if_tap.c revision 1.102 1 /* $NetBSD: if_tap.c,v 1.102 2017/11/29 19:21:44 jmcneill Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.102 2017/11/29 19:21:44 jmcneill Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/atomic.h>
46 #include <sys/conf.h>
47 #include <sys/cprng.h>
48 #include <sys/device.h>
49 #include <sys/file.h>
50 #include <sys/filedesc.h>
51 #include <sys/intr.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/kmem.h>
55 #include <sys/module.h>
56 #include <sys/mutex.h>
57 #include <sys/condvar.h>
58 #include <sys/poll.h>
59 #include <sys/proc.h>
60 #include <sys/select.h>
61 #include <sys/sockio.h>
62 #include <sys/stat.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #include <net/bpf.h>
72
73 #include <compat/sys/sockio.h>
74
75 #include "ioconf.h"
76
77 /*
78 * sysctl node management
79 *
80 * It's not really possible to use a SYSCTL_SETUP block with
81 * current module implementation, so it is easier to just define
82 * our own function.
83 *
84 * The handler function is a "helper" in Andrew Brown's sysctl
85 * framework terminology. It is used as a gateway for sysctl
86 * requests over the nodes.
87 *
88 * tap_log allows the module to log creations of nodes and
89 * destroy them all at once using sysctl_teardown.
90 */
91 static int tap_node;
92 static int tap_sysctl_handler(SYSCTLFN_PROTO);
93 static void sysctl_tap_setup(struct sysctllog **);
94
95 /*
96 * Since we're an Ethernet device, we need the 2 following
97 * components: a struct ethercom and a struct ifmedia
98 * since we don't attach a PHY to ourselves.
99 * We could emulate one, but there's no real point.
100 */
101
102 struct tap_softc {
103 device_t sc_dev;
104 struct ifmedia sc_im;
105 struct ethercom sc_ec;
106 int sc_flags;
107 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
108 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
110 #define TAP_GOING 0x00000008 /* interface is being destroyed */
111 struct selinfo sc_rsel;
112 pid_t sc_pgid; /* For async. IO */
113 kmutex_t sc_lock;
114 kcondvar_t sc_cv;
115 void *sc_sih;
116 struct timespec sc_atime;
117 struct timespec sc_mtime;
118 struct timespec sc_btime;
119 };
120
121 /* autoconf(9) glue */
122
123 static int tap_match(device_t, cfdata_t, void *);
124 static void tap_attach(device_t, device_t, void *);
125 static int tap_detach(device_t, int);
126
127 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
128 tap_match, tap_attach, tap_detach, NULL);
129 extern struct cfdriver tap_cd;
130
131 /* Real device access routines */
132 static int tap_dev_close(struct tap_softc *);
133 static int tap_dev_read(int, struct uio *, int);
134 static int tap_dev_write(int, struct uio *, int);
135 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
136 static int tap_dev_poll(int, int, struct lwp *);
137 static int tap_dev_kqfilter(int, struct knote *);
138
139 /* Fileops access routines */
140 static int tap_fops_close(file_t *);
141 static int tap_fops_read(file_t *, off_t *, struct uio *,
142 kauth_cred_t, int);
143 static int tap_fops_write(file_t *, off_t *, struct uio *,
144 kauth_cred_t, int);
145 static int tap_fops_ioctl(file_t *, u_long, void *);
146 static int tap_fops_poll(file_t *, int);
147 static int tap_fops_stat(file_t *, struct stat *);
148 static int tap_fops_kqfilter(file_t *, struct knote *);
149
150 static const struct fileops tap_fileops = {
151 .fo_read = tap_fops_read,
152 .fo_write = tap_fops_write,
153 .fo_ioctl = tap_fops_ioctl,
154 .fo_fcntl = fnullop_fcntl,
155 .fo_poll = tap_fops_poll,
156 .fo_stat = tap_fops_stat,
157 .fo_close = tap_fops_close,
158 .fo_kqfilter = tap_fops_kqfilter,
159 .fo_restart = fnullop_restart,
160 };
161
162 /* Helper for cloning open() */
163 static int tap_dev_cloner(struct lwp *);
164
165 /* Character device routines */
166 static int tap_cdev_open(dev_t, int, int, struct lwp *);
167 static int tap_cdev_close(dev_t, int, int, struct lwp *);
168 static int tap_cdev_read(dev_t, struct uio *, int);
169 static int tap_cdev_write(dev_t, struct uio *, int);
170 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
171 static int tap_cdev_poll(dev_t, int, struct lwp *);
172 static int tap_cdev_kqfilter(dev_t, struct knote *);
173
174 const struct cdevsw tap_cdevsw = {
175 .d_open = tap_cdev_open,
176 .d_close = tap_cdev_close,
177 .d_read = tap_cdev_read,
178 .d_write = tap_cdev_write,
179 .d_ioctl = tap_cdev_ioctl,
180 .d_stop = nostop,
181 .d_tty = notty,
182 .d_poll = tap_cdev_poll,
183 .d_mmap = nommap,
184 .d_kqfilter = tap_cdev_kqfilter,
185 .d_discard = nodiscard,
186 .d_flag = D_OTHER | D_MPSAFE
187 };
188
189 #define TAP_CLONER 0xfffff /* Maximal minor value */
190
191 /* kqueue-related routines */
192 static void tap_kqdetach(struct knote *);
193 static int tap_kqread(struct knote *, long);
194
195 /*
196 * Those are needed by the if_media interface.
197 */
198
199 static int tap_mediachange(struct ifnet *);
200 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
201
202 /*
203 * Those are needed by the ifnet interface, and would typically be
204 * there for any network interface driver.
205 * Some other routines are optional: watchdog and drain.
206 */
207
208 static void tap_start(struct ifnet *);
209 static void tap_stop(struct ifnet *, int);
210 static int tap_init(struct ifnet *);
211 static int tap_ioctl(struct ifnet *, u_long, void *);
212
213 /* Internal functions */
214 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
215 static void tap_softintr(void *);
216
217 /*
218 * tap is a clonable interface, although it is highly unrealistic for
219 * an Ethernet device.
220 *
221 * Here are the bits needed for a clonable interface.
222 */
223 static int tap_clone_create(struct if_clone *, int);
224 static int tap_clone_destroy(struct ifnet *);
225
226 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
227 tap_clone_create,
228 tap_clone_destroy);
229
230 /* Helper functions shared by the two cloning code paths */
231 static struct tap_softc * tap_clone_creator(int);
232 int tap_clone_destroyer(device_t);
233
234 static struct sysctllog *tap_sysctl_clog;
235
236 #ifdef _MODULE
237 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
238 #endif
239
240 static u_int tap_count;
241
242 void
243 tapattach(int n)
244 {
245
246 /*
247 * Nothing to do here, initialization is handled by the
248 * module initialization code in tapinit() below).
249 */
250 }
251
252 static void
253 tapinit(void)
254 {
255 int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
256 if (error) {
257 aprint_error("%s: unable to register cfattach\n",
258 tap_cd.cd_name);
259 (void)config_cfdriver_detach(&tap_cd);
260 return;
261 }
262
263 if_clone_attach(&tap_cloners);
264 sysctl_tap_setup(&tap_sysctl_clog);
265 #ifdef _MODULE
266 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
267 #endif
268 }
269
270 static int
271 tapdetach(void)
272 {
273 int error = 0;
274
275 if (tap_count != 0)
276 return EBUSY;
277
278 #ifdef _MODULE
279 if (error == 0)
280 error = devsw_detach(NULL, &tap_cdevsw);
281 #endif
282 if (error == 0)
283 sysctl_teardown(&tap_sysctl_clog);
284 if (error == 0)
285 if_clone_detach(&tap_cloners);
286
287 if (error == 0)
288 error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
289
290 return error;
291 }
292
293 /* Pretty much useless for a pseudo-device */
294 static int
295 tap_match(device_t parent, cfdata_t cfdata, void *arg)
296 {
297
298 return 1;
299 }
300
301 void
302 tap_attach(device_t parent, device_t self, void *aux)
303 {
304 struct tap_softc *sc = device_private(self);
305 struct ifnet *ifp;
306 const struct sysctlnode *node;
307 int error;
308 uint8_t enaddr[ETHER_ADDR_LEN] =
309 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
310 char enaddrstr[3 * ETHER_ADDR_LEN];
311
312 sc->sc_dev = self;
313 sc->sc_sih = NULL;
314 getnanotime(&sc->sc_btime);
315 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
316 sc->sc_flags = 0;
317 selinit(&sc->sc_rsel);
318
319 cv_init(&sc->sc_cv, "tapread");
320 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
321
322 if (!pmf_device_register(self, NULL, NULL))
323 aprint_error_dev(self, "couldn't establish power handler\n");
324
325 /*
326 * In order to obtain unique initial Ethernet address on a host,
327 * do some randomisation. It's not meant for anything but avoiding
328 * hard-coding an address.
329 */
330 cprng_fast(&enaddr[3], 3);
331
332 aprint_verbose_dev(self, "Ethernet address %s\n",
333 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
334
335 /*
336 * Why 1000baseT? Why not? You can add more.
337 *
338 * Note that there are 3 steps: init, one or several additions to
339 * list of supported media, and in the end, the selection of one
340 * of them.
341 */
342 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
343 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
344 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
345 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
346 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
347 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
348 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
349 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
350 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
351
352 /*
353 * One should note that an interface must do multicast in order
354 * to support IPv6.
355 */
356 ifp = &sc->sc_ec.ec_if;
357 strcpy(ifp->if_xname, device_xname(self));
358 ifp->if_softc = sc;
359 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
360 ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
361 ifp->if_ioctl = tap_ioctl;
362 ifp->if_start = tap_start;
363 ifp->if_stop = tap_stop;
364 ifp->if_init = tap_init;
365 IFQ_SET_READY(&ifp->if_snd);
366
367 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
368
369 /* Those steps are mandatory for an Ethernet driver. */
370 error = if_initialize(ifp);
371 if (error != 0) {
372 aprint_error_dev(self, "if_initialize failed(%d)\n", error);
373 ifmedia_removeall(&sc->sc_im);
374 pmf_device_deregister(self);
375 mutex_destroy(&sc->sc_lock);
376 seldestroy(&sc->sc_rsel);
377
378 return; /* Error */
379 }
380 ifp->if_percpuq = if_percpuq_create(ifp);
381 ether_ifattach(ifp, enaddr);
382 if_register(ifp);
383
384 /*
385 * Add a sysctl node for that interface.
386 *
387 * The pointer transmitted is not a string, but instead a pointer to
388 * the softc structure, which we can use to build the string value on
389 * the fly in the helper function of the node. See the comments for
390 * tap_sysctl_handler for details.
391 *
392 * Usually sysctl_createv is called with CTL_CREATE as the before-last
393 * component. However, we can allocate a number ourselves, as we are
394 * the only consumer of the net.link.<iface> node. In this case, the
395 * unit number is conveniently used to number the node. CTL_CREATE
396 * would just work, too.
397 */
398 if ((error = sysctl_createv(NULL, 0, NULL,
399 &node, CTLFLAG_READWRITE,
400 CTLTYPE_STRING, device_xname(self), NULL,
401 tap_sysctl_handler, 0, (void *)sc, 18,
402 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
403 CTL_EOL)) != 0)
404 aprint_error_dev(self,
405 "sysctl_createv returned %d, ignoring\n", error);
406 }
407
408 /*
409 * When detaching, we do the inverse of what is done in the attach
410 * routine, in reversed order.
411 */
412 static int
413 tap_detach(device_t self, int flags)
414 {
415 struct tap_softc *sc = device_private(self);
416 struct ifnet *ifp = &sc->sc_ec.ec_if;
417 int error;
418
419 sc->sc_flags |= TAP_GOING;
420 tap_stop(ifp, 1);
421 if_down(ifp);
422
423 if (sc->sc_sih != NULL) {
424 softint_disestablish(sc->sc_sih);
425 sc->sc_sih = NULL;
426 }
427
428 /*
429 * Destroying a single leaf is a very straightforward operation using
430 * sysctl_destroyv. One should be sure to always end the path with
431 * CTL_EOL.
432 */
433 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
434 device_unit(sc->sc_dev), CTL_EOL)) != 0)
435 aprint_error_dev(self,
436 "sysctl_destroyv returned %d, ignoring\n", error);
437 ether_ifdetach(ifp);
438 if_detach(ifp);
439 ifmedia_removeall(&sc->sc_im);
440 seldestroy(&sc->sc_rsel);
441 mutex_destroy(&sc->sc_lock);
442 cv_destroy(&sc->sc_cv);
443
444 pmf_device_deregister(self);
445
446 return 0;
447 }
448
449 /*
450 * This function is called by the ifmedia layer to notify the driver
451 * that the user requested a media change. A real driver would
452 * reconfigure the hardware.
453 */
454 static int
455 tap_mediachange(struct ifnet *ifp)
456 {
457 return 0;
458 }
459
460 /*
461 * Here the user asks for the currently used media.
462 */
463 static void
464 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
465 {
466 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
467 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
468 }
469
470 /*
471 * This is the function where we SEND packets.
472 *
473 * There is no 'receive' equivalent. A typical driver will get
474 * interrupts from the hardware, and from there will inject new packets
475 * into the network stack.
476 *
477 * Once handled, a packet must be freed. A real driver might not be able
478 * to fit all the pending packets into the hardware, and is allowed to
479 * return before having sent all the packets. It should then use the
480 * if_flags flag IFF_OACTIVE to notify the upper layer.
481 *
482 * There are also other flags one should check, such as IFF_PAUSE.
483 *
484 * It is our duty to make packets available to BPF listeners.
485 *
486 * You should be aware that this function is called by the Ethernet layer
487 * at splnet().
488 *
489 * When the device is opened, we have to pass the packet(s) to the
490 * userland. For that we stay in OACTIVE mode while the userland gets
491 * the packets, and we send a signal to the processes waiting to read.
492 *
493 * wakeup(sc) is the counterpart to the tsleep call in
494 * tap_dev_read, while selnotify() is used for kevent(2) and
495 * poll(2) (which includes select(2)) listeners.
496 */
497 static void
498 tap_start(struct ifnet *ifp)
499 {
500 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
501 struct mbuf *m0;
502
503 mutex_enter(&sc->sc_lock);
504 if ((sc->sc_flags & TAP_INUSE) == 0) {
505 /* Simply drop packets */
506 for(;;) {
507 IFQ_DEQUEUE(&ifp->if_snd, m0);
508 if (m0 == NULL)
509 goto done;
510
511 ifp->if_opackets++;
512 bpf_mtap(ifp, m0);
513
514 m_freem(m0);
515 }
516 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
517 ifp->if_flags |= IFF_OACTIVE;
518 cv_broadcast(&sc->sc_cv);
519 selnotify(&sc->sc_rsel, 0, 1);
520 if (sc->sc_flags & TAP_ASYNCIO)
521 softint_schedule(sc->sc_sih);
522 }
523 done:
524 mutex_exit(&sc->sc_lock);
525 }
526
527 static void
528 tap_softintr(void *cookie)
529 {
530 struct tap_softc *sc;
531 struct ifnet *ifp;
532 int a, b;
533
534 sc = cookie;
535
536 if (sc->sc_flags & TAP_ASYNCIO) {
537 ifp = &sc->sc_ec.ec_if;
538 if (ifp->if_flags & IFF_RUNNING) {
539 a = POLL_IN;
540 b = POLLIN|POLLRDNORM;
541 } else {
542 a = POLL_HUP;
543 b = 0;
544 }
545 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
546 }
547 }
548
549 /*
550 * A typical driver will only contain the following handlers for
551 * ioctl calls, except SIOCSIFPHYADDR.
552 * The latter is a hack I used to set the Ethernet address of the
553 * faked device.
554 *
555 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
556 * called under splnet().
557 */
558 static int
559 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
560 {
561 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
562 struct ifreq *ifr = (struct ifreq *)data;
563 int s, error;
564
565 s = splnet();
566
567 switch (cmd) {
568 #ifdef OSIOCSIFMEDIA
569 case OSIOCSIFMEDIA:
570 #endif
571 case SIOCSIFMEDIA:
572 case SIOCGIFMEDIA:
573 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
574 break;
575 case SIOCSIFPHYADDR:
576 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
577 break;
578 default:
579 error = ether_ioctl(ifp, cmd, data);
580 if (error == ENETRESET)
581 error = 0;
582 break;
583 }
584
585 splx(s);
586
587 return error;
588 }
589
590 /*
591 * Helper function to set Ethernet address. This has been replaced by
592 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
593 */
594 static int
595 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
596 {
597 const struct sockaddr *sa = &ifra->ifra_addr;
598
599 if (sa->sa_family != AF_LINK)
600 return EINVAL;
601
602 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
603
604 return 0;
605 }
606
607 /*
608 * _init() would typically be called when an interface goes up,
609 * meaning it should configure itself into the state in which it
610 * can send packets.
611 */
612 static int
613 tap_init(struct ifnet *ifp)
614 {
615 ifp->if_flags |= IFF_RUNNING;
616
617 tap_start(ifp);
618
619 return 0;
620 }
621
622 /*
623 * _stop() is called when an interface goes down. It is our
624 * responsability to validate that state by clearing the
625 * IFF_RUNNING flag.
626 *
627 * We have to wake up all the sleeping processes to have the pending
628 * read requests cancelled.
629 */
630 static void
631 tap_stop(struct ifnet *ifp, int disable)
632 {
633 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
634
635 mutex_enter(&sc->sc_lock);
636 ifp->if_flags &= ~IFF_RUNNING;
637 cv_broadcast(&sc->sc_cv);
638 selnotify(&sc->sc_rsel, 0, 1);
639 if (sc->sc_flags & TAP_ASYNCIO)
640 softint_schedule(sc->sc_sih);
641 mutex_exit(&sc->sc_lock);
642 }
643
644 /*
645 * The 'create' command of ifconfig can be used to create
646 * any numbered instance of a given device. Thus we have to
647 * make sure we have enough room in cd_devs to create the
648 * user-specified instance. config_attach_pseudo will do this
649 * for us.
650 */
651 static int
652 tap_clone_create(struct if_clone *ifc, int unit)
653 {
654 if (tap_clone_creator(unit) == NULL) {
655 aprint_error("%s%d: unable to attach an instance\n",
656 tap_cd.cd_name, unit);
657 return ENXIO;
658 }
659 atomic_inc_uint(&tap_count);
660 return 0;
661 }
662
663 /*
664 * tap(4) can be cloned by two ways:
665 * using 'ifconfig tap0 create', which will use the network
666 * interface cloning API, and call tap_clone_create above.
667 * opening the cloning device node, whose minor number is TAP_CLONER.
668 * See below for an explanation on how this part work.
669 */
670 static struct tap_softc *
671 tap_clone_creator(int unit)
672 {
673 cfdata_t cf;
674
675 cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
676 cf->cf_name = tap_cd.cd_name;
677 cf->cf_atname = tap_ca.ca_name;
678 if (unit == -1) {
679 /* let autoconf find the first free one */
680 cf->cf_unit = 0;
681 cf->cf_fstate = FSTATE_STAR;
682 } else {
683 cf->cf_unit = unit;
684 cf->cf_fstate = FSTATE_NOTFOUND;
685 }
686
687 return device_private(config_attach_pseudo(cf));
688 }
689
690 /*
691 * The clean design of if_clone and autoconf(9) makes that part
692 * really straightforward. The second argument of config_detach
693 * means neither QUIET nor FORCED.
694 */
695 static int
696 tap_clone_destroy(struct ifnet *ifp)
697 {
698 struct tap_softc *sc = ifp->if_softc;
699 int error = tap_clone_destroyer(sc->sc_dev);
700
701 if (error == 0)
702 atomic_dec_uint(&tap_count);
703 return error;
704 }
705
706 int
707 tap_clone_destroyer(device_t dev)
708 {
709 cfdata_t cf = device_cfdata(dev);
710 int error;
711
712 if ((error = config_detach(dev, 0)) != 0)
713 aprint_error_dev(dev, "unable to detach instance\n");
714 kmem_free(cf, sizeof(*cf));
715
716 return error;
717 }
718
719 /*
720 * tap(4) is a bit of an hybrid device. It can be used in two different
721 * ways:
722 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
723 * 2. open /dev/tap, get a new interface created and read/write off it.
724 * That interface is destroyed when the process that had it created exits.
725 *
726 * The first way is managed by the cdevsw structure, and you access interfaces
727 * through a (major, minor) mapping: tap4 is obtained by the minor number
728 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
729 *
730 * The second way is the so-called "cloning" device. It's a special minor
731 * number (chosen as the maximal number, to allow as much tap devices as
732 * possible). The user first opens the cloner (e.g., /dev/tap), and that
733 * call ends in tap_cdev_open. The actual place where it is handled is
734 * tap_dev_cloner.
735 *
736 * An tap device cannot be opened more than once at a time, so the cdevsw
737 * part of open() does nothing but noting that the interface is being used and
738 * hence ready to actually handle packets.
739 */
740
741 static int
742 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
743 {
744 struct tap_softc *sc;
745
746 if (minor(dev) == TAP_CLONER)
747 return tap_dev_cloner(l);
748
749 sc = device_lookup_private(&tap_cd, minor(dev));
750 if (sc == NULL)
751 return ENXIO;
752
753 /* The device can only be opened once */
754 if (sc->sc_flags & TAP_INUSE)
755 return EBUSY;
756 sc->sc_flags |= TAP_INUSE;
757 return 0;
758 }
759
760 /*
761 * There are several kinds of cloning devices, and the most simple is the one
762 * tap(4) uses. What it does is change the file descriptor with a new one,
763 * with its own fileops structure (which maps to the various read, write,
764 * ioctl functions). It starts allocating a new file descriptor with falloc,
765 * then actually creates the new tap devices.
766 *
767 * Once those two steps are successful, we can re-wire the existing file
768 * descriptor to its new self. This is done with fdclone(): it fills the fp
769 * structure as needed (notably f_devunit gets filled with the fifth parameter
770 * passed, the unit of the tap device which will allows us identifying the
771 * device later), and returns EMOVEFD.
772 *
773 * That magic value is interpreted by sys_open() which then replaces the
774 * current file descriptor by the new one (through a magic member of struct
775 * lwp, l_dupfd).
776 *
777 * The tap device is flagged as being busy since it otherwise could be
778 * externally accessed through the corresponding device node with the cdevsw
779 * interface.
780 */
781
782 static int
783 tap_dev_cloner(struct lwp *l)
784 {
785 struct tap_softc *sc;
786 file_t *fp;
787 int error, fd;
788
789 if ((error = fd_allocfile(&fp, &fd)) != 0)
790 return error;
791
792 if ((sc = tap_clone_creator(-1)) == NULL) {
793 fd_abort(curproc, fp, fd);
794 return ENXIO;
795 }
796
797 sc->sc_flags |= TAP_INUSE;
798
799 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
800 (void *)(intptr_t)device_unit(sc->sc_dev));
801 }
802
803 /*
804 * While all other operations (read, write, ioctl, poll and kqfilter) are
805 * really the same whether we are in cdevsw or fileops mode, the close()
806 * function is slightly different in the two cases.
807 *
808 * As for the other, the core of it is shared in tap_dev_close. What
809 * it does is sufficient for the cdevsw interface, but the cloning interface
810 * needs another thing: the interface is destroyed when the processes that
811 * created it closes it.
812 */
813 static int
814 tap_cdev_close(dev_t dev, int flags, int fmt,
815 struct lwp *l)
816 {
817 struct tap_softc *sc =
818 device_lookup_private(&tap_cd, minor(dev));
819
820 if (sc == NULL)
821 return ENXIO;
822
823 return tap_dev_close(sc);
824 }
825
826 /*
827 * It might happen that the administrator used ifconfig to externally destroy
828 * the interface. In that case, tap_fops_close will be called while
829 * tap_detach is already happening. If we called it again from here, we
830 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
831 */
832 static int
833 tap_fops_close(file_t *fp)
834 {
835 int unit = fp->f_devunit;
836 struct tap_softc *sc;
837 int error;
838
839 sc = device_lookup_private(&tap_cd, unit);
840 if (sc == NULL)
841 return ENXIO;
842
843 /* tap_dev_close currently always succeeds, but it might not
844 * always be the case. */
845 KERNEL_LOCK(1, NULL);
846 if ((error = tap_dev_close(sc)) != 0) {
847 KERNEL_UNLOCK_ONE(NULL);
848 return error;
849 }
850
851 /* Destroy the device now that it is no longer useful,
852 * unless it's already being destroyed. */
853 if ((sc->sc_flags & TAP_GOING) != 0) {
854 KERNEL_UNLOCK_ONE(NULL);
855 return 0;
856 }
857
858 error = tap_clone_destroyer(sc->sc_dev);
859 KERNEL_UNLOCK_ONE(NULL);
860 return error;
861 }
862
863 static int
864 tap_dev_close(struct tap_softc *sc)
865 {
866 struct ifnet *ifp;
867 int s;
868
869 s = splnet();
870 /* Let tap_start handle packets again */
871 ifp = &sc->sc_ec.ec_if;
872 ifp->if_flags &= ~IFF_OACTIVE;
873
874 /* Purge output queue */
875 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
876 struct mbuf *m;
877
878 for (;;) {
879 IFQ_DEQUEUE(&ifp->if_snd, m);
880 if (m == NULL)
881 break;
882
883 ifp->if_opackets++;
884 bpf_mtap(ifp, m);
885 m_freem(m);
886 }
887 }
888 splx(s);
889
890 if (sc->sc_sih != NULL) {
891 softint_disestablish(sc->sc_sih);
892 sc->sc_sih = NULL;
893 }
894 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
895
896 return 0;
897 }
898
899 static int
900 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
901 {
902 return tap_dev_read(minor(dev), uio, flags);
903 }
904
905 static int
906 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
907 kauth_cred_t cred, int flags)
908 {
909 int error;
910
911 KERNEL_LOCK(1, NULL);
912 error = tap_dev_read(fp->f_devunit, uio, flags);
913 KERNEL_UNLOCK_ONE(NULL);
914 return error;
915 }
916
917 static int
918 tap_dev_read(int unit, struct uio *uio, int flags)
919 {
920 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
921 struct ifnet *ifp;
922 struct mbuf *m, *n;
923 int error = 0;
924
925 if (sc == NULL)
926 return ENXIO;
927
928 getnanotime(&sc->sc_atime);
929
930 ifp = &sc->sc_ec.ec_if;
931 if ((ifp->if_flags & IFF_UP) == 0)
932 return EHOSTDOWN;
933
934 /*
935 * In the TAP_NBIO case, we have to make sure we won't be sleeping
936 */
937 if ((sc->sc_flags & TAP_NBIO) != 0) {
938 if (!mutex_tryenter(&sc->sc_lock))
939 return EWOULDBLOCK;
940 } else {
941 mutex_enter(&sc->sc_lock);
942 }
943
944 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
945 ifp->if_flags &= ~IFF_OACTIVE;
946 if (sc->sc_flags & TAP_NBIO)
947 error = EWOULDBLOCK;
948 else
949 error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
950
951 if (error != 0) {
952 mutex_exit(&sc->sc_lock);
953 return error;
954 }
955 /* The device might have been downed */
956 if ((ifp->if_flags & IFF_UP) == 0) {
957 mutex_exit(&sc->sc_lock);
958 return EHOSTDOWN;
959 }
960 }
961
962 IFQ_DEQUEUE(&ifp->if_snd, m);
963 mutex_exit(&sc->sc_lock);
964
965 ifp->if_flags &= ~IFF_OACTIVE;
966 if (m == NULL) {
967 error = 0;
968 goto out;
969 }
970
971 ifp->if_opackets++;
972 bpf_mtap(ifp, m);
973
974 /*
975 * One read is one packet.
976 */
977 do {
978 error = uiomove(mtod(m, void *),
979 min(m->m_len, uio->uio_resid), uio);
980 m = n = m_free(m);
981 } while (m != NULL && uio->uio_resid > 0 && error == 0);
982
983 if (m != NULL)
984 m_freem(m);
985
986 out:
987 return error;
988 }
989
990 static int
991 tap_fops_stat(file_t *fp, struct stat *st)
992 {
993 int error = 0;
994 struct tap_softc *sc;
995 int unit = fp->f_devunit;
996
997 (void)memset(st, 0, sizeof(*st));
998
999 KERNEL_LOCK(1, NULL);
1000 sc = device_lookup_private(&tap_cd, unit);
1001 if (sc == NULL) {
1002 error = ENXIO;
1003 goto out;
1004 }
1005
1006 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
1007 st->st_atimespec = sc->sc_atime;
1008 st->st_mtimespec = sc->sc_mtime;
1009 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
1010 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1011 st->st_gid = kauth_cred_getegid(fp->f_cred);
1012 out:
1013 KERNEL_UNLOCK_ONE(NULL);
1014 return error;
1015 }
1016
1017 static int
1018 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1019 {
1020 return tap_dev_write(minor(dev), uio, flags);
1021 }
1022
1023 static int
1024 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1025 kauth_cred_t cred, int flags)
1026 {
1027 int error;
1028
1029 KERNEL_LOCK(1, NULL);
1030 error = tap_dev_write(fp->f_devunit, uio, flags);
1031 KERNEL_UNLOCK_ONE(NULL);
1032 return error;
1033 }
1034
1035 static int
1036 tap_dev_write(int unit, struct uio *uio, int flags)
1037 {
1038 struct tap_softc *sc =
1039 device_lookup_private(&tap_cd, unit);
1040 struct ifnet *ifp;
1041 struct mbuf *m, **mp;
1042 int error = 0;
1043
1044 if (sc == NULL)
1045 return ENXIO;
1046
1047 getnanotime(&sc->sc_mtime);
1048 ifp = &sc->sc_ec.ec_if;
1049
1050 /* One write, one packet, that's the rule */
1051 MGETHDR(m, M_DONTWAIT, MT_DATA);
1052 if (m == NULL) {
1053 ifp->if_ierrors++;
1054 return ENOBUFS;
1055 }
1056 m->m_pkthdr.len = uio->uio_resid;
1057
1058 mp = &m;
1059 while (error == 0 && uio->uio_resid > 0) {
1060 if (*mp != m) {
1061 MGET(*mp, M_DONTWAIT, MT_DATA);
1062 if (*mp == NULL) {
1063 error = ENOBUFS;
1064 break;
1065 }
1066 }
1067 (*mp)->m_len = min(MHLEN, uio->uio_resid);
1068 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1069 mp = &(*mp)->m_next;
1070 }
1071 if (error) {
1072 ifp->if_ierrors++;
1073 m_freem(m);
1074 return error;
1075 }
1076
1077 m_set_rcvif(m, ifp);
1078
1079 if_percpuq_enqueue(ifp->if_percpuq, m);
1080
1081 return 0;
1082 }
1083
1084 static int
1085 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1086 struct lwp *l)
1087 {
1088 return tap_dev_ioctl(minor(dev), cmd, data, l);
1089 }
1090
1091 static int
1092 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1093 {
1094 return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1095 }
1096
1097 static int
1098 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1099 {
1100 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1101
1102 if (sc == NULL)
1103 return ENXIO;
1104
1105 switch (cmd) {
1106 case FIONREAD:
1107 {
1108 struct ifnet *ifp = &sc->sc_ec.ec_if;
1109 struct mbuf *m;
1110 int s;
1111
1112 s = splnet();
1113 IFQ_POLL(&ifp->if_snd, m);
1114
1115 if (m == NULL)
1116 *(int *)data = 0;
1117 else
1118 *(int *)data = m->m_pkthdr.len;
1119 splx(s);
1120 return 0;
1121 }
1122 case TIOCSPGRP:
1123 case FIOSETOWN:
1124 return fsetown(&sc->sc_pgid, cmd, data);
1125 case TIOCGPGRP:
1126 case FIOGETOWN:
1127 return fgetown(sc->sc_pgid, cmd, data);
1128 case FIOASYNC:
1129 if (*(int *)data) {
1130 if (sc->sc_sih == NULL) {
1131 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1132 tap_softintr, sc);
1133 if (sc->sc_sih == NULL)
1134 return EBUSY; /* XXX */
1135 }
1136 sc->sc_flags |= TAP_ASYNCIO;
1137 } else {
1138 sc->sc_flags &= ~TAP_ASYNCIO;
1139 if (sc->sc_sih != NULL) {
1140 softint_disestablish(sc->sc_sih);
1141 sc->sc_sih = NULL;
1142 }
1143 }
1144 return 0;
1145 case FIONBIO:
1146 if (*(int *)data)
1147 sc->sc_flags |= TAP_NBIO;
1148 else
1149 sc->sc_flags &= ~TAP_NBIO;
1150 return 0;
1151 #ifdef OTAPGIFNAME
1152 case OTAPGIFNAME:
1153 #endif
1154 case TAPGIFNAME:
1155 {
1156 struct ifreq *ifr = (struct ifreq *)data;
1157 struct ifnet *ifp = &sc->sc_ec.ec_if;
1158
1159 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1160 return 0;
1161 }
1162 default:
1163 return ENOTTY;
1164 }
1165 }
1166
1167 static int
1168 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1169 {
1170 return tap_dev_poll(minor(dev), events, l);
1171 }
1172
1173 static int
1174 tap_fops_poll(file_t *fp, int events)
1175 {
1176 return tap_dev_poll(fp->f_devunit, events, curlwp);
1177 }
1178
1179 static int
1180 tap_dev_poll(int unit, int events, struct lwp *l)
1181 {
1182 struct tap_softc *sc =
1183 device_lookup_private(&tap_cd, unit);
1184 int revents = 0;
1185
1186 if (sc == NULL)
1187 return POLLERR;
1188
1189 if (events & (POLLIN|POLLRDNORM)) {
1190 struct ifnet *ifp = &sc->sc_ec.ec_if;
1191 struct mbuf *m;
1192 int s;
1193
1194 s = splnet();
1195 IFQ_POLL(&ifp->if_snd, m);
1196
1197 if (m != NULL)
1198 revents |= events & (POLLIN|POLLRDNORM);
1199 else {
1200 mutex_spin_enter(&sc->sc_lock);
1201 selrecord(l, &sc->sc_rsel);
1202 mutex_spin_exit(&sc->sc_lock);
1203 }
1204 splx(s);
1205 }
1206 revents |= events & (POLLOUT|POLLWRNORM);
1207
1208 return revents;
1209 }
1210
1211 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1212 tap_kqread };
1213 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1214 filt_seltrue };
1215
1216 static int
1217 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1218 {
1219 return tap_dev_kqfilter(minor(dev), kn);
1220 }
1221
1222 static int
1223 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1224 {
1225 return tap_dev_kqfilter(fp->f_devunit, kn);
1226 }
1227
1228 static int
1229 tap_dev_kqfilter(int unit, struct knote *kn)
1230 {
1231 struct tap_softc *sc =
1232 device_lookup_private(&tap_cd, unit);
1233
1234 if (sc == NULL)
1235 return ENXIO;
1236
1237 KERNEL_LOCK(1, NULL);
1238 switch(kn->kn_filter) {
1239 case EVFILT_READ:
1240 kn->kn_fop = &tap_read_filterops;
1241 break;
1242 case EVFILT_WRITE:
1243 kn->kn_fop = &tap_seltrue_filterops;
1244 break;
1245 default:
1246 KERNEL_UNLOCK_ONE(NULL);
1247 return EINVAL;
1248 }
1249
1250 kn->kn_hook = sc;
1251 mutex_spin_enter(&sc->sc_lock);
1252 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1253 mutex_spin_exit(&sc->sc_lock);
1254 KERNEL_UNLOCK_ONE(NULL);
1255 return 0;
1256 }
1257
1258 static void
1259 tap_kqdetach(struct knote *kn)
1260 {
1261 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1262
1263 KERNEL_LOCK(1, NULL);
1264 mutex_spin_enter(&sc->sc_lock);
1265 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1266 mutex_spin_exit(&sc->sc_lock);
1267 KERNEL_UNLOCK_ONE(NULL);
1268 }
1269
1270 static int
1271 tap_kqread(struct knote *kn, long hint)
1272 {
1273 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1274 struct ifnet *ifp = &sc->sc_ec.ec_if;
1275 struct mbuf *m;
1276 int s, rv;
1277
1278 KERNEL_LOCK(1, NULL);
1279 s = splnet();
1280 IFQ_POLL(&ifp->if_snd, m);
1281
1282 if (m == NULL)
1283 kn->kn_data = 0;
1284 else
1285 kn->kn_data = m->m_pkthdr.len;
1286 splx(s);
1287 rv = (kn->kn_data != 0 ? 1 : 0);
1288 KERNEL_UNLOCK_ONE(NULL);
1289 return rv;
1290 }
1291
1292 /*
1293 * sysctl management routines
1294 * You can set the address of an interface through:
1295 * net.link.tap.tap<number>
1296 *
1297 * Note the consistent use of tap_log in order to use
1298 * sysctl_teardown at unload time.
1299 *
1300 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1301 * blocks register a function in a special section of the kernel
1302 * (called a link set) which is used at init_sysctl() time to cycle
1303 * through all those functions to create the kernel's sysctl tree.
1304 *
1305 * It is not possible to use link sets in a module, so the
1306 * easiest is to simply call our own setup routine at load time.
1307 *
1308 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1309 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1310 * whole kernel sysctl tree is built, it is not possible to add any
1311 * permanent node.
1312 *
1313 * It should be noted that we're not saving the sysctlnode pointer
1314 * we are returned when creating the "tap" node. That structure
1315 * cannot be trusted once out of the calling function, as it might
1316 * get reused. So we just save the MIB number, and always give the
1317 * full path starting from the root for later calls to sysctl_createv
1318 * and sysctl_destroyv.
1319 */
1320 static void
1321 sysctl_tap_setup(struct sysctllog **clog)
1322 {
1323 const struct sysctlnode *node;
1324 int error = 0;
1325
1326 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1327 CTLFLAG_PERMANENT,
1328 CTLTYPE_NODE, "link", NULL,
1329 NULL, 0, NULL, 0,
1330 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1331 return;
1332
1333 /*
1334 * The first four parameters of sysctl_createv are for management.
1335 *
1336 * The four that follows, here starting with a '0' for the flags,
1337 * describe the node.
1338 *
1339 * The next series of four set its value, through various possible
1340 * means.
1341 *
1342 * Last but not least, the path to the node is described. That path
1343 * is relative to the given root (third argument). Here we're
1344 * starting from the root.
1345 */
1346 if ((error = sysctl_createv(clog, 0, NULL, &node,
1347 CTLFLAG_PERMANENT,
1348 CTLTYPE_NODE, "tap", NULL,
1349 NULL, 0, NULL, 0,
1350 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1351 return;
1352 tap_node = node->sysctl_num;
1353 }
1354
1355 /*
1356 * The helper functions make Andrew Brown's interface really
1357 * shine. It makes possible to create value on the fly whether
1358 * the sysctl value is read or written.
1359 *
1360 * As shown as an example in the man page, the first step is to
1361 * create a copy of the node to have sysctl_lookup work on it.
1362 *
1363 * Here, we have more work to do than just a copy, since we have
1364 * to create the string. The first step is to collect the actual
1365 * value of the node, which is a convenient pointer to the softc
1366 * of the interface. From there we create the string and use it
1367 * as the value, but only for the *copy* of the node.
1368 *
1369 * Then we let sysctl_lookup do the magic, which consists in
1370 * setting oldp and newp as required by the operation. When the
1371 * value is read, that means that the string will be copied to
1372 * the user, and when it is written, the new value will be copied
1373 * over in the addr array.
1374 *
1375 * If newp is NULL, the user was reading the value, so we don't
1376 * have anything else to do. If a new value was written, we
1377 * have to check it.
1378 *
1379 * If it is incorrect, we can return an error and leave 'node' as
1380 * it is: since it is a copy of the actual node, the change will
1381 * be forgotten.
1382 *
1383 * Upon a correct input, we commit the change to the ifnet
1384 * structure of our interface.
1385 */
1386 static int
1387 tap_sysctl_handler(SYSCTLFN_ARGS)
1388 {
1389 struct sysctlnode node;
1390 struct tap_softc *sc;
1391 struct ifnet *ifp;
1392 int error;
1393 size_t len;
1394 char addr[3 * ETHER_ADDR_LEN];
1395 uint8_t enaddr[ETHER_ADDR_LEN];
1396
1397 node = *rnode;
1398 sc = node.sysctl_data;
1399 ifp = &sc->sc_ec.ec_if;
1400 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1401 node.sysctl_data = addr;
1402 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1403 if (error || newp == NULL)
1404 return error;
1405
1406 len = strlen(addr);
1407 if (len < 11 || len > 17)
1408 return EINVAL;
1409
1410 /* Commit change */
1411 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1412 return EINVAL;
1413 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1414 return error;
1415 }
1416
1417 /*
1418 * Module infrastructure
1419 */
1420 #include "if_module.h"
1421
1422 IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
1423