if_tap.c revision 1.108 1 /* $NetBSD: if_tap.c,v 1.108 2019/03/25 09:32:25 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * tap(4) is a virtual Ethernet interface. It appears as a real Ethernet
31 * device to the system, but can also be accessed by userland through a
32 * character device interface, which allows reading and injecting frames.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.108 2019/03/25 09:32:25 pgoyette Exp $");
37
38 #if defined(_KERNEL_OPT)
39
40 #include "opt_modular.h"
41 #include "opt_compat_netbsd.h"
42 #endif
43
44 #include <sys/param.h>
45 #include <sys/atomic.h>
46 #include <sys/conf.h>
47 #include <sys/cprng.h>
48 #include <sys/device.h>
49 #include <sys/file.h>
50 #include <sys/filedesc.h>
51 #include <sys/intr.h>
52 #include <sys/kauth.h>
53 #include <sys/kernel.h>
54 #include <sys/kmem.h>
55 #include <sys/module.h>
56 #include <sys/mutex.h>
57 #include <sys/condvar.h>
58 #include <sys/poll.h>
59 #include <sys/proc.h>
60 #include <sys/select.h>
61 #include <sys/sockio.h>
62 #include <sys/stat.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65
66 #include <net/if.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <net/if_media.h>
70 #include <net/if_tap.h>
71 #include <net/bpf.h>
72
73 #include <compat/sys/sockio.h>
74
75 #include "ioconf.h"
76
77 /*
78 * sysctl node management
79 *
80 * It's not really possible to use a SYSCTL_SETUP block with
81 * current module implementation, so it is easier to just define
82 * our own function.
83 *
84 * The handler function is a "helper" in Andrew Brown's sysctl
85 * framework terminology. It is used as a gateway for sysctl
86 * requests over the nodes.
87 *
88 * tap_log allows the module to log creations of nodes and
89 * destroy them all at once using sysctl_teardown.
90 */
91 static int tap_node;
92 static int tap_sysctl_handler(SYSCTLFN_PROTO);
93 static void sysctl_tap_setup(struct sysctllog **);
94
95 /*
96 * Since we're an Ethernet device, we need the 2 following
97 * components: a struct ethercom and a struct ifmedia
98 * since we don't attach a PHY to ourselves.
99 * We could emulate one, but there's no real point.
100 */
101
102 struct tap_softc {
103 device_t sc_dev;
104 struct ifmedia sc_im;
105 struct ethercom sc_ec;
106 int sc_flags;
107 #define TAP_INUSE 0x00000001 /* tap device can only be opened once */
108 #define TAP_ASYNCIO 0x00000002 /* user is using async I/O (SIGIO) on the device */
109 #define TAP_NBIO 0x00000004 /* user wants calls to avoid blocking */
110 #define TAP_GOING 0x00000008 /* interface is being destroyed */
111 struct selinfo sc_rsel;
112 pid_t sc_pgid; /* For async. IO */
113 kmutex_t sc_lock;
114 kcondvar_t sc_cv;
115 void *sc_sih;
116 struct timespec sc_atime;
117 struct timespec sc_mtime;
118 struct timespec sc_btime;
119 };
120
121 /* autoconf(9) glue */
122
123 static int tap_match(device_t, cfdata_t, void *);
124 static void tap_attach(device_t, device_t, void *);
125 static int tap_detach(device_t, int);
126
127 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
128 tap_match, tap_attach, tap_detach, NULL);
129 extern struct cfdriver tap_cd;
130
131 /* Real device access routines */
132 static int tap_dev_close(struct tap_softc *);
133 static int tap_dev_read(int, struct uio *, int);
134 static int tap_dev_write(int, struct uio *, int);
135 static int tap_dev_ioctl(int, u_long, void *, struct lwp *);
136 static int tap_dev_poll(int, int, struct lwp *);
137 static int tap_dev_kqfilter(int, struct knote *);
138
139 /* Fileops access routines */
140 static int tap_fops_close(file_t *);
141 static int tap_fops_read(file_t *, off_t *, struct uio *,
142 kauth_cred_t, int);
143 static int tap_fops_write(file_t *, off_t *, struct uio *,
144 kauth_cred_t, int);
145 static int tap_fops_ioctl(file_t *, u_long, void *);
146 static int tap_fops_poll(file_t *, int);
147 static int tap_fops_stat(file_t *, struct stat *);
148 static int tap_fops_kqfilter(file_t *, struct knote *);
149
150 static const struct fileops tap_fileops = {
151 .fo_name = "tap",
152 .fo_read = tap_fops_read,
153 .fo_write = tap_fops_write,
154 .fo_ioctl = tap_fops_ioctl,
155 .fo_fcntl = fnullop_fcntl,
156 .fo_poll = tap_fops_poll,
157 .fo_stat = tap_fops_stat,
158 .fo_close = tap_fops_close,
159 .fo_kqfilter = tap_fops_kqfilter,
160 .fo_restart = fnullop_restart,
161 };
162
163 /* Helper for cloning open() */
164 static int tap_dev_cloner(struct lwp *);
165
166 /* Character device routines */
167 static int tap_cdev_open(dev_t, int, int, struct lwp *);
168 static int tap_cdev_close(dev_t, int, int, struct lwp *);
169 static int tap_cdev_read(dev_t, struct uio *, int);
170 static int tap_cdev_write(dev_t, struct uio *, int);
171 static int tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
172 static int tap_cdev_poll(dev_t, int, struct lwp *);
173 static int tap_cdev_kqfilter(dev_t, struct knote *);
174
175 const struct cdevsw tap_cdevsw = {
176 .d_open = tap_cdev_open,
177 .d_close = tap_cdev_close,
178 .d_read = tap_cdev_read,
179 .d_write = tap_cdev_write,
180 .d_ioctl = tap_cdev_ioctl,
181 .d_stop = nostop,
182 .d_tty = notty,
183 .d_poll = tap_cdev_poll,
184 .d_mmap = nommap,
185 .d_kqfilter = tap_cdev_kqfilter,
186 .d_discard = nodiscard,
187 .d_flag = D_OTHER | D_MPSAFE
188 };
189
190 #define TAP_CLONER 0xfffff /* Maximal minor value */
191
192 /* kqueue-related routines */
193 static void tap_kqdetach(struct knote *);
194 static int tap_kqread(struct knote *, long);
195
196 /*
197 * Those are needed by the if_media interface.
198 */
199
200 static int tap_mediachange(struct ifnet *);
201 static void tap_mediastatus(struct ifnet *, struct ifmediareq *);
202
203 /*
204 * Those are needed by the ifnet interface, and would typically be
205 * there for any network interface driver.
206 * Some other routines are optional: watchdog and drain.
207 */
208
209 static void tap_start(struct ifnet *);
210 static void tap_stop(struct ifnet *, int);
211 static int tap_init(struct ifnet *);
212 static int tap_ioctl(struct ifnet *, u_long, void *);
213
214 /* Internal functions */
215 static int tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
216 static void tap_softintr(void *);
217
218 /*
219 * tap is a clonable interface, although it is highly unrealistic for
220 * an Ethernet device.
221 *
222 * Here are the bits needed for a clonable interface.
223 */
224 static int tap_clone_create(struct if_clone *, int);
225 static int tap_clone_destroy(struct ifnet *);
226
227 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
228 tap_clone_create,
229 tap_clone_destroy);
230
231 /* Helper functions shared by the two cloning code paths */
232 static struct tap_softc * tap_clone_creator(int);
233 int tap_clone_destroyer(device_t);
234
235 static struct sysctllog *tap_sysctl_clog;
236
237 #ifdef _MODULE
238 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
239 #endif
240
241 static u_int tap_count;
242
243 void
244 tapattach(int n)
245 {
246
247 /*
248 * Nothing to do here, initialization is handled by the
249 * module initialization code in tapinit() below).
250 */
251 }
252
253 static void
254 tapinit(void)
255 {
256 int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
257 if (error) {
258 aprint_error("%s: unable to register cfattach\n",
259 tap_cd.cd_name);
260 (void)config_cfdriver_detach(&tap_cd);
261 return;
262 }
263
264 if_clone_attach(&tap_cloners);
265 sysctl_tap_setup(&tap_sysctl_clog);
266 #ifdef _MODULE
267 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
268 #endif
269 }
270
271 static int
272 tapdetach(void)
273 {
274 int error = 0;
275
276 if_clone_detach(&tap_cloners);
277 #ifdef _MODULE
278 error = devsw_detach(NULL, &tap_cdevsw);
279 if (error != 0)
280 goto out2;
281 #endif
282
283 if (tap_count != 0) {
284 error = EBUSY;
285 goto out1;
286 }
287
288 error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
289 if (error != 0)
290 goto out1;
291
292 sysctl_teardown(&tap_sysctl_clog);
293
294 return 0;
295
296 out1:
297 #ifdef _MODULE
298 devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
299 #endif
300 out2:
301 if_clone_attach(&tap_cloners);
302
303 return error;
304 }
305
306 /* Pretty much useless for a pseudo-device */
307 static int
308 tap_match(device_t parent, cfdata_t cfdata, void *arg)
309 {
310
311 return 1;
312 }
313
314 void
315 tap_attach(device_t parent, device_t self, void *aux)
316 {
317 struct tap_softc *sc = device_private(self);
318 struct ifnet *ifp;
319 const struct sysctlnode *node;
320 int error;
321 uint8_t enaddr[ETHER_ADDR_LEN] =
322 { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
323 char enaddrstr[3 * ETHER_ADDR_LEN];
324
325 sc->sc_dev = self;
326 sc->sc_sih = NULL;
327 getnanotime(&sc->sc_btime);
328 sc->sc_atime = sc->sc_mtime = sc->sc_btime;
329 sc->sc_flags = 0;
330 selinit(&sc->sc_rsel);
331
332 cv_init(&sc->sc_cv, "tapread");
333 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
334
335 if (!pmf_device_register(self, NULL, NULL))
336 aprint_error_dev(self, "couldn't establish power handler\n");
337
338 /*
339 * In order to obtain unique initial Ethernet address on a host,
340 * do some randomisation. It's not meant for anything but avoiding
341 * hard-coding an address.
342 */
343 cprng_fast(&enaddr[3], 3);
344
345 aprint_verbose_dev(self, "Ethernet address %s\n",
346 ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
347
348 /*
349 * Why 1000baseT? Why not? You can add more.
350 *
351 * Note that there are 3 steps: init, one or several additions to
352 * list of supported media, and in the end, the selection of one
353 * of them.
354 */
355 ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
356 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
357 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
358 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
359 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
360 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
361 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
362 ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
363 ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
364
365 /*
366 * One should note that an interface must do multicast in order
367 * to support IPv6.
368 */
369 ifp = &sc->sc_ec.ec_if;
370 strcpy(ifp->if_xname, device_xname(self));
371 ifp->if_softc = sc;
372 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
373 ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
374 #ifdef NET_MPSAFE
375 ifp->if_extflags |= IFEF_MPSAFE;
376 #endif
377 ifp->if_ioctl = tap_ioctl;
378 ifp->if_start = tap_start;
379 ifp->if_stop = tap_stop;
380 ifp->if_init = tap_init;
381 IFQ_SET_READY(&ifp->if_snd);
382
383 sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
384
385 /* Those steps are mandatory for an Ethernet driver. */
386 error = if_initialize(ifp);
387 if (error != 0) {
388 aprint_error_dev(self, "if_initialize failed(%d)\n", error);
389 ifmedia_removeall(&sc->sc_im);
390 pmf_device_deregister(self);
391 mutex_destroy(&sc->sc_lock);
392 seldestroy(&sc->sc_rsel);
393
394 return; /* Error */
395 }
396 ifp->if_percpuq = if_percpuq_create(ifp);
397 ether_ifattach(ifp, enaddr);
398 if_register(ifp);
399
400 /*
401 * Add a sysctl node for that interface.
402 *
403 * The pointer transmitted is not a string, but instead a pointer to
404 * the softc structure, which we can use to build the string value on
405 * the fly in the helper function of the node. See the comments for
406 * tap_sysctl_handler for details.
407 *
408 * Usually sysctl_createv is called with CTL_CREATE as the before-last
409 * component. However, we can allocate a number ourselves, as we are
410 * the only consumer of the net.link.<iface> node. In this case, the
411 * unit number is conveniently used to number the node. CTL_CREATE
412 * would just work, too.
413 */
414 if ((error = sysctl_createv(NULL, 0, NULL,
415 &node, CTLFLAG_READWRITE,
416 CTLTYPE_STRING, device_xname(self), NULL,
417 tap_sysctl_handler, 0, (void *)sc, 18,
418 CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
419 CTL_EOL)) != 0)
420 aprint_error_dev(self,
421 "sysctl_createv returned %d, ignoring\n", error);
422 }
423
424 /*
425 * When detaching, we do the inverse of what is done in the attach
426 * routine, in reversed order.
427 */
428 static int
429 tap_detach(device_t self, int flags)
430 {
431 struct tap_softc *sc = device_private(self);
432 struct ifnet *ifp = &sc->sc_ec.ec_if;
433 int error;
434
435 sc->sc_flags |= TAP_GOING;
436 tap_stop(ifp, 1);
437 if_down(ifp);
438
439 if (sc->sc_sih != NULL) {
440 softint_disestablish(sc->sc_sih);
441 sc->sc_sih = NULL;
442 }
443
444 /*
445 * Destroying a single leaf is a very straightforward operation using
446 * sysctl_destroyv. One should be sure to always end the path with
447 * CTL_EOL.
448 */
449 if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
450 device_unit(sc->sc_dev), CTL_EOL)) != 0)
451 aprint_error_dev(self,
452 "sysctl_destroyv returned %d, ignoring\n", error);
453 ether_ifdetach(ifp);
454 if_detach(ifp);
455 ifmedia_removeall(&sc->sc_im);
456 seldestroy(&sc->sc_rsel);
457 mutex_destroy(&sc->sc_lock);
458 cv_destroy(&sc->sc_cv);
459
460 pmf_device_deregister(self);
461
462 return 0;
463 }
464
465 /*
466 * This function is called by the ifmedia layer to notify the driver
467 * that the user requested a media change. A real driver would
468 * reconfigure the hardware.
469 */
470 static int
471 tap_mediachange(struct ifnet *ifp)
472 {
473 return 0;
474 }
475
476 /*
477 * Here the user asks for the currently used media.
478 */
479 static void
480 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
481 {
482 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
483 imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
484 }
485
486 /*
487 * This is the function where we SEND packets.
488 *
489 * There is no 'receive' equivalent. A typical driver will get
490 * interrupts from the hardware, and from there will inject new packets
491 * into the network stack.
492 *
493 * Once handled, a packet must be freed. A real driver might not be able
494 * to fit all the pending packets into the hardware, and is allowed to
495 * return before having sent all the packets. It should then use the
496 * if_flags flag IFF_OACTIVE to notify the upper layer.
497 *
498 * There are also other flags one should check, such as IFF_PAUSE.
499 *
500 * It is our duty to make packets available to BPF listeners.
501 *
502 * You should be aware that this function is called by the Ethernet layer
503 * at splnet().
504 *
505 * When the device is opened, we have to pass the packet(s) to the
506 * userland. For that we stay in OACTIVE mode while the userland gets
507 * the packets, and we send a signal to the processes waiting to read.
508 *
509 * wakeup(sc) is the counterpart to the tsleep call in
510 * tap_dev_read, while selnotify() is used for kevent(2) and
511 * poll(2) (which includes select(2)) listeners.
512 */
513 static void
514 tap_start(struct ifnet *ifp)
515 {
516 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
517 struct mbuf *m0;
518
519 mutex_enter(&sc->sc_lock);
520 if ((sc->sc_flags & TAP_INUSE) == 0) {
521 /* Simply drop packets */
522 for(;;) {
523 IFQ_DEQUEUE(&ifp->if_snd, m0);
524 if (m0 == NULL)
525 goto done;
526
527 ifp->if_opackets++;
528 bpf_mtap(ifp, m0, BPF_D_OUT);
529
530 m_freem(m0);
531 }
532 } else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
533 ifp->if_flags |= IFF_OACTIVE;
534 cv_broadcast(&sc->sc_cv);
535 selnotify(&sc->sc_rsel, 0, 1);
536 if (sc->sc_flags & TAP_ASYNCIO)
537 softint_schedule(sc->sc_sih);
538 }
539 done:
540 mutex_exit(&sc->sc_lock);
541 }
542
543 static void
544 tap_softintr(void *cookie)
545 {
546 struct tap_softc *sc;
547 struct ifnet *ifp;
548 int a, b;
549
550 sc = cookie;
551
552 if (sc->sc_flags & TAP_ASYNCIO) {
553 ifp = &sc->sc_ec.ec_if;
554 if (ifp->if_flags & IFF_RUNNING) {
555 a = POLL_IN;
556 b = POLLIN|POLLRDNORM;
557 } else {
558 a = POLL_HUP;
559 b = 0;
560 }
561 fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
562 }
563 }
564
565 /*
566 * A typical driver will only contain the following handlers for
567 * ioctl calls, except SIOCSIFPHYADDR.
568 * The latter is a hack I used to set the Ethernet address of the
569 * faked device.
570 *
571 * Note that both ifmedia_ioctl() and ether_ioctl() have to be
572 * called under splnet().
573 */
574 static int
575 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
576 {
577 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
578 struct ifreq *ifr = (struct ifreq *)data;
579 int s, error;
580
581 s = splnet();
582
583 switch (cmd) {
584 #ifdef OSIOCSIFMEDIA
585 case OSIOCSIFMEDIA:
586 #endif
587 case SIOCSIFMEDIA:
588 case SIOCGIFMEDIA:
589 error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
590 break;
591 case SIOCSIFPHYADDR:
592 error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
593 break;
594 default:
595 error = ether_ioctl(ifp, cmd, data);
596 if (error == ENETRESET)
597 error = 0;
598 break;
599 }
600
601 splx(s);
602
603 return error;
604 }
605
606 /*
607 * Helper function to set Ethernet address. This has been replaced by
608 * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
609 */
610 static int
611 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
612 {
613 const struct sockaddr *sa = &ifra->ifra_addr;
614
615 if (sa->sa_family != AF_LINK)
616 return EINVAL;
617
618 if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
619
620 return 0;
621 }
622
623 /*
624 * _init() would typically be called when an interface goes up,
625 * meaning it should configure itself into the state in which it
626 * can send packets.
627 */
628 static int
629 tap_init(struct ifnet *ifp)
630 {
631 ifp->if_flags |= IFF_RUNNING;
632
633 tap_start(ifp);
634
635 return 0;
636 }
637
638 /*
639 * _stop() is called when an interface goes down. It is our
640 * responsability to validate that state by clearing the
641 * IFF_RUNNING flag.
642 *
643 * We have to wake up all the sleeping processes to have the pending
644 * read requests cancelled.
645 */
646 static void
647 tap_stop(struct ifnet *ifp, int disable)
648 {
649 struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
650
651 mutex_enter(&sc->sc_lock);
652 ifp->if_flags &= ~IFF_RUNNING;
653 cv_broadcast(&sc->sc_cv);
654 selnotify(&sc->sc_rsel, 0, 1);
655 if (sc->sc_flags & TAP_ASYNCIO)
656 softint_schedule(sc->sc_sih);
657 mutex_exit(&sc->sc_lock);
658 }
659
660 /*
661 * The 'create' command of ifconfig can be used to create
662 * any numbered instance of a given device. Thus we have to
663 * make sure we have enough room in cd_devs to create the
664 * user-specified instance. config_attach_pseudo will do this
665 * for us.
666 */
667 static int
668 tap_clone_create(struct if_clone *ifc, int unit)
669 {
670 if (tap_clone_creator(unit) == NULL) {
671 aprint_error("%s%d: unable to attach an instance\n",
672 tap_cd.cd_name, unit);
673 return ENXIO;
674 }
675 atomic_inc_uint(&tap_count);
676 return 0;
677 }
678
679 /*
680 * tap(4) can be cloned by two ways:
681 * using 'ifconfig tap0 create', which will use the network
682 * interface cloning API, and call tap_clone_create above.
683 * opening the cloning device node, whose minor number is TAP_CLONER.
684 * See below for an explanation on how this part work.
685 */
686 static struct tap_softc *
687 tap_clone_creator(int unit)
688 {
689 cfdata_t cf;
690
691 cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
692 cf->cf_name = tap_cd.cd_name;
693 cf->cf_atname = tap_ca.ca_name;
694 if (unit == -1) {
695 /* let autoconf find the first free one */
696 cf->cf_unit = 0;
697 cf->cf_fstate = FSTATE_STAR;
698 } else {
699 cf->cf_unit = unit;
700 cf->cf_fstate = FSTATE_NOTFOUND;
701 }
702
703 return device_private(config_attach_pseudo(cf));
704 }
705
706 /*
707 * The clean design of if_clone and autoconf(9) makes that part
708 * really straightforward. The second argument of config_detach
709 * means neither QUIET nor FORCED.
710 */
711 static int
712 tap_clone_destroy(struct ifnet *ifp)
713 {
714 struct tap_softc *sc = ifp->if_softc;
715 int error = tap_clone_destroyer(sc->sc_dev);
716
717 if (error == 0)
718 atomic_dec_uint(&tap_count);
719 return error;
720 }
721
722 int
723 tap_clone_destroyer(device_t dev)
724 {
725 cfdata_t cf = device_cfdata(dev);
726 int error;
727
728 if ((error = config_detach(dev, 0)) != 0)
729 aprint_error_dev(dev, "unable to detach instance\n");
730 kmem_free(cf, sizeof(*cf));
731
732 return error;
733 }
734
735 /*
736 * tap(4) is a bit of an hybrid device. It can be used in two different
737 * ways:
738 * 1. ifconfig tapN create, then use /dev/tapN to read/write off it.
739 * 2. open /dev/tap, get a new interface created and read/write off it.
740 * That interface is destroyed when the process that had it created exits.
741 *
742 * The first way is managed by the cdevsw structure, and you access interfaces
743 * through a (major, minor) mapping: tap4 is obtained by the minor number
744 * 4. The entry points for the cdevsw interface are prefixed by tap_cdev_.
745 *
746 * The second way is the so-called "cloning" device. It's a special minor
747 * number (chosen as the maximal number, to allow as much tap devices as
748 * possible). The user first opens the cloner (e.g., /dev/tap), and that
749 * call ends in tap_cdev_open. The actual place where it is handled is
750 * tap_dev_cloner.
751 *
752 * An tap device cannot be opened more than once at a time, so the cdevsw
753 * part of open() does nothing but noting that the interface is being used and
754 * hence ready to actually handle packets.
755 */
756
757 static int
758 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
759 {
760 struct tap_softc *sc;
761
762 if (minor(dev) == TAP_CLONER)
763 return tap_dev_cloner(l);
764
765 sc = device_lookup_private(&tap_cd, minor(dev));
766 if (sc == NULL)
767 return ENXIO;
768
769 /* The device can only be opened once */
770 if (sc->sc_flags & TAP_INUSE)
771 return EBUSY;
772 sc->sc_flags |= TAP_INUSE;
773 return 0;
774 }
775
776 /*
777 * There are several kinds of cloning devices, and the most simple is the one
778 * tap(4) uses. What it does is change the file descriptor with a new one,
779 * with its own fileops structure (which maps to the various read, write,
780 * ioctl functions). It starts allocating a new file descriptor with falloc,
781 * then actually creates the new tap devices.
782 *
783 * Once those two steps are successful, we can re-wire the existing file
784 * descriptor to its new self. This is done with fdclone(): it fills the fp
785 * structure as needed (notably f_devunit gets filled with the fifth parameter
786 * passed, the unit of the tap device which will allows us identifying the
787 * device later), and returns EMOVEFD.
788 *
789 * That magic value is interpreted by sys_open() which then replaces the
790 * current file descriptor by the new one (through a magic member of struct
791 * lwp, l_dupfd).
792 *
793 * The tap device is flagged as being busy since it otherwise could be
794 * externally accessed through the corresponding device node with the cdevsw
795 * interface.
796 */
797
798 static int
799 tap_dev_cloner(struct lwp *l)
800 {
801 struct tap_softc *sc;
802 file_t *fp;
803 int error, fd;
804
805 if ((error = fd_allocfile(&fp, &fd)) != 0)
806 return error;
807
808 if ((sc = tap_clone_creator(-1)) == NULL) {
809 fd_abort(curproc, fp, fd);
810 return ENXIO;
811 }
812
813 sc->sc_flags |= TAP_INUSE;
814
815 return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
816 (void *)(intptr_t)device_unit(sc->sc_dev));
817 }
818
819 /*
820 * While all other operations (read, write, ioctl, poll and kqfilter) are
821 * really the same whether we are in cdevsw or fileops mode, the close()
822 * function is slightly different in the two cases.
823 *
824 * As for the other, the core of it is shared in tap_dev_close. What
825 * it does is sufficient for the cdevsw interface, but the cloning interface
826 * needs another thing: the interface is destroyed when the processes that
827 * created it closes it.
828 */
829 static int
830 tap_cdev_close(dev_t dev, int flags, int fmt,
831 struct lwp *l)
832 {
833 struct tap_softc *sc =
834 device_lookup_private(&tap_cd, minor(dev));
835
836 if (sc == NULL)
837 return ENXIO;
838
839 return tap_dev_close(sc);
840 }
841
842 /*
843 * It might happen that the administrator used ifconfig to externally destroy
844 * the interface. In that case, tap_fops_close will be called while
845 * tap_detach is already happening. If we called it again from here, we
846 * would dead lock. TAP_GOING ensures that this situation doesn't happen.
847 */
848 static int
849 tap_fops_close(file_t *fp)
850 {
851 int unit = fp->f_devunit;
852 struct tap_softc *sc;
853 int error;
854
855 sc = device_lookup_private(&tap_cd, unit);
856 if (sc == NULL)
857 return ENXIO;
858
859 /* tap_dev_close currently always succeeds, but it might not
860 * always be the case. */
861 KERNEL_LOCK(1, NULL);
862 if ((error = tap_dev_close(sc)) != 0) {
863 KERNEL_UNLOCK_ONE(NULL);
864 return error;
865 }
866
867 /* Destroy the device now that it is no longer useful,
868 * unless it's already being destroyed. */
869 if ((sc->sc_flags & TAP_GOING) != 0) {
870 KERNEL_UNLOCK_ONE(NULL);
871 return 0;
872 }
873
874 error = tap_clone_destroyer(sc->sc_dev);
875 KERNEL_UNLOCK_ONE(NULL);
876 return error;
877 }
878
879 static int
880 tap_dev_close(struct tap_softc *sc)
881 {
882 struct ifnet *ifp;
883 int s;
884
885 s = splnet();
886 /* Let tap_start handle packets again */
887 ifp = &sc->sc_ec.ec_if;
888 ifp->if_flags &= ~IFF_OACTIVE;
889
890 /* Purge output queue */
891 if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
892 struct mbuf *m;
893
894 for (;;) {
895 IFQ_DEQUEUE(&ifp->if_snd, m);
896 if (m == NULL)
897 break;
898
899 ifp->if_opackets++;
900 bpf_mtap(ifp, m, BPF_D_OUT);
901 m_freem(m);
902 }
903 }
904 splx(s);
905
906 if (sc->sc_sih != NULL) {
907 softint_disestablish(sc->sc_sih);
908 sc->sc_sih = NULL;
909 }
910 sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
911
912 return 0;
913 }
914
915 static int
916 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
917 {
918 return tap_dev_read(minor(dev), uio, flags);
919 }
920
921 static int
922 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
923 kauth_cred_t cred, int flags)
924 {
925 int error;
926
927 KERNEL_LOCK(1, NULL);
928 error = tap_dev_read(fp->f_devunit, uio, flags);
929 KERNEL_UNLOCK_ONE(NULL);
930 return error;
931 }
932
933 static int
934 tap_dev_read(int unit, struct uio *uio, int flags)
935 {
936 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
937 struct ifnet *ifp;
938 struct mbuf *m, *n;
939 int error = 0;
940
941 if (sc == NULL)
942 return ENXIO;
943
944 getnanotime(&sc->sc_atime);
945
946 ifp = &sc->sc_ec.ec_if;
947 if ((ifp->if_flags & IFF_UP) == 0)
948 return EHOSTDOWN;
949
950 /*
951 * In the TAP_NBIO case, we have to make sure we won't be sleeping
952 */
953 if ((sc->sc_flags & TAP_NBIO) != 0) {
954 if (!mutex_tryenter(&sc->sc_lock))
955 return EWOULDBLOCK;
956 } else {
957 mutex_enter(&sc->sc_lock);
958 }
959
960 if (IFQ_IS_EMPTY(&ifp->if_snd)) {
961 ifp->if_flags &= ~IFF_OACTIVE;
962 if (sc->sc_flags & TAP_NBIO)
963 error = EWOULDBLOCK;
964 else
965 error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
966
967 if (error != 0) {
968 mutex_exit(&sc->sc_lock);
969 return error;
970 }
971 /* The device might have been downed */
972 if ((ifp->if_flags & IFF_UP) == 0) {
973 mutex_exit(&sc->sc_lock);
974 return EHOSTDOWN;
975 }
976 }
977
978 IFQ_DEQUEUE(&ifp->if_snd, m);
979 mutex_exit(&sc->sc_lock);
980
981 ifp->if_flags &= ~IFF_OACTIVE;
982 if (m == NULL) {
983 error = 0;
984 goto out;
985 }
986
987 ifp->if_opackets++;
988 bpf_mtap(ifp, m, BPF_D_OUT);
989
990 /*
991 * One read is one packet.
992 */
993 do {
994 error = uiomove(mtod(m, void *),
995 uimin(m->m_len, uio->uio_resid), uio);
996 m = n = m_free(m);
997 } while (m != NULL && uio->uio_resid > 0 && error == 0);
998
999 if (m != NULL)
1000 m_freem(m);
1001
1002 out:
1003 return error;
1004 }
1005
1006 static int
1007 tap_fops_stat(file_t *fp, struct stat *st)
1008 {
1009 int error = 0;
1010 struct tap_softc *sc;
1011 int unit = fp->f_devunit;
1012
1013 (void)memset(st, 0, sizeof(*st));
1014
1015 KERNEL_LOCK(1, NULL);
1016 sc = device_lookup_private(&tap_cd, unit);
1017 if (sc == NULL) {
1018 error = ENXIO;
1019 goto out;
1020 }
1021
1022 st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
1023 st->st_atimespec = sc->sc_atime;
1024 st->st_mtimespec = sc->sc_mtime;
1025 st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
1026 st->st_uid = kauth_cred_geteuid(fp->f_cred);
1027 st->st_gid = kauth_cred_getegid(fp->f_cred);
1028 out:
1029 KERNEL_UNLOCK_ONE(NULL);
1030 return error;
1031 }
1032
1033 static int
1034 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
1035 {
1036 return tap_dev_write(minor(dev), uio, flags);
1037 }
1038
1039 static int
1040 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
1041 kauth_cred_t cred, int flags)
1042 {
1043 int error;
1044
1045 KERNEL_LOCK(1, NULL);
1046 error = tap_dev_write(fp->f_devunit, uio, flags);
1047 KERNEL_UNLOCK_ONE(NULL);
1048 return error;
1049 }
1050
1051 static int
1052 tap_dev_write(int unit, struct uio *uio, int flags)
1053 {
1054 struct tap_softc *sc =
1055 device_lookup_private(&tap_cd, unit);
1056 struct ifnet *ifp;
1057 struct mbuf *m, **mp;
1058 int error = 0;
1059
1060 if (sc == NULL)
1061 return ENXIO;
1062
1063 getnanotime(&sc->sc_mtime);
1064 ifp = &sc->sc_ec.ec_if;
1065
1066 /* One write, one packet, that's the rule */
1067 MGETHDR(m, M_DONTWAIT, MT_DATA);
1068 if (m == NULL) {
1069 ifp->if_ierrors++;
1070 return ENOBUFS;
1071 }
1072 m->m_pkthdr.len = uio->uio_resid;
1073
1074 mp = &m;
1075 while (error == 0 && uio->uio_resid > 0) {
1076 if (*mp != m) {
1077 MGET(*mp, M_DONTWAIT, MT_DATA);
1078 if (*mp == NULL) {
1079 error = ENOBUFS;
1080 break;
1081 }
1082 }
1083 (*mp)->m_len = uimin(MHLEN, uio->uio_resid);
1084 error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
1085 mp = &(*mp)->m_next;
1086 }
1087 if (error) {
1088 ifp->if_ierrors++;
1089 m_freem(m);
1090 return error;
1091 }
1092
1093 m_set_rcvif(m, ifp);
1094
1095 if_percpuq_enqueue(ifp->if_percpuq, m);
1096
1097 return 0;
1098 }
1099
1100 static int
1101 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
1102 struct lwp *l)
1103 {
1104 return tap_dev_ioctl(minor(dev), cmd, data, l);
1105 }
1106
1107 static int
1108 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
1109 {
1110 return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
1111 }
1112
1113 static int
1114 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
1115 {
1116 struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
1117
1118 if (sc == NULL)
1119 return ENXIO;
1120
1121 switch (cmd) {
1122 case FIONREAD:
1123 {
1124 struct ifnet *ifp = &sc->sc_ec.ec_if;
1125 struct mbuf *m;
1126 int s;
1127
1128 s = splnet();
1129 IFQ_POLL(&ifp->if_snd, m);
1130
1131 if (m == NULL)
1132 *(int *)data = 0;
1133 else
1134 *(int *)data = m->m_pkthdr.len;
1135 splx(s);
1136 return 0;
1137 }
1138 case TIOCSPGRP:
1139 case FIOSETOWN:
1140 return fsetown(&sc->sc_pgid, cmd, data);
1141 case TIOCGPGRP:
1142 case FIOGETOWN:
1143 return fgetown(sc->sc_pgid, cmd, data);
1144 case FIOASYNC:
1145 if (*(int *)data) {
1146 if (sc->sc_sih == NULL) {
1147 sc->sc_sih = softint_establish(SOFTINT_CLOCK,
1148 tap_softintr, sc);
1149 if (sc->sc_sih == NULL)
1150 return EBUSY; /* XXX */
1151 }
1152 sc->sc_flags |= TAP_ASYNCIO;
1153 } else {
1154 sc->sc_flags &= ~TAP_ASYNCIO;
1155 if (sc->sc_sih != NULL) {
1156 softint_disestablish(sc->sc_sih);
1157 sc->sc_sih = NULL;
1158 }
1159 }
1160 return 0;
1161 case FIONBIO:
1162 if (*(int *)data)
1163 sc->sc_flags |= TAP_NBIO;
1164 else
1165 sc->sc_flags &= ~TAP_NBIO;
1166 return 0;
1167 #ifdef OTAPGIFNAME
1168 case OTAPGIFNAME:
1169 #endif
1170 case TAPGIFNAME:
1171 {
1172 struct ifreq *ifr = (struct ifreq *)data;
1173 struct ifnet *ifp = &sc->sc_ec.ec_if;
1174
1175 strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
1176 return 0;
1177 }
1178 default:
1179 return ENOTTY;
1180 }
1181 }
1182
1183 static int
1184 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
1185 {
1186 return tap_dev_poll(minor(dev), events, l);
1187 }
1188
1189 static int
1190 tap_fops_poll(file_t *fp, int events)
1191 {
1192 return tap_dev_poll(fp->f_devunit, events, curlwp);
1193 }
1194
1195 static int
1196 tap_dev_poll(int unit, int events, struct lwp *l)
1197 {
1198 struct tap_softc *sc =
1199 device_lookup_private(&tap_cd, unit);
1200 int revents = 0;
1201
1202 if (sc == NULL)
1203 return POLLERR;
1204
1205 if (events & (POLLIN|POLLRDNORM)) {
1206 struct ifnet *ifp = &sc->sc_ec.ec_if;
1207 struct mbuf *m;
1208 int s;
1209
1210 s = splnet();
1211 IFQ_POLL(&ifp->if_snd, m);
1212
1213 if (m != NULL)
1214 revents |= events & (POLLIN|POLLRDNORM);
1215 else {
1216 mutex_spin_enter(&sc->sc_lock);
1217 selrecord(l, &sc->sc_rsel);
1218 mutex_spin_exit(&sc->sc_lock);
1219 }
1220 splx(s);
1221 }
1222 revents |= events & (POLLOUT|POLLWRNORM);
1223
1224 return revents;
1225 }
1226
1227 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
1228 tap_kqread };
1229 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
1230 filt_seltrue };
1231
1232 static int
1233 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
1234 {
1235 return tap_dev_kqfilter(minor(dev), kn);
1236 }
1237
1238 static int
1239 tap_fops_kqfilter(file_t *fp, struct knote *kn)
1240 {
1241 return tap_dev_kqfilter(fp->f_devunit, kn);
1242 }
1243
1244 static int
1245 tap_dev_kqfilter(int unit, struct knote *kn)
1246 {
1247 struct tap_softc *sc =
1248 device_lookup_private(&tap_cd, unit);
1249
1250 if (sc == NULL)
1251 return ENXIO;
1252
1253 KERNEL_LOCK(1, NULL);
1254 switch(kn->kn_filter) {
1255 case EVFILT_READ:
1256 kn->kn_fop = &tap_read_filterops;
1257 break;
1258 case EVFILT_WRITE:
1259 kn->kn_fop = &tap_seltrue_filterops;
1260 break;
1261 default:
1262 KERNEL_UNLOCK_ONE(NULL);
1263 return EINVAL;
1264 }
1265
1266 kn->kn_hook = sc;
1267 mutex_spin_enter(&sc->sc_lock);
1268 SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
1269 mutex_spin_exit(&sc->sc_lock);
1270 KERNEL_UNLOCK_ONE(NULL);
1271 return 0;
1272 }
1273
1274 static void
1275 tap_kqdetach(struct knote *kn)
1276 {
1277 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1278
1279 KERNEL_LOCK(1, NULL);
1280 mutex_spin_enter(&sc->sc_lock);
1281 SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
1282 mutex_spin_exit(&sc->sc_lock);
1283 KERNEL_UNLOCK_ONE(NULL);
1284 }
1285
1286 static int
1287 tap_kqread(struct knote *kn, long hint)
1288 {
1289 struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
1290 struct ifnet *ifp = &sc->sc_ec.ec_if;
1291 struct mbuf *m;
1292 int s, rv;
1293
1294 KERNEL_LOCK(1, NULL);
1295 s = splnet();
1296 IFQ_POLL(&ifp->if_snd, m);
1297
1298 if (m == NULL)
1299 kn->kn_data = 0;
1300 else
1301 kn->kn_data = m->m_pkthdr.len;
1302 splx(s);
1303 rv = (kn->kn_data != 0 ? 1 : 0);
1304 KERNEL_UNLOCK_ONE(NULL);
1305 return rv;
1306 }
1307
1308 /*
1309 * sysctl management routines
1310 * You can set the address of an interface through:
1311 * net.link.tap.tap<number>
1312 *
1313 * Note the consistent use of tap_log in order to use
1314 * sysctl_teardown at unload time.
1315 *
1316 * In the kernel you will find a lot of SYSCTL_SETUP blocks. Those
1317 * blocks register a function in a special section of the kernel
1318 * (called a link set) which is used at init_sysctl() time to cycle
1319 * through all those functions to create the kernel's sysctl tree.
1320 *
1321 * It is not possible to use link sets in a module, so the
1322 * easiest is to simply call our own setup routine at load time.
1323 *
1324 * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
1325 * CTLFLAG_PERMANENT flag, meaning they cannot be removed. Once the
1326 * whole kernel sysctl tree is built, it is not possible to add any
1327 * permanent node.
1328 *
1329 * It should be noted that we're not saving the sysctlnode pointer
1330 * we are returned when creating the "tap" node. That structure
1331 * cannot be trusted once out of the calling function, as it might
1332 * get reused. So we just save the MIB number, and always give the
1333 * full path starting from the root for later calls to sysctl_createv
1334 * and sysctl_destroyv.
1335 */
1336 static void
1337 sysctl_tap_setup(struct sysctllog **clog)
1338 {
1339 const struct sysctlnode *node;
1340 int error = 0;
1341
1342 if ((error = sysctl_createv(clog, 0, NULL, NULL,
1343 CTLFLAG_PERMANENT,
1344 CTLTYPE_NODE, "link", NULL,
1345 NULL, 0, NULL, 0,
1346 CTL_NET, AF_LINK, CTL_EOL)) != 0)
1347 return;
1348
1349 /*
1350 * The first four parameters of sysctl_createv are for management.
1351 *
1352 * The four that follows, here starting with a '0' for the flags,
1353 * describe the node.
1354 *
1355 * The next series of four set its value, through various possible
1356 * means.
1357 *
1358 * Last but not least, the path to the node is described. That path
1359 * is relative to the given root (third argument). Here we're
1360 * starting from the root.
1361 */
1362 if ((error = sysctl_createv(clog, 0, NULL, &node,
1363 CTLFLAG_PERMANENT,
1364 CTLTYPE_NODE, "tap", NULL,
1365 NULL, 0, NULL, 0,
1366 CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
1367 return;
1368 tap_node = node->sysctl_num;
1369 }
1370
1371 /*
1372 * The helper functions make Andrew Brown's interface really
1373 * shine. It makes possible to create value on the fly whether
1374 * the sysctl value is read or written.
1375 *
1376 * As shown as an example in the man page, the first step is to
1377 * create a copy of the node to have sysctl_lookup work on it.
1378 *
1379 * Here, we have more work to do than just a copy, since we have
1380 * to create the string. The first step is to collect the actual
1381 * value of the node, which is a convenient pointer to the softc
1382 * of the interface. From there we create the string and use it
1383 * as the value, but only for the *copy* of the node.
1384 *
1385 * Then we let sysctl_lookup do the magic, which consists in
1386 * setting oldp and newp as required by the operation. When the
1387 * value is read, that means that the string will be copied to
1388 * the user, and when it is written, the new value will be copied
1389 * over in the addr array.
1390 *
1391 * If newp is NULL, the user was reading the value, so we don't
1392 * have anything else to do. If a new value was written, we
1393 * have to check it.
1394 *
1395 * If it is incorrect, we can return an error and leave 'node' as
1396 * it is: since it is a copy of the actual node, the change will
1397 * be forgotten.
1398 *
1399 * Upon a correct input, we commit the change to the ifnet
1400 * structure of our interface.
1401 */
1402 static int
1403 tap_sysctl_handler(SYSCTLFN_ARGS)
1404 {
1405 struct sysctlnode node;
1406 struct tap_softc *sc;
1407 struct ifnet *ifp;
1408 int error;
1409 size_t len;
1410 char addr[3 * ETHER_ADDR_LEN];
1411 uint8_t enaddr[ETHER_ADDR_LEN];
1412
1413 node = *rnode;
1414 sc = node.sysctl_data;
1415 ifp = &sc->sc_ec.ec_if;
1416 (void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
1417 node.sysctl_data = addr;
1418 error = sysctl_lookup(SYSCTLFN_CALL(&node));
1419 if (error || newp == NULL)
1420 return error;
1421
1422 len = strlen(addr);
1423 if (len < 11 || len > 17)
1424 return EINVAL;
1425
1426 /* Commit change */
1427 if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
1428 return EINVAL;
1429 if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
1430 return error;
1431 }
1432
1433 /*
1434 * Module infrastructure
1435 */
1436 #include "if_module.h"
1437
1438 IF_MODULE(MODULE_CLASS_DRIVER, tap, "")
1439