 
   1098 static int
   1099 tap_dev_kqfilter(int unit, struct knote *kn)
   1100 {
   1101 	struct tap_softc *sc =
   1102 	    (struct tap_softc *)device_lookup(&tap_cd, unit);
   1103 
   1104 	if (sc == NULL)
   1105 		return (ENXIO);
   1106 
   1107 	switch(kn->kn_filter) {
   1108 	case EVFILT_READ:
   1109 		kn->kn_fop = &tap_read_filterops;
   1110 		break;
   1111 	case EVFILT_WRITE:
   1112 		kn->kn_fop = &tap_seltrue_filterops;
   1113 		break;
   1114 	default:
   1115 		return (1);
   1116 	}
   1117 
   1118 	kn->kn_hook = sc;
   1119 	(void)simple_lock(&sc->sc_kqlock);
   1120 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1121 	simple_unlock(&sc->sc_kqlock);
   1122 	return (0);
   1123 }
   1124 
   1125 static void
   1126 tap_kqdetach(struct knote *kn)
   1127 {
   1128 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1129 
   1130 	(void)simple_lock(&sc->sc_kqlock);
   1131 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1132 	simple_unlock(&sc->sc_kqlock);
   1133 }
   1134 
   1135 static int
   1136 tap_kqread(struct knote *kn, long hint)
   1137 {
   1138 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1139 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1140 	struct mbuf *m;
   1141 	int s;
   1142 
   1143 	s = splnet();
   1144 	IFQ_POLL(&ifp->if_snd, m);
   1145 
   1146 	if (m == NULL)
   1147 		kn->kn_data = 0;
   1148 	else
   1149 		kn->kn_data = m->m_pkthdr.len;
   1150 	splx(s);
   1151 	return (kn->kn_data != 0 ? 1 : 0);
   1152 }
   1153 
   1154 /*
   1155  * sysctl management routines
   1156  * You can set the address of an interface through:
   1157  * net.link.tap.tap<number>
   1158  *
   1159  * Note the consistent use of tap_log in order to use
   1160  * sysctl_teardown at unload time.
   1161  *
   1162  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1163  * blocks register a function in a special section of the kernel
   1164  * (called a link set) which is used at init_sysctl() time to cycle
   1165  * through all those functions to create the kernel's sysctl tree.
   1166  *
   1167  * It is not (currently) possible to use link sets in a LKM, so the
   1168  * easiest is to simply call our own setup routine at load time.
   1169  *
   1170  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1171  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1172  * whole kernel sysctl tree is built, it is not possible to add any
   1173  * permanent node.
   1174  *
   1175  * It should be noted that we're not saving the sysctlnode pointer
   1176  * we are returned when creating the "tap" node.  That structure
   1177  * cannot be trusted once out of the calling function, as it might
   1178  * get reused.  So we just save the MIB number, and always give the
   1179  * full path starting from the root for later calls to sysctl_createv
   1180  * and sysctl_destroyv.
   1181  */
   1182 SYSCTL_SETUP(sysctl_tap_setup, "sysctl net.link.tap subtree setup")
   1183 {
   1184 	struct sysctlnode *node;
   1185 	int error = 0;
   1186 
   1187 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1188 	    CTLFLAG_PERMANENT,
   1189 	    CTLTYPE_NODE, "net", NULL,
   1190 	    NULL, 0, NULL, 0,
   1191 	    CTL_NET, CTL_EOL)) != 0)
   1192 		return;
   1193 
   1194 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1195 	    CTLFLAG_PERMANENT,
   1196 	    CTLTYPE_NODE, "link", NULL,
   1197 	    NULL, 0, NULL, 0,
   1198 	    CTL_NET, PF_LINK, CTL_EOL)) != 0)
   1199 		return;
   1200 
   1201 	/*
   1202 	 * The first four parameters of sysctl_createv are for management.
   1203 	 *
   1204 	 * The four that follows, here starting with a '0' for the flags,
   1205 	 * describe the node.
   1206 	 *
   1207 	 * The next series of four set its value, through various possible
   1208 	 * means.
   1209 	 *
   1210 	 * Last but not least, the path to the node is described.  That path
   1211 	 * is relative to the given root (third argument).  Here we're
   1212 	 * starting from the root.
   1213 	 */
   1214 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1215 	    CTLFLAG_PERMANENT,
   1216 	    CTLTYPE_NODE, "tap", NULL,
   1217 	    NULL, 0, NULL, 0,
   1218 	    CTL_NET, PF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1219 		return;
   1220 	tap_node = node->sysctl_num;
   1221 }
   1222 
   1223 /*
   1224  * The helper functions make Andrew Brown's interface really
   1225  * shine.  It makes possible to create value on the fly whether
   1226  * the sysctl value is read or written.
   1227  *
   1228  * As shown as an example in the man page, the first step is to
   1229  * create a copy of the node to have sysctl_lookup work on it.
   1230  *
   1231  * Here, we have more work to do than just a copy, since we have
   1232  * to create the string.  The first step is to collect the actual
   1233  * value of the node, which is a convenient pointer to the softc
   1234  * of the interface.  From there we create the string and use it
   1235  * as the value, but only for the *copy* of the node.
   1236  *
   1237  * Then we let sysctl_lookup do the magic, which consists in
   1238  * setting oldp and newp as required by the operation.  When the
   1239  * value is read, that means that the string will be copied to
   1240  * the user, and when it is written, the new value will be copied
   1241  * over in the addr array.
   1242  *
   1243  * If newp is NULL, the user was reading the value, so we don't
   1244  * have anything else to do.  If a new value was written, we
   1245  * have to check it.
   1246  *
   1247  * If it is incorrect, we can return an error and leave 'node' as
   1248  * it is:  since it is a copy of the actual node, the change will
   1249  * be forgotten.
   1250  *
   1251  * Upon a correct input, we commit the change to the ifnet
   1252  * structure of our interface.
   1253  */
   1254 static int
   1255 tap_sysctl_handler(SYSCTLFN_ARGS)
   1256 {
   1257 	struct sysctlnode node;
   1258 	struct tap_softc *sc;
   1259 	struct ifnet *ifp;
   1260 	int error;
   1261 	size_t len;
   1262 	char addr[18];
   1263 
   1264 	node = *rnode;
   1265 	sc = node.sysctl_data;
   1266 	ifp = &sc->sc_ec.ec_if;
   1267 	(void)tap_ether_sprintf(addr, LLADDR(ifp->if_sadl));
   1268 	node.sysctl_data = addr;
   1269 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1270 	if (error || newp == NULL)
   1271 		return (error);
   1272 
   1273 	len = strlen(addr);
   1274 	if (len < 11 || len > 17)
   1275 		return (EINVAL);
   1276 
   1277 	/* Commit change */
   1278 	if (tap_ether_aton(LLADDR(ifp->if_sadl), addr) != 0)
   1279 		return (EINVAL);
   1280 	return (error);
   1281 }
   1282 
   1283 /*
   1284  * ether_aton implementation, not using a static buffer.
   1285  */
   1286 static int
   1287 tap_ether_aton(u_char *dest, char *str)
   1288 {
   1289 	int i;
   1290 	char *cp = str;
   1291 	u_char val[6];
   1292 
   1293 #define	set_value			\
   1294 	if (*cp > '9' && *cp < 'a')	\
   1295 		*cp -= 'A' - 10;	\
   1296 	else if (*cp > '9')		\
   1297 		*cp -= 'a' - 10;	\
   1298 	else				\
   1299 		*cp -= '0'
   1300 
   1301 	for (i = 0; i < 6; i++, cp++) {
   1302 		if (!isxdigit(*cp))
   1303 			return (1);
   1304 		set_value;
   1305 		val[i] = *cp++;
   1306 		if (isxdigit(*cp)) {
   1307 			set_value;
   1308 			val[i] *= 16;
   1309 			val[i] += *cp++;
   1310 		}
   1311 		if (*cp == ':' || i == 5)
   1312 			continue;
   1313 		else
   1314 			return (1);
   1315 	}
   1316 	memcpy(dest, val, 6);
   1317 	return (0);
   1318 }
   1319 
   1320 /*
   1321  * ether_sprintf made thread-safer.
   1322  *
   1323  * Copied over from sys/net/if_ethersubr.c, with a change to avoid the use
   1324  * of a static buffer.
   1325  */
   1326 
   1327 /*
   1328  * Copyright (c) 1982, 1989, 1993
   1329  *      The Regents of the University of California.  All rights reserved.
   1330  *
   1331  * Redistribution and use in source and binary forms, with or without
   1332  * modification, are permitted provided that the following conditions
   1333  * are met:
   1334  * 1. Redistributions of source code must retain the above copyright
   1335  *    notice, this list of conditions and the following disclaimer.
   1336  * 2. Redistributions in binary form must reproduce the above copyright
   1337  *    notice, this list of conditions and the following disclaimer in the
   1338  *    documentation and/or other materials provided with the distribution.
   1339  * 3. Neither the name of the University nor the names of its contributors
   1340  *    may be used to endorse or promote products derived from this software
   1341  *    without specific prior written permission.
   1342  *
   1343  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
   1344  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
   1345  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
   1346  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
   1347  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
   1348  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
   1349  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
   1350  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
   1351  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
   1352  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
   1353  * SUCH DAMAGE.
   1354  *
   1355  *      @(#)if_ethersubr.c      8.2 (Berkeley) 4/4/96
   1356  */
   1357 
   1358 static char digits[] = "0123456789abcdef";
   1359 static char *
   1360 tap_ether_sprintf(char *dest, const u_char *ap)
   1361 {
   1362 	char *cp = dest;
   1363 	int i;
   1364 
   1365 	for (i = 0; i < 6; i++) {
   1366 		*cp++ = digits[*ap >> 4];
   1367 		*cp++ = digits[*ap++ & 0xf];
   1368 		*cp++ = ':';
   1369 	}
   1370 	*--cp = 0;
   1371 	return (dest);
   1372 }
   1373