Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.106
      1 /*	$NetBSD: if_tap.c,v 1.106 2018/06/26 06:48:02 msaitoh Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.106 2018/06/26 06:48:02 msaitoh Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #include "opt_compat_netbsd.h"
     42 #endif
     43 
     44 #include <sys/param.h>
     45 #include <sys/atomic.h>
     46 #include <sys/conf.h>
     47 #include <sys/cprng.h>
     48 #include <sys/device.h>
     49 #include <sys/file.h>
     50 #include <sys/filedesc.h>
     51 #include <sys/intr.h>
     52 #include <sys/kauth.h>
     53 #include <sys/kernel.h>
     54 #include <sys/kmem.h>
     55 #include <sys/module.h>
     56 #include <sys/mutex.h>
     57 #include <sys/condvar.h>
     58 #include <sys/poll.h>
     59 #include <sys/proc.h>
     60 #include <sys/select.h>
     61 #include <sys/sockio.h>
     62 #include <sys/stat.h>
     63 #include <sys/sysctl.h>
     64 #include <sys/systm.h>
     65 
     66 #include <net/if.h>
     67 #include <net/if_dl.h>
     68 #include <net/if_ether.h>
     69 #include <net/if_media.h>
     70 #include <net/if_tap.h>
     71 #include <net/bpf.h>
     72 
     73 #include <compat/sys/sockio.h>
     74 
     75 #include "ioconf.h"
     76 
     77 /*
     78  * sysctl node management
     79  *
     80  * It's not really possible to use a SYSCTL_SETUP block with
     81  * current module implementation, so it is easier to just define
     82  * our own function.
     83  *
     84  * The handler function is a "helper" in Andrew Brown's sysctl
     85  * framework terminology.  It is used as a gateway for sysctl
     86  * requests over the nodes.
     87  *
     88  * tap_log allows the module to log creations of nodes and
     89  * destroy them all at once using sysctl_teardown.
     90  */
     91 static int	tap_node;
     92 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     93 static void	sysctl_tap_setup(struct sysctllog **);
     94 
     95 /*
     96  * Since we're an Ethernet device, we need the 2 following
     97  * components: a struct ethercom and a struct ifmedia
     98  * since we don't attach a PHY to ourselves.
     99  * We could emulate one, but there's no real point.
    100  */
    101 
    102 struct tap_softc {
    103 	device_t	sc_dev;
    104 	struct ifmedia	sc_im;
    105 	struct ethercom	sc_ec;
    106 	int		sc_flags;
    107 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    108 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    109 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    110 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    111 	struct selinfo	sc_rsel;
    112 	pid_t		sc_pgid; /* For async. IO */
    113 	kmutex_t	sc_lock;
    114 	kcondvar_t	sc_cv;
    115 	void		*sc_sih;
    116 	struct timespec sc_atime;
    117 	struct timespec sc_mtime;
    118 	struct timespec sc_btime;
    119 };
    120 
    121 /* autoconf(9) glue */
    122 
    123 static int	tap_match(device_t, cfdata_t, void *);
    124 static void	tap_attach(device_t, device_t, void *);
    125 static int	tap_detach(device_t, int);
    126 
    127 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    128     tap_match, tap_attach, tap_detach, NULL);
    129 extern struct cfdriver tap_cd;
    130 
    131 /* Real device access routines */
    132 static int	tap_dev_close(struct tap_softc *);
    133 static int	tap_dev_read(int, struct uio *, int);
    134 static int	tap_dev_write(int, struct uio *, int);
    135 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    136 static int	tap_dev_poll(int, int, struct lwp *);
    137 static int	tap_dev_kqfilter(int, struct knote *);
    138 
    139 /* Fileops access routines */
    140 static int	tap_fops_close(file_t *);
    141 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    142     kauth_cred_t, int);
    143 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    144     kauth_cred_t, int);
    145 static int	tap_fops_ioctl(file_t *, u_long, void *);
    146 static int	tap_fops_poll(file_t *, int);
    147 static int	tap_fops_stat(file_t *, struct stat *);
    148 static int	tap_fops_kqfilter(file_t *, struct knote *);
    149 
    150 static const struct fileops tap_fileops = {
    151 	.fo_name = "tap",
    152 	.fo_read = tap_fops_read,
    153 	.fo_write = tap_fops_write,
    154 	.fo_ioctl = tap_fops_ioctl,
    155 	.fo_fcntl = fnullop_fcntl,
    156 	.fo_poll = tap_fops_poll,
    157 	.fo_stat = tap_fops_stat,
    158 	.fo_close = tap_fops_close,
    159 	.fo_kqfilter = tap_fops_kqfilter,
    160 	.fo_restart = fnullop_restart,
    161 };
    162 
    163 /* Helper for cloning open() */
    164 static int	tap_dev_cloner(struct lwp *);
    165 
    166 /* Character device routines */
    167 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    168 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    169 static int	tap_cdev_read(dev_t, struct uio *, int);
    170 static int	tap_cdev_write(dev_t, struct uio *, int);
    171 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    172 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    173 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    174 
    175 const struct cdevsw tap_cdevsw = {
    176 	.d_open = tap_cdev_open,
    177 	.d_close = tap_cdev_close,
    178 	.d_read = tap_cdev_read,
    179 	.d_write = tap_cdev_write,
    180 	.d_ioctl = tap_cdev_ioctl,
    181 	.d_stop = nostop,
    182 	.d_tty = notty,
    183 	.d_poll = tap_cdev_poll,
    184 	.d_mmap = nommap,
    185 	.d_kqfilter = tap_cdev_kqfilter,
    186 	.d_discard = nodiscard,
    187 	.d_flag = D_OTHER | D_MPSAFE
    188 };
    189 
    190 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    191 
    192 /* kqueue-related routines */
    193 static void	tap_kqdetach(struct knote *);
    194 static int	tap_kqread(struct knote *, long);
    195 
    196 /*
    197  * Those are needed by the if_media interface.
    198  */
    199 
    200 static int	tap_mediachange(struct ifnet *);
    201 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    202 
    203 /*
    204  * Those are needed by the ifnet interface, and would typically be
    205  * there for any network interface driver.
    206  * Some other routines are optional: watchdog and drain.
    207  */
    208 
    209 static void	tap_start(struct ifnet *);
    210 static void	tap_stop(struct ifnet *, int);
    211 static int	tap_init(struct ifnet *);
    212 static int	tap_ioctl(struct ifnet *, u_long, void *);
    213 
    214 /* Internal functions */
    215 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    216 static void	tap_softintr(void *);
    217 
    218 /*
    219  * tap is a clonable interface, although it is highly unrealistic for
    220  * an Ethernet device.
    221  *
    222  * Here are the bits needed for a clonable interface.
    223  */
    224 static int	tap_clone_create(struct if_clone *, int);
    225 static int	tap_clone_destroy(struct ifnet *);
    226 
    227 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    228 					tap_clone_create,
    229 					tap_clone_destroy);
    230 
    231 /* Helper functions shared by the two cloning code paths */
    232 static struct tap_softc *	tap_clone_creator(int);
    233 int	tap_clone_destroyer(device_t);
    234 
    235 static struct sysctllog *tap_sysctl_clog;
    236 
    237 #ifdef _MODULE
    238 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
    239 #endif
    240 
    241 static u_int tap_count;
    242 
    243 void
    244 tapattach(int n)
    245 {
    246 
    247 	/*
    248 	 * Nothing to do here, initialization is handled by the
    249 	 * module initialization code in tapinit() below).
    250 	 */
    251 }
    252 
    253 static void
    254 tapinit(void)
    255 {
    256 	int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    257 	if (error) {
    258 		aprint_error("%s: unable to register cfattach\n",
    259 		    tap_cd.cd_name);
    260 		(void)config_cfdriver_detach(&tap_cd);
    261 		return;
    262 	}
    263 
    264 	if_clone_attach(&tap_cloners);
    265 	sysctl_tap_setup(&tap_sysctl_clog);
    266 #ifdef _MODULE
    267 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    268 #endif
    269 }
    270 
    271 static int
    272 tapdetach(void)
    273 {
    274 	int error = 0;
    275 
    276 	if (tap_count != 0)
    277 		return EBUSY;
    278 
    279 #ifdef _MODULE
    280 	if (error == 0)
    281 		error = devsw_detach(NULL, &tap_cdevsw);
    282 #endif
    283 	if (error == 0)
    284 		sysctl_teardown(&tap_sysctl_clog);
    285 	if (error == 0)
    286 		if_clone_detach(&tap_cloners);
    287 
    288 	if (error == 0)
    289 		error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
    290 
    291 	return error;
    292 }
    293 
    294 /* Pretty much useless for a pseudo-device */
    295 static int
    296 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    297 {
    298 
    299 	return 1;
    300 }
    301 
    302 void
    303 tap_attach(device_t parent, device_t self, void *aux)
    304 {
    305 	struct tap_softc *sc = device_private(self);
    306 	struct ifnet *ifp;
    307 	const struct sysctlnode *node;
    308 	int error;
    309 	uint8_t enaddr[ETHER_ADDR_LEN] =
    310 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    311 	char enaddrstr[3 * ETHER_ADDR_LEN];
    312 
    313 	sc->sc_dev = self;
    314 	sc->sc_sih = NULL;
    315 	getnanotime(&sc->sc_btime);
    316 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    317 	sc->sc_flags = 0;
    318 	selinit(&sc->sc_rsel);
    319 
    320 	cv_init(&sc->sc_cv, "tapread");
    321 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
    322 
    323 	if (!pmf_device_register(self, NULL, NULL))
    324 		aprint_error_dev(self, "couldn't establish power handler\n");
    325 
    326 	/*
    327 	 * In order to obtain unique initial Ethernet address on a host,
    328 	 * do some randomisation.  It's not meant for anything but avoiding
    329 	 * hard-coding an address.
    330 	 */
    331 	cprng_fast(&enaddr[3], 3);
    332 
    333 	aprint_verbose_dev(self, "Ethernet address %s\n",
    334 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    335 
    336 	/*
    337 	 * Why 1000baseT? Why not? You can add more.
    338 	 *
    339 	 * Note that there are 3 steps: init, one or several additions to
    340 	 * list of supported media, and in the end, the selection of one
    341 	 * of them.
    342 	 */
    343 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    344 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    345 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    346 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    347 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    348 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    349 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    350 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    351 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    352 
    353 	/*
    354 	 * One should note that an interface must do multicast in order
    355 	 * to support IPv6.
    356 	 */
    357 	ifp = &sc->sc_ec.ec_if;
    358 	strcpy(ifp->if_xname, device_xname(self));
    359 	ifp->if_softc	= sc;
    360 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    361 	ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
    362 #ifdef NET_MPSAFE
    363 	ifp->if_extflags |= IFEF_MPSAFE;
    364 #endif
    365 	ifp->if_ioctl	= tap_ioctl;
    366 	ifp->if_start	= tap_start;
    367 	ifp->if_stop	= tap_stop;
    368 	ifp->if_init	= tap_init;
    369 	IFQ_SET_READY(&ifp->if_snd);
    370 
    371 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    372 
    373 	/* Those steps are mandatory for an Ethernet driver. */
    374 	error = if_initialize(ifp);
    375 	if (error != 0) {
    376 		aprint_error_dev(self, "if_initialize failed(%d)\n", error);
    377 		ifmedia_removeall(&sc->sc_im);
    378 		pmf_device_deregister(self);
    379 		mutex_destroy(&sc->sc_lock);
    380 		seldestroy(&sc->sc_rsel);
    381 
    382 		return; /* Error */
    383 	}
    384 	ifp->if_percpuq = if_percpuq_create(ifp);
    385 	ether_ifattach(ifp, enaddr);
    386 	if_register(ifp);
    387 
    388 	/*
    389 	 * Add a sysctl node for that interface.
    390 	 *
    391 	 * The pointer transmitted is not a string, but instead a pointer to
    392 	 * the softc structure, which we can use to build the string value on
    393 	 * the fly in the helper function of the node.  See the comments for
    394 	 * tap_sysctl_handler for details.
    395 	 *
    396 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    397 	 * component.  However, we can allocate a number ourselves, as we are
    398 	 * the only consumer of the net.link.<iface> node.  In this case, the
    399 	 * unit number is conveniently used to number the node.  CTL_CREATE
    400 	 * would just work, too.
    401 	 */
    402 	if ((error = sysctl_createv(NULL, 0, NULL,
    403 	    &node, CTLFLAG_READWRITE,
    404 	    CTLTYPE_STRING, device_xname(self), NULL,
    405 	    tap_sysctl_handler, 0, (void *)sc, 18,
    406 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    407 	    CTL_EOL)) != 0)
    408 		aprint_error_dev(self,
    409 		    "sysctl_createv returned %d, ignoring\n", error);
    410 }
    411 
    412 /*
    413  * When detaching, we do the inverse of what is done in the attach
    414  * routine, in reversed order.
    415  */
    416 static int
    417 tap_detach(device_t self, int flags)
    418 {
    419 	struct tap_softc *sc = device_private(self);
    420 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    421 	int error;
    422 
    423 	sc->sc_flags |= TAP_GOING;
    424 	tap_stop(ifp, 1);
    425 	if_down(ifp);
    426 
    427 	if (sc->sc_sih != NULL) {
    428 		softint_disestablish(sc->sc_sih);
    429 		sc->sc_sih = NULL;
    430 	}
    431 
    432 	/*
    433 	 * Destroying a single leaf is a very straightforward operation using
    434 	 * sysctl_destroyv.  One should be sure to always end the path with
    435 	 * CTL_EOL.
    436 	 */
    437 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    438 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    439 		aprint_error_dev(self,
    440 		    "sysctl_destroyv returned %d, ignoring\n", error);
    441 	ether_ifdetach(ifp);
    442 	if_detach(ifp);
    443 	ifmedia_removeall(&sc->sc_im);
    444 	seldestroy(&sc->sc_rsel);
    445 	mutex_destroy(&sc->sc_lock);
    446 	cv_destroy(&sc->sc_cv);
    447 
    448 	pmf_device_deregister(self);
    449 
    450 	return 0;
    451 }
    452 
    453 /*
    454  * This function is called by the ifmedia layer to notify the driver
    455  * that the user requested a media change.  A real driver would
    456  * reconfigure the hardware.
    457  */
    458 static int
    459 tap_mediachange(struct ifnet *ifp)
    460 {
    461 	return 0;
    462 }
    463 
    464 /*
    465  * Here the user asks for the currently used media.
    466  */
    467 static void
    468 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    469 {
    470 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    471 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    472 }
    473 
    474 /*
    475  * This is the function where we SEND packets.
    476  *
    477  * There is no 'receive' equivalent.  A typical driver will get
    478  * interrupts from the hardware, and from there will inject new packets
    479  * into the network stack.
    480  *
    481  * Once handled, a packet must be freed.  A real driver might not be able
    482  * to fit all the pending packets into the hardware, and is allowed to
    483  * return before having sent all the packets.  It should then use the
    484  * if_flags flag IFF_OACTIVE to notify the upper layer.
    485  *
    486  * There are also other flags one should check, such as IFF_PAUSE.
    487  *
    488  * It is our duty to make packets available to BPF listeners.
    489  *
    490  * You should be aware that this function is called by the Ethernet layer
    491  * at splnet().
    492  *
    493  * When the device is opened, we have to pass the packet(s) to the
    494  * userland.  For that we stay in OACTIVE mode while the userland gets
    495  * the packets, and we send a signal to the processes waiting to read.
    496  *
    497  * wakeup(sc) is the counterpart to the tsleep call in
    498  * tap_dev_read, while selnotify() is used for kevent(2) and
    499  * poll(2) (which includes select(2)) listeners.
    500  */
    501 static void
    502 tap_start(struct ifnet *ifp)
    503 {
    504 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    505 	struct mbuf *m0;
    506 
    507 	mutex_enter(&sc->sc_lock);
    508 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    509 		/* Simply drop packets */
    510 		for(;;) {
    511 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    512 			if (m0 == NULL)
    513 				goto done;
    514 
    515 			ifp->if_opackets++;
    516 			bpf_mtap(ifp, m0, BPF_D_OUT);
    517 
    518 			m_freem(m0);
    519 		}
    520 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    521 		ifp->if_flags |= IFF_OACTIVE;
    522 		cv_broadcast(&sc->sc_cv);
    523 		selnotify(&sc->sc_rsel, 0, 1);
    524 		if (sc->sc_flags & TAP_ASYNCIO)
    525 			softint_schedule(sc->sc_sih);
    526 	}
    527 done:
    528 	mutex_exit(&sc->sc_lock);
    529 }
    530 
    531 static void
    532 tap_softintr(void *cookie)
    533 {
    534 	struct tap_softc *sc;
    535 	struct ifnet *ifp;
    536 	int a, b;
    537 
    538 	sc = cookie;
    539 
    540 	if (sc->sc_flags & TAP_ASYNCIO) {
    541 		ifp = &sc->sc_ec.ec_if;
    542 		if (ifp->if_flags & IFF_RUNNING) {
    543 			a = POLL_IN;
    544 			b = POLLIN|POLLRDNORM;
    545 		} else {
    546 			a = POLL_HUP;
    547 			b = 0;
    548 		}
    549 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    550 	}
    551 }
    552 
    553 /*
    554  * A typical driver will only contain the following handlers for
    555  * ioctl calls, except SIOCSIFPHYADDR.
    556  * The latter is a hack I used to set the Ethernet address of the
    557  * faked device.
    558  *
    559  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    560  * called under splnet().
    561  */
    562 static int
    563 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    564 {
    565 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    566 	struct ifreq *ifr = (struct ifreq *)data;
    567 	int s, error;
    568 
    569 	s = splnet();
    570 
    571 	switch (cmd) {
    572 #ifdef OSIOCSIFMEDIA
    573 	case OSIOCSIFMEDIA:
    574 #endif
    575 	case SIOCSIFMEDIA:
    576 	case SIOCGIFMEDIA:
    577 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    578 		break;
    579 	case SIOCSIFPHYADDR:
    580 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    581 		break;
    582 	default:
    583 		error = ether_ioctl(ifp, cmd, data);
    584 		if (error == ENETRESET)
    585 			error = 0;
    586 		break;
    587 	}
    588 
    589 	splx(s);
    590 
    591 	return error;
    592 }
    593 
    594 /*
    595  * Helper function to set Ethernet address.  This has been replaced by
    596  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    597  */
    598 static int
    599 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    600 {
    601 	const struct sockaddr *sa = &ifra->ifra_addr;
    602 
    603 	if (sa->sa_family != AF_LINK)
    604 		return EINVAL;
    605 
    606 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    607 
    608 	return 0;
    609 }
    610 
    611 /*
    612  * _init() would typically be called when an interface goes up,
    613  * meaning it should configure itself into the state in which it
    614  * can send packets.
    615  */
    616 static int
    617 tap_init(struct ifnet *ifp)
    618 {
    619 	ifp->if_flags |= IFF_RUNNING;
    620 
    621 	tap_start(ifp);
    622 
    623 	return 0;
    624 }
    625 
    626 /*
    627  * _stop() is called when an interface goes down.  It is our
    628  * responsability to validate that state by clearing the
    629  * IFF_RUNNING flag.
    630  *
    631  * We have to wake up all the sleeping processes to have the pending
    632  * read requests cancelled.
    633  */
    634 static void
    635 tap_stop(struct ifnet *ifp, int disable)
    636 {
    637 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    638 
    639 	mutex_enter(&sc->sc_lock);
    640 	ifp->if_flags &= ~IFF_RUNNING;
    641 	cv_broadcast(&sc->sc_cv);
    642 	selnotify(&sc->sc_rsel, 0, 1);
    643 	if (sc->sc_flags & TAP_ASYNCIO)
    644 		softint_schedule(sc->sc_sih);
    645 	mutex_exit(&sc->sc_lock);
    646 }
    647 
    648 /*
    649  * The 'create' command of ifconfig can be used to create
    650  * any numbered instance of a given device.  Thus we have to
    651  * make sure we have enough room in cd_devs to create the
    652  * user-specified instance.  config_attach_pseudo will do this
    653  * for us.
    654  */
    655 static int
    656 tap_clone_create(struct if_clone *ifc, int unit)
    657 {
    658 	if (tap_clone_creator(unit) == NULL) {
    659 		aprint_error("%s%d: unable to attach an instance\n",
    660 		    tap_cd.cd_name, unit);
    661 		return ENXIO;
    662 	}
    663 	atomic_inc_uint(&tap_count);
    664 	return 0;
    665 }
    666 
    667 /*
    668  * tap(4) can be cloned by two ways:
    669  *   using 'ifconfig tap0 create', which will use the network
    670  *     interface cloning API, and call tap_clone_create above.
    671  *   opening the cloning device node, whose minor number is TAP_CLONER.
    672  *     See below for an explanation on how this part work.
    673  */
    674 static struct tap_softc *
    675 tap_clone_creator(int unit)
    676 {
    677 	cfdata_t cf;
    678 
    679 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
    680 	cf->cf_name = tap_cd.cd_name;
    681 	cf->cf_atname = tap_ca.ca_name;
    682 	if (unit == -1) {
    683 		/* let autoconf find the first free one */
    684 		cf->cf_unit = 0;
    685 		cf->cf_fstate = FSTATE_STAR;
    686 	} else {
    687 		cf->cf_unit = unit;
    688 		cf->cf_fstate = FSTATE_NOTFOUND;
    689 	}
    690 
    691 	return device_private(config_attach_pseudo(cf));
    692 }
    693 
    694 /*
    695  * The clean design of if_clone and autoconf(9) makes that part
    696  * really straightforward.  The second argument of config_detach
    697  * means neither QUIET nor FORCED.
    698  */
    699 static int
    700 tap_clone_destroy(struct ifnet *ifp)
    701 {
    702 	struct tap_softc *sc = ifp->if_softc;
    703 	int error = tap_clone_destroyer(sc->sc_dev);
    704 
    705 	if (error == 0)
    706 		atomic_dec_uint(&tap_count);
    707 	return error;
    708 }
    709 
    710 int
    711 tap_clone_destroyer(device_t dev)
    712 {
    713 	cfdata_t cf = device_cfdata(dev);
    714 	int error;
    715 
    716 	if ((error = config_detach(dev, 0)) != 0)
    717 		aprint_error_dev(dev, "unable to detach instance\n");
    718 	kmem_free(cf, sizeof(*cf));
    719 
    720 	return error;
    721 }
    722 
    723 /*
    724  * tap(4) is a bit of an hybrid device.  It can be used in two different
    725  * ways:
    726  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    727  *  2. open /dev/tap, get a new interface created and read/write off it.
    728  *     That interface is destroyed when the process that had it created exits.
    729  *
    730  * The first way is managed by the cdevsw structure, and you access interfaces
    731  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    732  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    733  *
    734  * The second way is the so-called "cloning" device.  It's a special minor
    735  * number (chosen as the maximal number, to allow as much tap devices as
    736  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    737  * call ends in tap_cdev_open.  The actual place where it is handled is
    738  * tap_dev_cloner.
    739  *
    740  * An tap device cannot be opened more than once at a time, so the cdevsw
    741  * part of open() does nothing but noting that the interface is being used and
    742  * hence ready to actually handle packets.
    743  */
    744 
    745 static int
    746 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    747 {
    748 	struct tap_softc *sc;
    749 
    750 	if (minor(dev) == TAP_CLONER)
    751 		return tap_dev_cloner(l);
    752 
    753 	sc = device_lookup_private(&tap_cd, minor(dev));
    754 	if (sc == NULL)
    755 		return ENXIO;
    756 
    757 	/* The device can only be opened once */
    758 	if (sc->sc_flags & TAP_INUSE)
    759 		return EBUSY;
    760 	sc->sc_flags |= TAP_INUSE;
    761 	return 0;
    762 }
    763 
    764 /*
    765  * There are several kinds of cloning devices, and the most simple is the one
    766  * tap(4) uses.  What it does is change the file descriptor with a new one,
    767  * with its own fileops structure (which maps to the various read, write,
    768  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    769  * then actually creates the new tap devices.
    770  *
    771  * Once those two steps are successful, we can re-wire the existing file
    772  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    773  * structure as needed (notably f_devunit gets filled with the fifth parameter
    774  * passed, the unit of the tap device which will allows us identifying the
    775  * device later), and returns EMOVEFD.
    776  *
    777  * That magic value is interpreted by sys_open() which then replaces the
    778  * current file descriptor by the new one (through a magic member of struct
    779  * lwp, l_dupfd).
    780  *
    781  * The tap device is flagged as being busy since it otherwise could be
    782  * externally accessed through the corresponding device node with the cdevsw
    783  * interface.
    784  */
    785 
    786 static int
    787 tap_dev_cloner(struct lwp *l)
    788 {
    789 	struct tap_softc *sc;
    790 	file_t *fp;
    791 	int error, fd;
    792 
    793 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    794 		return error;
    795 
    796 	if ((sc = tap_clone_creator(-1)) == NULL) {
    797 		fd_abort(curproc, fp, fd);
    798 		return ENXIO;
    799 	}
    800 
    801 	sc->sc_flags |= TAP_INUSE;
    802 
    803 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    804 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    805 }
    806 
    807 /*
    808  * While all other operations (read, write, ioctl, poll and kqfilter) are
    809  * really the same whether we are in cdevsw or fileops mode, the close()
    810  * function is slightly different in the two cases.
    811  *
    812  * As for the other, the core of it is shared in tap_dev_close.  What
    813  * it does is sufficient for the cdevsw interface, but the cloning interface
    814  * needs another thing:  the interface is destroyed when the processes that
    815  * created it closes it.
    816  */
    817 static int
    818 tap_cdev_close(dev_t dev, int flags, int fmt,
    819     struct lwp *l)
    820 {
    821 	struct tap_softc *sc =
    822 	    device_lookup_private(&tap_cd, minor(dev));
    823 
    824 	if (sc == NULL)
    825 		return ENXIO;
    826 
    827 	return tap_dev_close(sc);
    828 }
    829 
    830 /*
    831  * It might happen that the administrator used ifconfig to externally destroy
    832  * the interface.  In that case, tap_fops_close will be called while
    833  * tap_detach is already happening.  If we called it again from here, we
    834  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    835  */
    836 static int
    837 tap_fops_close(file_t *fp)
    838 {
    839 	int unit = fp->f_devunit;
    840 	struct tap_softc *sc;
    841 	int error;
    842 
    843 	sc = device_lookup_private(&tap_cd, unit);
    844 	if (sc == NULL)
    845 		return ENXIO;
    846 
    847 	/* tap_dev_close currently always succeeds, but it might not
    848 	 * always be the case. */
    849 	KERNEL_LOCK(1, NULL);
    850 	if ((error = tap_dev_close(sc)) != 0) {
    851 		KERNEL_UNLOCK_ONE(NULL);
    852 		return error;
    853 	}
    854 
    855 	/* Destroy the device now that it is no longer useful,
    856 	 * unless it's already being destroyed. */
    857 	if ((sc->sc_flags & TAP_GOING) != 0) {
    858 		KERNEL_UNLOCK_ONE(NULL);
    859 		return 0;
    860 	}
    861 
    862 	error = tap_clone_destroyer(sc->sc_dev);
    863 	KERNEL_UNLOCK_ONE(NULL);
    864 	return error;
    865 }
    866 
    867 static int
    868 tap_dev_close(struct tap_softc *sc)
    869 {
    870 	struct ifnet *ifp;
    871 	int s;
    872 
    873 	s = splnet();
    874 	/* Let tap_start handle packets again */
    875 	ifp = &sc->sc_ec.ec_if;
    876 	ifp->if_flags &= ~IFF_OACTIVE;
    877 
    878 	/* Purge output queue */
    879 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    880 		struct mbuf *m;
    881 
    882 		for (;;) {
    883 			IFQ_DEQUEUE(&ifp->if_snd, m);
    884 			if (m == NULL)
    885 				break;
    886 
    887 			ifp->if_opackets++;
    888 			bpf_mtap(ifp, m, BPF_D_OUT);
    889 			m_freem(m);
    890 		}
    891 	}
    892 	splx(s);
    893 
    894 	if (sc->sc_sih != NULL) {
    895 		softint_disestablish(sc->sc_sih);
    896 		sc->sc_sih = NULL;
    897 	}
    898 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    899 
    900 	return 0;
    901 }
    902 
    903 static int
    904 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    905 {
    906 	return tap_dev_read(minor(dev), uio, flags);
    907 }
    908 
    909 static int
    910 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    911     kauth_cred_t cred, int flags)
    912 {
    913 	int error;
    914 
    915 	KERNEL_LOCK(1, NULL);
    916 	error = tap_dev_read(fp->f_devunit, uio, flags);
    917 	KERNEL_UNLOCK_ONE(NULL);
    918 	return error;
    919 }
    920 
    921 static int
    922 tap_dev_read(int unit, struct uio *uio, int flags)
    923 {
    924 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    925 	struct ifnet *ifp;
    926 	struct mbuf *m, *n;
    927 	int error = 0;
    928 
    929 	if (sc == NULL)
    930 		return ENXIO;
    931 
    932 	getnanotime(&sc->sc_atime);
    933 
    934 	ifp = &sc->sc_ec.ec_if;
    935 	if ((ifp->if_flags & IFF_UP) == 0)
    936 		return EHOSTDOWN;
    937 
    938 	/*
    939 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    940 	 */
    941 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    942 		if (!mutex_tryenter(&sc->sc_lock))
    943 			return EWOULDBLOCK;
    944 	} else {
    945 		mutex_enter(&sc->sc_lock);
    946 	}
    947 
    948 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    949 		ifp->if_flags &= ~IFF_OACTIVE;
    950 		if (sc->sc_flags & TAP_NBIO)
    951 			error = EWOULDBLOCK;
    952 		else
    953 			error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
    954 
    955 		if (error != 0) {
    956 			mutex_exit(&sc->sc_lock);
    957 			return error;
    958 		}
    959 		/* The device might have been downed */
    960 		if ((ifp->if_flags & IFF_UP) == 0) {
    961 			mutex_exit(&sc->sc_lock);
    962 			return EHOSTDOWN;
    963 		}
    964 	}
    965 
    966 	IFQ_DEQUEUE(&ifp->if_snd, m);
    967 	mutex_exit(&sc->sc_lock);
    968 
    969 	ifp->if_flags &= ~IFF_OACTIVE;
    970 	if (m == NULL) {
    971 		error = 0;
    972 		goto out;
    973 	}
    974 
    975 	ifp->if_opackets++;
    976 	bpf_mtap(ifp, m, BPF_D_OUT);
    977 
    978 	/*
    979 	 * One read is one packet.
    980 	 */
    981 	do {
    982 		error = uiomove(mtod(m, void *),
    983 		    min(m->m_len, uio->uio_resid), uio);
    984 		m = n = m_free(m);
    985 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    986 
    987 	if (m != NULL)
    988 		m_freem(m);
    989 
    990 out:
    991 	return error;
    992 }
    993 
    994 static int
    995 tap_fops_stat(file_t *fp, struct stat *st)
    996 {
    997 	int error = 0;
    998 	struct tap_softc *sc;
    999 	int unit = fp->f_devunit;
   1000 
   1001 	(void)memset(st, 0, sizeof(*st));
   1002 
   1003 	KERNEL_LOCK(1, NULL);
   1004 	sc = device_lookup_private(&tap_cd, unit);
   1005 	if (sc == NULL) {
   1006 		error = ENXIO;
   1007 		goto out;
   1008 	}
   1009 
   1010 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
   1011 	st->st_atimespec = sc->sc_atime;
   1012 	st->st_mtimespec = sc->sc_mtime;
   1013 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
   1014 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1015 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1016 out:
   1017 	KERNEL_UNLOCK_ONE(NULL);
   1018 	return error;
   1019 }
   1020 
   1021 static int
   1022 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1023 {
   1024 	return tap_dev_write(minor(dev), uio, flags);
   1025 }
   1026 
   1027 static int
   1028 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1029     kauth_cred_t cred, int flags)
   1030 {
   1031 	int error;
   1032 
   1033 	KERNEL_LOCK(1, NULL);
   1034 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1035 	KERNEL_UNLOCK_ONE(NULL);
   1036 	return error;
   1037 }
   1038 
   1039 static int
   1040 tap_dev_write(int unit, struct uio *uio, int flags)
   1041 {
   1042 	struct tap_softc *sc =
   1043 	    device_lookup_private(&tap_cd, unit);
   1044 	struct ifnet *ifp;
   1045 	struct mbuf *m, **mp;
   1046 	int error = 0;
   1047 
   1048 	if (sc == NULL)
   1049 		return ENXIO;
   1050 
   1051 	getnanotime(&sc->sc_mtime);
   1052 	ifp = &sc->sc_ec.ec_if;
   1053 
   1054 	/* One write, one packet, that's the rule */
   1055 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1056 	if (m == NULL) {
   1057 		ifp->if_ierrors++;
   1058 		return ENOBUFS;
   1059 	}
   1060 	m->m_pkthdr.len = uio->uio_resid;
   1061 
   1062 	mp = &m;
   1063 	while (error == 0 && uio->uio_resid > 0) {
   1064 		if (*mp != m) {
   1065 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1066 			if (*mp == NULL) {
   1067 				error = ENOBUFS;
   1068 				break;
   1069 			}
   1070 		}
   1071 		(*mp)->m_len = min(MHLEN, uio->uio_resid);
   1072 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1073 		mp = &(*mp)->m_next;
   1074 	}
   1075 	if (error) {
   1076 		ifp->if_ierrors++;
   1077 		m_freem(m);
   1078 		return error;
   1079 	}
   1080 
   1081 	m_set_rcvif(m, ifp);
   1082 
   1083 	if_percpuq_enqueue(ifp->if_percpuq, m);
   1084 
   1085 	return 0;
   1086 }
   1087 
   1088 static int
   1089 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1090     struct lwp *l)
   1091 {
   1092 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1093 }
   1094 
   1095 static int
   1096 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1097 {
   1098 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1099 }
   1100 
   1101 static int
   1102 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1103 {
   1104 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1105 
   1106 	if (sc == NULL)
   1107 		return ENXIO;
   1108 
   1109 	switch (cmd) {
   1110 	case FIONREAD:
   1111 		{
   1112 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1113 			struct mbuf *m;
   1114 			int s;
   1115 
   1116 			s = splnet();
   1117 			IFQ_POLL(&ifp->if_snd, m);
   1118 
   1119 			if (m == NULL)
   1120 				*(int *)data = 0;
   1121 			else
   1122 				*(int *)data = m->m_pkthdr.len;
   1123 			splx(s);
   1124 			return 0;
   1125 		}
   1126 	case TIOCSPGRP:
   1127 	case FIOSETOWN:
   1128 		return fsetown(&sc->sc_pgid, cmd, data);
   1129 	case TIOCGPGRP:
   1130 	case FIOGETOWN:
   1131 		return fgetown(sc->sc_pgid, cmd, data);
   1132 	case FIOASYNC:
   1133 		if (*(int *)data) {
   1134 			if (sc->sc_sih == NULL) {
   1135 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1136 				    tap_softintr, sc);
   1137 				if (sc->sc_sih == NULL)
   1138 					return EBUSY; /* XXX */
   1139 			}
   1140 			sc->sc_flags |= TAP_ASYNCIO;
   1141 		} else {
   1142 			sc->sc_flags &= ~TAP_ASYNCIO;
   1143 			if (sc->sc_sih != NULL) {
   1144 				softint_disestablish(sc->sc_sih);
   1145 				sc->sc_sih = NULL;
   1146 			}
   1147 		}
   1148 		return 0;
   1149 	case FIONBIO:
   1150 		if (*(int *)data)
   1151 			sc->sc_flags |= TAP_NBIO;
   1152 		else
   1153 			sc->sc_flags &= ~TAP_NBIO;
   1154 		return 0;
   1155 #ifdef OTAPGIFNAME
   1156 	case OTAPGIFNAME:
   1157 #endif
   1158 	case TAPGIFNAME:
   1159 		{
   1160 			struct ifreq *ifr = (struct ifreq *)data;
   1161 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1162 
   1163 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1164 			return 0;
   1165 		}
   1166 	default:
   1167 		return ENOTTY;
   1168 	}
   1169 }
   1170 
   1171 static int
   1172 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1173 {
   1174 	return tap_dev_poll(minor(dev), events, l);
   1175 }
   1176 
   1177 static int
   1178 tap_fops_poll(file_t *fp, int events)
   1179 {
   1180 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1181 }
   1182 
   1183 static int
   1184 tap_dev_poll(int unit, int events, struct lwp *l)
   1185 {
   1186 	struct tap_softc *sc =
   1187 	    device_lookup_private(&tap_cd, unit);
   1188 	int revents = 0;
   1189 
   1190 	if (sc == NULL)
   1191 		return POLLERR;
   1192 
   1193 	if (events & (POLLIN|POLLRDNORM)) {
   1194 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1195 		struct mbuf *m;
   1196 		int s;
   1197 
   1198 		s = splnet();
   1199 		IFQ_POLL(&ifp->if_snd, m);
   1200 
   1201 		if (m != NULL)
   1202 			revents |= events & (POLLIN|POLLRDNORM);
   1203 		else {
   1204 			mutex_spin_enter(&sc->sc_lock);
   1205 			selrecord(l, &sc->sc_rsel);
   1206 			mutex_spin_exit(&sc->sc_lock);
   1207 		}
   1208 		splx(s);
   1209 	}
   1210 	revents |= events & (POLLOUT|POLLWRNORM);
   1211 
   1212 	return revents;
   1213 }
   1214 
   1215 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1216 	tap_kqread };
   1217 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1218 	filt_seltrue };
   1219 
   1220 static int
   1221 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1222 {
   1223 	return tap_dev_kqfilter(minor(dev), kn);
   1224 }
   1225 
   1226 static int
   1227 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1228 {
   1229 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1230 }
   1231 
   1232 static int
   1233 tap_dev_kqfilter(int unit, struct knote *kn)
   1234 {
   1235 	struct tap_softc *sc =
   1236 	    device_lookup_private(&tap_cd, unit);
   1237 
   1238 	if (sc == NULL)
   1239 		return ENXIO;
   1240 
   1241 	KERNEL_LOCK(1, NULL);
   1242 	switch(kn->kn_filter) {
   1243 	case EVFILT_READ:
   1244 		kn->kn_fop = &tap_read_filterops;
   1245 		break;
   1246 	case EVFILT_WRITE:
   1247 		kn->kn_fop = &tap_seltrue_filterops;
   1248 		break;
   1249 	default:
   1250 		KERNEL_UNLOCK_ONE(NULL);
   1251 		return EINVAL;
   1252 	}
   1253 
   1254 	kn->kn_hook = sc;
   1255 	mutex_spin_enter(&sc->sc_lock);
   1256 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1257 	mutex_spin_exit(&sc->sc_lock);
   1258 	KERNEL_UNLOCK_ONE(NULL);
   1259 	return 0;
   1260 }
   1261 
   1262 static void
   1263 tap_kqdetach(struct knote *kn)
   1264 {
   1265 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1266 
   1267 	KERNEL_LOCK(1, NULL);
   1268 	mutex_spin_enter(&sc->sc_lock);
   1269 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1270 	mutex_spin_exit(&sc->sc_lock);
   1271 	KERNEL_UNLOCK_ONE(NULL);
   1272 }
   1273 
   1274 static int
   1275 tap_kqread(struct knote *kn, long hint)
   1276 {
   1277 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1278 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1279 	struct mbuf *m;
   1280 	int s, rv;
   1281 
   1282 	KERNEL_LOCK(1, NULL);
   1283 	s = splnet();
   1284 	IFQ_POLL(&ifp->if_snd, m);
   1285 
   1286 	if (m == NULL)
   1287 		kn->kn_data = 0;
   1288 	else
   1289 		kn->kn_data = m->m_pkthdr.len;
   1290 	splx(s);
   1291 	rv = (kn->kn_data != 0 ? 1 : 0);
   1292 	KERNEL_UNLOCK_ONE(NULL);
   1293 	return rv;
   1294 }
   1295 
   1296 /*
   1297  * sysctl management routines
   1298  * You can set the address of an interface through:
   1299  * net.link.tap.tap<number>
   1300  *
   1301  * Note the consistent use of tap_log in order to use
   1302  * sysctl_teardown at unload time.
   1303  *
   1304  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1305  * blocks register a function in a special section of the kernel
   1306  * (called a link set) which is used at init_sysctl() time to cycle
   1307  * through all those functions to create the kernel's sysctl tree.
   1308  *
   1309  * It is not possible to use link sets in a module, so the
   1310  * easiest is to simply call our own setup routine at load time.
   1311  *
   1312  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1313  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1314  * whole kernel sysctl tree is built, it is not possible to add any
   1315  * permanent node.
   1316  *
   1317  * It should be noted that we're not saving the sysctlnode pointer
   1318  * we are returned when creating the "tap" node.  That structure
   1319  * cannot be trusted once out of the calling function, as it might
   1320  * get reused.  So we just save the MIB number, and always give the
   1321  * full path starting from the root for later calls to sysctl_createv
   1322  * and sysctl_destroyv.
   1323  */
   1324 static void
   1325 sysctl_tap_setup(struct sysctllog **clog)
   1326 {
   1327 	const struct sysctlnode *node;
   1328 	int error = 0;
   1329 
   1330 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1331 	    CTLFLAG_PERMANENT,
   1332 	    CTLTYPE_NODE, "link", NULL,
   1333 	    NULL, 0, NULL, 0,
   1334 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1335 		return;
   1336 
   1337 	/*
   1338 	 * The first four parameters of sysctl_createv are for management.
   1339 	 *
   1340 	 * The four that follows, here starting with a '0' for the flags,
   1341 	 * describe the node.
   1342 	 *
   1343 	 * The next series of four set its value, through various possible
   1344 	 * means.
   1345 	 *
   1346 	 * Last but not least, the path to the node is described.  That path
   1347 	 * is relative to the given root (third argument).  Here we're
   1348 	 * starting from the root.
   1349 	 */
   1350 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1351 	    CTLFLAG_PERMANENT,
   1352 	    CTLTYPE_NODE, "tap", NULL,
   1353 	    NULL, 0, NULL, 0,
   1354 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1355 		return;
   1356 	tap_node = node->sysctl_num;
   1357 }
   1358 
   1359 /*
   1360  * The helper functions make Andrew Brown's interface really
   1361  * shine.  It makes possible to create value on the fly whether
   1362  * the sysctl value is read or written.
   1363  *
   1364  * As shown as an example in the man page, the first step is to
   1365  * create a copy of the node to have sysctl_lookup work on it.
   1366  *
   1367  * Here, we have more work to do than just a copy, since we have
   1368  * to create the string.  The first step is to collect the actual
   1369  * value of the node, which is a convenient pointer to the softc
   1370  * of the interface.  From there we create the string and use it
   1371  * as the value, but only for the *copy* of the node.
   1372  *
   1373  * Then we let sysctl_lookup do the magic, which consists in
   1374  * setting oldp and newp as required by the operation.  When the
   1375  * value is read, that means that the string will be copied to
   1376  * the user, and when it is written, the new value will be copied
   1377  * over in the addr array.
   1378  *
   1379  * If newp is NULL, the user was reading the value, so we don't
   1380  * have anything else to do.  If a new value was written, we
   1381  * have to check it.
   1382  *
   1383  * If it is incorrect, we can return an error and leave 'node' as
   1384  * it is:  since it is a copy of the actual node, the change will
   1385  * be forgotten.
   1386  *
   1387  * Upon a correct input, we commit the change to the ifnet
   1388  * structure of our interface.
   1389  */
   1390 static int
   1391 tap_sysctl_handler(SYSCTLFN_ARGS)
   1392 {
   1393 	struct sysctlnode node;
   1394 	struct tap_softc *sc;
   1395 	struct ifnet *ifp;
   1396 	int error;
   1397 	size_t len;
   1398 	char addr[3 * ETHER_ADDR_LEN];
   1399 	uint8_t enaddr[ETHER_ADDR_LEN];
   1400 
   1401 	node = *rnode;
   1402 	sc = node.sysctl_data;
   1403 	ifp = &sc->sc_ec.ec_if;
   1404 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1405 	node.sysctl_data = addr;
   1406 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1407 	if (error || newp == NULL)
   1408 		return error;
   1409 
   1410 	len = strlen(addr);
   1411 	if (len < 11 || len > 17)
   1412 		return EINVAL;
   1413 
   1414 	/* Commit change */
   1415 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1416 		return EINVAL;
   1417 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1418 	return error;
   1419 }
   1420 
   1421 /*
   1422  * Module infrastructure
   1423  */
   1424 #include "if_module.h"
   1425 
   1426 IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
   1427