Home | History | Annotate | Line # | Download | only in net
if_tap.c revision 1.111
      1 /*	$NetBSD: if_tap.c,v 1.111 2019/04/26 11:51:56 pgoyette Exp $	*/
      2 
      3 /*
      4  *  Copyright (c) 2003, 2004, 2008, 2009 The NetBSD Foundation.
      5  *  All rights reserved.
      6  *
      7  *  Redistribution and use in source and binary forms, with or without
      8  *  modification, are permitted provided that the following conditions
      9  *  are met:
     10  *  1. Redistributions of source code must retain the above copyright
     11  *     notice, this list of conditions and the following disclaimer.
     12  *  2. Redistributions in binary form must reproduce the above copyright
     13  *     notice, this list of conditions and the following disclaimer in the
     14  *     documentation and/or other materials provided with the distribution.
     15  *
     16  *  THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  *  ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  *  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  *  PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  *  BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  *  POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * tap(4) is a virtual Ethernet interface.  It appears as a real Ethernet
     31  * device to the system, but can also be accessed by userland through a
     32  * character device interface, which allows reading and injecting frames.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: if_tap.c,v 1.111 2019/04/26 11:51:56 pgoyette Exp $");
     37 
     38 #if defined(_KERNEL_OPT)
     39 
     40 #include "opt_modular.h"
     41 #endif
     42 
     43 #include <sys/param.h>
     44 #include <sys/atomic.h>
     45 #include <sys/conf.h>
     46 #include <sys/cprng.h>
     47 #include <sys/device.h>
     48 #include <sys/file.h>
     49 #include <sys/filedesc.h>
     50 #include <sys/intr.h>
     51 #include <sys/kauth.h>
     52 #include <sys/kernel.h>
     53 #include <sys/kmem.h>
     54 #include <sys/module.h>
     55 #include <sys/mutex.h>
     56 #include <sys/condvar.h>
     57 #include <sys/poll.h>
     58 #include <sys/proc.h>
     59 #include <sys/select.h>
     60 #include <sys/sockio.h>
     61 #include <sys/stat.h>
     62 #include <sys/sysctl.h>
     63 #include <sys/systm.h>
     64 
     65 #include <net/if.h>
     66 #include <net/if_dl.h>
     67 #include <net/if_ether.h>
     68 #include <net/if_media.h>
     69 #include <net/if_tap.h>
     70 #include <net/bpf.h>
     71 
     72 #include "ioconf.h"
     73 
     74 /*
     75  * sysctl node management
     76  *
     77  * It's not really possible to use a SYSCTL_SETUP block with
     78  * current module implementation, so it is easier to just define
     79  * our own function.
     80  *
     81  * The handler function is a "helper" in Andrew Brown's sysctl
     82  * framework terminology.  It is used as a gateway for sysctl
     83  * requests over the nodes.
     84  *
     85  * tap_log allows the module to log creations of nodes and
     86  * destroy them all at once using sysctl_teardown.
     87  */
     88 static int	tap_node;
     89 static int	tap_sysctl_handler(SYSCTLFN_PROTO);
     90 static void	sysctl_tap_setup(struct sysctllog **);
     91 
     92 /*
     93  * Since we're an Ethernet device, we need the 2 following
     94  * components: a struct ethercom and a struct ifmedia
     95  * since we don't attach a PHY to ourselves.
     96  * We could emulate one, but there's no real point.
     97  */
     98 
     99 struct tap_softc {
    100 	device_t	sc_dev;
    101 	struct ifmedia	sc_im;
    102 	struct ethercom	sc_ec;
    103 	int		sc_flags;
    104 #define	TAP_INUSE	0x00000001	/* tap device can only be opened once */
    105 #define TAP_ASYNCIO	0x00000002	/* user is using async I/O (SIGIO) on the device */
    106 #define TAP_NBIO	0x00000004	/* user wants calls to avoid blocking */
    107 #define TAP_GOING	0x00000008	/* interface is being destroyed */
    108 	struct selinfo	sc_rsel;
    109 	pid_t		sc_pgid; /* For async. IO */
    110 	kmutex_t	sc_lock;
    111 	kcondvar_t	sc_cv;
    112 	void		*sc_sih;
    113 	struct timespec sc_atime;
    114 	struct timespec sc_mtime;
    115 	struct timespec sc_btime;
    116 };
    117 
    118 /* autoconf(9) glue */
    119 
    120 static int	tap_match(device_t, cfdata_t, void *);
    121 static void	tap_attach(device_t, device_t, void *);
    122 static int	tap_detach(device_t, int);
    123 
    124 CFATTACH_DECL_NEW(tap, sizeof(struct tap_softc),
    125     tap_match, tap_attach, tap_detach, NULL);
    126 extern struct cfdriver tap_cd;
    127 
    128 /* Real device access routines */
    129 static int	tap_dev_close(struct tap_softc *);
    130 static int	tap_dev_read(int, struct uio *, int);
    131 static int	tap_dev_write(int, struct uio *, int);
    132 static int	tap_dev_ioctl(int, u_long, void *, struct lwp *);
    133 static int	tap_dev_poll(int, int, struct lwp *);
    134 static int	tap_dev_kqfilter(int, struct knote *);
    135 
    136 /* Fileops access routines */
    137 static int	tap_fops_close(file_t *);
    138 static int	tap_fops_read(file_t *, off_t *, struct uio *,
    139     kauth_cred_t, int);
    140 static int	tap_fops_write(file_t *, off_t *, struct uio *,
    141     kauth_cred_t, int);
    142 static int	tap_fops_ioctl(file_t *, u_long, void *);
    143 static int	tap_fops_poll(file_t *, int);
    144 static int	tap_fops_stat(file_t *, struct stat *);
    145 static int	tap_fops_kqfilter(file_t *, struct knote *);
    146 
    147 static const struct fileops tap_fileops = {
    148 	.fo_name = "tap",
    149 	.fo_read = tap_fops_read,
    150 	.fo_write = tap_fops_write,
    151 	.fo_ioctl = tap_fops_ioctl,
    152 	.fo_fcntl = fnullop_fcntl,
    153 	.fo_poll = tap_fops_poll,
    154 	.fo_stat = tap_fops_stat,
    155 	.fo_close = tap_fops_close,
    156 	.fo_kqfilter = tap_fops_kqfilter,
    157 	.fo_restart = fnullop_restart,
    158 };
    159 
    160 /* Helper for cloning open() */
    161 static int	tap_dev_cloner(struct lwp *);
    162 
    163 /* Character device routines */
    164 static int	tap_cdev_open(dev_t, int, int, struct lwp *);
    165 static int	tap_cdev_close(dev_t, int, int, struct lwp *);
    166 static int	tap_cdev_read(dev_t, struct uio *, int);
    167 static int	tap_cdev_write(dev_t, struct uio *, int);
    168 static int	tap_cdev_ioctl(dev_t, u_long, void *, int, struct lwp *);
    169 static int	tap_cdev_poll(dev_t, int, struct lwp *);
    170 static int	tap_cdev_kqfilter(dev_t, struct knote *);
    171 
    172 const struct cdevsw tap_cdevsw = {
    173 	.d_open = tap_cdev_open,
    174 	.d_close = tap_cdev_close,
    175 	.d_read = tap_cdev_read,
    176 	.d_write = tap_cdev_write,
    177 	.d_ioctl = tap_cdev_ioctl,
    178 	.d_stop = nostop,
    179 	.d_tty = notty,
    180 	.d_poll = tap_cdev_poll,
    181 	.d_mmap = nommap,
    182 	.d_kqfilter = tap_cdev_kqfilter,
    183 	.d_discard = nodiscard,
    184 	.d_flag = D_OTHER | D_MPSAFE
    185 };
    186 
    187 #define TAP_CLONER	0xfffff		/* Maximal minor value */
    188 
    189 /* kqueue-related routines */
    190 static void	tap_kqdetach(struct knote *);
    191 static int	tap_kqread(struct knote *, long);
    192 
    193 /*
    194  * Those are needed by the if_media interface.
    195  */
    196 
    197 static int	tap_mediachange(struct ifnet *);
    198 static void	tap_mediastatus(struct ifnet *, struct ifmediareq *);
    199 
    200 /*
    201  * Those are needed by the ifnet interface, and would typically be
    202  * there for any network interface driver.
    203  * Some other routines are optional: watchdog and drain.
    204  */
    205 
    206 static void	tap_start(struct ifnet *);
    207 static void	tap_stop(struct ifnet *, int);
    208 static int	tap_init(struct ifnet *);
    209 static int	tap_ioctl(struct ifnet *, u_long, void *);
    210 
    211 /* Internal functions */
    212 static int	tap_lifaddr(struct ifnet *, u_long, struct ifaliasreq *);
    213 static void	tap_softintr(void *);
    214 
    215 /*
    216  * tap is a clonable interface, although it is highly unrealistic for
    217  * an Ethernet device.
    218  *
    219  * Here are the bits needed for a clonable interface.
    220  */
    221 static int	tap_clone_create(struct if_clone *, int);
    222 static int	tap_clone_destroy(struct ifnet *);
    223 
    224 struct if_clone tap_cloners = IF_CLONE_INITIALIZER("tap",
    225 					tap_clone_create,
    226 					tap_clone_destroy);
    227 
    228 /* Helper functions shared by the two cloning code paths */
    229 static struct tap_softc *	tap_clone_creator(int);
    230 int	tap_clone_destroyer(device_t);
    231 
    232 static struct sysctllog *tap_sysctl_clog;
    233 
    234 #ifdef _MODULE
    235 devmajor_t tap_bmajor = -1, tap_cmajor = -1;
    236 #endif
    237 
    238 static u_int tap_count;
    239 
    240 void
    241 tapattach(int n)
    242 {
    243 
    244 	/*
    245 	 * Nothing to do here, initialization is handled by the
    246 	 * module initialization code in tapinit() below).
    247 	 */
    248 }
    249 
    250 static void
    251 tapinit(void)
    252 {
    253 	int error = config_cfattach_attach(tap_cd.cd_name, &tap_ca);
    254 	if (error) {
    255 		aprint_error("%s: unable to register cfattach\n",
    256 		    tap_cd.cd_name);
    257 		(void)config_cfdriver_detach(&tap_cd);
    258 		return;
    259 	}
    260 
    261 	if_clone_attach(&tap_cloners);
    262 	sysctl_tap_setup(&tap_sysctl_clog);
    263 #ifdef _MODULE
    264 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    265 #endif
    266 }
    267 
    268 static int
    269 tapdetach(void)
    270 {
    271 	int error = 0;
    272 
    273 	if_clone_detach(&tap_cloners);
    274 #ifdef _MODULE
    275 	error = devsw_detach(NULL, &tap_cdevsw);
    276 	if (error != 0)
    277 		goto out2;
    278 #endif
    279 
    280 	if (tap_count != 0) {
    281 		error = EBUSY;
    282 		goto out1;
    283 	}
    284 
    285 	error = config_cfattach_detach(tap_cd.cd_name, &tap_ca);
    286 	if (error != 0)
    287 		goto out1;
    288 
    289 	sysctl_teardown(&tap_sysctl_clog);
    290 
    291 	return 0;
    292 
    293  out1:
    294 #ifdef _MODULE
    295 	devsw_attach("tap", NULL, &tap_bmajor, &tap_cdevsw, &tap_cmajor);
    296  out2:
    297 #endif
    298 	if_clone_attach(&tap_cloners);
    299 
    300 	return error;
    301 }
    302 
    303 /* Pretty much useless for a pseudo-device */
    304 static int
    305 tap_match(device_t parent, cfdata_t cfdata, void *arg)
    306 {
    307 
    308 	return 1;
    309 }
    310 
    311 void
    312 tap_attach(device_t parent, device_t self, void *aux)
    313 {
    314 	struct tap_softc *sc = device_private(self);
    315 	struct ifnet *ifp;
    316 	const struct sysctlnode *node;
    317 	int error;
    318 	uint8_t enaddr[ETHER_ADDR_LEN] =
    319 	    { 0xf2, 0x0b, 0xa4, 0xff, 0xff, 0xff };
    320 	char enaddrstr[3 * ETHER_ADDR_LEN];
    321 
    322 	sc->sc_dev = self;
    323 	sc->sc_sih = NULL;
    324 	getnanotime(&sc->sc_btime);
    325 	sc->sc_atime = sc->sc_mtime = sc->sc_btime;
    326 	sc->sc_flags = 0;
    327 	selinit(&sc->sc_rsel);
    328 
    329 	cv_init(&sc->sc_cv, "tapread");
    330 	mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
    331 
    332 	if (!pmf_device_register(self, NULL, NULL))
    333 		aprint_error_dev(self, "couldn't establish power handler\n");
    334 
    335 	/*
    336 	 * In order to obtain unique initial Ethernet address on a host,
    337 	 * do some randomisation.  It's not meant for anything but avoiding
    338 	 * hard-coding an address.
    339 	 */
    340 	cprng_fast(&enaddr[3], 3);
    341 
    342 	aprint_verbose_dev(self, "Ethernet address %s\n",
    343 	    ether_snprintf(enaddrstr, sizeof(enaddrstr), enaddr));
    344 
    345 	/*
    346 	 * Why 1000baseT? Why not? You can add more.
    347 	 *
    348 	 * Note that there are 3 steps: init, one or several additions to
    349 	 * list of supported media, and in the end, the selection of one
    350 	 * of them.
    351 	 */
    352 	ifmedia_init(&sc->sc_im, 0, tap_mediachange, tap_mediastatus);
    353 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T, 0, NULL);
    354 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_1000_T|IFM_FDX, 0, NULL);
    355 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX, 0, NULL);
    356 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
    357 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T, 0, NULL);
    358 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
    359 	ifmedia_add(&sc->sc_im, IFM_ETHER|IFM_AUTO, 0, NULL);
    360 	ifmedia_set(&sc->sc_im, IFM_ETHER|IFM_AUTO);
    361 
    362 	/*
    363 	 * One should note that an interface must do multicast in order
    364 	 * to support IPv6.
    365 	 */
    366 	ifp = &sc->sc_ec.ec_if;
    367 	strcpy(ifp->if_xname, device_xname(self));
    368 	ifp->if_softc	= sc;
    369 	ifp->if_flags	= IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    370 	ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
    371 #ifdef NET_MPSAFE
    372 	ifp->if_extflags |= IFEF_MPSAFE;
    373 #endif
    374 	ifp->if_ioctl	= tap_ioctl;
    375 	ifp->if_start	= tap_start;
    376 	ifp->if_stop	= tap_stop;
    377 	ifp->if_init	= tap_init;
    378 	IFQ_SET_READY(&ifp->if_snd);
    379 
    380 	sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    381 
    382 	/* Those steps are mandatory for an Ethernet driver. */
    383 	error = if_initialize(ifp);
    384 	if (error != 0) {
    385 		aprint_error_dev(self, "if_initialize failed(%d)\n", error);
    386 		ifmedia_removeall(&sc->sc_im);
    387 		pmf_device_deregister(self);
    388 		mutex_destroy(&sc->sc_lock);
    389 		seldestroy(&sc->sc_rsel);
    390 
    391 		return; /* Error */
    392 	}
    393 	ifp->if_percpuq = if_percpuq_create(ifp);
    394 	ether_ifattach(ifp, enaddr);
    395 	if_register(ifp);
    396 
    397 	/*
    398 	 * Add a sysctl node for that interface.
    399 	 *
    400 	 * The pointer transmitted is not a string, but instead a pointer to
    401 	 * the softc structure, which we can use to build the string value on
    402 	 * the fly in the helper function of the node.  See the comments for
    403 	 * tap_sysctl_handler for details.
    404 	 *
    405 	 * Usually sysctl_createv is called with CTL_CREATE as the before-last
    406 	 * component.  However, we can allocate a number ourselves, as we are
    407 	 * the only consumer of the net.link.<iface> node.  In this case, the
    408 	 * unit number is conveniently used to number the node.  CTL_CREATE
    409 	 * would just work, too.
    410 	 */
    411 	if ((error = sysctl_createv(NULL, 0, NULL,
    412 	    &node, CTLFLAG_READWRITE,
    413 	    CTLTYPE_STRING, device_xname(self), NULL,
    414 	    tap_sysctl_handler, 0, (void *)sc, 18,
    415 	    CTL_NET, AF_LINK, tap_node, device_unit(sc->sc_dev),
    416 	    CTL_EOL)) != 0)
    417 		aprint_error_dev(self,
    418 		    "sysctl_createv returned %d, ignoring\n", error);
    419 }
    420 
    421 /*
    422  * When detaching, we do the inverse of what is done in the attach
    423  * routine, in reversed order.
    424  */
    425 static int
    426 tap_detach(device_t self, int flags)
    427 {
    428 	struct tap_softc *sc = device_private(self);
    429 	struct ifnet *ifp = &sc->sc_ec.ec_if;
    430 	int error;
    431 
    432 	sc->sc_flags |= TAP_GOING;
    433 	tap_stop(ifp, 1);
    434 	if_down(ifp);
    435 
    436 	if (sc->sc_sih != NULL) {
    437 		softint_disestablish(sc->sc_sih);
    438 		sc->sc_sih = NULL;
    439 	}
    440 
    441 	/*
    442 	 * Destroying a single leaf is a very straightforward operation using
    443 	 * sysctl_destroyv.  One should be sure to always end the path with
    444 	 * CTL_EOL.
    445 	 */
    446 	if ((error = sysctl_destroyv(NULL, CTL_NET, AF_LINK, tap_node,
    447 	    device_unit(sc->sc_dev), CTL_EOL)) != 0)
    448 		aprint_error_dev(self,
    449 		    "sysctl_destroyv returned %d, ignoring\n", error);
    450 	ether_ifdetach(ifp);
    451 	if_detach(ifp);
    452 	ifmedia_removeall(&sc->sc_im);
    453 	seldestroy(&sc->sc_rsel);
    454 	mutex_destroy(&sc->sc_lock);
    455 	cv_destroy(&sc->sc_cv);
    456 
    457 	pmf_device_deregister(self);
    458 
    459 	return 0;
    460 }
    461 
    462 /*
    463  * This function is called by the ifmedia layer to notify the driver
    464  * that the user requested a media change.  A real driver would
    465  * reconfigure the hardware.
    466  */
    467 static int
    468 tap_mediachange(struct ifnet *ifp)
    469 {
    470 	return 0;
    471 }
    472 
    473 /*
    474  * Here the user asks for the currently used media.
    475  */
    476 static void
    477 tap_mediastatus(struct ifnet *ifp, struct ifmediareq *imr)
    478 {
    479 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    480 	imr->ifm_active = sc->sc_im.ifm_cur->ifm_media;
    481 }
    482 
    483 /*
    484  * This is the function where we SEND packets.
    485  *
    486  * There is no 'receive' equivalent.  A typical driver will get
    487  * interrupts from the hardware, and from there will inject new packets
    488  * into the network stack.
    489  *
    490  * Once handled, a packet must be freed.  A real driver might not be able
    491  * to fit all the pending packets into the hardware, and is allowed to
    492  * return before having sent all the packets.  It should then use the
    493  * if_flags flag IFF_OACTIVE to notify the upper layer.
    494  *
    495  * There are also other flags one should check, such as IFF_PAUSE.
    496  *
    497  * It is our duty to make packets available to BPF listeners.
    498  *
    499  * You should be aware that this function is called by the Ethernet layer
    500  * at splnet().
    501  *
    502  * When the device is opened, we have to pass the packet(s) to the
    503  * userland.  For that we stay in OACTIVE mode while the userland gets
    504  * the packets, and we send a signal to the processes waiting to read.
    505  *
    506  * wakeup(sc) is the counterpart to the tsleep call in
    507  * tap_dev_read, while selnotify() is used for kevent(2) and
    508  * poll(2) (which includes select(2)) listeners.
    509  */
    510 static void
    511 tap_start(struct ifnet *ifp)
    512 {
    513 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    514 	struct mbuf *m0;
    515 
    516 	mutex_enter(&sc->sc_lock);
    517 	if ((sc->sc_flags & TAP_INUSE) == 0) {
    518 		/* Simply drop packets */
    519 		for(;;) {
    520 			IFQ_DEQUEUE(&ifp->if_snd, m0);
    521 			if (m0 == NULL)
    522 				goto done;
    523 
    524 			ifp->if_opackets++;
    525 			bpf_mtap(ifp, m0, BPF_D_OUT);
    526 
    527 			m_freem(m0);
    528 		}
    529 	} else if (!IFQ_IS_EMPTY(&ifp->if_snd)) {
    530 		ifp->if_flags |= IFF_OACTIVE;
    531 		cv_broadcast(&sc->sc_cv);
    532 		selnotify(&sc->sc_rsel, 0, 1);
    533 		if (sc->sc_flags & TAP_ASYNCIO)
    534 			softint_schedule(sc->sc_sih);
    535 	}
    536 done:
    537 	mutex_exit(&sc->sc_lock);
    538 }
    539 
    540 static void
    541 tap_softintr(void *cookie)
    542 {
    543 	struct tap_softc *sc;
    544 	struct ifnet *ifp;
    545 	int a, b;
    546 
    547 	sc = cookie;
    548 
    549 	if (sc->sc_flags & TAP_ASYNCIO) {
    550 		ifp = &sc->sc_ec.ec_if;
    551 		if (ifp->if_flags & IFF_RUNNING) {
    552 			a = POLL_IN;
    553 			b = POLLIN|POLLRDNORM;
    554 		} else {
    555 			a = POLL_HUP;
    556 			b = 0;
    557 		}
    558 		fownsignal(sc->sc_pgid, SIGIO, a, b, NULL);
    559 	}
    560 }
    561 
    562 /*
    563  * A typical driver will only contain the following handlers for
    564  * ioctl calls, except SIOCSIFPHYADDR.
    565  * The latter is a hack I used to set the Ethernet address of the
    566  * faked device.
    567  *
    568  * Note that both ifmedia_ioctl() and ether_ioctl() have to be
    569  * called under splnet().
    570  */
    571 static int
    572 tap_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    573 {
    574 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    575 	struct ifreq *ifr = (struct ifreq *)data;
    576 	int s, error;
    577 
    578 	s = splnet();
    579 
    580 	switch (cmd) {
    581 	case SIOCSIFMEDIA:
    582 	case SIOCGIFMEDIA:
    583 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_im, cmd);
    584 		break;
    585 	case SIOCSIFPHYADDR:
    586 		error = tap_lifaddr(ifp, cmd, (struct ifaliasreq *)data);
    587 		break;
    588 	default:
    589 		error = ether_ioctl(ifp, cmd, data);
    590 		if (error == ENETRESET)
    591 			error = 0;
    592 		break;
    593 	}
    594 
    595 	splx(s);
    596 
    597 	return error;
    598 }
    599 
    600 /*
    601  * Helper function to set Ethernet address.  This has been replaced by
    602  * the generic SIOCALIFADDR ioctl on a PF_LINK socket.
    603  */
    604 static int
    605 tap_lifaddr(struct ifnet *ifp, u_long cmd, struct ifaliasreq *ifra)
    606 {
    607 	const struct sockaddr *sa = &ifra->ifra_addr;
    608 
    609 	if (sa->sa_family != AF_LINK)
    610 		return EINVAL;
    611 
    612 	if_set_sadl(ifp, sa->sa_data, ETHER_ADDR_LEN, false);
    613 
    614 	return 0;
    615 }
    616 
    617 /*
    618  * _init() would typically be called when an interface goes up,
    619  * meaning it should configure itself into the state in which it
    620  * can send packets.
    621  */
    622 static int
    623 tap_init(struct ifnet *ifp)
    624 {
    625 	ifp->if_flags |= IFF_RUNNING;
    626 
    627 	tap_start(ifp);
    628 
    629 	return 0;
    630 }
    631 
    632 /*
    633  * _stop() is called when an interface goes down.  It is our
    634  * responsability to validate that state by clearing the
    635  * IFF_RUNNING flag.
    636  *
    637  * We have to wake up all the sleeping processes to have the pending
    638  * read requests cancelled.
    639  */
    640 static void
    641 tap_stop(struct ifnet *ifp, int disable)
    642 {
    643 	struct tap_softc *sc = (struct tap_softc *)ifp->if_softc;
    644 
    645 	mutex_enter(&sc->sc_lock);
    646 	ifp->if_flags &= ~IFF_RUNNING;
    647 	cv_broadcast(&sc->sc_cv);
    648 	selnotify(&sc->sc_rsel, 0, 1);
    649 	if (sc->sc_flags & TAP_ASYNCIO)
    650 		softint_schedule(sc->sc_sih);
    651 	mutex_exit(&sc->sc_lock);
    652 }
    653 
    654 /*
    655  * The 'create' command of ifconfig can be used to create
    656  * any numbered instance of a given device.  Thus we have to
    657  * make sure we have enough room in cd_devs to create the
    658  * user-specified instance.  config_attach_pseudo will do this
    659  * for us.
    660  */
    661 static int
    662 tap_clone_create(struct if_clone *ifc, int unit)
    663 {
    664 	if (tap_clone_creator(unit) == NULL) {
    665 		aprint_error("%s%d: unable to attach an instance\n",
    666 		    tap_cd.cd_name, unit);
    667 		return ENXIO;
    668 	}
    669 	atomic_inc_uint(&tap_count);
    670 	return 0;
    671 }
    672 
    673 /*
    674  * tap(4) can be cloned by two ways:
    675  *   using 'ifconfig tap0 create', which will use the network
    676  *     interface cloning API, and call tap_clone_create above.
    677  *   opening the cloning device node, whose minor number is TAP_CLONER.
    678  *     See below for an explanation on how this part work.
    679  */
    680 static struct tap_softc *
    681 tap_clone_creator(int unit)
    682 {
    683 	cfdata_t cf;
    684 
    685 	cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
    686 	cf->cf_name = tap_cd.cd_name;
    687 	cf->cf_atname = tap_ca.ca_name;
    688 	if (unit == -1) {
    689 		/* let autoconf find the first free one */
    690 		cf->cf_unit = 0;
    691 		cf->cf_fstate = FSTATE_STAR;
    692 	} else {
    693 		cf->cf_unit = unit;
    694 		cf->cf_fstate = FSTATE_NOTFOUND;
    695 	}
    696 
    697 	return device_private(config_attach_pseudo(cf));
    698 }
    699 
    700 /*
    701  * The clean design of if_clone and autoconf(9) makes that part
    702  * really straightforward.  The second argument of config_detach
    703  * means neither QUIET nor FORCED.
    704  */
    705 static int
    706 tap_clone_destroy(struct ifnet *ifp)
    707 {
    708 	struct tap_softc *sc = ifp->if_softc;
    709 	int error = tap_clone_destroyer(sc->sc_dev);
    710 
    711 	if (error == 0)
    712 		atomic_dec_uint(&tap_count);
    713 	return error;
    714 }
    715 
    716 int
    717 tap_clone_destroyer(device_t dev)
    718 {
    719 	cfdata_t cf = device_cfdata(dev);
    720 	int error;
    721 
    722 	if ((error = config_detach(dev, 0)) != 0)
    723 		aprint_error_dev(dev, "unable to detach instance\n");
    724 	kmem_free(cf, sizeof(*cf));
    725 
    726 	return error;
    727 }
    728 
    729 /*
    730  * tap(4) is a bit of an hybrid device.  It can be used in two different
    731  * ways:
    732  *  1. ifconfig tapN create, then use /dev/tapN to read/write off it.
    733  *  2. open /dev/tap, get a new interface created and read/write off it.
    734  *     That interface is destroyed when the process that had it created exits.
    735  *
    736  * The first way is managed by the cdevsw structure, and you access interfaces
    737  * through a (major, minor) mapping:  tap4 is obtained by the minor number
    738  * 4.  The entry points for the cdevsw interface are prefixed by tap_cdev_.
    739  *
    740  * The second way is the so-called "cloning" device.  It's a special minor
    741  * number (chosen as the maximal number, to allow as much tap devices as
    742  * possible).  The user first opens the cloner (e.g., /dev/tap), and that
    743  * call ends in tap_cdev_open.  The actual place where it is handled is
    744  * tap_dev_cloner.
    745  *
    746  * An tap device cannot be opened more than once at a time, so the cdevsw
    747  * part of open() does nothing but noting that the interface is being used and
    748  * hence ready to actually handle packets.
    749  */
    750 
    751 static int
    752 tap_cdev_open(dev_t dev, int flags, int fmt, struct lwp *l)
    753 {
    754 	struct tap_softc *sc;
    755 
    756 	if (minor(dev) == TAP_CLONER)
    757 		return tap_dev_cloner(l);
    758 
    759 	sc = device_lookup_private(&tap_cd, minor(dev));
    760 	if (sc == NULL)
    761 		return ENXIO;
    762 
    763 	/* The device can only be opened once */
    764 	if (sc->sc_flags & TAP_INUSE)
    765 		return EBUSY;
    766 	sc->sc_flags |= TAP_INUSE;
    767 	return 0;
    768 }
    769 
    770 /*
    771  * There are several kinds of cloning devices, and the most simple is the one
    772  * tap(4) uses.  What it does is change the file descriptor with a new one,
    773  * with its own fileops structure (which maps to the various read, write,
    774  * ioctl functions).  It starts allocating a new file descriptor with falloc,
    775  * then actually creates the new tap devices.
    776  *
    777  * Once those two steps are successful, we can re-wire the existing file
    778  * descriptor to its new self.  This is done with fdclone():  it fills the fp
    779  * structure as needed (notably f_devunit gets filled with the fifth parameter
    780  * passed, the unit of the tap device which will allows us identifying the
    781  * device later), and returns EMOVEFD.
    782  *
    783  * That magic value is interpreted by sys_open() which then replaces the
    784  * current file descriptor by the new one (through a magic member of struct
    785  * lwp, l_dupfd).
    786  *
    787  * The tap device is flagged as being busy since it otherwise could be
    788  * externally accessed through the corresponding device node with the cdevsw
    789  * interface.
    790  */
    791 
    792 static int
    793 tap_dev_cloner(struct lwp *l)
    794 {
    795 	struct tap_softc *sc;
    796 	file_t *fp;
    797 	int error, fd;
    798 
    799 	if ((error = fd_allocfile(&fp, &fd)) != 0)
    800 		return error;
    801 
    802 	if ((sc = tap_clone_creator(-1)) == NULL) {
    803 		fd_abort(curproc, fp, fd);
    804 		return ENXIO;
    805 	}
    806 
    807 	sc->sc_flags |= TAP_INUSE;
    808 
    809 	return fd_clone(fp, fd, FREAD|FWRITE, &tap_fileops,
    810 	    (void *)(intptr_t)device_unit(sc->sc_dev));
    811 }
    812 
    813 /*
    814  * While all other operations (read, write, ioctl, poll and kqfilter) are
    815  * really the same whether we are in cdevsw or fileops mode, the close()
    816  * function is slightly different in the two cases.
    817  *
    818  * As for the other, the core of it is shared in tap_dev_close.  What
    819  * it does is sufficient for the cdevsw interface, but the cloning interface
    820  * needs another thing:  the interface is destroyed when the processes that
    821  * created it closes it.
    822  */
    823 static int
    824 tap_cdev_close(dev_t dev, int flags, int fmt,
    825     struct lwp *l)
    826 {
    827 	struct tap_softc *sc =
    828 	    device_lookup_private(&tap_cd, minor(dev));
    829 
    830 	if (sc == NULL)
    831 		return ENXIO;
    832 
    833 	return tap_dev_close(sc);
    834 }
    835 
    836 /*
    837  * It might happen that the administrator used ifconfig to externally destroy
    838  * the interface.  In that case, tap_fops_close will be called while
    839  * tap_detach is already happening.  If we called it again from here, we
    840  * would dead lock.  TAP_GOING ensures that this situation doesn't happen.
    841  */
    842 static int
    843 tap_fops_close(file_t *fp)
    844 {
    845 	int unit = fp->f_devunit;
    846 	struct tap_softc *sc;
    847 	int error;
    848 
    849 	sc = device_lookup_private(&tap_cd, unit);
    850 	if (sc == NULL)
    851 		return ENXIO;
    852 
    853 	/* tap_dev_close currently always succeeds, but it might not
    854 	 * always be the case. */
    855 	KERNEL_LOCK(1, NULL);
    856 	if ((error = tap_dev_close(sc)) != 0) {
    857 		KERNEL_UNLOCK_ONE(NULL);
    858 		return error;
    859 	}
    860 
    861 	/* Destroy the device now that it is no longer useful,
    862 	 * unless it's already being destroyed. */
    863 	if ((sc->sc_flags & TAP_GOING) != 0) {
    864 		KERNEL_UNLOCK_ONE(NULL);
    865 		return 0;
    866 	}
    867 
    868 	error = tap_clone_destroyer(sc->sc_dev);
    869 	KERNEL_UNLOCK_ONE(NULL);
    870 	return error;
    871 }
    872 
    873 static int
    874 tap_dev_close(struct tap_softc *sc)
    875 {
    876 	struct ifnet *ifp;
    877 	int s;
    878 
    879 	s = splnet();
    880 	/* Let tap_start handle packets again */
    881 	ifp = &sc->sc_ec.ec_if;
    882 	ifp->if_flags &= ~IFF_OACTIVE;
    883 
    884 	/* Purge output queue */
    885 	if (!(IFQ_IS_EMPTY(&ifp->if_snd))) {
    886 		struct mbuf *m;
    887 
    888 		for (;;) {
    889 			IFQ_DEQUEUE(&ifp->if_snd, m);
    890 			if (m == NULL)
    891 				break;
    892 
    893 			ifp->if_opackets++;
    894 			bpf_mtap(ifp, m, BPF_D_OUT);
    895 			m_freem(m);
    896 		}
    897 	}
    898 	splx(s);
    899 
    900 	if (sc->sc_sih != NULL) {
    901 		softint_disestablish(sc->sc_sih);
    902 		sc->sc_sih = NULL;
    903 	}
    904 	sc->sc_flags &= ~(TAP_INUSE | TAP_ASYNCIO);
    905 
    906 	return 0;
    907 }
    908 
    909 static int
    910 tap_cdev_read(dev_t dev, struct uio *uio, int flags)
    911 {
    912 	return tap_dev_read(minor(dev), uio, flags);
    913 }
    914 
    915 static int
    916 tap_fops_read(file_t *fp, off_t *offp, struct uio *uio,
    917     kauth_cred_t cred, int flags)
    918 {
    919 	int error;
    920 
    921 	KERNEL_LOCK(1, NULL);
    922 	error = tap_dev_read(fp->f_devunit, uio, flags);
    923 	KERNEL_UNLOCK_ONE(NULL);
    924 	return error;
    925 }
    926 
    927 static int
    928 tap_dev_read(int unit, struct uio *uio, int flags)
    929 {
    930 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
    931 	struct ifnet *ifp;
    932 	struct mbuf *m, *n;
    933 	int error = 0;
    934 
    935 	if (sc == NULL)
    936 		return ENXIO;
    937 
    938 	getnanotime(&sc->sc_atime);
    939 
    940 	ifp = &sc->sc_ec.ec_if;
    941 	if ((ifp->if_flags & IFF_UP) == 0)
    942 		return EHOSTDOWN;
    943 
    944 	/*
    945 	 * In the TAP_NBIO case, we have to make sure we won't be sleeping
    946 	 */
    947 	if ((sc->sc_flags & TAP_NBIO) != 0) {
    948 		if (!mutex_tryenter(&sc->sc_lock))
    949 			return EWOULDBLOCK;
    950 	} else {
    951 		mutex_enter(&sc->sc_lock);
    952 	}
    953 
    954 	if (IFQ_IS_EMPTY(&ifp->if_snd)) {
    955 		ifp->if_flags &= ~IFF_OACTIVE;
    956 		if (sc->sc_flags & TAP_NBIO)
    957 			error = EWOULDBLOCK;
    958 		else
    959 			error = cv_wait_sig(&sc->sc_cv, &sc->sc_lock);
    960 
    961 		if (error != 0) {
    962 			mutex_exit(&sc->sc_lock);
    963 			return error;
    964 		}
    965 		/* The device might have been downed */
    966 		if ((ifp->if_flags & IFF_UP) == 0) {
    967 			mutex_exit(&sc->sc_lock);
    968 			return EHOSTDOWN;
    969 		}
    970 	}
    971 
    972 	IFQ_DEQUEUE(&ifp->if_snd, m);
    973 	mutex_exit(&sc->sc_lock);
    974 
    975 	ifp->if_flags &= ~IFF_OACTIVE;
    976 	if (m == NULL) {
    977 		error = 0;
    978 		goto out;
    979 	}
    980 
    981 	ifp->if_opackets++;
    982 	bpf_mtap(ifp, m, BPF_D_OUT);
    983 
    984 	/*
    985 	 * One read is one packet.
    986 	 */
    987 	do {
    988 		error = uiomove(mtod(m, void *),
    989 		    uimin(m->m_len, uio->uio_resid), uio);
    990 		m = n = m_free(m);
    991 	} while (m != NULL && uio->uio_resid > 0 && error == 0);
    992 
    993 	if (m != NULL)
    994 		m_freem(m);
    995 
    996 out:
    997 	return error;
    998 }
    999 
   1000 static int
   1001 tap_fops_stat(file_t *fp, struct stat *st)
   1002 {
   1003 	int error = 0;
   1004 	struct tap_softc *sc;
   1005 	int unit = fp->f_devunit;
   1006 
   1007 	(void)memset(st, 0, sizeof(*st));
   1008 
   1009 	KERNEL_LOCK(1, NULL);
   1010 	sc = device_lookup_private(&tap_cd, unit);
   1011 	if (sc == NULL) {
   1012 		error = ENXIO;
   1013 		goto out;
   1014 	}
   1015 
   1016 	st->st_dev = makedev(cdevsw_lookup_major(&tap_cdevsw), unit);
   1017 	st->st_atimespec = sc->sc_atime;
   1018 	st->st_mtimespec = sc->sc_mtime;
   1019 	st->st_ctimespec = st->st_birthtimespec = sc->sc_btime;
   1020 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
   1021 	st->st_gid = kauth_cred_getegid(fp->f_cred);
   1022 out:
   1023 	KERNEL_UNLOCK_ONE(NULL);
   1024 	return error;
   1025 }
   1026 
   1027 static int
   1028 tap_cdev_write(dev_t dev, struct uio *uio, int flags)
   1029 {
   1030 	return tap_dev_write(minor(dev), uio, flags);
   1031 }
   1032 
   1033 static int
   1034 tap_fops_write(file_t *fp, off_t *offp, struct uio *uio,
   1035     kauth_cred_t cred, int flags)
   1036 {
   1037 	int error;
   1038 
   1039 	KERNEL_LOCK(1, NULL);
   1040 	error = tap_dev_write(fp->f_devunit, uio, flags);
   1041 	KERNEL_UNLOCK_ONE(NULL);
   1042 	return error;
   1043 }
   1044 
   1045 static int
   1046 tap_dev_write(int unit, struct uio *uio, int flags)
   1047 {
   1048 	struct tap_softc *sc =
   1049 	    device_lookup_private(&tap_cd, unit);
   1050 	struct ifnet *ifp;
   1051 	struct mbuf *m, **mp;
   1052 	int error = 0;
   1053 
   1054 	if (sc == NULL)
   1055 		return ENXIO;
   1056 
   1057 	getnanotime(&sc->sc_mtime);
   1058 	ifp = &sc->sc_ec.ec_if;
   1059 
   1060 	/* One write, one packet, that's the rule */
   1061 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1062 	if (m == NULL) {
   1063 		ifp->if_ierrors++;
   1064 		return ENOBUFS;
   1065 	}
   1066 	m->m_pkthdr.len = uio->uio_resid;
   1067 
   1068 	mp = &m;
   1069 	while (error == 0 && uio->uio_resid > 0) {
   1070 		if (*mp != m) {
   1071 			MGET(*mp, M_DONTWAIT, MT_DATA);
   1072 			if (*mp == NULL) {
   1073 				error = ENOBUFS;
   1074 				break;
   1075 			}
   1076 		}
   1077 		(*mp)->m_len = uimin(MHLEN, uio->uio_resid);
   1078 		error = uiomove(mtod(*mp, void *), (*mp)->m_len, uio);
   1079 		mp = &(*mp)->m_next;
   1080 	}
   1081 	if (error) {
   1082 		ifp->if_ierrors++;
   1083 		m_freem(m);
   1084 		return error;
   1085 	}
   1086 
   1087 	m_set_rcvif(m, ifp);
   1088 
   1089 	if_percpuq_enqueue(ifp->if_percpuq, m);
   1090 
   1091 	return 0;
   1092 }
   1093 
   1094 static int
   1095 tap_cdev_ioctl(dev_t dev, u_long cmd, void *data, int flags,
   1096     struct lwp *l)
   1097 {
   1098 	return tap_dev_ioctl(minor(dev), cmd, data, l);
   1099 }
   1100 
   1101 static int
   1102 tap_fops_ioctl(file_t *fp, u_long cmd, void *data)
   1103 {
   1104 	return tap_dev_ioctl(fp->f_devunit, cmd, data, curlwp);
   1105 }
   1106 
   1107 static int
   1108 tap_dev_ioctl(int unit, u_long cmd, void *data, struct lwp *l)
   1109 {
   1110 	struct tap_softc *sc = device_lookup_private(&tap_cd, unit);
   1111 
   1112 	if (sc == NULL)
   1113 		return ENXIO;
   1114 
   1115 	switch (cmd) {
   1116 	case FIONREAD:
   1117 		{
   1118 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1119 			struct mbuf *m;
   1120 			int s;
   1121 
   1122 			s = splnet();
   1123 			IFQ_POLL(&ifp->if_snd, m);
   1124 
   1125 			if (m == NULL)
   1126 				*(int *)data = 0;
   1127 			else
   1128 				*(int *)data = m->m_pkthdr.len;
   1129 			splx(s);
   1130 			return 0;
   1131 		}
   1132 	case TIOCSPGRP:
   1133 	case FIOSETOWN:
   1134 		return fsetown(&sc->sc_pgid, cmd, data);
   1135 	case TIOCGPGRP:
   1136 	case FIOGETOWN:
   1137 		return fgetown(sc->sc_pgid, cmd, data);
   1138 	case FIOASYNC:
   1139 		if (*(int *)data) {
   1140 			if (sc->sc_sih == NULL) {
   1141 				sc->sc_sih = softint_establish(SOFTINT_CLOCK,
   1142 				    tap_softintr, sc);
   1143 				if (sc->sc_sih == NULL)
   1144 					return EBUSY; /* XXX */
   1145 			}
   1146 			sc->sc_flags |= TAP_ASYNCIO;
   1147 		} else {
   1148 			sc->sc_flags &= ~TAP_ASYNCIO;
   1149 			if (sc->sc_sih != NULL) {
   1150 				softint_disestablish(sc->sc_sih);
   1151 				sc->sc_sih = NULL;
   1152 			}
   1153 		}
   1154 		return 0;
   1155 	case FIONBIO:
   1156 		if (*(int *)data)
   1157 			sc->sc_flags |= TAP_NBIO;
   1158 		else
   1159 			sc->sc_flags &= ~TAP_NBIO;
   1160 		return 0;
   1161 	case TAPGIFNAME:
   1162 		{
   1163 			struct ifreq *ifr = (struct ifreq *)data;
   1164 			struct ifnet *ifp = &sc->sc_ec.ec_if;
   1165 
   1166 			strlcpy(ifr->ifr_name, ifp->if_xname, IFNAMSIZ);
   1167 			return 0;
   1168 		}
   1169 	default:
   1170 		return ENOTTY;
   1171 	}
   1172 }
   1173 
   1174 static int
   1175 tap_cdev_poll(dev_t dev, int events, struct lwp *l)
   1176 {
   1177 	return tap_dev_poll(minor(dev), events, l);
   1178 }
   1179 
   1180 static int
   1181 tap_fops_poll(file_t *fp, int events)
   1182 {
   1183 	return tap_dev_poll(fp->f_devunit, events, curlwp);
   1184 }
   1185 
   1186 static int
   1187 tap_dev_poll(int unit, int events, struct lwp *l)
   1188 {
   1189 	struct tap_softc *sc =
   1190 	    device_lookup_private(&tap_cd, unit);
   1191 	int revents = 0;
   1192 
   1193 	if (sc == NULL)
   1194 		return POLLERR;
   1195 
   1196 	if (events & (POLLIN|POLLRDNORM)) {
   1197 		struct ifnet *ifp = &sc->sc_ec.ec_if;
   1198 		struct mbuf *m;
   1199 		int s;
   1200 
   1201 		s = splnet();
   1202 		IFQ_POLL(&ifp->if_snd, m);
   1203 
   1204 		if (m != NULL)
   1205 			revents |= events & (POLLIN|POLLRDNORM);
   1206 		else {
   1207 			mutex_spin_enter(&sc->sc_lock);
   1208 			selrecord(l, &sc->sc_rsel);
   1209 			mutex_spin_exit(&sc->sc_lock);
   1210 		}
   1211 		splx(s);
   1212 	}
   1213 	revents |= events & (POLLOUT|POLLWRNORM);
   1214 
   1215 	return revents;
   1216 }
   1217 
   1218 static struct filterops tap_read_filterops = { 1, NULL, tap_kqdetach,
   1219 	tap_kqread };
   1220 static struct filterops tap_seltrue_filterops = { 1, NULL, tap_kqdetach,
   1221 	filt_seltrue };
   1222 
   1223 static int
   1224 tap_cdev_kqfilter(dev_t dev, struct knote *kn)
   1225 {
   1226 	return tap_dev_kqfilter(minor(dev), kn);
   1227 }
   1228 
   1229 static int
   1230 tap_fops_kqfilter(file_t *fp, struct knote *kn)
   1231 {
   1232 	return tap_dev_kqfilter(fp->f_devunit, kn);
   1233 }
   1234 
   1235 static int
   1236 tap_dev_kqfilter(int unit, struct knote *kn)
   1237 {
   1238 	struct tap_softc *sc =
   1239 	    device_lookup_private(&tap_cd, unit);
   1240 
   1241 	if (sc == NULL)
   1242 		return ENXIO;
   1243 
   1244 	KERNEL_LOCK(1, NULL);
   1245 	switch(kn->kn_filter) {
   1246 	case EVFILT_READ:
   1247 		kn->kn_fop = &tap_read_filterops;
   1248 		break;
   1249 	case EVFILT_WRITE:
   1250 		kn->kn_fop = &tap_seltrue_filterops;
   1251 		break;
   1252 	default:
   1253 		KERNEL_UNLOCK_ONE(NULL);
   1254 		return EINVAL;
   1255 	}
   1256 
   1257 	kn->kn_hook = sc;
   1258 	mutex_spin_enter(&sc->sc_lock);
   1259 	SLIST_INSERT_HEAD(&sc->sc_rsel.sel_klist, kn, kn_selnext);
   1260 	mutex_spin_exit(&sc->sc_lock);
   1261 	KERNEL_UNLOCK_ONE(NULL);
   1262 	return 0;
   1263 }
   1264 
   1265 static void
   1266 tap_kqdetach(struct knote *kn)
   1267 {
   1268 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1269 
   1270 	KERNEL_LOCK(1, NULL);
   1271 	mutex_spin_enter(&sc->sc_lock);
   1272 	SLIST_REMOVE(&sc->sc_rsel.sel_klist, kn, knote, kn_selnext);
   1273 	mutex_spin_exit(&sc->sc_lock);
   1274 	KERNEL_UNLOCK_ONE(NULL);
   1275 }
   1276 
   1277 static int
   1278 tap_kqread(struct knote *kn, long hint)
   1279 {
   1280 	struct tap_softc *sc = (struct tap_softc *)kn->kn_hook;
   1281 	struct ifnet *ifp = &sc->sc_ec.ec_if;
   1282 	struct mbuf *m;
   1283 	int s, rv;
   1284 
   1285 	KERNEL_LOCK(1, NULL);
   1286 	s = splnet();
   1287 	IFQ_POLL(&ifp->if_snd, m);
   1288 
   1289 	if (m == NULL)
   1290 		kn->kn_data = 0;
   1291 	else
   1292 		kn->kn_data = m->m_pkthdr.len;
   1293 	splx(s);
   1294 	rv = (kn->kn_data != 0 ? 1 : 0);
   1295 	KERNEL_UNLOCK_ONE(NULL);
   1296 	return rv;
   1297 }
   1298 
   1299 /*
   1300  * sysctl management routines
   1301  * You can set the address of an interface through:
   1302  * net.link.tap.tap<number>
   1303  *
   1304  * Note the consistent use of tap_log in order to use
   1305  * sysctl_teardown at unload time.
   1306  *
   1307  * In the kernel you will find a lot of SYSCTL_SETUP blocks.  Those
   1308  * blocks register a function in a special section of the kernel
   1309  * (called a link set) which is used at init_sysctl() time to cycle
   1310  * through all those functions to create the kernel's sysctl tree.
   1311  *
   1312  * It is not possible to use link sets in a module, so the
   1313  * easiest is to simply call our own setup routine at load time.
   1314  *
   1315  * In the SYSCTL_SETUP blocks you find in the kernel, nodes have the
   1316  * CTLFLAG_PERMANENT flag, meaning they cannot be removed.  Once the
   1317  * whole kernel sysctl tree is built, it is not possible to add any
   1318  * permanent node.
   1319  *
   1320  * It should be noted that we're not saving the sysctlnode pointer
   1321  * we are returned when creating the "tap" node.  That structure
   1322  * cannot be trusted once out of the calling function, as it might
   1323  * get reused.  So we just save the MIB number, and always give the
   1324  * full path starting from the root for later calls to sysctl_createv
   1325  * and sysctl_destroyv.
   1326  */
   1327 static void
   1328 sysctl_tap_setup(struct sysctllog **clog)
   1329 {
   1330 	const struct sysctlnode *node;
   1331 	int error = 0;
   1332 
   1333 	if ((error = sysctl_createv(clog, 0, NULL, NULL,
   1334 	    CTLFLAG_PERMANENT,
   1335 	    CTLTYPE_NODE, "link", NULL,
   1336 	    NULL, 0, NULL, 0,
   1337 	    CTL_NET, AF_LINK, CTL_EOL)) != 0)
   1338 		return;
   1339 
   1340 	/*
   1341 	 * The first four parameters of sysctl_createv are for management.
   1342 	 *
   1343 	 * The four that follows, here starting with a '0' for the flags,
   1344 	 * describe the node.
   1345 	 *
   1346 	 * The next series of four set its value, through various possible
   1347 	 * means.
   1348 	 *
   1349 	 * Last but not least, the path to the node is described.  That path
   1350 	 * is relative to the given root (third argument).  Here we're
   1351 	 * starting from the root.
   1352 	 */
   1353 	if ((error = sysctl_createv(clog, 0, NULL, &node,
   1354 	    CTLFLAG_PERMANENT,
   1355 	    CTLTYPE_NODE, "tap", NULL,
   1356 	    NULL, 0, NULL, 0,
   1357 	    CTL_NET, AF_LINK, CTL_CREATE, CTL_EOL)) != 0)
   1358 		return;
   1359 	tap_node = node->sysctl_num;
   1360 }
   1361 
   1362 /*
   1363  * The helper functions make Andrew Brown's interface really
   1364  * shine.  It makes possible to create value on the fly whether
   1365  * the sysctl value is read or written.
   1366  *
   1367  * As shown as an example in the man page, the first step is to
   1368  * create a copy of the node to have sysctl_lookup work on it.
   1369  *
   1370  * Here, we have more work to do than just a copy, since we have
   1371  * to create the string.  The first step is to collect the actual
   1372  * value of the node, which is a convenient pointer to the softc
   1373  * of the interface.  From there we create the string and use it
   1374  * as the value, but only for the *copy* of the node.
   1375  *
   1376  * Then we let sysctl_lookup do the magic, which consists in
   1377  * setting oldp and newp as required by the operation.  When the
   1378  * value is read, that means that the string will be copied to
   1379  * the user, and when it is written, the new value will be copied
   1380  * over in the addr array.
   1381  *
   1382  * If newp is NULL, the user was reading the value, so we don't
   1383  * have anything else to do.  If a new value was written, we
   1384  * have to check it.
   1385  *
   1386  * If it is incorrect, we can return an error and leave 'node' as
   1387  * it is:  since it is a copy of the actual node, the change will
   1388  * be forgotten.
   1389  *
   1390  * Upon a correct input, we commit the change to the ifnet
   1391  * structure of our interface.
   1392  */
   1393 static int
   1394 tap_sysctl_handler(SYSCTLFN_ARGS)
   1395 {
   1396 	struct sysctlnode node;
   1397 	struct tap_softc *sc;
   1398 	struct ifnet *ifp;
   1399 	int error;
   1400 	size_t len;
   1401 	char addr[3 * ETHER_ADDR_LEN];
   1402 	uint8_t enaddr[ETHER_ADDR_LEN];
   1403 
   1404 	node = *rnode;
   1405 	sc = node.sysctl_data;
   1406 	ifp = &sc->sc_ec.ec_if;
   1407 	(void)ether_snprintf(addr, sizeof(addr), CLLADDR(ifp->if_sadl));
   1408 	node.sysctl_data = addr;
   1409 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
   1410 	if (error || newp == NULL)
   1411 		return error;
   1412 
   1413 	len = strlen(addr);
   1414 	if (len < 11 || len > 17)
   1415 		return EINVAL;
   1416 
   1417 	/* Commit change */
   1418 	if (ether_aton_r(enaddr, sizeof(enaddr), addr) != 0)
   1419 		return EINVAL;
   1420 	if_set_sadl(ifp, enaddr, ETHER_ADDR_LEN, false);
   1421 	return error;
   1422 }
   1423 
   1424 /*
   1425  * Module infrastructure
   1426  */
   1427 #include "if_module.h"
   1428 
   1429 IF_MODULE(MODULE_CLASS_DRIVER, tap, NULL)
   1430